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Abstract
In this paper we provide an algebraic derivation of the explicit Witten volume for-
mulas for a few semi-simple Lie algebras by combining a combinatorial method with
the ideas used by Gunnells and Sczech in the computation of higher-dimensional
Dedekind sums.

1. Introduction

In [9] Witten related the volumes of the moduli spaces of representations of the
fundamental groups of two dimensional surfaces to the special values of the following
zeta function attached to complex semisimple Lie algebras g at positive integers:

1
wisig) =) ———,
W %: (dim )

where ¢ runs over all finite dimensional irreducible representations of g. By physics
considerations Witten showed that for any positive integer m

Cw(2m;g) = c(2m; g)m*™",
where ¢(2m;g) € Q and r is the number of positive roots of g. Such formulas are
now called Witten volume formulas.

The precise Witten volume formula for s[(3) was obtained by Zagier [10] (and
independently by Garoufalidis and Weinstein):
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In [1], Gunnells and Sczech studied higher-dimensional Dedekind sums and estab-
lished their reciprocity law. As one application they derived the Witten volume
formula for s[(4) precisely.

Matsumoto and his collaborators recently defined the multiple variable analogs
of ¢w(s;g) and studied some of their analytical and arithmetical properties (see
(2,3, 4,5, 7]):

Col{sataca,) = Z H (@Y, miAy + -+ mede) 5,

mi,...,me=1 €A

where for fixed set A = {a1,...,a¢} of simple roots A, is the set of all positive
roots of g, @V = 2a/{a, ) is the coroot attached to a, and {Ay,..., A} are the
fundamental weights satisfying (', \;) = d; ;. By a simple computation, we have

Cwis;g) = M(g)°Cq(s,...,s), where M(g)= H (@V A1+ + Ao).
aEA L

With this multiple variable setup Matsumoto et al. recently were able to obtain
more general formulas which include Witten volume formulas as special cases for Lie
algebras such as s0(5), 50(7), sp(4), sp(6), s1(5), and g2. However, their computation
involves complicated analytical tools.

In this paper, we combine our combinatorial method developed in [11, 12, 13]
and the technique of Gunnells and Sczech to provide an algebraic proof of Witten
volume formulas for the above mentioned Lie algebras. In theory, it can also be
applied to other Lie algebras including the sporadic ones.

This paper is inspired by the work of P.E. Gunnells and R. Sczech [1]. I want to
thank them for their detailed explanation of the part of their paper closely related
to Witten zeta functions. I am also grateful to K. Matsumoto and the referee for
pointing out a mistake in the first draft of the paper and providing some very helpful
suggestions which improve the paper a lot. This work was partially supported by
the Faculty Development Fund of Eckerd College and a Fellowship from the Max-
Planck Institut fiir Mathematik.

2. Key Ideas

We briefly recall the setup in [1, Section 1]. Let L be a lattice of rank ¢ > 1
and L* = Homy(L,Z). Denote by 0 the zero linear form in L*. Let r > ¢. For
e=(e1,...,e,) EN" v € L*®R and ¢ = (01, ...,0.) € (L*\ {0})". Gunnells and
Sczech define the Dedekind sum as

'_exp(2my/—1(z,v))

1
D(L =
( , 0, €, ’U) (27T\/—_1)Wt(e) ; <x7 0'1>e1 A <.13, 0'7">er )
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where wt(e) = e1+- - -+e,, (, ) : LxL* — Z is the pairing, and 3" means the terms
with vanishing denominator are to be omitted. When L = Z‘ we represent each
v € L*®R by a vector in R so that ((m1,...,me), (v1,...,0¢)) = myvi+- - -+mevy.
As pointed out in [1], this series converges absolutely if all e; > 1, but may only
conditionally converge if e; = 1 for some j. Further, the series can be converted
to a finite sum if among all the o; there are exactly ¢ distinct linear forms, up to
proportionality when restricted to L (see [1, §1] for more details). In particular, if
r = ¢ =2 and e = (1;1) then this infinite sum is closely related to the classical
Dedekind sum.

Let ¢ be the rank of the semisimple Lie algebra g, r = |AL|, and W its Weyl
group. Define an ¢ x r integral matrix o(g) whose j-th column v; provides the coef-
ficients of a; € A in terms of the fundamental roots in A. Let e = (2m,...,2m) €
N”. Then by [1, Prop. 8.4] we have

_ 2mr M(g)Qm 4
CW(2mvg) - (277\/__1) WD(Z ,0(9)7670). (2)
In [1] Gunnells and Sczech demonstrated how one can use the reciprocity law of
higher-dimensional Dedekind sums to derived the Witten volume formulas of some
Lie algebras. We can replace this tool by the following simple combinatorial lemma
(see [8, p. 48]).

Lemma 1. Let s,t be two positive integers. Let = and y be two non-zero real
numbers such that r +y # 0. Then

1 " fs+t—a—1 1 s+t—b—1 1
zsyt _azl< t—1 )xs(x+y)5+t“ +Z( s—1 )yt(x—i—y)”tb'

t
b=1

To demonstrate this idea we have the following key lemma to be used many

times later in the paper. Given any ¢ X r matrix ¢ = (o1,...,0,) we denote
by ((01)es---,(0r)e,) the new matrix obtained by repeating each linear form o
exactly e; times, j = 1,...,r. For simplicity we further set

Z((O‘l)el, e (or)er) = (27T\/—_1)Wt(e)D(Ze7 (01,...,00),(e1,...,€r),0).

For example if

then

Lemma 2. Suppose a,b,c,d, e, f € Z such that ged(a, b) = ged(c,d) = ged(e, f) =1
and uX(a,b) + M, d) = (e, f) for some nonzero constant A and |u] = 1,2 or 1/2.
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Let § = ‘Z? If 18] = 1,2, and |ud] = 1,2 then for all positive integers i,j and k
such that w =1+ j + k is even, we have

i

a ¢ e _ —\w i = U=1N\ igyivj1 BiBuw-i
Z(bi d; fk) =(2mv-1) Z{:}( i1 )u A l!(w—l)!al’w(é) (3)

J . .

w t4+J—1—1\ ;. ;xi_1 BiBw-i

+(27T\/—1) ZE ( i1 )u)\“ lmahw(?lé), (4)
=0

where oy, (£1) =1 and ay,(£2) =1 —1/28 —1/2w71 42 /2%,
Proof. Clearly we have

a e

b f

For any pair of integers (z,y) let (z,y)* = {(m1,m2) € Z% : m1 + yma = 0}.
By the combinatorial Lemma 1 we have

a c e
Z
<bi dj fk)
: i+g—=l=1\ i a e a e
= ¢ A’LJ Z _Z 1
Z( j—1 )u bi fuw-i D"\ by fui

J i+7—-1-1 c e c e
itz — Z oy . 6
! =1 ( i—1 )“ [ <dz fw—z) (@0) (dz fw—z)] ©)

Here for any sub lattice L of Z2? the sum Zj, is the sum Z restricted to L. These
restricted sums on the right hand side of (6) in fact exactly correspond to those
appearing on the right hand of the reciprocity law [1, (15)]. If £ > 2 and w — £ > 2
then every Z sum on the right hand side of (6) converges absolutely. So the condition
ged(e,d) = 1 implies that

:5 — €

CCZ = —ud. (5)

a e 1
Z<c7d>L< > = > l =
bi fuw-i s e a0 (amq + bma)t(emq + fmz)w
ami+bma#0, emi+ fma#0

ul\!
- Nez* m1=zdl:v ma=—cN (uramy +urbmz)!(emy + frma)~!

B ul\!
NEE;* ((e = Ae)dN — (f — Md)cN)(edN — feN)w—L
1 ul\!

B (U5)w NezZ” W (7)
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by (5) since w is even. If £ = 1 or w — £ = 1 then we need to modify the above
computation by restricting the sums to —t < (amy + bma)(em1 + fma) < t and
then take the limit as ¢ — oco. With this modification (7) becomes

1 ul M
li —
Ao 2 N
NEeZ*,|N|<T

which is absolutely convergent since w > 4. Hence by an easy binomial identity we
always get

el 1> i—lyitj—l (a e > <Z +J - 1> u'\* 1
E WX T 2L = —.
. (c,d) :
1=0 < g-1 b fu-i J (ud)® Nez* N
(8)

Notice that for every integral matrix o = (;i i’) of determinant § and positive integers
J,k with j + k > 4 we have by [1, (4)]
Z<§ Y ) =(2nv/=1)"**D (72,0, (j,k), 0)
itk

27r\/_7+k
*( Jk!6] Z C

2€722 a2

where B;(z) are the Bernoulli polynomials. When ué = %1 the quantity in (8)
provides exactly the | = 0 term in the sum of (4) by the following formula known
to Euler: for even positive integer w

> Nw = 2(w) = —(2rV-1)" —T
Nez*

When ud = £2 by the assumption ged(c,d) = ged(e, f) = 1 and (9) we get

Z(Cclz ;w—l) B (27T\/2_) lﬁle l;. (1 + (% B 1) (% B 1)) (10)

When [ = 0 we find that (10) is equal to (2mv/—1)¥B,,/(2%w!) and therefore (8)
again provides exactly the [ = 0 term in the sum of (4).

Similarly, the [ = 0 term in the sum of (3) can be obtained by the sum of
Ziap( (cil ;wil ) in (6). This finishes the proof of the lemma. O

We can obtain (1) immediately by applying the lemma to

1 0 1
Z .
(OQm 1 2m 1 2m>

To aid our computation we represent the procedure in Lemma 2 by Figure 1: the
left is self-evident while the right is more elegant with only the removed columns
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recorded. For example, in 1/zy(z+y) = 1/z(z +y)%+1/y(x +y)? we may think of
x, y and z + y as corresponding to the first three columns and say that 1/z(z +y)?
is obtained by merging the second column into the 3rd, so that the second column is
now removed. This is denoted by the node 2 in the right picture. We can generalize
Lemma 1 and apply it to any three linearly dependent columns of a general matrix.
Furthermore, a circled column number between any two sub-nodes signifies the
column into which the two nodes are merged. We call this tree a computation tree.
Notice that w =7 + j + k and we have omitted the summation over .

a c e (a C €>
G5 ) sy h
/N
(a e ) (c e ) 2/ o \1
b fw_l d; fw—l

Figure 1: A computation tree of rank two.

We have the following partial generalization of Lemma 2 whose proof is left to
the interested reader.

Lemma 3. Let o = (01,...,0.) be an (r—1) xr matriz withr > 3. Letey,... e, €
N and put s = e; + ea + e3. Suppose u = x1, uloy + Aoy = o3 for some non-
zero constant A and det(os,...,0.) = £1. If each of o1 and o3 has at least one

component equal to +1 then

B., ...B
Z((Ul)ela---v(ar)er) _ (27‘( /_1)w%ue1/\e1+62x
4l

..ep!

el €2
e1+es—1—1 BiBs_; e1+es—1—1 BiBs_;
X{;( es— 1 >uwz!(s—1)!+l§< -1 )NIG=D ([
Remark. We are not able to generalize Lemma 2 to arbitrary rank without the

assumption that each of o1 and oy has at least one component equal to +1. It
seems that the naive generalization is incorrect.

Definition 4. If a node of binary tree has the following property then we say it is a
good parent: every one of its descendants names one of their children, if it has any,
the same as its only sibling. So a node with children but without grandchildren is
always a good parent.

The definition is crucial for the following result which provides a possible simpli-
fication process to compute Z sums. Usually, when a node in a computation tree
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is not a good parent, the corresponding Z sum is more difficult to compute. For
example, the initial node in the computation tree of the g, case in Section 4 is not
a good parent. But the initial node of the so(5) case in Section 3 is a good parent
S0 its computation is much simpler.

Proposition 5. Let 0 = (01,...,0,) be an £ X r matriz with r > £+ 1 > 2.
Suppose that every column has some component equal to £1. Let ey, ...,e,. € N and
put s = e1 + ea + e3. Assume o has no grandchildren or o is a good parent in its
computation binary tree whose top part looks as follows:

o
/ \
1 ® 2
SN\ N
Here, 3,5, and 7 (these numbers refer to the column numbers) may or may not
be the same but 5 # 1,2,4 and 7 # 1,2,6. Suppose every node in the penultimate

generation satisfies the conditions in Lemma 2 (resp. Lemma 3) if it has rank two
(resp. greater than two). If \yo1 + Aaoa = 03. Then

Z((Ul)627 cel (O'T)er)
:A? )‘32 Z (61 Fem i 1) ! Z((U2)ia (03)571‘7 (04)647 sy (Ur)er)

i=0 er—1 >‘_12
€1 .
e1t+e—1—1\1
+>\§1)\S2Z ( ey 1 )FZ((O-I)i;(O-?))Si7(0-4)€47"'7(0-7")57v)'
i=0 1

Proof. When r = £ + 1 the proposition follows from Lemma 2 and Lemma 3 by
our assumption since now the penultimate generation is exactly o itself. Assume
r>{+ 1. By Lemma 1 it is clear that

Z((01)ers---: (00)e,)

ZASAG i <e1 +ey—i— 1> L {Z((@)i, (03)s—ir (04)egs -+ (Or)e,) — ng}

e; — 1 b
i=1 1 2

€1 .

L e1+ey—1—1\ 1

+>\i >\§2 E o 7 |:Z((Ul)i; (03)571‘7 (04)647 ) (O—T)er) - Zg-zl:| .
P €9 1 )\1

With fixed ¢ we now use induction on r to show that

A;zZU% ((0’3)3, (04)647 ceey (O-/,'-)er) :Z((Ul)i; (03)s—i7 (04)64; sy (0-7")67‘)
Al_iZaj ((03):;, (04)647 Sy (Ur)er) :Z<(U2)ia (03)3—1‘7 (04)e4a s (Uv")er)

=0’
i=0" (11)
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which yields the lemma immediately by the simple combinatorial identities
i ert+es—1—1 . e1+ey—1 i e1+ey—1—1 . e1+ey—1
— es — 1 N es ’ Pt e1 —1 B e1 '

By the computation tree we may assume pi01 + pooy = o5. Notice that for any
T € of we have

)\2<0’2,£L‘> :>\1<01,£C> + )\2<0’2,£L‘> = <0’3,£L'>,

,u'2<047x> :M1<01a {E> + M2<U4a {E> = <U5a {E>
Hence (if ® = ® then e5 = 0)

AgiZgli ((02)1'; (03)571‘7 (04)647 SRR (O—T)er)

:Zg-ll ((03)5; (04)64) ey (Ur)e,,.)
:ﬂ§4ZUfZ((U3)Sv (05)eates (06)egs - - (Ur)erp)' (12)

On the other hand, by induction assumption we get
Z((Ul)i; (03)571‘7 (04)647 s Ur)er)

S (
€4 . .
_— ea+i—73—1\1
:M11H24 ( i—1 ) FZ((OB)S—'LH (04)ja (05)e4+es+i—ja (06)665 cee (UT)er)
j=0 2

i o

i e esa+i—j5—1\1

+p1 s Z < -1 >EZ((Ul)j7 (03)s5—i5 (05)eaes+i—js (T6)egs - -+ (00 )e,)-
=0 1

Taking ¢ = 0 in this expression we see that the first sum is vacuous because of the
binomial coefficient while the second sum is reduced to just one term:

Mi_jM;4Z((Ul)j7 (03)S—ia (05)64+65+i—j’ (06)66’ s (UT)er) i=j=0

= ’USALZU% ((03)87 (0'5)e4+e;,; (Uﬁ)esa ceey (Ur)er)7

by induction assumption. Thus equation (11) follows from (12). The proof of (11)
is exactly the same. This concludes the proof of the proposition. O

3. The so(5) Case
Let m € N and n = 2m. By the above we can write
(o)
1 (2m)8m
Goo(s) (mommm) = amb™(a +b)"(a +2b)* 8

a,b=1
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where (1,...,1) € N** the matrix o = o(n,n,n,n) and

J(a,b,c,d)—<1 0 1 1).

Oa 1b 1c 2d

To prepare for the so(7) case we first prove a generalization of the so(5) case by
the following computation tree
1 0 1 1
0, 1p 1. 24
@

2 / ® \ 1
VA VA

Theorem 6. Let a,b,c,d € N and suppose at most one of them is 1. Set (fl) =0

for all t and write B, = 27V —1)"B;By_;/(j (w —j))). fw=a+b+c+d is
even then

10 1 1
Z(oa L, 1, 2d)

b b_i—1 i Cd—i-1 w—d—i Cd—i-1
(IS e o ()
i=0 Jj=

1 —1
=0 j=

a . d . . i . .
a+b—i—1 d+i—j—1\ Bjw d+i—7—=1\ Bjw
i=0< b—1 )(;( i—1 )2d+iﬂ'+,0 '

d—1 9d+i—j
0 j=

_l_

Proof. 1t is easy to check that all of the 2 x 2 minors of <1 0 1 ; > have

Oa 1b 10
determinant +1 or +2. So we can apply Proposition 5 and get

b .
1 0 1 1 a+b—i—1 0 1 1
Z(oa T 2d) —;( a1 )Z(h L—ai 2d)
N fa+b—i—1\_(1 1 1
+Z( b—1 )Z(Oi ly—d—i Qd)'
=0
The theorem now follows from Lemma 2 directly.

This implies the following as an immediate corollary.
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Theorem 7. Let n be a positive even integer and w = 4n. Set (fl) =0 for all t
and write Bj., = BjBw_;/(j!(w — j)!). Then

8Cw (1,50(5)) = (2n—i—1\ [ X~ (3n—j— 1) L 3n—j-1\s
6™ (27)4n Z( n—1 )lz( i—1 >6J’w+;)(3n—i—1>ﬂf’w

=0 j=0
n , y i . .
1 n+i—j5—1\ > 1 n+i—j—1\ 5
+jz:(:) 2n+ij< i—1 )ﬁjﬂu +jz=(:) 2n+ij< n—1 )ﬁj,w‘|-

Remark. By exchanging the order of summation in the theorem we see that our
formula agrees with that of Matsumoto et al. in [6, Theorem 8.1] by setting s = 2n
andp=q=r=n.

4. The g, Case

By definition we have (w(s; g2) = 120°(g, (s, ..., s) where

o0

1
Coa(s1,--080) = D oo (a + b)% (a + 2b)*(a + 30)* (2a + 3b)%

a,b=1

(13)

In the rest of this section we fix a positive even integer n = 2m. By (2) we have

(27’() 12m 1202m

2
12 D(Z,U,(l,...,l),O)

Cw(2m, g2) =

where (1,...,1) € N6 and

Similar to the case of s0(5) we can proceed using the following computation tree:

,/A/’J&

6 @ 5
2}1/@)\{1 1%@%2
0 TR O T ZEAN
4 @ @ 3 3 @ ® 4

2 1
/N > /N /N > /N

1 2
\ \ \ \
5 © 1 3 @ 4 4 © 2 2 © 6 3 © 4 6 © 1

We thus get

Z<1 0 1 ; ; 2)_n<2n—i—1>A1(i)+A2(i), (14)

n—1 32n—i
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where

. 1 0 1 1 1 _ 1 0 1 1 1
A4l = Z(On Lo Lo 20 3> Al = Z<on L Lo 20 3>
Note that ¢ is not a good parent so we have to check that the two perpendicular
terms can indeed be absorbed into the summand when setting ¢ = 0 in (14). This
is not too difficult after finding out the explicit expressions of A; and As, both of
which are good parents. Therefore it follows from Proposition 5 that

Ay(i) = f: (2” - 1) (B1(.) + Bali )

‘ n—1
j=0

Ao (i) = f: (2” —- 1) (B3(i,j) + B4(z',j)),

‘ n—1
j=0

where

1 1 1 1
Bi(i,j) =7
1(07) <0j l3n—j 230 31‘)
& Bn—i+i—k—1\ Ci(i,k)
- Z In—i—1 923n—it+j—k
3n—1i

3n—i+j—k—1\ Ca(i,k)
+ Z < j— 1 >23n—i+j—k’
k=0

S Bn—i4j—k—1\ Cili,k)
o Z 1 923n—itj—k

J ) ) '
Sn—i+j—k—1) Gs(ik)
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where, setting w = 6n, 52(1) = 1+217w—271 27w ‘and B, , = (27)* B;By_1/(w—
D!/1! and using Lemma 2 we have

. 1 1 1
Cili,k) =2 (Ok Lon—k—i 3i>
L ik — 11\ 286,(1) a i+ k- 1—1 ok~
_Z< E—1 >3z+klﬂlw Z( >3z+k 1Prws
=0

~0
. 1 1 1
Cali,k) =2 (16nki 2 3i>

k .
i+k—1— igk Pk 2
_Z< k-1 >(—1) 2 52(1)5lvw+z< i-1 >(_1) o
2 1=0
. 1 1 1
Cs(i k) =Z <1k 26n—k—i 3i>
7 - . A
_ i+k—1-1 ) Blw itk=1=1) (D Bw
Z< k—1 ) ok+i—1 +Z< 1—1 )W,
- 1=0
. O 1 1
C4(ka) =Z <1k 26n—k—i 37/)
ko, ~ (i
_ i+k—1-1 k prholod *
_Z< i1 >(—1) 6z,w+2< k-1 >(_1) o
£ 1=0
CS(ka) =Z (Ok lon—k—i 37'>

M-

itk—1-1\ B it k—1-1\ B
: ( i—1 )3k+il +ZZ( k—1 )3k+il'
=0 =0

Putting everything together we finally arrive at

Theorem 8. Let n be a positive even integer. Let w = 6n and set (_tl) =0 for all
t. Write B10 = (2m)* BiBy—1/(w — 1)!/Il. Then

120w (n,g2) s~ (2n—i—1\ ; anxm(2n—j—1
1207 *; n—1 3 ]z::o n—1 %

J 2 A k
3n—i+j—k—=1\ i k30 i+Ek—1—1Y\142%5()
X{z;)( 3n—i—1 )2 ZZ it+k—XM\—1 Wﬁl,w

t=1 =0

k=
3n—1i A )
3In—i+j—k—1 i+k—-1-1 i -
—1)F 4 (=1)'286,(1)) Br.uw
+k0< j—1 >;lo<i+k_/\_1>(( )+ (—1)2%6,(1)) 1,
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15 5 G Db ol (i [ RTSIECEO

A=i,k =0
i 30@'2_]:1) Z Z (;:f:i:i)((—l)kﬂ%—l)@ik)gl}w}v

where \1 =k, Ao =i, 61(1) =27, and 62(1) =1 + 216 — 2= _ 2l=6n,
Remark. Although we can not verify the agreement of our theorem with [5, The-
orem 5.1] we are sure their result will follow by choosing another computation tree.
However, we find our data for (w(2m,g2) (m < 10) agree with those in [5]. For
example,

6w (2:92) = 557504566060

Cw (4, g2) = 8165653 24
*82) = 1445838676129559305994400000

Cw (6,92) = 55940539974690617 36
92) = 131888156302530666544150214880458495963616000000

Cw (8, g2) = 47346365461279256768015189 A8
92) =1 4856076216230582447383687 146526751481 135753024121002752 - 1011 "

We have also verified numerically the correctness of these values by using the defi-
nition (13).

5. The so(7) Case

By definition

Cw(n;s0(7)) i 1/(mimamg(my + ma)(ma + ms)(2mg + ms)) "
720" (2m1 + 2ma + ms)(mq + 2ma + m3)(m + mo +ms)

my,mz,mg=1

(15)
The corresponding matrix to s0(7) is
1 0 0 1 0O 0 2 1 1
o= <0 1 0 1 1 2 2 2 1 )
0 On 1 O0n 1n 1, 1, 1, 1,
® © ® ® ® ® ©® ©® ©
Given four column vectors o1, ...,04 let S(o1,...,04) be the set of the four possible

choices of three columns. Then every triple of columns of the following are linearly

dependent:
{(1,5,9), (4,5,8)} U S(1,6,7,8) U S(2,3,5,6)US(3,4,7,9). (16)
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These fourteen dependencies are the only 3-column dependencies and will be used
critically in the following computation tree of (y (n,s0(7)) for even positive integer

n.

A\
/ \K Bs/ \K{S

/ \ C/@)w& Oy, D <Gy
D22 Dy 8 Q4 DV5Q6 6 @b, 2.0
5 8 2 1 2 1 @ 6

| \ \ | | [ AN

>< >@<7 RO

|

> -
T 2T I~

37 @ 47 47 @ 3,7 37 @ 4

=

®

R
\]

Note that the column to which two sub-nodes are merged to may not be unique.
But it should not affect the final result. For example, at the very beginning we
can merge the 6th and 8th column to either the 1st or 7th column. We will choose
the 7th column in the computation tree. On the other hand, if we go down the
path 8 — 5 —2 — 1 — 3 then we can only merge the 4th and the 7th columns to
the 9th column since the 3rd was removed already, and if we go down the path
8 —5—2—1—7 then we can only merge the 4th and 3rd columns.
By following the above computation tree we have

Theorem 9. Let n be an even positive integer. Set (_tl) =0 for all t. Then

e SO SCS)E
G

where by writing C'{i,k} =C'(n+4,3n+i—k,3n+i—k,2n+1i—k)

oS (nti-k=1 LN~ (i k=1 ClLG — k)

k=0
b . n+j—b .
. n+j—k—1 . : n+j—k—1 .
B'(a,b,J)=Z<n+;_b_1>0(a7j—k7kyj)+ > ( 2_1 )C'(wk,nd),
k=0 k=0

k=0 J-1

2n+i—j . 2n (- J . 2n 1 -
YT 2n+i—k—1)\2"C'{i, k} 2n+i—k—1)\2"C"(i,k)
B"(i,j) = Z < : ) (—2)i+k—i +kZ:0 m+i—j—1 (—=1)i—i ’
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and by settingu=n+a—j andv=n+b—c

. ““/n+a—-b—1—1\D(a,b,n,jl
C(a‘ab7caj) :Z( )M

n+a—b—c—1/ (=1)rta-b-c

=0
+n+az—b—c n+a-b—1-1y D@bnjl)
c—1 (—1)rrembment?
=0
1
—[-1
C’(a,b,c,j)=2(u+y l )DW’CJ’”
v -1
+z(‘”5_i Jpiesesn
k
" n—l—k "D’ (i
C Zkf lz:( n—l ) (ZJC,Z)

where by settingu =4n —a andv=3n+a+b—c—j—1

D(a,bvc,jvl)—zuz<U+S:f_1>E(C_(iv)i)+i(u+v_s_1>%v

s=0 s=0 u—1
An+k—i—I
_ m—1l—s—1\ E(,s)
D'(i, k1) = :
ik, 1) z::o <3n ti—k— 1) 27n—l=s

+3nik m—-1l—s—1 E(l,s)
—~ \Un+tk—-i—-1-1 2Tn—l=s"

15

Here by setting B, ; = —BsBiBon—s—¢/(s!t/(9n — s — 1)), B, = B, ,(1 4+ (27 -

(20 =1))/2, and B, . = B, ,(1 + (2'7* = 1)(2' 70 = 1)(2'7¢ = 1)) /2, we have

“le+s—t—1\ By “fe+s—t—1\ Bl
Ec(l’s) :Z < s—1 > 26+S—t + Z c—1 20+s—t’
t=0
c+

t=0
“fe+s—t—1 > s—t—1
Eé(la s) = Z . /Bll,t + Z . ﬁl/,ta
s—1 c—1
t=0 t=0
n
n+s—t—1 n+s—t—1
El — /// //.
(,s) tz;( 1 )ztgnzt‘f'Z( n_1 )l,t
For example, Maple computation shows that
2319
2,50(7)) = 1
G (2,80(7) =™,
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212, 307 - 267743941589 .
37131937 o
2053 - 90TIL32487 - 265178091767 5,
3.7-11-19- 54!
929 941 . 40670746903 - 36209034431567319455922705846157 72
3.5.7-13-19. 74!
937 61 - 45197 - 3920899 - 3246046224154033 - a 0
33.7-11-19-31- 89!

Cw (4,50(7)) =

Cw (6,50(7)) =

Cw(8,50(7)) =

Cw (10,80(7)) =

where a = 202097025268393295809502658929. When taking the sum over the range
of |mq],|mz|,|ms| < 100 in (15) we find that (w(2,50(7)) is correct up to at least
19 digits, Cw (4, s0(7)) up to 42 digits, (w (6,50(7)) up to 64 digits, (w (8,50(7)) and
Cw (10,50(7)) up to at least 80 digits.

6. The sp(6) Case

By definition

Cw(n;sp(6)) i 1/(m1m2m3(m1 + ma)(ma + ms)(mz + 2m3))

720™ e (m1 + ma + m3)(m1 + ma + 2mgz)(m1 + 2ma + 2ms3)
It turns out that even though so(7) and s0(6) are not isomorphic Lie algebras, the
computation of (y (n,sp(6)) is almost exactly the same as that of {w (n,s0(7)). If
we consider the matrix corresponding to sp(6)

1 0 o 1 o0 0 1 1 1
<O 1 o 1 1 1 2 1 1 )
0, 0, 1, O, 1, 2, 2, 2, 1,
o @ ® ® ® ©® © ® O

we find the following fourteen 3-column dependencies:
{(2,7,8),(4,6,7)} US5(2,3,5,6) US(1,5,7,9) U 5(3,4,8,9),

which are similar to the case of s0(7). In fact, these combinations can be obtained
exactly from (16) by the permutation (12)(398657). Applying this permutation to
the binary tree of s0(7) we get
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Dy 1 D> Ds_ 6 D4 2 ® Ds_ 7 De 5 @D7/ 1 Ds
7T @ 6 17 @ ° 7 2_ @ 1 2 5
> > > /N

4. ® ~3 9_® 3 4 ® ~3 9_® 3

| | | I | I | I

9 >@<3,4 4 >@<3,9 9 >@<3,4 4 >@<379

Using this tree we can easily get

Theorem 10. Let n be an even positive integer. Set (fl) =0 for all t. Then

48¢w (n,5p(6)) o~ (2m—i—1\ |~ (n+i—j—1\( BG) . 2'B"(ij)
720n(27r\/__1)9ni2;< n—1 > Z< n—1 ><2n+i—j+ (_Z)j )

j=0

- n"_i_j_]- (_1)jB/(nan7j) T/ . .

+Z< i1 ><W+2B(j,2n+z—],n) s

j=0

where
. J n+j—k—1 ) “fn4+j—k—-1\ )
Bm:Z( MR [(FAOR Lo )Centi-kkm
k=0 k=0
a+

B'(ab,j) _ < <
k=0

j—k—1\ ., . L fa+j—k—1\C"(a+4b,0,k)
= . )C(a+J,b,k)+kZO< )—

j—1 a—1 (=1)k

2n+i—j .
B"(i,j) = <2” ik 1) C" (n, k,2n + i — k,n)
k=0

7—1
n+i—-k—-1 "oy .
+Z<2’I’L+Z—]—1>C (Z7k)7

and
_ (n+k—1-1 _ n+k—1—1 .
(_1)k0(]7k) = E—1 >D(]7k7l)+z ( n—1 >(_1)lD(]7k7l)
1=0 =0
k b
b+k—1—1\D(a,b,k,l) b+k—1—1\D'(a,b,k,1)
C'(a,b, k) :Z oorE 1 T Z E—1 2bFk—1
= 1=0

b
b+kl1>D//abckl+Z<b+kl > D" (a,b, ¢, k, 1)

k
1

n+kll>D'(k,3n—i,k,l)
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~(n+k—1-1 Ly ,
+;;< L1 )(I)Dwﬁnuhm

and

2n+k—1 .
DGk = 3 <&”*k‘lff‘5‘1>§ihﬂ

— dn —j—1 27 —4n

+§f 6n+k—1—j—s—1\(=1)Ejls)
n+k—1-1 2its—dn

s=0

nbtk—1
D'(a,b, k1) = Z <7n—a+k—l—s—1>E3(l7S)

= 6n—a—>b—1
6n—a—>b
m—a+k—1—s—1
E(l
+ ; < n+b+k—1-1 ) (1,5)

n+b+k—1
" . m+k—l—a—c—s—1)\ _6n_a—b-c
D" (a,b,c, k1) = E ( 6 — b1 >2 E.(l,s)

s=0
b ik —l—a—c—s5—1
“lma—c=s—1) 6n-ab—cospy .

+ ;0 ( n+b+k—1—1 > (1)

Here by setting By ;, = —BsBiBon—s—¢/(s'tY(9n—s—1)!) and Ba be = 6(’”)(14—(21_”—
1)(2'7¢ —1))/2 we have

S /8n—l—c—t—1\2"B, Sl e 8y —l—e—t—1 2ltep
Ec(lvs)_z<8n_l_c_s_1> 28n—t + Z ( s—1 > 28n—t

t=0 t=0
s n-+c
n+c+s—t— n+c+s—t—
Et =3 (" T T e o (T T e
t=0 t=0
n S
n+s—t—1 s o4 n+s—t—1\_,_
EW)‘Z( s—1 >(_1)t2 5l(,t?9n—l—t+z< n—1 >2 "Bl
t=0 t=0

For example, Maple computation shows that

7202-2° 19 15 19 18
37170 T 16209713520
720% - 210 104701 - 3140775089 4
3.7-13-19 .37 o
7206 - 217 . 3774593 - 20951970345196831001 o

3-7-11-19- 54!
7208 - 223 . 2343331477562563285766267904404545351 - a =

3.5-7-13-19- 74!
72010 . 230 . 58929497212786511068896559412024625876607 - b 490

33.7-11-19-31-89!

Cw(2,8p(6)) =

Cw (4,5p(6)) =

Cw (6,5p(6)) =

CW(& 5]3(6))
CW(lOa 5]3(6))
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where a = 757 - 769 - 16651, b = 15403412981713647521. Furthermore, the value

Cw(2,5p(6)) is equal to (w(2,50(7)) as pointed out in [6, Remark 9.1]. The numer-
ical value of (yw(4,sp(6)) agrees with that given in loc. cit.

7. The sl(5) Case

By definition

Cw(n;sl(5)) i 1/((m1 + ma)(mi + mg + mg)(m1 + ma + ms3 + m4)) !
288™ B m1m2m3m4(m2 + m3)(m3 + m4)(m2 + ms + m4) '

mi,...,ma=1

The corresponding matrix is

1 00 0 1 0 0 1 0 1
o 1 0 0o 1 1 0o 1 1 1
1o o 1 0o o 1 1 1 1 1

0n 0p 0p 1, On 0, 1, On 1. 1,

D @ (€3 @ ® ©® @ ® @ ®

Here ® is the 10th column. The set of 3-column dependencies is

{(]" 27 5)’ (17 6’ 8)7 (1’ 97 10)’ (27 3’ 6)7 (2) 7) 9))
(3,4,7),(3,5,8),(4,6,9), (4,8,10), (5,7,10) }.

So we have the following computation tree

3 @ 7 2 © 3
4 ® 6

By symmetry A; = As so we get

Theorem 11. Let n be a positive even integer and set w = 10n. Set (fl) =0
for all t. Define Bsr, = 0if s =1 o0ort =1 ork =1 and define Bst =
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ByBiBpBy—s—t—i/(sltlk(w — s — t — k)!) for all other nonnegative integers s,t, k.
Then

60w (n, si(5 " m—i— 1\ (= (nti—j—1 o
ZEWA, 579)) B
2%”2wm” E:( n—1 )(E: n—1 1(i.9)

i=0 Jj=0

53 (i I)Bzu,j))

J=0

where for a = 1,2, by setting d(j,k,l) =j —k —1 — 1 we have

i<n+i:1_1> (i gk +Z<n+j— —1)001(@,7],’]6)7

k=0
n . 2n+j—k .
(B d( kDN S 8n+d(j, k,1) |

Catioit) =3 (M N Dy ¢ >0 (M) b,

=0 =0
l n
. n+l—s—1 . n+l—s—1 .

Datick) =3 ("1 T ) Eatkt + X (M T Btk

s=0 s=0

and

2n+l—s 3n—1
5n — t—i—d(lsz) Sn—t+d(l,s,i)

Eq (i, k,1 s, stk
Z 778 tz; < _1 >6 tk+z<2n+l_ ﬂtk
Skl ) zn: 5n — t—l—dlsz) 5 +4n§z *(5n —t+d(l,s,i) 5

5 by < s,t,k n—1 s,t,k-

For example, we have

1 20 216.13 20

2,5l(5)) = =
Gw (2,51(5)) 650970015600375 325371118

238~1523~2625375581 0
711-411 "
257 30677 2082003565627654787323001 g
32.52.7-11-13-31.61!
979 .32 .11 . 85081 - 1361779882876127669651 T8520U158TASGL g,
71782
298 .99. 132 . 2143 - 4306678311496751027 =y
32.52.11-17- 101!

Cw(4,sl(5)) =

Cw(6,sl(5)) =

Cw(8,sl(5)) =

¢w(10,sl(5)) =

where a = 201223346979560452521803194127591413. The value of (w(2,sl(5)) is
also given by [6, (7.63)].



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 21

References

[1]

2]

[3]

[4]

[5]

[9]

(10]

(11]

(12]

(13]

P.E. Gunnells and R. Sczech, Evaluation of Dedekind sums, Eisenstein cocycles, and special
values of L-functions, Duke Math. J. 118 (2), (2003), 229-260.

Y. Komori, K. Matsumoto and H. Tsumura, Zeta and L-functions and Bernoulli polynomials
of root systems, Proc. Japan Acad. Ser. A 84 (2008), 57-62.

Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated
with semisimple Lie algebras II. J. Math. Soc. Japan 62 2(2010), 355-394.

Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated
with semisimple Lie algebras III. Preprint.

Y. Komori, K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated
with semisimple Lie algebras IV, to appear in Glasgow Math J.

Y. Komori, K. Matsumoto and H. Tsumura, Functional equations for zeta-functions of root
systems. In: Proceedings of the 5th China-Japan Seminar, T. Aoki, S. Kanemitsu and J.-Y.
Liu (eds.), pp. 135-183, World Sci. Publ., 2010.

K. Matsumoto and H. Tsumura, On Witten multiple zeta-functions associated with semisim-
ple Lie algebras I, Annales de l’institut Fourier 56 (5), (2006), 1457-1504.

N. Nielsen, Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band
II. Theorie des Integrallogarithmus und verwandter Transzendenten, Chelsea, New York,
1965.

E. Witten, On quantum gauge theories in two-dimensions. Commun. Math. Phys. 141(1)
(1991), 153-209.

D. Zagier, Values of zeta function and their applications. Proc. of the First European
Congress of Math. 2 (1994), 497-512.

J. Zhao and X. Zhou, Witten multiple zeta values attached to s[(4). In press: Tokyo J. of
Math., arxiv: 0903.2383. Max-Planck Institute for Mathematics, MPIM2009-41

J. Zhao, Alternating Euler sums and special values of Witten multiple zeta function attached
to s0(5). To appear in J. Australian Math. Soc. arXiv:math/0903.0473. Max-Planck Institute
for Mathematics, MPIM2009-42

J. Zhao, Multi-polylogs at twelfth roots of unity and special values of Witten multiple zeta
function attached to the exceptional Lie algebra g2. J. of Alg. and Its Applications 9 (2010),
327-337.



