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Abstract. We prove that, on a distinguished class of arithmetic hyperolic

3-manifolds, a sequence of L2-normalized high-energy Hecke-Maass eigenforms

φj achieve values as large as λ
1/4+o(1)
j , where (∆ + λj)φj = 0. Arithmetic

hyperbolic 3-manifolds on which this exceptional behavior is exhibited are, up to

commensurability, precisely those containing immersed totally geodesic surfaces.

We adapt the method of resonators and connect values of eigenfunctions to global

geometry of the manifold by employing the pre-trace formula and twists by Hecke

correspondences. Automorphic representations corresponding to forms appearing

with highest weights in the optimized spectral averages are characterized both

in terms of base change lifts and in terms of theta lifts from GSp2.

0. Introduction.

This paper and the companion paper [Mi] present results on extreme values of eigenfunctions of

Laplacian on certain hyperbolic manifolds.

Suppose M is a compact Riemannian manifold. The Laplacian ∆M is a self-adjoint operator on

L2(M) and we have an orthonormal decomposition

L2(M) =
⊕

j>0

Cφj .

Eigenfunctions φj are the building blocks for harmonic analysis on M , but their asymptotic behavior

is also of importance for geometry and dynamics on M . In case of arithmetic manifolds M , these

connections have been the basis of a growing body of number-theoretic results. A basic question

about the harmonics φj is: How large can ‖φj‖∞ get?

In [Mi], we show that high-energy eigenfunctions φj on arithmetic hyperbolic surfaces exhibit much

stronger fluctuations than what the so-called Random Wave Conjecture predicted. In the present

work, we apply our method to the case of arithmetic hyperbolic 3-manifolds and show that there
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is a distinguished class of arithmetic 3-manifolds on which certain eigenfunctions actually exhibit

power growth, namely

‖φj‖∞ = Ω
(

λ
1/4+o(1)
j

)

.

0.1. General setup.

We first give a brief overview of general results and conjectures for perspective on our results. A

more detailed introductive review can be found in [Mi].

For eigenfunctions on a compact Riemannian manifold M of dimension n, one has in full generality

the upper bound [Se-So]

‖φj‖∞ ≪ λ
(n−1)/4
j .

This bound is local in that it is obtained by estimating |φj(z)| through analysis of φj in a neigh-

borhood of z only, without taking into account the global geometry of M . We refer the reader

to Burq–Gérard–Tzvetkov [Bu-Gé-Tz] for more general upper bounds of this type on Lp-norms

(2 6 p 6 ∞) of restrictions of eigenfunctions on Riemannian manifolds to certain embedded sub-

manifolds.

If M is a locally symmetric space of dimension n and rank r, joint eigenfunctions φj of the com-

mutative algebra of invariant differential operators span L2(M) and are known by local analysis

employing spherical functions and stationary phase method ([Du-Ko-Va], [Va]) to satisfy (away

from the calls of Weyl chamber)

‖φj‖∞ ≪ λ
(n−r)/4
j . (0.1)

Local bounds like the ones above are also referred to as convexity bounds and are often sharp for

certain positively curved and flat manifolds.

Rate of growth of eigenvalues is also connected to the question of multiplicities of Laplacian eigen-

values µ(λ,M) = dim Vλ, Vλ = Ker(∆M + λ), as it is not difficult to see that

µ(λ,M) 6 µ(M) max
φ∈Vλ,‖φ‖2=1

‖φ‖2∞,

where µ(M) is the volume of a compact manifold M [Sa2]. Such a bound is in fact sharp for a

globally symmetric space of compact type (positive curvature), so that in this case the growth of

eigenfuncions and multiplicities of eigenvalues are one and the same question and can be answered

by Weyl’s character formula. For negatively curved locally symmetric spaces one believes that

µ(λ,M) are uniformly bounded or that at most µ(λ,M)≪ λǫ.

For M a compact Riemannian manifold of strictly negative curvature, understanding the behavior

of φj goes under the name of Quantum Chaos [Sa1]. The geodesic flow on the unit tangent bundle of

M is chaotic: it is ergodic with positive Lyapunov exponents and positive entropy. The semiclassical

limit ~→ 0 of the quantized system corresponds precisely to the large eigenvalue limit. One such

statement is the long-standing Quantum Unique Ergodicity conjecture, which states that |φj |2
become uniformly distributed as λj → ∞. One a priori plausible way in which QUE may fail is

if a weak limit of measures associated to |φj |2 is concentrated along some proper totally geodesic

submanifold M ′ of M , meaning that high-energy eigenfunctions achieve unexpectedly large values

close to M ′; this phenomenon is referred to as scarring.
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Given the strong mixing properties of the geodesic flow, one does not expect that local bounds

(0.1) capture the whole truth. The conjecture that

‖φj‖∞ ≪ λ
(n−r)/4−δ
j (0.2)

for some δ > 0 is known as the subconvexity problem in this context. To our knowledge, there is

currently no known way to effectively employ chaotic dynamics alone to bring in global geometry

of M toward improving estimates on growth of eigenfunctions, and not much is known in the way

of results.

However, more can be said about extremal behavior of eigenfunctions on certain arithmetic hyper-

bolic manifolds, where, as we will see below, one can employ the family of Hecke correspondences to

bring some global geometry of M into the picture. In this work, we address the case of arithmetic

hyperbolic 3-manifolds. A subconvexity result of type (0.2) for a specific arithmetic hyperbolic

3-manifold can be found in Koyama [Ko].

In the case of arithmetic hyperbolic surfaces, Iwaniec and Sarnak conjectured [Iw-Sa] that high-

energy eigenfunctions satisfy ‖φj‖∞ ≪ λǫ
j . A näıve generalization of this statement to all arithmetic

hyperbolic manifolds (of arbitrary dimension) is, however, false, as was first established by Rudnick

and Sarnak [Ru-Sa]. In particular, the random wave model (see Berry [Be]), which predicts that, in

a completely ergodic system, quantum states exhibit random patterns of interference extrema and

thus more temperate intensity fluctuations compared to the integrable case (specifically [Sa1] that

‖φj‖∞ ≍
√

log λj), does not apply universally. The true asymptotic order of magnitude of ‖φj‖∞
can be markedly different depending on the geometric or functorial properties of the arithmetic

manifold in question. A more thorough discussion can be found in sections 0.5 and 0.6.

In our principal result, Theorem 1 (stated in section 0.4), we expand on the method of [Mi] and

decribe a natural class of arithmetic hyperbolic 3-manifolds on which high-energy eigenfunctions

actually exhibit power growth. We also discuss why we expect that, up to commensurability, our

class is precisely the class of arithmetic hyperbolic 3-manifolds on which eigenfunctions exhibit

power growth and address the question of identifying the exceptional eigenfunctions.

0.2. Hyperbolic 3-manifolds.

We now give a description of arithmetic hyperbolic 3-manifolds in concrete terms. This proceeds

in many ways analogously to the more widely familiar case of surfaces; we refer the reader to

[Ma-Re] and [El-Gr-Me1] for details. The universal cover of hyperbolic 3-manifolds is the upper

half-space H = {v = (z, r) : z ∈ C, r > 0}, equipped with measure dµv = |dz|dr/r3 and the

hyperbolic Laplacian ∆ = r2(∂2/∂x2 + ∂2/∂y2 + ∂2/∂r2) − r∂/∂r. The group PSL2C ∼= IsomH

acts transitively on H by

(

a b
c d

)

: (z, r) 7→
(

(az + b)(cz + d) + ac̄r2

|cz + d|2 + |c|2r2
,

r

|cz + d|2 + |c|2r2

)

;

analogously to the case of the upper half-plane h, upon identification H ∼= PSL2C/PSU2, the above

action corresponds to the regular action in PSL2C.

Every discrete subgroup Γ < PSL2C (a Kleinian group) gives rise to a hyperbolic 3-manifold M =

Γ \H. If M has finite volume, a polyhedron with finitely many faces can be chosen as a (Dirichlet)
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fundamental domain for the action of Γ on Ĥ, and its vertices on Ĉ are called cusps. The spectral

decomposition of L2(M) with respect to the positive semi-definite self adjoint operator −∆ proceeds

similarly to the case of hyperbolic surfaces. One has a decomposition L2(M) = L2
disc(M)⊕L2

Eis(M),

where the discrete subspace corresponds to the pure point spectrum and is spanned by the Maass

forms: L2
disc(M) = ⊕∞

j=0Cφj with (∆ + λj)φj = 0. For non-cocompact Γ, φj are Maass cusp

forms for j > j0, and there is also the continuous spectrum with L2
Eis spanned by the Eisenstein

series Ea(ir), where a runs through the set of cusps. Maass cusp forms satisfy the local bound

‖φj‖∞ ≪ λ
1/2
j . A subconvex bound of type (0.2) is expected to hold for all M of constant negative

curvature, but, for non-arithmetic M , not much beyond the local bound is known (subconvexity

and bounded multiplicities are expected).

Arithmetic hyperbolic 3-manifolds are associated to arithmetic Kleinian groups, which we describe

next. As usual, M2C denotes the matrix quaternion algebra, SL2C is its group of units, and

P : SL2C→ PSL2C is the projection γ 7→ {±γ}. Let L be a number field with exactly one complex

embedding pair (ρ, ρ̄), and let O = RL be its ring of integers. Let further A be a quaternion algebra

over L ramified at all real places. ρ can be extended to an L-embedding of quaternion algebras

A ←֓ M2C; one way to do this is to fix a representation A =
(

a,b
L

)

, a fixed square root
√

ρ(a) ∈ C,

and ω, ω′ ∈ A such that ω2 = A, ω′2 = b and ωω′ + ω′ω = 0, and embed

x = x0 + x1ω + x2ω
′ + x3ωω′

7→
(

ρ(x0) + ρ(x1)
√

ρ(a) ρ(x2) + ρ(x3)
√

ρ(a)

ρ(b)(ρ(x2)− ρ(x3)
√

ρ(a)) ρ(x0)− ρ(x1)
√

ρ(a)

)

.
(0.3)

For every O-order O < A and the group O1 of its elements of norm one, the group Γ = Pρ(O1) is a

cofinite discrete subgroup of PSL2C [Ma-Re]. Kleinian groups commensurable with such Γ and the

corresponding 3-manifolds M = Γ \ H are called arithmetic. An arithmetic hyperbolic 3-manifold

M is always of finite volume and is compact if and only if A is a division quaternion algebra, which

is true of all A except the case A = M2L, L = Q(
√
−d), when Γ is conjugate to a congruence

subgroup of the Picard group PSL2O. We will be dealing with the case when O is an Eichler order

and Γ is the unit group Pρ(O1).

The action of PSL2C on H lifts to action GL2C via composition with γ 7→ {±γ/
√

det γ}. On every

arithmetic hyperbolic 3-manifold M , with notation as above, one can define a family of Hecke

operators Tn on L2(M), where n runs through ideals of O, which we describe in more detail in

section 1. In the case when L is of class number one, Hecke operator of order n = (η) can be defined

essentially by averaging the right-regular action over representatives of the finitely many Γ-orbits

of elements of O of norm η. Hecke operators are self-adjoint, commute with each other and with

the Laplacian ∆, so they can be simultaneously diagonalized with an orthonormal basis consisting

of Hecke-Maass eigenforms φj : (∆ + λj)φj = 0 (we also write λj = 1 + r2
j ), Tnφj = λj(n)φj .

Arithmetic Kleinian groups form a very special class of finite-covolume Kleinian groups. One can

associate to each finite-covolume Kleinian group Γ two inherent geometric invariants, its invariant

trace field kΓ and invariant trace algebra AΓ, a quaternion algebra over kΓ; commensurable Kleinian

groups have the same invariant trace field and algebra. The Identification Theorem states that

Γ is an arithmetic Kleinian group if and only if kΓ has precisely one complex embedding pair,

AΓ is ramified at all real places of kΓ, and traces of all elements of Γ are algebraic integers.

For an arithmetic Kleinian group Γ, invariant trace field and algebra completely determine its
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commensurability class and, for such a group Γ commensurable with Pρ(O1) with notations as

above, we have that kΓ = L and AΓ = ρ(A) precisely.

0.3. Our approach, QCM-points, and manifolds of Maclachlan–Reid type.

Soundararajan [So] pointed how one can use Dirichlet polynomials to give omega results for special

values of L-functions in various families; this idea is often referred to as the method of resonators.

The crucial observation in the context of asymptotic study of L∞-behavior of Hecke-Maass eigen-

functions on arithmetic hyperbolic manifolds, employed in [Mi] and here, is that the appropriate

analogue of Dirichlet polynomials is to weigh the twists of the pre-trace formula by Hecke operators

with a parameter sequence. More precisely, we compare averages of the form

∞
∑

j=0

h(rj/T )

∣

∣

∣

∣

∑

Nn6M

a(n)λj(n)

∣

∣

∣

∣

2

|φj(v)|2 and

∞
∑

j=0

h(rj/T )

∣

∣

∣

∣

∑

Nn6M

a(n)λj(n)

∣

∣

∣

∣

2

, (0.4)

where h is an appropriate fixed non-negative Schwarz function. As we will see in sections 3 and 4,

these spectral averages Q1(a) and Q(a) can be evaluated asymptotically if M is in an appropriate

range compared to T , and the leading terms in these evaluations are certain quadratic forms in

a(n)’s. In section 5, the parameter sequence will be chosen to maximize the quotient Q1(a)/Q(a);

this will prove that some |φj(v)| must assume values as large as those to be announced in the

statement of Theorem 1. On one hand, this approach is reminiscent of the method of mollification

for L-functions; on the other hand, thinking about Tp as p-adic Laplacians, it brings all p-adic

neighborhoods of v into the picture along with its archimedean neighborhood. We might call our

approach the spectral resonator method.

In analyzing extreme values of eigenforms on hyperbolic 3-manifolds, one encounters features

markedly different from the case of surfaces in several ways, and the first one is that the hy-

perbolic 3-space has no complex structure and no off-the-shelf concept of CM-points. The property

of CM-points which is crucial in [Mi], after an application of twisted pre-trace formula to a spec-

tral average of type (0.4), is that comparably many Hecke correspondents ρ(γ)z return to z. In

the upper half-space, the stabilizer Gv = Stab(v,SL2C) of any v ∈ H can be identified with SU2,

but, more importantly for us, Hv := GvR+
0 naturally carries the structure of the Hamilton quater-

nions algebra. We have that Stab(v,GL2C) = C×H×
v , and every Hecke correspondence γ that

is to have ρ(γ)v = v is of the form λγ0 with γ0 ∈ Hv, λ2 ∈ L×. The goal is to have as many

such correspondences γ ∈ A as possible. It is therefore natural to define v to be a QCM-point if

Bv := ρ−1(ρ(A)∩Hv), an algebra over the maximal totally real subfield K of L, is of full dimension

(four), that is, if Bv is a quaternion algebra over K, by necessity ramified at all archimedean places.

Note that if v is to be of the sort we just described, we must have A = Bv ⊗K L, and this is a

serious restriction on A: not every arithmetic 3-manifold contains some QCM-points to begin with.

We introduce the following definition.

Definition. An arithmetic hyperbolic 3-manifold M = Γ \ H is called a QCM-manifold if the

invariant trace algebra A of the Kleinian group Γ is of the form A = B ⊗K L for some quaternion

algebra B over the maximal totally real subfield K of the invariant trace field L of Γ which is

ramified at all infinite places. If ρ denotes the underlying embedding A →֒ GL2C, then we say that
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a point v ∈ H is a QCM-point if it is stabilized by Pρ(B) for some quaternion algebra B over K

ramified at all infinite places such that A = B ⊗K L.

We remark that, on an arithmetic hyperbolic surface with an invariant trace field K and an invariant

trace algebra B (so that K is a totally real field and B is a quaternion algebra over K ramified at

all real places except one), one can analogously define a point z to be a CM-point if it is stabilized

by Pρ(F ) for some totally imaginary quadratic extension F 6 B of K which splits B; this is the

characterization used in [Mi].

Let now v be a QCM-point, so that Stab(v,A×) = L×B×
v . For a large n ⊂ o = RK there are,

roughly speaking, NKn correspondences γ ∈ Bv, according to theorems about representations of

integers in totally real number fields by quaternary quadratic forms. We now explain how the

optimization problem for quadratic forms Q1 and Q naturally leads to an additional condition that

[L : K] = 2. Optimal resonators a(n) are essentially concentrated on n ⊂ o, which is natural. It is

less intuitive that to be able to produce any growth of Q1(a)/Q(a) (and hence of |φj(v)|), it is not

enough to merely have “many” γ ∈ Bv∩Γ(n). It turns out that there is a critical exponent δ0, such

that if there are Nnδ+o(1) correspondences γ ∈ Bv ∩ Γ(n), then the maximum value of Q1(a)/Q(a)

exhibits (purely) power growth if δ > δ0 and no growth at all if δ < δ0. This is the result of

Theorem 2, which we discuss later in section 0.6. In particular, if we did turn to (non-QCM) points

v for which Bv is of less than full dimension, we could not deduce that |φj(v)| grow. Among those

algebras A which allow a full quaternion algebra Bv (corresponding to v being a QCM-point on a

QCM-manifold), only those with [L : K] = 2 allow good Diophantine control over Hecke actions

(meaning that γv can return only so close to a QCM-point v without actually hitting it) — and

it turns out that it is for arithmetic manifolds with these and only these underlying quaternion

algebras that one can produce enough many Hecke correspondents γv = v in the meaning of

Theorem 2. We propose to name these manifolds after Colin Maclachlan and Alan W. Reid, who

first discovered their remarkable distinguishing geometric property which we describe next.

Definition. We say that a QCM-manifold M = Γ \ H is of Maclachlan–Reid type if the invariant

trace field of Γ is a quadratic extension of its maximal totally real subfield.

Maclachlan and Reid [Ma-Re] are concerned with classifying arithmetic hyperbolic 3-manifolds

which contain immersed totally geodesic surfaces, or equivalently, the arithmetic Kleinian groups Γ

which contain non-elementary Fuchsian subgroups. They show that such a Γ actually contains an

arithmetic Fuchsian subgroup G and that their respective invariant trace fields L = kΓ and K = kG

and invariant trace algebras A = AΓ and B = AG satisfy [L : K] = 2 and A ∼= B⊗K L. As always,

L = K(
√

D) has exactly one complex place (ρ, ρ̄), and the quaternion algebra B is ramified at all

archimedean places except ρ|K . The converse is also true: given any two quaternion algebras A

and B with these properties, every arithmetic group obtained from A contains arithmetic Fuchsian

subgroups obtained from B, and correspondingly the 3-manifold arising from this group contains

immersed arithmetic surfaces arising from subgroups of B. Moreover, there are then infinitely

many other non-isomorphic quaternion algebras B (with prescribed ramification at infinite places)

which yield as B⊗K L this same L-algebra A — namely, one can prescribe at will the ramification

of B at primes ramified or inert in L|K at which A splits. This class of arithmetic hyperbolic

3-manifolds containing immersed totally geodesic surfaces coincides with the class of manifolds of
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Maclachlan–Reid type in our definition. Namely, B1 =
(

a,b
K

)

↔
(

aD,bD
K

)

= B2 (ρ(a), ρ(b) > 0)

trivially corresponds (in a non-canonical way) to each quaternion algebra B1 over K ramified at all

infinite places except ρ|K a quaternion algebra B2 over K ramified at all infinite places such that

B1 ⊗K L ∼= B2 ⊗K L, and vice versa.

The results of Maclachlan and Reid provide a sharp dichotomy in the class of arithmetic hyper-

bolic 3-manifolds: an arithmetic 3-manifold contains either contains no immersed totally geodesic

surfaces, or it is of Maclachlan–Reid type, and then it contains infinitely many incommensurable im-

mersed arithmetic surfaces, which correspond to incommensurable arithmetic Fuchsian subgroups

of Γ. A manifold of Maclachlan–Reid type contains infinitely many QCM-points (corresponding

to infinitely many non-isomorphic quaternion algebras B ramified at all infinite places such that

A = B ⊗K L), at which eigenfunctions are shown in Theorem 1 to achieve large values. It would

appear extremely interesting to explain the analytic statements of Theorem 1 in terms of geometry

of the immersed surfaces.

0.4. Main result.

For the manifolds M of Maclachlan–Reid type, on which ‖φj‖∞ can be shown to get large, they

get handsomely large: this is the content of our principal result.

Theorem 1. Let L be a number field with exactly one complex embedding pair, let K be its maximal

totally real subfield, and suppose that [L : K] = 2 and that K and L are of narrow class number one.

Let O = RL be the ring of integers of L, A be a quaternion algebra over L admitting QCM-points,

O be an Eichler O-order in A and O1 be the group of elements of norm one in O. Let ρ be an

L-embedding of A in M2C and let Γ = Pρ(O1) < PSL2C be the corresponding arithmetic Kleinian

group.

The Hilbert space

L2
0(Γ \H) =

{

L2(Γ \H), if Γ is cocompact,

(L2
Eis)

⊥, if Γ is non-cocompact of finite volume

has an orthonormal basis decomposition L2
0(Γ \ H) =

⊕

j>0 Cφj , where φj are Hecke-Maass eigen-

forms (for j > j0), with (∆ + λj)φj = 0. Then for every fixed QCM-point v ∈ H, we have, as

j →∞,

|φj(v)| = Ω
(

λ
1
4 (1+O(1/ log log λj))
j

)

. (0.5)

The version of Theorem 1 presented here includes the technical assumption that the number fields

involved are of narrow class number one. This simplifies calculations with Hecke operators in our

classical treatment, but there can be little doubt that results hold in the general case.

0.5. Exceptional eigenfunctions.

Statement of Theorem 1 does not point to some particular subset of eigenfunctions φj with large

values at v, but the optimal weights
∑

Nn6M,n⊂o

µ2
K(n)λj(n)
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(in a variant of (0.4)) can be significantly larger at some distinguished φj than at others, strongly

suggesting that it is in fact the corresponding forms φj which contribute to the power growth of the

weighted average. In this section, we precisely classify forms for which this happens in the context

of Theorem 1 and compare our results with the previously known particular results. In case of the

Picard group Γ = PSL2Od, the Dirichlet series

∞
∑

n=1

λj(n)

ns+1/2
(0.6)

is known as the Asai L-function of φj and can be analyzed using the Rankin convolution method.

This was first performed by Asai [As1] for the analogous Hilbert modular case, where it was shown

that the Asai L-function possesses an analytic continuation and has a pole at s = 1 if and only

if λj(n) = λj(n̄) for all n ⊂ Od, which happens precisely when φj is a base change lift from some

PSL2Z-automorphic form. Proofs of these statements in [As1] are conditional on a mild, generally

believed nonvanishing hypothesis, but they are now known unconditionally by Krishnamurthy [Kr]

and Ramakrishnan [Ra]. We also refer the reader to Takase [Tak1] for results in the case of forms

on quotients of the upper half-space.

Theorem 1 is not the first result in which power growth (0.5) is exhibited for some arithmetic 3-

manifolds. Another way to approach values of eigenfunctions at special points are period formulae,

going back to the important formula of Waldspurger [Wa]. Using his relative trace formula, Jacquet

proved that, in the case of GLn over a quadratic extension E|F , periods with respect to (adelic)

unitary groups do not vanish precisely for representations which are base changes from F . Recently,

Lapid and Offen [La-Of] proved a beautiful exact formula evaluating such periods of base change

forms in terms of special values of L-functions at 1. Specialized to the case of congruence subgroups

of GL2Q(
√
−d), their formula reads as

∣

∣

∣

∣

∑

i∈Λα

ciΦ(xi)

∣

∣

∣

∣

2

∼α |Pα(φ)|2 Λ(1, φ × φ̃⊗ ω)

Ress=1Λ(s, φ× φ̃)
,

where Φ is the base change lift of a cusp form φ on GL2Q, ω is the character attached to E|F
by class field theory, the weighted sum on the left-hand side is over the genus of the Hermitian

form defined by α and Pα is a certain explicit product of local factors (in particular, Pe = 1). Λ-

functions on the right-hand side are completed L-functions: by applying standard bounds for their

finite parts and analyzing the Γ-factors with Stirling’s formula one obtains ‖Φj‖∞ ≫ λ
1/4+o(1)
j . In

the split case that it covers, this formula is extremely sharp in that it proves the lower bound for

every base change form.

Another functorial approach involving theta lifts was used by Rudnick and Sarnak [Ru-Sa] to

prove an omega result (of the strength of our Theorem 1) for eigenfunctions on a certain compact

arithmetic hyperbolic 3-manifold. Suppose that Q is an integral quadratic form of signature (3,1)

anisotropic over Q. The group PSL2C can be identified with G(R), the connected component of

the identity in the orthogonal group of Q [El-Gr-Me1]. With Γ = G(Z), K the orthogonal group of

the majorant of Q and D = discQ, a classical theta function θ : h×G(R)→ C can be constructed

as in Shintani [Shin] so that integration against θ (against θ̄, respectively) corresponds to each

eigenfunction on a compact arithmetic 3-manifold X = Γ \G(R)/K a cusp form of weight one on
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a congruence arithmetic surface Y = Γ0(4D) \ h, and vice versa, with equivariance with respect to

actions of Laplacians and Hecke operators. Images of cusp forms on Y in L2(X) are theta lifts,

and one sees by counting eigenvalues that they span a proper subspace of L2(X) (in fact, of ≍ λ3/2

eigenvalues on X with λj 6 λ, only ≍ λ come from theta lifts); its orthogonal complement is the

kernel of the theta correspondence. Now, if x1, x2, . . . , xh are representatives of the finitely many

Γ-orbits on the quadric Vm = {x : Q(x) = m} and Φ ∈ L2(X), then a suitably weighted sum
∑h

k=1 w−1
k Φ(gk) (gkxk = ±x0, where Stab x0 = K) can be recognized as essentially mth Fourier

coefficient of the theta correspondent of Φ; in particular, it vanishes for all Φ orthogonal to theta

lifts. As
∑

λj6λ

∣

∣

∣

∣

h
∑

k=1

Φj(gk)

∣

∣

∣

∣

2

∼ 1

(4π)3/2

h
∑

k=1

1

w2
k

λ3/2,

by the pre-trace formula, and as all but ≍ λ of the inner sums vanish, Rudnick and Sarnak conclude

that ‖Φj‖∞ = Ω(λ
1/4
j ).

We now compare our Theorem 1 with these particular results obtained through different approaches

and present a conjectural unified context in which they can be viewed. We have not checked all

details; precise statements and proofs will be found in our joint work with Takloo-Bighash [Mi-Ta].

Let B be a quaternion algebra over K ramified at all real places except ρ such that A = B⊗K L. (So

this would be the B1 from section 0.4.) Let σ denote the automorphism of A which acts trivially on

B and extends the nontrivial Galois action on L|K, let¯denote the quaternion algebra conjugation

on A, and let V2 denote {a ∈ A : a = āσ} considered as a K-quadratic space with respect to the

quaternion algebra norm. Then V2 is of signature (3, 1) and there is a natural injection ǫ2 : a 7→
(x 7→ axāσ) of A× →֒ GO(V2). With analogous notation, consider V1 = {g ∈ M2L : g = ⊤gσ} as

a K-quadratic space with respect to the determinant norm, which is of signature (3, 1) and admits

a natural injection ǫ1 : GL2L →֒ GO(V1) (which is a restriction of the classical isomoprhism

GL2L ×K×/NL|KL× ∼= GO(3, 1)). Finally, let ω be the classical isomorphism GL2K ∼= GSp2K.

For a reductive group G, let A(G) (initially) denote the set of cuspidal automorphic representations

of G.

Consider the following diagram:

A(B×) A(A×)
IF−BC

//

A(GL2K)

A(B×)

OO

JL

?�

A(GL2K) A(GL2L)
BC // A(GL2L)

A(A×)

OO

JL

?�

ω∗ ◦ JL(A(B×)) A(GO(V2))
θ

//

A(GSp2F )

ω∗ ◦ JL(A(B×))

OO

⊂

?�

A(GSp2F ) A(GO(V1))
θ // A(GO(V1))

A(GO(V2))

OO

GO−JL

?�

A(GL2L)

A(GO(V1))

�� ��

ǫ∗1

?

?

?

?

?

?

?

?

?

?

A(GL2K)

A(GSp2F )

ω∗

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A(B×)

ω∗ ◦ JL(A(B×))

ω∗◦JL

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

A(A×)

A(GO(V2))

�� ��

ǫ∗2

?

?

?

?

?

?

?

?

?

?
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Here, JL denote both classical Jacquet-Langlands liftings A(B×) →֒ A(GL2K) and A(A×) →֒
A(GL2L), θ denotes theta liftings A(GSp2K) → A(GO(V1)) and A(GSp2K) → A(GO(V2)), and

ω∗, ǫ∗1, and ǫ∗2 are the obvious morphisms arising from ω, ǫ1, and ǫ2. In [Mi-Ta], we construct

liftings IF-BC : A(B×) → A(A×) and GO-JL : A(GO(V2)) → A(GO(V1)) such that the diagram

above commutes. We recall here that Strong Multiplicity One statements hold for all groups in

question.

Recall that, for a given quaternion algebra A over L as in Theorem 1, A = B⊗KL holds for infinitely

many non-isomorphic quaternion algebras B; everything we have stated above is true for any one

of them. Among these algebras, there is a unique one with minimal ramification; we assume from

now on that B is such. Representations of other quaternion algebras B′ simply inject naturally as

proper subspaces of A(B×) via Jacquet-Langlands correspondences in the above diagram.

We have already noted that forms φj with the largest contribution to the power growth in (0.4)

are precisely those whose Asai L-function
∑

n⊂o µ2
K(n)λj(n)/(NKn)s+1/2 (analogous to (0.6)) has

a pole at s = 1. We now describe what this means for the corresponding irreducible automorphic

representation π ∈ A(A×). The Jacquet-Langlands lifting [Ha-Ta] associates to π a non-dihedral

automorphic representation π′ = JL(π) ∈ A(GL2L). Asai L-function of π′ also has a pole at s = 1,

so that π′ ≃ BC(π′
0) ⊗ η for some π′

0 ∈ A(GL2K) and an idele class character η on L trivial on

ideles of K. It is checked in [Mi-Ta] that this π′
0 is a Jacquet-Langlands lift π′

0 = JL(π0) of some

automorphic respresentation π0 ∈ A(B×), so that

π ⊗ η̄ = IF-BC(π0) = ǫ∗2 ◦ θ(π′′
0 ),

with π′′
0 = ω∗ ◦JL(π0). In this way, we see that representations corresponding to forms φj with the

largest contribution in (0.4) can be characterized both in terms of base change lifts and in terms

of theta lifts from GSp2. In the non-compact and compact cases, our description of distinguished

forms corresponds to the specific cases exhibited in Lapid–Offen and Rudnick–Sarnak, respectively.

To add perspective, we mention several results related to the above diagram of representations.

It was first stated by Takase [Tak2] and proved by Krishnamurthy [Kr] that the Asai L-functions

on general linear groups over an imaginary quadratic field L can be recognized as essentially the

“standard” L-functions on the orthogonal group O(3, 1) (O(V2) in our case). Representations of

O(V2) whose L-functions have a pole at s = 1 are shown in Ginzburg–Jiang–Soudry [Gi-Ji-So] to

be twists of theta lifts from GSp2. Quadratic base change was realized as a theta lift by Cognet

[Co] in the context of local fields as well as by Asai [As2] as a global lifting of holomorphic forms

to imaginary quadratic fields. Flicker [Fl] showed that, more generally, a cuspidal representation of

GLnL whose twisted tensor L-function (as the Asai L-function is known in this context) has a pole

at s = 1 is distinguished, subject to certain conditions on ramification (subsequent work was done

on more precise versions). In case of quadratic extensions of GL2, distinguished representations

are base change lifts from GL2K; this circle of questions is connected to the so-called Jacquet’s

conjecture.

Moreover, and this would be the principal result of [Mi-Ta], we expect the above diagram to

commute even if A(G) denote spaces of individual automorphic forms. Here, Jacquet-Langlands

lifts of forms are realized by Shimizu’s lifting as in Watson [Wa] (see also [Shim]), and theta lifts are

realized with specific Schwarz functions as in Shintani [Shin]. In view of Maclachlan-Reid’s results,

10
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our hyperbolic 3-manifold M = Γ\H contains some immersed arithmetic surface M0 corresponding

to an arithmetic Fuchsian subgroup of B (of minimal level). Our construction would therefore

describe a lifting of forms on M0 (of appropriate weight) to forms on M , which would respect

actions of Laplacian and Hecke operators. A form on M would have the property that its Asai

L-function has a pole at s = 1 if and only if it lies in the image of this lifting IF-BC. We call such

forms exceptional. Taking into account (0.4), where these forms are present with overwhelmingly

large weights, we conjecture (see Section 0.6 below) that it is precisely exceptional forms which

achieve power growth in Theorem 1.

Our setup is not entirely unlike Maass’s original construction of special nonholomorphic wave

forms on arithmetic quotients of the upper half-plane from “wave forms” (i.e. additive characters)

on immersed geodesics. As in Maass’s case, there is no obvious geometric way to effect the lifting.

However, an important difference is the fact that in our situation forms on an immersed surface

lift to a sequence of exceptional forms on a fixed 3-manifold. We also refer the reader to a series of

papers by Kudla and Millson (see e.g. [Ku-Mi]), which relate geodesic cycles in locally symmetric

spaces to specific dual harmonic forms, compare these duals to forms arising from the global Weil

representation, and construct liftings of cohomologies of quotient spaces of orthogonal and unitary

groups.

In addition to the classes of three-dimensional manifolds exhibiting power growth of eigenfunc-

tions discussed above, we mention that Donnelly [Do] has generalized the method of [Ru-Sa] to

produce, for every n > 5, arithmetic hyperbolic manifolds of dimension n on which a sequence of

Laplacian eigenfunctions achieves ‖φj‖∞ = Ω(λ
(n−4)/4
j ). Donnelly’s construction involves arith-

metic quotients GO \ GR × G̃R, where G (G̃) is the orthogonal group of the quadratic form

x2
1 + x2

2 + · · ·+ x2
n +
√

dx2
n+1 (x2

1 + x2
2 + · · ·+ x2

n −
√

dx2
n+1, respectively), O is the ring of integers

of Q(
√

d), with d a positive square-free integer, and GO is the set of O-points of G embedded into

GR × G̃R as g 7→ (g, g̃). Exceptional eigenfunctions are shown to be found among the theta lifts

from certain eigenfunctions on quotients of h× h by appropriate congruence subgroups.

While constructions in specific cases can produce precise results, the method of this paper has, in

our view, the advantage of being well suited to the general problem of identifying precise classes of

manifolds on which eigenfunctions show power growth.

0.6. Remarks about discreteness.

The results of this work and [Mi] are part of a much more ambitious goal of general understanding

the L∞-growth of automorphic forms and, more generally, periods. As our results show, certain

arithmetic manifolds show features not expected generically, of which the most striking is power

growth along subsequences of eigenfunctions seen for specific families of quotients, and those arith-

metic 3-manifolds that do are distinguished by both their geometric and functorial properties. In

general, one wants to understand the structure that underlies this special behavior and learn how

to distinguish quotients that exhibit it. Here we would like to point out a particular quantitative

aspect of the connection between Hecke operators and large values of automorphic forms, for the

case of 3-manifolds.

Theorem 2. Let L be a number field with exactly one complex embedding pair, K be its maximal

totally real subfield, O and o be their respective rings of integers, and d = [L : K].

11
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Let further f : o→ R+ be a multiplicative function and ∆ > 0 be such that

f(p) = Np∆/d(1 + O(Np−δ)), f(pu+v) 6 f(pu)f(pv).

For n ⊂ O, define

fK(n0) =

{

f(n0),if n = n2
1n0, n0 ⊂ o, n1 minimal,

0, else.

Consider the quadratic forms

B(b) =
∑

Nd6M

Nd b(d)2

B1(b) =
∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

b(dm)b(dn)
∑

u2|m

∑

v2|n

µL(u)µL(v)fK

( mn

u2v2

)

.

Then

max
b

B1(b)

B(b)
≍ 1,

max
b

B1(b)

B(b)
≍M (1+2∆)/d)−1,

if ∆ < (d− 1)/2,

if ∆ > (d− 1)/2.

Theorem 2 is a general optimization result about quadratic forms and is proved by a Peter-Paul

procedure exactly like the one we employed in Lemma 2, which contains the case needed for the

proof of Theorem 1. We omit the proof to avoid unnecessary repetition and instead focus on

interpretation of the above statement. In the application to our problem, function f counts the

number of Hecke correspondences fixing a chosen special point, and the conditions on f are natural

and satisfied by all families of special points on 3-manifolds we have examined. The important

message of the general optimization result of Theorem 2 for our method is that, to be able to

showcase large values of eigenfunctions, it is not enough to merely produce points fixed under

“any many” Hecke correspondences: there is a critical exponent of power growth that needs to be

surpassed.

It is this property that distinguishes the Maclachlan-Reid type manifolds of our Theorem 1 and

their QCM-points from all other 3-manifolds. For example, as noted in our proof, families of QCM-

points fixed under at least NKn correspondences γ ∈ Γ(n) (n ⊂ o) exist on manifolds coming from

unit groups of Eichler orders of A = B ⊗K L regardless of the degree [L : K]. While our proof is

fine-tuned for the case [L : K] = 2, remainder terms can be kept in check in all other cases as well.

However, the above analysis shows that ultimately this growth (∆ = 1) is not enough to produce

large values of Q1(a)/Q(a) unless [L : K] = 2. Similar reasoning applies to families of special

points whose stabilizers over K are not of full rank. For example, let a, b1 ∈ Z<0, L = Q(
√

a), and

B1 =
(

a,b1
Q

)

, so that L injects as a subalgebra L1 < B1. Let further A1 = B1 ⊗Q L and consider

the (non-compact) arithmetic manifold corresponding to the unit group of some Eichler order in

A1. Motions in Pρ(L1) fix all points along a geodesic c on this manifold. In fact, if M = Q(b2)

is a real quadratic field such that (disc M,discL) = 1, B2 =
(

a,b2
M

)

and A2 = B2 ⊗M (LM), and

if v is a QCM-point with respect to A2 (so that v ∈ c), then one finds that, over A1, v actually

12
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has a Diophantine property that if γv is (in a certain precise sense) close enough to v for some

γ ∈ Γ(n) with n = (η) coprime to disc MdiscL, then η = η2
1n0 with n0 ∈ Z and γ/η1 ∈ L1. This

gives us a family of special points with the nice Diophantine separation property at which the

number of modular correspondences fixing v is precisely counted as the number of ideals of L of

prescribed norm; these points lie on a geodesic which as a whole is fixed by these correspondences.

However, growth of this magnitude (∆ = 0) once again cannot be successfully used to find large

values of eigenfunctions (and by this we mean, not even the sub-power growth of the type exhibited

in Theorem 1).

That there is such a strong discreteness condition goes well hand in hand with the recent purity

conjecture of Sarnak [Sa2]. Let M be a compact hyperbolic locally symmetric space of dimension

n, and let E(M) be the set of accumulation points of

log ‖φj‖∞
log λj

as j →∞. (We discuss rank one case here; the full conjecture also covers higher rank cases, where

more care is needed near the walls of Weyl chambers.) The general bounds from the introduction

imply that E(M) ⊂ [0, (n − 1)/4], and subconvexity is the statement that E(M) ⊂ [0, (n − 1)/4).

The purity conjecture states that, for an arithmetic manifold M ,

E(M) ⊂ Z/4.

For arithmetic 3-manifolds, this conjecture predicts E(M) ⊂ {0, 1/4} and our Theorem 1 provides a

family of manifolds achieving ‖φj‖∞ = Ω(λ
1/4+o(1)
j ). In general, power growth along subsequences

of eigenfunctions is expected to be a rare phenomenon and one would like to understand for which

manifolds it occurs.

The discussion above strongly suggests that our manifolds of Maclachlan-Reid type are in fact

precisely the class of arithmetic hyperbolic 3-manifolds showing this behavior. That this class is

also distinguished by the geometric property of having infinitely many immersed arithmetic surfaces

is intriguing. Moreover, on such distinguished manifolds, we have seen that power growth occurs at

points with a large rational stabilizer and along a subsequence of forms which can be characterized

either in terms of the associated representations being functorial lifts from the division algebras

giving rise to immersed surfaces, or as theta lifts from appropriate congruence subgroups. We make

the following

Conjecture. On arithmetic hyperbolic 3-manifolds other than those of Maclachlan-Reid type, one

has

‖φj‖∞ ≪ λǫ
j .

The same estimate holds for non-exceptional forms on Maclachlan-Reid type 3-manifolds.

Both statements of the above conjecture are very strong and appear to us to be out of reach of

current methods.

In light of the description of the exceptional cases and of the purity conjecture stated above, one is

tempted to speculate that, in general, it is plausible that one would see increasing discrete “layers

of power growth” of periods of automorphic forms, with “scarring” (term used loosely) of varying

13
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severity along certain special points, geodesics, or, more generally, totally geodesic submanifolds.

In that sense, understanding the general picture presents a threefold task: classifying, in geomet-

ric or functorial terms, the distinguished class of manifolds exhibiting this scarring phenomenon,

describing special points or orbits along which large values are attained, and identifying the subse-

quence of eigenfunctions which achieve them. This paper and the companion paper [Mi] shed light

on these questions in cases of arithmetic 2- and 3-manifolds and their connection to the geometry

of Hecke correspondences. It will be very interesting to see how the interplay between the expected

discreteness of E(M) and the relevant quadratic forms plays out in cases of higher dimension and

rank.
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1. Pre-trace formula.

The spectral expansion of the automorphic kernel for Kleinian groups proceeds analogously to the

case of Fuchsian groups. We refer the reader to [Iw] and [Mi] for the two-dimensional case and to [El-

Gr-Me1] for details of the three-dimensional case, which is of interest to us. For vi = (zi, ri) ∈ H (i =

1, 2) write u(v1, v2) =
|z1 − z2|2 + r2

1 + r2
2

2r1r2
; u is a point-pair invariant as u(v1, v2) = cosh ρ(v1, v2),

where ρ denotes the hyperbolic distance on H. Suppose h is an even function holomorphic in the

strip R = {r ∈ C : |Im r| < 1/2+ǫ} such that h(r)≪ (|r|+1)−3−ǫ in this strip. Such an h : R→ C

has a Selberg transform k : R>1 → C given explicitly [Ko] as a composite

h(r) =

∫ ∞

−∞

eirug(u) du, g(u) = Q(cosh u), k(t) = − 1

2π
Q′(t). (1.1)

From a point-pair invariant k(v,w) = k(u(v,w)) we can build the automorphic kernel K(v,w) =
∑

γ∈Γ k(γv,w), which in turn admits the spectral expansion

K(v,w) =
∑

j>0

h(rj)φj(v)φj(w) + δΓ

∑

a

ca

∫ +∞

−∞

h(r)Ea(v, ir)Ea(w, ir) dr, (1.2)

where λj = 1 + r2
j , δΓ = 0 or 1 according as Γ is cocompact or not, and, in the latter case, a runs

over the finite set of Γ-inequivalent cusps and ca are explicit positive constants defined in terms of

the stabilizers of cusps. Among non-cocompact Γ, it suffices to consider the Picard groups PSL2O,

14
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where O is the maximal order in some imaginary quadratic field L = Q(
√
−d), as every non-

cocompact arithmetic subgroup Γ with the invariant trace algebra A = M2Q(
√
−d) is conjugate

over A to some congruence subgroup Γ1 of PSL2O, so that L2(PSL2O \ H) →֒ L2(Γ1 \ H) ∼=
L2(Γ \ H). Under the technical assumptions of Theorem 1, there is only one equivalence class of

cusps, represented by ∞, and c∞ = c = |O∗|/(4π
√

discL).

We can choose g so that the kernel k is non-negative and compactly supported and its transform h

is even and positive on the real and imaginary axes. As in [Mi], we can also arrange that, for some

α > 0, h satisfies h(x)≪ exp(−α log |x| log log |x|) for large |x|; this innocent trick allows us to keep

the constant in the exponent of the statement of Theorem 1 with an explicit error term instead

of 1 + o(1). To analyze values of φj(v), we will be using a “twisted” version of (1.2), eventually

setting v = w. For effective asymptotic analysis, it is essential to have test functions k for which

the left-hand size localizes quickly close to the diagonal, i.e. for u close to u = 1 in k(u). With

this in mind, we fix a large T > 0 and use (1.2) with hT (r) = h(r/T ) and kT corresponding to

gT (u) = Tg(Tu); it is easy to see that kT (t) = 0 for t − 1 ≫ T−2, |kT (t)| ≪ T 3 for all t, and

kT (1) ∼ cT 3 with c = (−1/2π)g′′(0) = (1/4π2)
∫∞

−∞
r2h(r) dr > 0.

Theorem 1 is concerned with eigenfunctions on arithmetic 3-manifolds. These manifolds come

equipped with a family of modular correspondences, which we now proceed to describe for M = Γ\H
with a group Γ as in the statement of Theorem 1. (We refer the reader to Eichler [Ei] for the original

treatment.) We denote by N(α) the quaternion algebra norm of α ∈ A (also called the reduced

norm of α). Let n = ηO be an ideal in O, where the generator η is chosen in the subgroup L×
+ of

numbers positive in all real embeddings, and let

O(n) = {α ∈ O : η−1N(α) ∈ O∗ ∩ L×
+}. (1.3)

Z(O) = O(O) ∩ ρ−1P−1(id) is the center of O(O), and O(O) = Z(O)O1 acts on O(n) by mul-

tiplication on the left with finitely many orbits Z(O)O1 \ O(n). These give rise to the modular

correspondences on M and in turn to the Hecke operators Tn : L2(M)→ L2(M) defined by

Tnf(v) =
∑

α∈Z(O)O1\O(n)

f(ρ(α)v).

(Hecke operators are typically normalized by scaling by a factor of 1/
√

Nn; the above is the nor-

malization we will use.) There is an ideal qO ⊂ O such that Tn’s with (n, qO) = O satisfy the usual

multiplicative property

TnTm =
∑

d|(m,n)

NdTmn/d2 , (1.4)

and, together with the Laplacian ∆, they form a commutative algebra of self-adjoint operators

which may be simultaneously diagonalized to obtain an orthonormal Hecke eigenbasis {φj}j>0 of

L2
0(M) with which we are concerned in Theorem 1:

(∆ + λj)φj = 0, Tnφj = λj(n)φj . (1.5)

In the non-cocompact case Γ = PSL2O, the operators Tn may be applied to the Eisenstein series

and one finds that they act on them by scalars, namely by divisor sums normalized by a factor
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of
√

Nn (see [El-Gr-Me1] for the explicit Fourier expansion of Ea(v, s) and [Iw] for the analogous

case of surfaces). Applying Tn in variable v to (1.2) and unfolding, one obtains the explicit formula

contained in the following lemma.

Lemma 1. (Twisted pre-trace formula.) Let L be a number field with exactly one complex embed-

ding pair of class number one and let O = RL be the ring of integers of L. Let A be a quaternion

algebra over L, O be an Eichler O-order and O1 be the group of elements of norm one in O.

Let ρ be an L-embedding of A in M2C, Γ = Pρ(O1) be the corresponding arithmetic Kleinian group,

and let (φj)
∞
j=0 be a basis of L2

0(Γ \ H) consisting of Hecke-Maass eigenforms satisfying (1.5). In

case when Γ is non-cocompact, assume Γ = PSL2O and let the Eisenstein series E(v, s) on Γ \ H

be defined as in (4.1). Let further hT : R → C and kT : R>1 → C be a Selberg transform pair, let

kT (v,w) = kT (u(v,w)), and let Z(O) and O(n) (n ⊂ O) be as in (1.3). Then

∑

γ∈Z(O)\O(n)

kT (ρ(γ)v,w) =

∞
∑

j=0

hT (rj)λj(n)φj(v)φj(w) (1.6)

+ δΓc
√

Nn
∑

n=ad

∫ ∞

−∞

hT (r)(Na/Nd)ir/2E(v, ir)E(w, ir) dr. �

This twisted pre-trace formula is the starting point for our asymptotic analysis. We will first deal

with the cocompact case in sections 2 and 3. In section 4, we collect the additional terms present

in the non-cocompact case; they will be less than the main terms by a power of T in the final

asymptotic analysis.

2. The Diophantine lemma.

One of the key constructs of [Mi] is a Diophantine lemma which tells us that Hecke correspondents

γ(z) of a fixed CM-point can “return back” only so close to z before actually hitting it, which

enables us to precisely count γ’s with a nonzero contribution on the geometric side of the twisted

pre-trace formula (1.5) (after proper localization of kT to the diagonal as T →∞). QCM-points on

arithmetic 3-manifolds do not have such nice separation properties except on manifolds described

in our theorem. On the other hand, correspondences γ ∈ O(n) fixing v can in any case be counted

precisely. In what follows, for a positive definite quaternary integral quadratic form q over a totally

real number field K with the ring of integers o and for any n ∈ o, let r(q, n) = #{n ∈ o4 : n = q(n)}.

Lemma 2. Let Γ be an arithmetic Kleinian group as in Theorem 1, and let v ∈ H be a QCM-point

fixed by (B ⊗ρ R)× →֒ GL2C ։ PSL2C, where B 6 A is a quaternion algebra over K ramified at

all infinite places.

Denote by o = RK the ring of integers of K, by JO the group of fractional ideals of O, and let

Jo = {aO ∈ JO : a ∈ K×}. For n ⊂ O, let O(n) be as in (1.3), and let Z(O) be the center

of O(O). For each b ⊂ O, fix an integral basis of the o-lattice Ob
K = bO ∩ B and write the

quaternion algebra norm on this lattice as a quaternary quadratic form qb on o4; for n0 ∈ Jo,

define Ob
K(n0) analogously to (1.3). Finally, let c1, . . . , ch be minimal integral representatives of

classes in {a ∈ JO : a2 ∈ Jo}/Jo, and write ci = ciO, c2i ∩ o = c̃io with ci ∈ L×
+, c̃i ∈ K×

+ .
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a) There exists an ideal qOK
⊂ O such that Hecke correspondences γ ∈ Z(O) \ O(n) (n ⊂ O) such

that

ρ(γ)v = v

exist only if n = n2
1n0 for some n1 ∈ JO, n1 ⊂ q−1

OK
and n0 ⊂ o. In that case, take the unique

such representation with a minimal n1 and write n1 = η1O and n0 = η0o with η1 ∈ L×
+ and

η0 = η/η2
1 ∈ K×

+ . For 1 6 i 6 h, let bi = (n1ci)
−1 ∩O. Then, ρ(γ)v = v if and only if

γ ∈
(

O(n) ∩
h
⊔

i=1

η1ciZ(O)B

)

=

h
⊔

i=1

η1ciZ(O)Obi

K (n0/c
2
i ),

and

∣

∣

∣

∣

Z(O) \
(

O(n) ∩
j
⊔

i=1

η1ciZ(O)B

)∣

∣

∣

∣

=
1

2

h
∑

i=1

r(qbi
, η0/c̃i). (2.1)

b) In the case [L : K] = 2, there exists a constant C > 0 depending on B 6 A and O only, such

that γ ∈ O(n) satisfies

|ρ(γ)v − v| 6 C(Nn)−∆

with ∆ = 1/2 if and only if actually ρ(γ)v = v.

Proof of Lemma 2. Let OK = O ∩B. Every β ∈ B ⊂ A has some multiple ηβ ∈ O, η ∈ O, and

therefore also a multiple (NL|Kη)β ∈ OK , NL|Kη ∈ o. Hence OK is an o-order in B; let (ξi)
4
i=1

be an o-integral basis of OK . Call an element γ0 =
∑

xiξi ∈ OK primitive if
∑

(xio) = o. We fix

qOK
⊂ O such that O ⊂ q−1

OK
OK .

We prove that every γ ∈ O(n) such that ρ(γ)v = v can be written as

γ = λγ0, (2.2)

where λ = a/b ∈ q−1
OK

, a, b ∈ O, (a, b) = O, and γ0 ∈ O(b)
K is primitive, and that this representation

is unique up to multiplication by units in o∗. Indeed, write γ =
∑

yiξi with yi ∈ L×; as ρ(γ)v = v,

we also have that ρ(γ) = λ̃(
∑

x̃iρ(ξi)) for some λ̃ ∈ C×, x̃i ∈ R. By changing λ̃ as necessary, we can

ensure that x̃i = ρ(xi) for some xi ∈ o such that γ0 =
∑

xiξi is primitive, as well as λ̃ = ρ(λ) with

λ ∈ L×; write λ = a/b with a, b ∈ O, (a, b) = O. From aγ0 ∈ bO it follows that γ0 ∈ bO∩B = O(b)
K ,

while

(λ) =
∑

(λxiO) ⊂ q−1
OK

, (2.3)

so that the decomposition γ = λγ0 has all the required properties. The uniqueness claim is

immediate from (2.3).

In particular, we see from (2.2) that if there are Hecke correspondences γ ∈ O(n) such that ρ(γ)v =

v, then n = ñ2
1ñ0, with ñ1 = (λ) ⊂ q−1

OK
, ñ0 = (Nγ0) ⊂ o. It is easy to see that the set of all

n1 ∈ JO, n1 ⊂ q−1
OK

such that n = n2
1n0 for some n0 ⊂ o is closed under addition; let n = n2

1n0 be

the unique such representation with a minimal n1 and write n1 = η1O and n0 = η0o with η1 ∈ L×
+,

η0 ∈ K×
+ . For every γ = λγ0 written as in (2.2) and the corresponding ñ1 = (λ), we have that

(ñ1/n1)
2 ∈ Jo, so that there is a unique 1 6 i 6 h such that ñ1 = ciñ1n1 for some ñ1 ∈ o. This

allows us to write (2.2) in the form

γ = λ1γ1
0 , (2.4)
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where λ1 = λ/ñ1 = a/(bñ1), (λ1) = cin1, and γ1
0 = ñ1γ

1
0 ∈ O

(bi)
K with biO = (λ1)−1 ∩O ⊃ ñ1(bO).

Summing up, we have shown that every γ ∈ O(n) with ρ(γ)v = v has exactly one representation in

the form (2.2), and, grouping these representations according to the ci for which ñ1 ∈ cin1Jo, each

of them yields a unique representation of the form (2.4) with (λ1) = cin1 and γ1
0 ∈ Obi

K (n0/c
2
i ),

bi = (cin1)
−1 ∩ O. Conversely, every product λ1γ1

0 of the form (2.4) with (λ1) = cin1 and γ1
0 ∈

Obi

K (n0/c
2
i ) yields a γ ∈ O(n). Part (a) follows.

We move on to the proof of part (b). Let L = K(δ), where δ2 ∈ K is negative at ρ and positive at

all other places of K (by conditions on archimedean embeddings of L). In particular, A = B ⊕Bδ

as a vector space. On each of BR = B ⊗ρ R and M2C ∼= A ⊗ρ C, we have the quaternion algebra

norm N , the (hermitian) coordinate L2-norm ‖ · ‖22 with respect to a fixed basis of B, and the

entry-by-entry L2-norm ‖ρ(·)‖22 of the image inside the matrix algebra M2C under the embedding

ρ. On BR, all three are positive definite quadratic forms and so equivalent; on M2C, the L2-norms

are equivalent (so we can always use them interchangeably) and the algebra norm is bounded by

either. As in Lemma 2 of [Mi], the inequality ‖AB‖2 6 ‖A‖2‖B‖2 for A,B ∈ M2C is a simple

consequence of Cauchy-Schwarz inequality, and BR and δBR are literally perpendicular to each

other in the coordinate L2-norm.

Suppose now that γ ∈ O(n) (that is, γ ∈ O with η−1Nγ ∈ (O∗∩L×
+)) satisfies |ρ(γ)v−v| ≪ (Nn)−∆.

The action γ̃ 7→ P (γ̃)v induces the continuous Iwasawa homeomorphism GL2C/C×B×
R
∼= H, so that

|ρ(γ)v − v| ≪ (Nn)−∆ is equivalent with

‖ρ(γ)λ−1γ−1
f − I‖2 ≪ (Nn)−∆

for some γf ∈ B×
R and some λ ∈ C×, |λ| = 1. If we write λ = λ0 +ρ(δ)λ1 (λi ∈ R) and γ = γ0 + δγ1

(γi ∈ B), it follows that

‖ρ(γi)− λiγf‖2
‖γf‖2

≪ ‖ρ(γ0)− λ0γf + ρ(δγ1)− ρ(δ)λ1γf‖2
‖γf‖2

6 ‖ (ρ(γ)− λγf) γ−1
f ‖2 ≪ (Nn)−∆.

For any γ ∈ B and any γ̃ ∈ BR, let γµ and γ̃µ (1 6 µ 6 4) denote the coordinates of γ and

γ̃ with respect to a fixed basis of B. From ρ(γi)µ = λiγfµ + O((Nn)−∆‖γf‖2) it follows that

ρ(Nγ) = λ2Nγf + O((Nn)−∆‖γf‖22) and so in particular ‖γf‖2 ∼ |ρ(η)|1/2, and further

|ρ(γ0µγ1ν − γ1µγ0ν)| ≪ |ρ(η)|(Nn)−∆.

On the other hand, by pairing the real places of L so that (ρi, ρ
′
i) corresponds to a single place of

K, we see from the simple inequality (ǫ = ρi(δ) > 0)

(ad− bc)2 ≪
(

(a + bǫ)2 + (c + dǫ)2
) (

(a− bǫ)2 + (c− dǫ)2
)

that we are justified in estimating

|N(γ0µγ1ν − γ1µγ0ν)| = |ρ(γ0µγ1ν − γ1µγ0ν)|2
∏

|ρiρ
′
i(γ0µγ1ν − γ1µγ0ν)|

≪ |ρ(η)|2(Nn)−2∆
∏

ρi(η)ρ′i(η) = (Nn)1−2∆.
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As all γiµ belong to some fixed ideal in o, this implies that γ0µγ1ν = γ1µγ0ν if the implied constant

is small enough, but this means that γ0 and γ1 are scalar multiples of each other. This is precisely

the condition for ρ(γ)v = v. �

Lemma 2 provides a lower bound for the geometric side of (1.2) in terms of the representation

numbers of certain positive definite quadratic forms. This lower bound is obtained by precisely

counting Hecke correspondences with ρ(γ)v = v regardless of degree [L : K], but it is only for

[L : K] = 2, a situation we might term the Galois case, that the bound should be expected to be

precise. In other cases, there are presumably Hecke correspondents ρ(γ)v which come very close to

v in an unpredictable fashion and the full picture touches upon very delicate Diophantine questions.

In the proof of the omega result of Theorem 1, we will for simplicity of notation restrict ourselves

to just the contribution of b = O (i.e. n1 ⊂ O) and write q = qO; the cost of doing so is at any rate

at most a constant multiple. For the following discussion involving quadratic forms over totally

real fields, we refer the reader to [Ki] and [SP] for standard facts. Starting from a positive definite

quaternary integral quadratic form q over the totally real number field K as above, we can form

its theta series

θ(q, z) :=
∑

n∈o4

eπiTr(λ−1q(n)z) =
∑

n∈o

r(q, n)eπiTr(λ−1nz),

where z ∈ hm, where m = [K : Q], (λ) is the absolute different of K, and Tr is the linear extension

of the field trace K → Q to Cm → C. The theta series can be defined in the obvious analogous way

for a quadratic form over any o-lattice Λ < K4 of full rank and is known to be a Hilbert modular

form of weight two for a certain congruence subgroup of PSL2o that is locally everywhere conjugate

to a subgroup of type Γ0(N). Using the transformation formula for θ, it is seen that the values

at cusps of such a theta series are expressed as Gauss sums over certain quotients Λ/cΛ, where c

depends only on the congruence properties of (Λ, q), and so in particular are same for all forms in

the genus of q.

Let us denote by q1 = q, q2, . . . , qh the full set of representatives of isometry classes of forms (with

their implicit underlying o-lattices) in the genus gen q, by O(qi) the finite group of isometries of qi,

r(gen q, n) =

(

h
∑

i=1

1

|O(qi)|

)−1 h
∑

i=1

r(qi, n)

|O(qi)|
,

and θ(gen q, z) =
∑

n∈o r(gen q, n)eπiTr(λ−1nz). Then our previous remarks show that rcusp(q, n) :=

r(q, n)− r(gen q, n) are Fourier coefficients of a cusp form θ(q, z)− θ(gen q, z). On the other hand,

it is a classical theorem of Siegel that

r(gen q, n) = cNK(n)
∏

p

αp(q, n),

with a constant c > 0 depending on K and q only. (We write NK for the absolute norm of (n)

as an ideal of K to avoid confusion.) The “local densities” αp(q, n) for places p at which q is not

unimodular are only partially understood, but a lower bound is known on their product which is

uniform in n as long as n is not highly divisible by such p’s (of which there are finitely many) and
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n is representable by q, which will be the case if we restrict n by congruence conditions modulo a

certain qgen. In fact, noting that classes in G = (o/qgen)∗2 < (o/qgen)∗ are representable by forms

in the genus of q and that, under our assumptions, o∗+ = o∗2, we see that there exists a finite set

Ξ of ray class characters of o modulo qgen trivial on o×2 (namely, the set of all ray class characters

modulo qgen trivial on G) such that, for any (n, qgen) = o, the class n + qgen is representable by

forms in the genus of q if
∑

χ∈Ξ χ((n)) > 0. The product of the remaining local densities can be

shown to be

≫
∏

p|n

(1 + χp(q)NKp−1)

where χp(q) is ±1 according to whether the localization of the quadratic space of q at p is hyperbolic

or not. For our q, which is the norm form of a quaternion algebra A, it is clear that χp(q) = 1

whenever A is unramified at p. Summing up, this discussion proves the following

Lemma 3. Let K be a totally real number field of narrow class number one with the ring of integers

o. Let q be a positive definite quaternary integral quadratic form over K which is locally almost

everywhere equivalent to the norm form of a certain quaternion algebra B over K, and, for every

n ∈ o, let r(q, n) = #{n ∈ o4 : q(n) = n}. Then there is an ideal qq ⊂ o and a finite set Ξ of ray

class of characters of o such that for all ((n), qq) = o,

r(q, n)≫
∑

χ∈Ξ

σK,µ2,χ((n)) + O(|rcusp(q, n)|). (2.5)

Here, σK,µ2,χ(n0) = χ(n0)
∑

n0=ef, e,f⊂o NKeµ2
K(f), and rcusp(q, n) are Fourier coefficients of a cer-

tain cusp Hilbert modular form of weight two for a certain congruence subgroup of PSL2o. �

Returning to the notation of Theorem 1, for n ⊂ O, (n, qq) = O, we set

σK,µ2,χ(n) = σK,µ2,χ(n0) and rK
cusp(n) = rK

cusp(q, η0) (2.6)

if n = n2
1n0 with n0 = η0o (η0 ∈ o+) and n1 minimal, and σK,µ2,χ(n) = rK

cusp(n) = 0 otherwise.

Lemmas 2 and 3 together give an effective lower bound on the number of Hecke correspondences

γ ∈ Z(O) \ O(n) such that ρ(γ)v = v in terms of numbers σK,µ2,χ(n). A remarkable feature of the

estimate of Lemma 3 is its near-universality: the specific quaternion algebra A and QCM-point

v = (z, r) are reflected in the implied constants, qq, collection of characters Ξ, and the cuspidal

term only.

3. Resonator and the asymptotics of Q1(a) and Q(a).

We now fix a large M > 0, introduce a “resonator” — a sequence of non-negative real numbers a(n)

((n, qOqLqq) = O, Nn 6 M), to be chosen later, and consider the following two spectral averages,

where v is a QCM-point:

Q1(a) =
∞
∑

j=0

hT (rj)

∣

∣

∣

∣

∣

∣

∑

Nn6M

a(n)λj(n)

∣

∣

∣

∣

∣

∣

2

|φj(v)|2, (3.1)

Q(a) =
∞
∑

j=0

hT (rj)

∣

∣

∣

∣

∣

∣

∑

Nn6M

a(n)λj(n)

∣

∣

∣

∣

∣

∣

2

. (3.2)
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Sections 3 and 4 are devoted to the proof of the following Lemma 4.

Lemma 4. Let Γ be an arithmetic Kleinian group as in Theorem 1, and let v ∈ H be a QCM-point

fixed by (B⊗ρ R)× →֒ GL2C ։ PSL2C, where B 6 A is a quaternion algebra over K ramified at all

infinite places. Let (φj)
∞
j=0 be a basis of L2

0(Γ \H) consisting of Hecke-Maass eigenforms satisfying

(1.5), let hT : R → C and kT : R>1 → C be a Selberg transform pair, let a(n) be a non-negative

resonator as above, and define Q1(a) and Q(a) as in (3.1) and (3.2). Then, for M ≪ T 2 with a

sufficiently small implied constant,

Q1(a)≫ kT (1)
∑

χ∈Ξ

∑

Nd6M

Nd
∑

Nm, Nn6M/Nd

a(dm)a(dn)σK,µ2,χ(mn)

+ O

(

kT (1)
∑

Nd6M

Nd
∑

Nm, Nn6M/Nd

a(dm)a(dn)|rK
cusp(mn)|

)

+ δΓQ∞
1 (a),

Q(a) = kT (1)µ(Γ \ H)
∑

Nd6M

(

∑

d=ef

Neµ2
L(f)

)(

∑

Nn6
√

M/Nd

a(dn2)

)2

+ O

(

∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

|a(dm)a(dn)|ℓT (mn) · e2C log T
log log T

)

+ δΓQ∞(a),

where δΓ = 1 if Γ is non-cocompact (in which case we assume Γ = PSL2O), and

Q∞
1 (a)≪ T 2+ǫ

∑

Nd6M

Nd

(

∑

Nm6M/Nd

a(dm)
√

Nm

)2

, Q∞(a)≪ T 1+ǫ

(

∑

Nm6M

a(m)
√

Nm

)2

.

Here, Ξ is a certain finite collection of ray class characters of K described in the proof of Lemma

3, σK,µ2,χ and rK
cusp are functions on ideals of L defined in (2.6), and ℓT (n) = Nn + T 2.

Proof of Lemma 4. In Q1(a), we expand the square and use the multiplicative relation (1.4) for

Hecke operators and the spectral expansion (1.5) to obtain

Q1(a) =
∑

Nm, Nn6M

a(m)a(n)
∑

d|(m,n)

Nd
∑

γ∈Z(o)\O(mn/d2)

kT (ρ(γ)v, v).

For v a QCM-point, the resulting innermost sum can be estimated by Lemmas 2 and 3 as

Q1(a)≫ kT (1)
∑

Nm, Nn6M

a(m)a(n)
∑

d|(m,n)

Nd





∑

χ∈Ξ

σK,µ2,χ(mn/d2) + O(|rK
cusp(mn/d2)|)



 . (3.3)

On the other hand, integrating (1.5) along the diagonal v = w ∈ Γ \H gives

Q(a) =
∑

Nm,Nn6M

a(m)a(n)
∑

d|(m,n)

Nd
∑

γ∈Z(O)\O(mn/d2)

∫

Γ\H

kT (ρ(γ)v, v) dµv. (3.4)

We collect the contributions from individual γ ∈ O(n) to Q(a) according to the geometric type of

Pρ(γ). This proceeds somewhat parallel to the case of surfaces dealt with in [Mi]. By multiplying
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by a suitable totally positive unit we may assume that the representative η ∈ L×
+ of n = ηO is

chosen so that |ρ(η)| ≍
√

Nn, ρi(η) ≍ 1. We note for reference that

Tr2Pρ(γ)− 4 =
Tr2ρ(γ)− 4ρ(η)

ρ(η)
= −4ρ(N(γ − γ0))

ρ(η)
.

In particular, we note that Tr Pρ(γ) = ±2, the condition that Pρ(γ) is a parabolic or identity

element, holds only if γ = γ0. So, these elements contribute only when n is a square, in which case

their contribution is kT (1)µ(Γ \H).

Every element β ∈ PSL2C other than identity or parabolic has a pair of fixed points on the boundary

Ĉ of H, and the unique geodesic joining these two points is called the axis of β, Aβ . Such a β is

conjugate to a matrix of the form ht,ϕ =

(

teiϕ

1/(teiϕ)

)

and geometrically acts as a rotation

around Aβ with angle 2ϕ followed by a hyperbolic translation along the same axis by distance

2 log t. Only those β that have t = 1 have fixed points in H: these are the elliptic elements and

are distinguished by the condition Trβ ∈ R, |Tr β| < 2. The remaining elements are loxodromic,

with pure translations (ϕ ∈ πZ, i.e. Tr β ∈ R, |Tr β| > 2) usually termed hyperbolic. In any case it

follows from u(ht,ϕv, v) =
|t2e2iϕ − 1|2|z|2 + (1 + t4)r2

2t2r2
that

inf
v∈H

u(βv, v) = 1 +
(t2 − 1)2

2t2
.

We now estimate the contribution in (3.4) of γ ∈ O(n) for which β = Pρ(γ) is neither identity

nor parabolic. In particular, if the contribution of some γ is to be nonzero, the parameter t

corresponding to β = Pρ(γ) must satisfy t = 1+O(T−1). Further, as TrPρ(γ) = teiϕ+(1/t)e−iϕ =

2cos ϕ + O(T−1), we have that ρ(Nγ0)/ρ(η) = cos2 ϕ + O(T−1). In fact, as

|ρ(N(γ − γ0))|2
|ρ(η)|2 Nn > |ρ(N(γ − γ0))|2

∏

i

ρiη > |NN(γ − γ0)| ≫ 1,

we have that

|2 sin ϕ + O(T−1)|2 =
∣

∣

∣
4−

(

teiϕ +
1

t
e−iϕ

)2∣
∣

∣
=

4|ρ(N(γ − γ0))|
|ρ(η)| ≫ 1√

Nn
.

Recall that Nn 6 M2 ≪ T 4 in our ranges for application in (3.4), so that, by assuming that

M ≪ T 2 with a sufficiently small implied constant, we can ensure that sin ϕ > cT−1 for a suitably

large c > 0. In particular, if u(ρ(γ)v, v) − 1 ≪ T−2 for some v in a fixed, compact fundamental

domain for Γ, the axis Aρ(γ) will actually intersect some slightly larger fixed compact domain F .

The fixed points of ρ(γ) on Ĉ must also lie in some fixed domain F ′.

For each such γ, fix the positive integer c2 < rγ 6 T 2 such that

rγ − 1

T 2
< sin2 ϕ 6

rγ

T 2
,

and note that |ρ(N(γ − γ0))| ≍ |ρ(η)|rγT−2 as well. Consider the quadratic extension M =

L(ω) < A, all of whose embeddings are complex, and write γ = γM + γ′
Mω′ with γM = γ0 + γ1ω,
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γ′
M = γ2 + γ3ω ∈ M . For a fixed r = rγ , let xr, yr, zr and Ir be, respectively, the number of

possible choices for γ0, the number of choices for γ1, the maximum possible number of choices for

γ2 and γ3 once γ0 and γ1 have been chosen, and the maximum possible contribution of such a γ to

(3.4).

In light of ρ(Nγ0) = ρ(η) cos2 ϕ + O(|ρ(η)|T−1) and ρi(Nγ0)≪ ρi(η), we have that

xr ≪
(

√

|ρ(η)|
max(T

√

1− r2/T 2, T 1/2)
+ 1

)2

≪ |ρ(η)|
T

+ 1.

From the quadratic formula, the fixed points of ρ(γ) on Ĉ are

z1,2 =
1

ρ(γ̄′
Mω′)

(

ρ(γ1ω)±
√

−ρ(N(γ − γ0))
)

;

the condition that these lie in F ′ translates into

|ρ(γ̄′
M )| ≪

√

|ρ(η)|
T

√
r, |ρ(γ1)| ≪

√

|ρ(η)|
T

√
r,

|ρ(Nγ′
M )| ≪ |ρ(η)|

T 2
r, |ρ(γ′

M )| ≪
√

|ρ(η)|
T

√
r.

(Note that all of these also hold if one of the fixed points on Ĉ is ∞.) The second estimate above

coupled with |ρi(γ1)| ≪
√

ρi(η) shows that

∑

s6r

ys ≪
(√

Nn

T 2
+ 1

)

r.

Finally, once γ0 and γ1 are fixed, γ is subject to the quadratic condition Nγ′
M = x := (NγM−η)/ω′2,

which, up to multiplication by units, is a question of representing a fixed ideal (x) of L as a norm

of a principal ideal (γ′
M ) with generator in a fixed order. Taking into account the estimates on

|ρ(γ′
M )|, |ρ(γ̄′

M )| above as well as |ρi(γ
′
M )|, |ρi(γ̄

′
M )| ≪

√

ρi(η), and noting that units ǫ ∈ O∗
M such

that NM |Lǫ = 1 form a free subgroup of rank one, we see that this can be done in no more than

≪ dL(x) log T ways, so that in any case

zr ≪ eC log T
log log T .

Finally, the contribution to (3.4) of each γ is an integral along a compact interval on Aρ(γ) (of

length uniformly bounded by diamF + 1) of surface integrals, each of which is at most (recalling

that Pρ(γ) is conjugate to ht,ϕ)

∫

C

kT

(

1 +
|t2e2iϕ − 1|2|z|2

2y2

) |dz|
y2

6
2π

|t2e2iϕ − 1|2
∫ ∞

1

kT (w) dw

=
gT (0)

|t2e2iϕ − 1|2 ≪
T 3

r
,

so that Ir ≪ T 3/r.
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D. Milićević: Large values of eigenfunctions on arithmetic hyperbolic 3-manifolds

Summing up, the total contribution from elements γ ∈ Z(O)\O(n) such that Pρ(γ) is not identity

or parabolic is hence (e.g. by splitting into dyadic intervals)

⌈T/c⌉
∑

r=⌊c2⌋+1

xryrzrIr ≪
(√

Nn

T
+ 1

)2

T 2eC log T
log log T log T ≪ (Nn + T 2)e2C log T

log log T .

This proves that

Q(a) =kT (1)µ(Γ \ H)
∑

Nm, Nn6M
mn square

a(m)a(n)
∑

d|(m,n)

Nd

+ O

(

∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

|a(dm)a(dn)|ℓT (mn) · e2C log T
log log T

)

=kT (1)µ(Γ \ H)
∑

Nd6M

(

∑

d=ef

Neµ2
L(f)

)(

∑

Nn6
√

M/Nd

a(dn2)

)2

+ O

(

∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

|a(dm)a(dn)|ℓT (mn) · e2C log T
log log T

)

,

(3.5)

where ℓT (n) = Nn + T 2 as in the statement of Lemma 4.

4. Non-compact case and the Eisenstein series contribution.

In this section, we deal with the additional terms that occur in the case when Γ is the Picard group

PSL2O, with O the maximal order of the imaginary quadratic field L = Q(
√
−d). We first turn our

attention to the contribution of Eisenstein series to (1.5) for the QCM-point v of Theorem 1. Under

the technical assumptions made in Theorem 1, there is only one cusp at ∞ and the corresponding

Eisenstein series is defined for Re s > 1 as

E(v, s) =
∑

(c,d)=O

(

r

|cz + d|2 + |c|2r2

)1+s

. (4.1)

Here, q̃H(c, d) = |cz + d|2 + |c|2r2 is a binary Hermitian form over L. In fact, it is not difficult to

check that, as a definite quaternary quadratic form over Q, it is equivalent to the form q considered

in section 2. We can write q̃H(c, d) = q0q
H(c, d) for some q0 ∈ L× and a primitive binary Hermitian

form qH on O, so that

E(v, s) =

(

r

q2
0

)1+s
Z(qH , 1 + s)

ζL(1 + s)

with Z(qH , s) =
∑∞

n=1 r(qH , n)/ns and r(qH , n) = #{(c, d) ∈ O2 : n = qH(c, d)}.

While this is not strictly necessary for our purposes, we now refer to the work of Elstrodt,

Grünewald, and Mennicke [El-Gr-Me2], in which the local densities for primitive binary Hermitian

forms over imaginary quadratic fields are explicitly computed. (We note that, to our knowledge,

this result is not available over a quadratic extension of an arbitrary totally real ground field, which

24
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is why we could not appeal to it in section 2.) To state their result, let qH
1 = qH , qH

2 , . . . , qH
ℓ be

representatives of GL2O-equivalence classes of Herimitian forms in the genus of qH , let E(qH
i )

denote the group of GL2O-units of qH
i , and let

r(gen qH , n) =

(

ℓ
∑

i=1

1

|E(qH
i )|

)−1 ℓ
∑

i=1

r(qH
i , n)

|E(qH
i )| .

Denote correspondingly Z(gen qH , s) =
∑∞

n=1 r(gen qH , n)/ns, as well as rcusp(qH , n) = r(qH , n)−
r(gen qH , n), Zcusp(qH , s) =

∑∞
n=1 rcusp(qH , n)/ns. Then [El-Gr-Me2] explicitly determine a finite

collection X of quadratic Dirichlet characters χ to conductors dividing (disc L,disc qH), constants

cχ, and finite Euler products Pχ(s) of polynomials in p−s, such that

Z(gen qH , s + 1) =
∑

χ∈X

cχPχ(s)L(s, χ)L(s + 1, χ).

As all forms qH
i are everywhere locally equivalent also as quaternary quadratic forms over K, we

have, as in section 2, that their values at cusps are all equal, and so rcusp(qH , n) are Fourier coeffi-

cients of a cusp Hilbert modular form f for a certain congruence subgroup of PSL2Z; Zcusp(qH , s)

is the L-function of this cusp form.

The total contribution of Eisenstein series to the spectral average in (3.1), after expanding the

square and applying (1.5), is

Q∞
1 (a) =

r2

q4
0

∑

Nm,Nn6M

a(m)a(n)
√

NmNn
∑

u|(m,n)

∑

mn/u2=ad

∫ ∞

−∞

hT (r)

|ζL(1 + ir)|2

∣

∣

∣

∣

∣

∣

∑

χ∈X

cχPχ(ir)L(ir, χ)L(1 + ir, χ) + L(1 + ir, f)

∣

∣

∣

∣

∣

∣

2
(

Na

Nd

)ir/2

dr.

Estimating all integrals trivially, using convexity bounds at the edge of the critical strip for the

L-functions as well as the lower bound |ζL(1 + ir)| ≫ (1 + |r|)−ǫ, we find that

Q∞
1 (a)≪ T 2+ǫ

∑

Nd6M

Nd





∑

Nm6M/Nd

a(dm)
√

Nm





2

. (4.2)

It is quite possible that this bound can be substantially improved by exercising some care in the

above estimation. In [Mi], such improvement was achieved by using Gallagher’s form of large sieve

inequality. However, the above suffices for our purposes.

We next account for the additional terms which, in the non-compact case, occur in the asymptotic

analysis of (1.5) after integration over v in a fixed fundamental domain F0 for Γ \H. This proceeds

analogously to the proof of the trace formula for Picard groups [Tan]. We refer to [El-Gr-Me1] for

specific evaluations needed in our treatment. Integrals of both sides are seen to be actually mildly

divergent in the cusp; therefore, we first integrate over FY = {v = (z, r) ∈ F0 : r 6 Y } and then
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let Y → ∞. On the spectral side, the integral present is the same as in the trace formula with

hT (r)(Na/Nd)ir/2 in place of h(r) and evaluates as

c

∫

FY

√
Nn

∑

n=ad

∫ ∞

−∞

hT (r)

(

Na

Nd

)ir/2

|E(v, ir)|2 dr

=
√

Nn
∑

n=ad

[

gT

(

−1

2
log

Na

Nd

)

log Y +
φ(0)hT (0)

4
(4.3)

− 1

4π

∫ ∞

−∞

hT (r)
φ′

φ
(ir)

(

Na

Nd

)ir/2

dr

]

+ o(1), (Y →∞),

where, for L as in Theorem 1, φ(s) =
2π
√

|dL|
ζL(s)

ζL(1 + s)
, φ(0) = −1.

On the geometric side, we estimate the contribution of a γ ∈ Z(O) \ O(n) after integration over

FY separately according to the geometric type of Pρ(γ). The analysis of Pρ(γ) which are neither

parabolic nor cusp-elliptic or cusp-loxodromic fixing∞, runs verbatim as in the compact case, with

the enlarged domain F being replaced by a domain of the shape F̃ = F ∪ {v = (z, r) : |r| > c|z|}
for some suitable c > 0. One sees that the, if u(ρ(γ)v, v)−1 ≪ T−2 for some v ∈ F0, the axis Aρ(γ)

must actually intersect F̃ , and this suffices to arrive at the same bounds for |ρ(γ̄′
M )|, ρ(γ1)|, and,

consequently, xr, yr and zr. The estimate on Ir is the same except for the length of the interval

along Aρ(γ) whose length is≪ log T , so that the total contribution of these elements is still included

in Q(a).

We next cosider the contribution of non-identity parabolic elements, which are present only if

n is a square. We first claim that parabolic elements Pρ(γ) =
(

a b

c d

)

fixing a z0 ∈ Ĉ other

than ∞ do not contribute in our ranges. Indeed, it is easily verified that, under conjugation by

γ0 =
(

0 1

−1 z0

)

, γ0ρ(γ)γ−1
0 =

(

(a+d)/2 −c

0 (a+d)/2

)

, while the domain γ0F0 lies strictly below the plane

r = r0 (where r0 may be taken to be the reciprocal of the smallest r-coordinate of all points in F0).

As (a + d)/2 = Tr Pρ(γ)/2 = ±
√

ρ(η), this shows that kT (ρ(γ)v, v) = 0 for all v ∈ F0 if M ≪ T 2

with a small enough implied constant. Moving on to parabolic elements fixing ∞, we find that

their contribution is

∫

FY

∑∗

µ∈O

kT

( |µ|2
2|d|2r2

+ 1

) |dz|dr

r3
=

√
disc L

|O∗|
∑∗

µ∈O

∫ Y

0

kT

( |µ|2
2|d|2r2

+ 1

)

dr

r3

=
√

discLNd
∑

m⊂O

1

Nm

∫ ∞

Nm

2NdY 2

kT (u + 1) du.

Here, d ∈ O is such that d = (d) satisfies d2 = n, and the first equality is justified because we can

arrange, by assuming M ≪ T 2 with a sufficiently small implied constant, that the integrand is zero

unless r is greater than a large positive number of our choosing. By contour shifting and the class

number formula, we have that, uniformly,

∑

m⊂O, Nm6x

1

Nm
=

2π

|O∗|
√

discL
(log x + CL + Φ(x)) ,
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where CL = γ + (L′/L)(1, χL), γ is the Euler constant, χL is the quadratic character associated

to the complex conjugation in L by the class field theory, and Φ(x) = O(min(1/x, | log x|)). Hence

the above contribution is

2π

|O∗|
√

Nn

∫ ∞

0

kT (u + 1)
(

log(2
√

NnY 2u) + CL + Φ
(

2
√

NnY 2u
))

du

=

√
Nn

|O∗|

[

(

2 log Y + log(
√

Nn) + CL − 2γ
)

gT (0)

+
1

2
hT (0)− 1

π

∫ ∞

−∞

hT (r)
Γ′

Γ
(1− ir) dr

]

+ OT,n

(

log Y

Y 2

)

,

(4.4)

by using the expicit evaluation of
∫∞

0
kT (u + 1) log udu in [El-Gr-Me1], section 6.5.

We now pass to the contribution of the cusp-elliptic and cusp-loxodromic elements fixing ∞. Note

that the contribution of the integral over a compact part of F0 for these elements is already included

in the estimation of Q(a), so that we only need to consider integrals over domain of the shape Λ×
[r0,+∞), where Λ ⊂ C is a fundamental domain under the action of the stabilizer of ∞ in PSL2O.

The elements under consideration split into classes of the form
{(

aǫ bǫ−1

0 dǫ−1

)

: b ∈ O, ǫ ∈ O∗/{±1}
}

,

where a representative η of (η) = n is picked and, for every decomposition n = ad, a and d with

a = (a), d = (d) are picked arbitrarily subject only to the condition that a = d if n is a square. In

cusp-loxodromic classes, elements in one class contribute

∫ Y

r0

∑

ǫ∈O∗/{±1}

∑

b∈O

∫

Λ

kT

( |(a− d)ǫ2z + b|2 + (|a|2 + |d|2)r2

2|ad|r2

)

|dz| dr

r3

=

∫ Y

r0

N(a− d)

∫

C

kT

( |(a− d)z|2 + (|a|2 + |d|2)r2

2|ad|r2

)

|dz| dr

r3

=
√

Nn gT

(

1

2
log

Na

Nd

)

(log Y − log r0).

(4.5)

Finally, we consider classes of cusp-elliptic elements
(

dǫ bǫ−1

0 dǫ−1

)

, ǫ ∈ O∗/±1, ǫ 6= ±1, which are

present only when L = Q(
√
−1) or L = Q(

√
−3) and n is square. Their contribution is

∫ Y

r0

∑

ǫ∈O∗/{±1}
ǫ6=±1

∑

b∈O

∫

Λ

kT

( |d(ǫ2 − 1)z + b|2
2|d|2r2

+ 1

)

|dz| dr

r3

=

∫ ∞

r0

(

1− 2

|O∗|

)

Nd

∫

C

kT

( |z|2
2r2

+ 1

)

|dz| dr

r3

=
√

Nn

(

1− 2

|O∗|

)

gT (0)(log Y − log r0),

(4.6)

where the second line is justified simply by comparing a fundamental domain for C/O with (ǫ2−1)Λ

in each of the two cases for L separately.

Comparing the total contribution of Pρ(γ) of all geometric types in (4.4)–(4.6) with that present

on the spectral side in (4.3), we see that, as Y → ∞, the leading terms of order log Y cancel out
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and one obtains a finite limit. Combining these contributions for various m and n, we see that the

additional contribution to the spectral average in (3.2) present in the case Γ = PSL2O is given by

Q∞(a) =
∑

Nm,Nn6M

a(m)a(n)
√

NmNn
∑

u|(m,n)

[

d(mn/u2)

4
h(0)

+
1

4π

∑

mn/u2=ad

∫ ∞

−∞

hT (r)
φ′

φ
(ir)

(

Na

Nd

)ir/2

dr − log r0

∑

mn/u2=ad

gT

(

1

2
log

Na

Nd

)]

+
∑

Nm,Nn6M
mn square

a(m)a(n)
√

NmNn
d((m, n))

|O∗|

[

1

2
h(0) − 1

π

∫ ∞

−∞

hT (r)
Γ′

Γ
(1− ir) dr

+
(

log
√

N[m, n] + CL − 2γ + (2− |O∗|) log r0

)

gT (0)

]

.

Estimating all terms trivially, we conclude that

Q∞(a)≪ T 1+ǫ

(

∑

Nm6M

a(m)
√

Nm

)2

. (4.7)

Collecting the estimates (3.3), (4.2), (3.5), and (4.7), we get the full statement of Lemma 4. �

5. Optimal resonators and conclusion.

In this section, we optimize the resonator sequence a(n) to make the quotient Q1(a)/Q(a) as

large as possible and conclude the proof of Theorem 1. We introduce one final substitution

b(n) =
∑

Nm6
√

M/Nn
a(nm2), which inverts as a(n) =

∑

Nm6
√

M/Nn
µL(m)b(nm2). The copri-

mality condition b(n) = 0 unless (n, qOqLqq) = O is equivalent to the same condition for a(n). We

can rewrite the conclusions of Lemma 4 in terms of b(n) as

Q1(a)≫ kT (1)B1(b) + O(kT (1)Rcusp(b)) + O(δΓQ∞
1 (a))

Q(a) = kT (1)µ(Γ \ H)B(b) + O
(

RT (b)e2C log T
log log T

)

+ O(δΓQ∞(a)),
(5.1)

where B, B1, RT and Rcusp are quadratic forms in b(n) given by

B(b) =
∑

Nd6M

σµ2(d)b(d)2

B1(b) =
∑

χ∈Ξ

∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

b(dm)b(dn)
∑

u2|m

∑

v2|n

µL(u)µL(v)σK,µ2,χ

( mn

u2v2

)

RT (b) =
∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

|b(dm)b(dn)|
∑

u2|m

∑

v2|n

|µL(u)µL(v)|ℓT

( mn

u2v2

)

Rcusp(b) =
∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

|b(dm)b(dn)|
∑

u2|m

∑

v2|n

|µL(u)µL(v)|
∣

∣

∣
rK
cusp

( mn

u2v2

)∣

∣

∣
.
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The following lemma shows that the problem of maximizing B1(b)/B(b) (and hence Q1(a)/Q(a)

after we choose M ≪ T 2 small enough to keep the remainders in check) is substantially different

from the corresponding problem for surfaces [Mi]. In place of analytical subtlety required of optimal

resonators, one encounters interesting combinatorics of the contribution from σK,µ2,χ.

Lemma 5. For large M , the maximum value attained by B1(b)/B(b) is ≍M1/2.

Proof of Lemma 2. Consider the auxiliary totally multiplicative function g defined by g(p) =

1/(
√

Np−1), and let σ∗(n) =
∑

d|n g(d). These functions are constructed so that 1+σ∗(p)/
√

Np =

σ∗(p), and in fact it is easily checked that σ∗ satisfies

∑

d|n

σ∗(d)√
Nd
≍ σ∗(n).

Fix a 1 < β < 3/2. We can write each n ⊂ O as n = n0n1 with n0 ⊂ o and n1 minimal. With this,

let us further denote σ+(n) =
∑

d|(n1∩o),d⊂o σµ2(d)Nd−β/2 and σ∗(n) = σ+(n)σ∗(n). We also note

for future reference that

∑

Nn6N, n⊂o

σ2
µ2(n)σ∗(n)Nn−β ≪ N3/2−β ,

because
∑

n⊂o σ2
µ2(n)σ∗(n)Nn−s = ζK(2s − 2)G(s) with a certain Dirichlet series G(s) absolutely

convergent in σ > 1.

As for

Σχ(m, n) =
∑

u2|m

∑

v2|n

µL(u)µL(v)σK,µ2,χ(mn/u2v2),

we note that Σχ(m, n) = 0 unless mn = s2
1s0 for some s0 ⊂ o, in which case we assume s1 to be

minimal as usual and write s0 = m0n0s
+ with s+ = m+n+, m+ | m2

1, n+ | n2
1, and note that then

σK,µ2,χ(mn/u2v2) = χ(s0)σK,µ2,χ0
(mn/u2v2) with the principal character χ0. Further, Σχ(m, n) = 0

if p | (n1/n
+) and p2 ∤ m for some p, and a moment’s reflection shows that in any case

|Σχ(m, n)| 6 σµ2(s0) 6 σµ2(m0)σµ2(n0)σµ2(s+).
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To bound B1(b) from above, we use Peter-Paul inequality as follows:

B1(b) 6 |Ξ|
∑

Nd6M

Nd
∑

Nm,Nn6M/Nd

1

2

(

b(dm)2
Nmβ

Nnβ

σµ2(n0)

σµ2(m0)

σ∗(n)

σ∗(m)

+ b(dn)2
Nnβ

Nmβ

σµ2(m0)

σµ2(n0)

σ∗(m)

σ∗(n)

)

Σ(m, n)

6 |Ξ|
∑

Nd6M

Nd
∑

Nm6M/Nd

Nmβ b(dm)2

σ∗(m)σ+(m)

∑

Nn6M/Nd

σµ2(s+)σ2
µ2(n0)σ

∗(n)Nn−β

6 |Ξ|
∑

Nd6M

σ∗(d)Nd
∑

Nm6M/Nd

Nmβ

σ∗(dm)
b(dm)2

∑

Nn06M/Nd

σ2
µ2(n0)σ∗(n0)Nn−β

0

∑

n

σ∗(n2)Nn−2β

≪
∑

Nm6M

Nm

σ∗(m)
b(m)2

∑

d|m

σ∗(d)

(

M

Nd

)(β−1)+(3/2−β)

≪M1/2B(b).

That this bound is actually tight can be seen by taking e.g. b(n) = 1 for square-free n ⊂ o and 0

for all other n. With this particular choice,

B(b) =
∑

NKd6M1/2,d⊂o

µ2
K(d)(NKd)2 = cKM3/2 + O(M5/4),

B1(b) >
∑

NKd6M1/2,d⊂o

(NKd)2
∑

NK m,NKn6M1/2/NK d

m,n⊂o, md,nd square-free

∑

χ∈Ξ

χ(mn)NK(mn) (5.2)

>
∑

NKd6M1/2−o(1),d⊂o

(ϕK(d))2
(

M1/2

NKd
+ O(1)

)4

≍M2. �

We proceed to the proof of Theorem 1. For this, we employ Lemma 4 with the choice of b(n) from

Lemma 5. The proof of Lemma 5 (specifically (5.2)) gives the order of magnitude of the leading

terms; we now also account for the remainder terms. For any d ⊂ O, denote d′ = (d∩ o)d−1. Then

R(b) 6
∑

Nd6M

Nd
∑

Nm,Nn6M/N(dd′)
m,n⊂o

(

N(mnd′2) + T 2
)

=
∑

Nd6M

NdN(d′2)





∑

NKm6(M/N(dd′))1/2

(NKm)2





2

+ T 2
∑

Nd6M

Nd
M

N(dd′)

≪M3
∑

Nd6M

1

(Nd)2Nd′
+ T 2M

∑

Nd′6M

1

Nd′

(

M

Nd′2

)1/2

≪M3 + T 2M3/2.

(5.3)
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As for Rcusp, we can write the underlying cusp form of weight two as a linear combination (depend-

ing on v only) of Hecke cusp forms
∑

n∈o ri(n)eπiTr(λ−1nz) normalized to have ri(1) = 1; using the

Rankin-Selberg bound for ri(n)’s and their multiplicative properties we can estimate

Rcusp(b)≪
∑

i

∑

Nd6M

Nd
∑

Nm,Nn6M/N(dd′)

m,n⊂o, (m,dd′)=(n,dd′)=o

|µK(m)µK(n)||ri(mn)|

≪
∑

i

∑

Nd6M

Nd
∑

NKe6(M/N(dd′))1/2

e⊂o

(

∑

NKm6(M/N(dd′e))1/2

m⊂o

|ri(m)|
)2

∑

e=e1e2
ei⊂o

ri(e1)
2NKe2

≪
∑

i

∑

Nd6M

Nd
∑

NK(e1e2)6(M/N(dd′))1/2

e1,e2⊂o

ri(e1)
2NKe2

(

M

N(dd′e1e2)

)3/2

≪M3/2
∑

Nd6M

1

Nd1/2Nd′3/2
≪M3/2 log M.

(5.4)

Finally, in case when Γ is not cocompact, we can estimate by Lemma 4

Q∞
1 (a)≪ T 2+ǫ

∑

Nd6M

Nd





∑

Nm6M/Nd, dm⊂o

√
Nm





2

≪ T 2+ǫ
∑

Nd6M

NdNd′





∑

NKm6(M/N(dd′))1/2, m⊂o

NKm





2

≪ T 2+ǫM2
∑

Nd6M

1

NdNd′
≪ T 2+ǫM2,

Q∞(a)≪ T 1+ǫ





∑

NKm6M1/2, m⊂o

NKm





2

≪ T 1+ǫM2.

(5.5)

Collecting all terms from (5.2)–(5.5) into (5.1), we find that

Q1(a)≫ kT (1)M2 + O(kT (1)M3/2 log M + δΓT 2+ǫM2),

Q(a) = cKkT (1)M3/2 + O
(

(M3 + T 2M3/2)e2C log T
log log T + kT (1)M5/4 + δΓT 1+ǫM2

)

.

Recalling that kT (1) ∼ cT 3, we see that, with the choice M = T 2 exp(−A log T/ log log T ) for any

A > 2C, remainder terms are smaller than the leading terms.

Returning now to (3.1) and (3.2), we can truncate the spectral sums beyond T exp(N log T/ log log T )

with a negligible remainder by our choice of h. We obtain that

max
rj6T exp( N log T

log log T )
|φj(v)|2 ≫ Q1(a)

Q(a)
≫ Te−

A
2

log T
log log T .
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As T ≫ λ
1/2
j exp(−N log λj/2 log log λj), Theorem 1 is thus proved. �
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[El-Gr-Me2] Elstrodt, J., Grünewald, F., Mennicke, J.: Zeta functions of binary Hermitian forms and special

values of Eisenstein series on three-dimensional hyperbolic space. Math. Ann., Vol. 277 (1987), No. 4,

655–708.

[Fl] Flicker, Y.: Twisted tensors and Euler products. Bull. Soc. Math. France, Vol. 116 (1988), No. 3,

295–313.

[Gi-Ji-So] Ginzburg, D., Jiang, D., Soudry, D.: Poles of L-functions and theta liftings for orthogonal groups.

J. Inst. Math. Jussieu, Vol. 8 (2009), No. 4, 693–741.

[Gr-Pr] Gross, B.H., Prasad, D.: On the decomposition of a representation of SOn when restricted to SOn−1.

Canad. J. Math., Vol. 44 (1992), No. 5, 974–1002.

[He-Ra] Hejhal, D.A., Rackner, B.N.: On the topography of Maass waveforms for PSL(2,Z). Experiment.

Math. 1 (1992), No. 4, 275–305.

[He] Helgason, S.: Differential geometry and symmetric spaces. Pure Appl. Math., Vol. XII, Acad. Press,

1962.

[Iw] Iwaniec, H.: Introduction to the Spectral Theory of Automorphic Forms. Revista Matemática Iberoamer-
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