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THE [(-INVARIANT OF SEIFERT FIBERED HOMOLOGY
SPHERES AND THE DIRAC OPERATOR

DANIEL RUBERMAN AND NIKOLAI SAVELIEV

ABSTRACT. We derive a formula for the fi—invariant of a Seifert fibered
homology sphere in terms of the n—invariant of its Dirac operator. As a
consequence, we obtain a vanishing result for the index of certain Dirac

operators on plumbed 4-manifolds bounding such spheres.

1. INTRODUCTION

The p—invariant is an integral lift of the Rohlin invariant for plumbed
homology 3-spheres defined by Neumann [§] and Siebenmann [I9]. It has
played an important role in the study of homology cobordisms of such ho-
mology spheres. Fukumoto and Furuta [4] and Saveliev [I7] showed that
the pi—invariant is an obstruction for a Seifert fibered homology sphere to
have finite order in the integral homology cobordism group ©%; this fact
allowed them to make progress on the question of the splittability of the
Rohlin homomorphism p : ©% — Zs. Ue [22] and Stipsicz [20] studied the
behavior of i with respect to rational homology cobordisms.

In the process, the fi—invariant has been interpreted in several different
ways: as an equivariant Casson invariant in [2], as a Lefschetz number in
instanton Floer homology in [14] and [16], and as the correction term in
Heegaard Floer theory in [20] and [21].

More recently, fi appeared in our paper [7] in connection with a Seiberg-

Witten invariant Asw of a homology S x S3. We conjectured that

Asw(X) = —a(Y) (1)
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for any Seifert fibered homology sphere Y = ¥(aq,...,a,) and the mapping
torus X of a natural involution on Y viewed as a link of a complex surface
singularity. This conjecture will be explained in detail and proved in Section
[[. For the purposes of this introduction, we will only mention that its proof

will rely on the following identity.

Theorem 1.1. Let Y = X(ay,...,a,) be a Seifert fibered homology sphere
oriented as the link of complex surface singularity and endowed with a nat-
ural metric realizing the Thurston geometry on'Y'; see [18]. Then

% UDir(Y) + % 77Sign(Y) = _ﬂ(y)v (2)

where Npir(Y) and nsign(Y') are the n—invariants of, respectively, the Dirac

operator and the odd signature operator on'Y .

In addition, identity (2) will be used to extend the vanishing result of
Kronheimer for the index of the chiral Dirac operator on the Eg manifold
bounding ¥(2,3,5); see [6, Lemma 2.2] and [3, Proposition 8]. Let Y be
a Seifert fibered homology sphere as above, and X a plumbed manifold
with boundary Y and a Riemannian metric which is a product near the
boundary. Associated with X is the integral Wu class w € Ha(X;Z) which

will be described in detail in Section [6l

Theorem 1.2. Let D} (X) be the spin® Dirac operator on X with c1(L)
dual to the class w € Ho(X;Z), and with the Atiyah—Patodi-Singer boundary

condition. Then ind DZ (X) = 0. In particular, if X is spin then w vanishes
and ind DT (X) = 0.

The next four sections of the paper will be devoted to the proof of The-
orem [[LJ We will proceed by expressing both sides of (2] in terms of
Dedekind—Rademacher sums and by comparing the latter expressions us-
ing the reciprocity law and some elementary calculations. Theorem will
be proved in Section [6] and Conjecture (Il) in Section [l Our notation and

conventions for Seifert fibered homology spheres will follow [15].
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2. THE n—INVARIANTS

Let p > 0 and ¢ > 0 be pairwise relatively prime integers, and x and y
arbitrary real numbers. The Dedekind—Rademacher sums were defined in

[13] by the formula

s(pz,y) = ) <<M;y>> ((qw;ry) +x>>

© mod p

where, for any real number r, we set {r} =r — [r] and

0, if reZ,
{r} —1/2, if r¢Z.

It is clear that s(q, p;x,y) only depends on x, y mod 1. When both x and y

are integers, we get back the usual Dedekind sums

o 10

p mod p

The left-hand side of (2]) was expressed by Nicolaescu [12] in terms of
Dedekind—Rademacher sums. Note that since the a; are coprime, at most
one of them is even; if that occurs then we will choose the even one to be

aj.

0Odd case: if all aq,...,a, are odd then, according to the formula (1.9) of

[12], we have

1 1 1
~ i) + 5 Nsign(Y) = — o
3 1Y)+ § Msin(Y) = — ot

1 1 n n
+ 3 + 3 Z;s(al ceapn/ag,a;) + Z;s(al coeapfagyai;1/2,1/2). (4)
1= 1=
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Even case: if a; is even then, according to the formula (1.6) of [12],

1 1

5 irY o inY =

5 Moir(Y) + 2 nsign(Y)
—l—i-l zn:s(a an/a; a-)—i-zn:s(a an/a;,ai;1/2,1/2).  (5)
_8 2 v 1 n/ Wi, g s 1:--Up/li, Uy ) .

3. THE —INVARIANT

Let X be a plumbed integral homology sphere, and let X be an oriented
plumbed 4-manifold such that 0X = ¥. The integral Wu class w € Hy(X;Z)
is the unique homology class which is characteristic and whose coordinates
are either 0 or 1 in the natural basis in Ho(X;Z) represented by embedded

2-spheres. According to Neumann [§], the integer

A(S) = < (sign(X) = w- w)

| =

is independent of the choices in its definition and reduces modulo 2 to the
Rohlin invariant of X. It is referred to as the p—invariant.
Let us now restrict ourselves to the case of Y = ¥(aq,...,a,). Choose

integers b1, ..., b, so that

B0 SLI ST ®
i=1 i=1

Note that each b; is defined uniquely modulo a;. Then we have the following

formulas for the fi-invariant; see [8, Corollary 2.3] and [9, Theorem 6.2].

Odd case: if all ay,...,a, are odd then

1
—Z c(az, b;) + sign b;).

—a(Y

OO|)—‘
o

Even case: if a; is even, choose b; so that all a;—b; are all odd (by replacing,
if necessary, b; by b; = a; for each i > 1, and then adjusting b; accordingly).
Then

OOlP—‘
| =

o Z bwaz



Here, the integers c¢(q,p) are defined for coprime integer pairs (g, p) with
q odd as follows. First, assume that both p and ¢ are positive. Then

The integers ¢(q,p) show up in the book [5, Theorem 1, pp. 102-103]
under the name —t,(1,¢). We can use that theorem together with formula

(6) on page 100 of [5] to write

c(q,p) = —4s(q,p) + 8s(q, 2p). (7)

Next, the above definition of ¢(q,p) is extended to both positive and
negative p and ¢ by the formula c(q,p) = sign(pq) c(|q|, |p|). Using (@), we

can write the above formulas for the fi—invariant in the following form.

0Odd case: if all ay,...,a, are odd then

I 1 . 1.
—a(Y) = 33 Z signb; + 3 ZSlgHbi - s(ag, |b;))
i=1 i=1

- Z sign b; - s(a;, 2|b;]).  (8)

i=1

Even case: if a; is even and b; are chosen so that a; — b; are all odd, then

n n

—(Y)= % + % Z s(a; — bj,a;) — ZS(CH — b, 2a;) 9)

i=1 i=1

In the latter formula, we used a natural extension of the Dedekind sum
s(g,p) to the negative values of ¢ as an odd function in ¢; it is still given by
the formula ([B]). We will continue to assume, however, that p in s(q,p) is

positive.



4. THE ODD CASE

In this section, we will show that the right hand sides of (@) and (&)
are equal to each other, thus proving the formula (2]) in the case when all

ai,...,a, are odd.

Lemma 4.1. For any integers a > 0 and b, ¢ such that bc = 1 mod a we

have s(c,a) = s(b,a).

Proof. Observe that bc = 1 mod a implies that b and a are coprime hence

= 2 ) 5 (2) (%)
- > (F)E) =0

© mod a

O
Lemma 4.2. For any coprime positive integers a and b such that a is odd,
1 1
3 s(a,b) — s(a,2b) = —s(a,b;0,1/2) — 5 s(a,b).

Proof. The proof goes by splitting the summation over pmod 2b in s(a, 2b)
into two summations, one over even y = 2v, and the other over odd pu =

2v + 1. More precisely,

wn= T (B)(2)

-2 () 2 G ) (%)
- SR 3 () ()

= s(a,b) + s(a,b;0,1/2).
The statement of the lemma now follows. O

Applying Lemma Il with a = a;, b = b; and ¢ = a3 - - - a, /a;, and Lemma

12l with a = a; and b = |b;| respectively to the formulas (@] and (8]), we see
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that all we need to do is verify the following identity

1 1 n n
g t3 z;s(bi,ai) + z;s(al an/ag, a3 1/2,1/2) =
1= 1=

8ay--ap
= 1 1
— Z sign b; - <§ + s(ag, |bi];0,1/2) + 58(612', |b2|)> . (10)
=1

Use the reciprocity laws (see for instance Appendix in [12]) to obtain

22 —a? -1
s(ai, [0i1:0,1/2) = —s(|bil, 05 1/2,0) + =5 =

and

1 a?+4+b2+1
S(ai7 ’bz‘) = _S(’bilvai) - Z + 212(1'2’[)"
T (3

Substituting the latter two formulas into (I0) and keeping in mind that

ai  ar--ap

i=1

because of (@), we reduce verification of (I0) to proving the following lemma

(we write sign b; - s(|b;|, a;;1/2,0) = s(b;, a;;1/2,0)).
Lemma 4.3.  s(b;,a;;1/2,0) = s(ay - - an/ai,a;;1/2,1/2).

Proof. One can easily see that the identity that needs to be verified,

> GG )

u mod a;
s () (e

v mod a;

follows by substitution v = b;  + (a; — 1) /2 mod a;. O

5. THE EVEN CASE

In this section, we will prove the equality of the right hand sides of the

formulas (@) and (@) and hence prove (2)) in the even case.

Lemma 5.1.  s(a; — b;,a;) = —s(b;, a;).
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Proof. Since ((x)) is an odd function in z, we have

v % (2)(52)
5. )

O

Using Lemma A1l and Lemma 5.l we reduce our task to showing that,

forevery i =1,...,n,
s(ay---ap/a;,a;;1/2,1/2) + s(a; — b;, 2a;) + s(bs,a;) = 0. (11)
Lemma 5.2. For any coprime integers a > 0 and ¢ > 0, we have
s(c,a;1/2,1/2) + s(a — ¢, 2a) + s(c,a) = 0.

Proof. Like in the proof of Lemma [4.2] we will break the summation over p
mod 2a in s(a — ¢, 2a) into two summations, one over 1 = 2v and the other

over u = 2v + 1. More precisely,

o ] (=0

© mod 2a

— X - T () ()

VvV mod a Vv mod a

= —s(c,a) — s(c,a;1/2,1/2).
U

We will apply the above lemma with a = a; and ¢ = ay - - - a, /a; to obtain
s(ay---ap/a;,a;;1/2,1/2) + s(a; — a1 -+ - an/a;,2a;) + s(ay - - an/a;,a;) =
0. Using Lemma [41] to replace s(aj ---ay,/a;,a;) in the above formula by
s(bs,a;), we see that the proof of (III) will be complete after we prove the

following formula.

Lemma 5.3.  s(a; —ay---an/a;,2a;) = s(a; — bi, 2a;).
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Proof. This is immediate from Lemma [£.I] once we show that (a; — b;)(a; —
aj - ap/a;) =1 mod 2a;. We will consider two separate cases. If i = 1 then
ap is even and b; is odd. Multiply out to obtain (a1 — b1)(a; —ag---a,) =
a%+b1a2 <~ap—ai(bit+ag - - - ay). Obviously, the first and the last summands
are equal to zero modulo 2a; because a; and (by + as - - ay) are even. Use
the formula (@) to write bjag---a, =1—aj(bsags---an+...+bpag---ap_1)
and observe that the bs, ..., b, are all even. This completes the proof in the
case of i = 1.

Now suppose that ¢ > 2. Since a; and 2 are coprime, it is enough to check
separately that (a; — b;)(a; — a1+ ap/a;) is 1 mod a; and 1 mod 2. The
former is clear from (@), and the latter follows from the observation that

both a; — b; and a; — aq - - - ay/a; are odd. O

6. PROOF OF THEOREM

Endow Y = ¥(ay,...,a,) with a natural metric realizing the Thurston
geometry on Y; see [I8]. Let X be a plumbed manifold with boundary
0X =Y and with metric that restricts to the metric on Y and is a product
near the boundary. If X is spin, the Atiyah—Patodi-Singer index theorem [1]

asserts that

1 1 . 1 .
5 noir(Y) + 3 Nsign(Y) = —ind DT(X) — 3 sign(X). (12)
Here, we used the fact that the Dirac operator on Y has zero kernel; see
Nicolaescu [10], Section 2.3]. On the other hand, it follows from the definition
of the fi—invariant that w = 0 and hence

_ 1.

alY) = g sign(X).
The identity (2)) then implies that ind DT (X) = 0. The special case of this
when Y is the Poincaré homology sphere ¥(2,3,5) and X is the negative

definite Eg manifold was proved by Kronheimer [6].
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If X is not spin, for any choice of spin® structure on X with determinant

bundle L we have

1 1 . 1 . 1
3 noir(Y) + 3 Nsign(Y) = —ind D} (X) — 3 sign(X) + 3 c1(L)?.
(Compare with formula (1.37) in [I1]). If the spin® structure is such that

c1(L) is dual to w € Hy(X;Z) then

AY) = 5 (sign(X) —w - w) = < (sign(X) — i (L)?),

and (@) again implies that ind D} (X) = 0. This completes the proof of
Theorem [[.2

7. THE INVARIANT Agw

Let X be a homology S' x S2, by which we mean a closed oriented spin
smooth 4-manifold with the integral homology of S' x S3. For a generic
pair (g, 3) consisting of a metric g on X and a perturbation 3 € Q(X,iR),
the Seiberg—Witten moduli space M(X, g, 3) has finitely many irreducible
points. It is oriented by a choice of homology orientation, that is, a generator
1 € HY(X;Z). Let # M(X,g, ) denote the signed count of the points in
this space. To counter the dependence of # M(X,g,3) on the choice of
(g9,p), we introduced in [7] a correction term, w(X,g, /), and proved that
the quantity

)‘SW(X) = #M(ngaﬁ)_w(ngaﬁ)

is an invariant of X which reduces modulo 2 to its Rohlin invariant. The
precise definition of the correction term is as follows.

Let Y C X be a smooth connected 3-manifold dual to the generator
1 € H'(X;Z) and choose a smooth compact spin manifold Z with boundary
Y. Cutting X open along Y we obtain a cobordism W from Y to itself, which

we use to construct the periodic-end manifold

Zy,=ZUWUW...UWU...
10



The metric ¢ and perturbation 8 extend to an end-periodic metric and,
respectively, perturbation, on Z,. This leads to the end-periodic perturbed
Dirac operator D*(Zy) + 3, where 8 acts via Clifford multiplication. We
prove that D*(Z,) + B is Fredholm in the usual Sobolev L?-completion for

generic (g, 3). The correction term is then defined as
1
w(X,g.8) = inde (DT (Z4) + B) + 3 sign (2).

View Y = X(aq,...,a,) as a link of a complex surface singularity and
let X be the mapping torus of the involution on Y induced by complex
conjugation. The metric g realizing the Thurston geometry on Y is preserved
by this involution and hence gives rise to a natural metric on X called again
g. We showed in [7, Section 10] that the pair (g,0) is generic and that the
space M(X,g,0) is empty. One can easily see that the manifold Z; has
a product end and hence the correction term can be computed as in (I2])
using the Atiyah—Patodi—Singer index theorem :

1 1
w(X,g,0) = —3 noir(Y) — 3 Nsign(Y).

The conjecture () now follows from Theorem [I11
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