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THE µ̄–INVARIANT OF SEIFERT FIBERED HOMOLOGY

SPHERES AND THE DIRAC OPERATOR

DANIEL RUBERMAN AND NIKOLAI SAVELIEV

Abstract. We derive a formula for the µ̄–invariant of a Seifert fibered

homology sphere in terms of the η–invariant of its Dirac operator. As a

consequence, we obtain a vanishing result for the index of certain Dirac

operators on plumbed 4-manifolds bounding such spheres.

1. Introduction

The µ̄–invariant is an integral lift of the Rohlin invariant for plumbed

homology 3-spheres defined by Neumann [8] and Siebenmann [19]. It has

played an important role in the study of homology cobordisms of such ho-

mology spheres. Fukumoto and Furuta [4] and Saveliev [17] showed that

the µ̄–invariant is an obstruction for a Seifert fibered homology sphere to

have finite order in the integral homology cobordism group Θ3
H ; this fact

allowed them to make progress on the question of the splittability of the

Rohlin homomorphism ρ : Θ3
H → Z2. Ue [22] and Stipsicz [20] studied the

behavior of µ̄ with respect to rational homology cobordisms.

In the process, the µ̄–invariant has been interpreted in several different

ways : as an equivariant Casson invariant in [2], as a Lefschetz number in

instanton Floer homology in [14] and [16], and as the correction term in

Heegaard Floer theory in [20] and [21].

More recently, µ̄ appeared in our paper [7] in connection with a Seiberg-

Witten invariant λ SW of a homology S1 × S3. We conjectured that

λSW (X) = −µ̄(Y ) (1)
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for any Seifert fibered homology sphere Y = Σ(a1, . . . , an) and the mapping

torus X of a natural involution on Y viewed as a link of a complex surface

singularity. This conjecture will be explained in detail and proved in Section

7. For the purposes of this introduction, we will only mention that its proof

will rely on the following identity.

Theorem 1.1. Let Y = Σ(a1, . . . , an) be a Seifert fibered homology sphere

oriented as the link of complex surface singularity and endowed with a nat-

ural metric realizing the Thurston geometry on Y ; see [18]. Then

1

2
ηDir(Y ) +

1

8
η Sign(Y ) = −µ̄(Y ), (2)

where ηDir(Y ) and η Sign(Y ) are the η–invariants of, respectively, the Dirac

operator and the odd signature operator on Y .

In addition, identity (2) will be used to extend the vanishing result of

Kronheimer for the index of the chiral Dirac operator on the E8 manifold

bounding Σ(2, 3, 5); see [6, Lemma 2.2] and [3, Proposition 8]. Let Y be

a Seifert fibered homology sphere as above, and X a plumbed manifold

with boundary Y and a Riemannian metric which is a product near the

boundary. Associated with X is the integral Wu class w ∈ H2(X;Z) which

will be described in detail in Section 6.

Theorem 1.2. Let D+
L (X) be the spinc Dirac operator on X with c1(L)

dual to the class w ∈ H2(X;Z), and with the Atiyah–Patodi–Singer boundary

condition. Then indD+
L (X) = 0. In particular, if X is spin then w vanishes

and indD+(X) = 0.

The next four sections of the paper will be devoted to the proof of The-

orem 1.1. We will proceed by expressing both sides of (2) in terms of

Dedekind–Rademacher sums and by comparing the latter expressions us-

ing the reciprocity law and some elementary calculations. Theorem 1.2 will

be proved in Section 6, and Conjecture (1) in Section 7. Our notation and

conventions for Seifert fibered homology spheres will follow [15].
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2. The η–invariants

Let p > 0 and q > 0 be pairwise relatively prime integers, and x and y

arbitrary real numbers. The Dedekind–Rademacher sums were defined in

[13] by the formula

s(q, p;x, y) =
∑

µ mod p

((

µ+ y

p

))((

q(µ + y)

p
+ x

))

where, for any real number r, we set {r} = r − [r] and

((r)) =











0, if r ∈ Z,

{r} − 1/2, if r /∈ Z.

It is clear that s(q, p;x, y) only depends on x, ymod 1. When both x and y

are integers, we get back the usual Dedekind sums

s(q, p) =
∑

µ mod p

((

µ

p

))((

qµ

p

))

. (3)

The left-hand side of (2) was expressed by Nicolaescu [12] in terms of

Dedekind–Rademacher sums. Note that since the ai are coprime, at most

one of them is even; if that occurs then we will choose the even one to be

a1.

Odd case: if all a1, . . . , an are odd then, according to the formula (1.9) of

[12], we have

1

2
ηDir(Y ) +

1

8
η Sign(Y ) = −

1

8 a1 · · · an
+

+
1

8
+

1

2

n
∑

i=1

s(a1 · · · an/ai, ai) +
n
∑

i=1

s(a1 . . . an/ai, ai; 1/2, 1/2). (4)
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Even case: if a1 is even then, according to the formula (1.6) of [12],

1

2
ηDir(Y ) +

1

8
η Sign(Y ) =

=
1

8
+

1

2

n
∑

i=1

s(a1 · · · an/ai, ai) +

n
∑

i=1

s(a1 . . . an/ai, ai; 1/2, 1/2). (5)

3. The µ̄–invariant

Let Σ be a plumbed integral homology sphere, and let X be an oriented

plumbed 4-manifold such that ∂X = Σ. The integral Wu class w ∈ H2(X;Z)

is the unique homology class which is characteristic and whose coordinates

are either 0 or 1 in the natural basis in H2(X;Z) represented by embedded

2-spheres. According to Neumann [8], the integer

µ̄(Σ) =
1

8
( sign(X)− w · w)

is independent of the choices in its definition and reduces modulo 2 to the

Rohlin invariant of Σ. It is referred to as the µ̄–invariant.

Let us now restrict ourselves to the case of Y = Σ(a1, . . . , an). Choose

integers b1, . . . , bn so that

a1 · · · an

n
∑

i=1

bi
ai

=

n
∑

i=1

bi a1 · · · an/ai = 1. (6)

Note that each bi is defined uniquely modulo ai. Then we have the following

formulas for the µ̄–invariant; see [8, Corollary 2.3] and [9, Theorem 6.2].

Odd case: if all a1, . . . , an are odd then

−µ̄(Y ) =
1

8
−

1

8

n
∑

i=1

(c(ai, bi) + sign bi).

Even case: if a1 is even, choose bi so that all ai−bi are all odd (by replacing,

if necessary, bi by bi ± ai for each i > 1, and then adjusting b1 accordingly).

Then

−µ̄(Y ) =
1

8
−

1

8

n
∑

i=1

c(ai − bi, ai).
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Here, the integers c(q, p) are defined for coprime integer pairs (q, p) with

q odd as follows. First, assume that both p and q are positive. Then

c(q, p) = −
1

p

∑

ξp=−1

(ξ + 1)(ξq + 1)

(ξ − 1)(ξq − 1)
=

1

p

2p−1
∑

k=1
k odd

cot

(

πk

2p

)

cot

(

πqk

2p

)

The integers c(q, p) show up in the book [5, Theorem 1, pp. 102–103]

under the name −tp(1, q). We can use that theorem together with formula

(6) on page 100 of [5] to write

c(q, p) = −4s(q, p) + 8s(q, 2p). (7)

Next, the above definition of c(q, p) is extended to both positive and

negative p and q by the formula c(q, p) = sign(pq) c(|q|, |p|). Using (7), we

can write the above formulas for the µ̄–invariant in the following form.

Odd case: if all a1, . . . , an are odd then

− µ̄(Y ) =
1

8
−

1

8

n
∑

i=1

sign bi +
1

2

n
∑

i=1

sign bi · s(ai, |bi|)

−

n
∑

i=1

sign bi · s(ai, 2|bi|). (8)

Even case: if a1 is even and bi are chosen so that ai − bi are all odd, then

− µ̄(Y ) =
1

8
+

1

2

n
∑

i=1

s(ai − bi, ai)−

n
∑

i=1

s(ai − bi, 2ai) (9)

In the latter formula, we used a natural extension of the Dedekind sum

s(q, p) to the negative values of q as an odd function in q; it is still given by

the formula (3). We will continue to assume, however, that p in s(q, p) is

positive.
5



4. The odd case

In this section, we will show that the right hand sides of (4) and (8)

are equal to each other, thus proving the formula (2) in the case when all

a1, . . . , an are odd.

Lemma 4.1. For any integers a > 0 and b, c such that bc = 1mod a we

have s(c, a) = s(b, a).

Proof. Observe that bc = 1mod a implies that b and a are coprime hence

s(c, a) =
∑

µ mod a

((µ

a

))((µc

a

))

=
∑

µ mod a

((

µb

a

))((

µbc

a

))

=
∑

µ mod a

((

µb

a

))

((µ

a

))

= s(b, a).

�

Lemma 4.2. For any coprime positive integers a and b such that a is odd,

1

2
s(a, b)− s(a, 2b) = −s(a, b; 0, 1/2) −

1

2
s(a, b).

Proof. The proof goes by splitting the summation over µmod 2b in s(a, 2b)

into two summations, one over even µ = 2ν, and the other over odd µ =

2ν + 1. More precisely,

s(a, 2b) =
∑

µ mod 2b

(( µ

2b

))((aµ

2b

))

=
∑

ν mod b

((ν

b

))((aν

b

))

+
∑

ν mod b

((

2ν + 1

2b

))((

a(2ν + 1)

2b

))

=
∑

ν mod b

((ν

b

))((aν

b

))

+
∑

ν mod b

((

ν + 1/2

b

))((

a(ν + 1/2)

b

))

= s(a, b) + s(a, b; 0, 1/2).

The statement of the lemma now follows. �

Applying Lemma 4.1 with a = ai, b = bi and c = a1 · · · an/ai, and Lemma

4.2 with a = ai and b = |bi| respectively to the formulas (4) and (8), we see
6



that all we need to do is verify the following identity

−
1

8 a1 · · · an
+

1

2

n
∑

i=1

s(bi, ai) +

n
∑

i=1

s(a1 · · · an/ai, ai; 1/2, 1/2) =

−

n
∑

i=1

sign bi ·

(

1

8
+ s(ai, |bi|; 0, 1/2) +

1

2
s(ai, |bi|)

)

. (10)

Use the reciprocity laws (see for instance Appendix in [12]) to obtain

s(ai, |bi|; 0, 1/2) = −s(|bi|, ai; 1/2, 0) +
2b2i − a2i − 1

24 ai|bi|

and

s(ai, |bi|) = −s(|bi|, ai)−
1

4
+

a2i + b2i + 1

12 ai|bi|
.

Substituting the latter two formulas into (10) and keeping in mind that

n
∑

i=1

bi
ai

=
1

a1 · · · an

because of (6), we reduce verification of (10) to proving the following lemma

(we write sign bi · s(|bi|, ai; 1/2, 0) = s(bi, ai; 1/2, 0)).

Lemma 4.3. s(bi, ai; 1/2, 0) = s(a1 · · · an/ai, ai; 1/2, 1/2).

Proof. One can easily see that the identity that needs to be verified,

∑

µ mod ai

((

µ

ai

))((

biµ

ai
+

1

2

))

=

∑

ν mod ai

((

ν + 1/2

ai

))((

(ν + 1/2)a1 · · · an/ai
ai

+
1

2

))

,

follows by substitution ν = bi µ+ (ai − 1)/2 mod ai. �

5. The even case

In this section, we will prove the equality of the right hand sides of the

formulas (5) and (9) and hence prove (2) in the even case.

Lemma 5.1. s(ai − bi, ai) = −s(bi, ai).
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Proof. Since ((x)) is an odd function in x, we have

s(ai − bi, ai) =
∑

µ mod ai

((

µ

ai

))((

µ(ai − bi)

ai

))

=
∑

µ mod ai

((

µ

ai

))((

−µbi
ai

))

= −s(bi, ai).

�

Using Lemma 4.1 and Lemma 5.1, we reduce our task to showing that,

for every i = 1, . . . , n,

s(a1 · · · an/ai, ai; 1/2, 1/2) + s(ai − bi, 2ai) + s(bi, ai) = 0. (11)

Lemma 5.2. For any coprime integers a > 0 and c > 0, we have

s(c, a; 1/2, 1/2) + s(a− c, 2a) + s(c, a) = 0.

Proof. Like in the proof of Lemma 4.2, we will break the summation over µ

mod 2a in s(a− c, 2a) into two summations, one over µ = 2ν and the other

over µ = 2ν + 1. More precisely,

s(a− c, 2a) =
∑

µ mod 2a

(( µ

2a

))

((

(a− c)µ

2a

))

= −
∑

ν mod a

((ν

a

))((cν

a

))

−
∑

ν mod a

((

2ν + 1

2a

))((

c(2ν + 1)

2a
+

1

2

))

= −s(c, a)− s(c, a; 1/2, 1/2).

�

We will apply the above lemma with a = ai and c = a1 · · · an/ai to obtain

s(a1 · · · an/ai, ai; 1/2, 1/2) + s(ai − a1 · · · an/ai, 2ai) + s(a1 · · · an/ai, ai) =

0. Using Lemma 4.1 to replace s(a1 · · · an/ai, ai) in the above formula by

s(bi, ai), we see that the proof of (11) will be complete after we prove the

following formula.

Lemma 5.3. s(ai − a1 · · · an/ai, 2ai) = s(ai − bi, 2ai).

8



Proof. This is immediate from Lemma 4.1 once we show that (ai − bi)(ai −

a1 · · · an/ai) = 1mod 2ai. We will consider two separate cases. If i = 1 then

a1 is even and b1 is odd. Multiply out to obtain (a1 − b1)(a1 − a2 · · · an) =

a21+b1a2 · · · an−a1(b1+a2 · · · an). Obviously, the first and the last summands

are equal to zero modulo 2a1 because a1 and (b1 + a2 · · · an) are even. Use

the formula (6) to write b1a2 · · · an = 1− a1(b2a2 · · · an+ . . .+ bna2 · · · an−1)

and observe that the b2, . . . , bn are all even. This completes the proof in the

case of i = 1.

Now suppose that i ≥ 2. Since ai and 2 are coprime, it is enough to check

separately that (ai − bi)(ai − a1 · · · an/ai) is 1 mod ai and 1 mod 2. The

former is clear from (6), and the latter follows from the observation that

both ai − bi and ai − a1 · · · an/ai are odd. �

6. Proof of Theorem 1.2

Endow Y = Σ(a1, . . . , an) with a natural metric realizing the Thurston

geometry on Y ; see [18]. Let X be a plumbed manifold with boundary

∂X = Y and with metric that restricts to the metric on Y and is a product

near the boundary. If X is spin, the Atiyah–Patodi–Singer index theorem [1]

asserts that

1

2
ηDir(Y ) +

1

8
η Sign(Y ) = − indD+(X) −

1

8
sign(X). (12)

Here, we used the fact that the Dirac operator on Y has zero kernel; see

Nicolaescu [10, Section 2.3]. On the other hand, it follows from the definition

of the µ̄–invariant that w = 0 and hence

µ̄(Y ) =
1

8
sign(X).

The identity (2) then implies that indD+(X) = 0. The special case of this

when Y is the Poincaré homology sphere Σ(2, 3, 5) and X is the negative

definite E8 manifold was proved by Kronheimer [6].
9



If X is not spin, for any choice of spinc structure on X with determinant

bundle L we have

1

2
ηDir(Y ) +

1

8
η Sign(Y ) = − indD+

L (X)−
1

8
sign(X) +

1

8
c1(L)

2.

(Compare with formula (1.37) in [11]). If the spinc structure is such that

c1(L) is dual to w ∈ H2(X;Z) then

µ̄(Y ) =
1

8
(sign(X) − w · w) =

1

8
(sign(X)− c1(L)

2),

and (2) again implies that indD+
L (X) = 0. This completes the proof of

Theorem 1.2.

7. The invariant λ SW

Let X be a homology S1 × S3, by which we mean a closed oriented spin

smooth 4-manifold with the integral homology of S1 × S3. For a generic

pair (g, β) consisting of a metric g on X and a perturbation β ∈ Ω1(X, iR),

the Seiberg–Witten moduli space M(X, g, β) has finitely many irreducible

points. It is oriented by a choice of homology orientation, that is, a generator

1 ∈ H1(X;Z). Let #M(X, g, β) denote the signed count of the points in

this space. To counter the dependence of #M(X, g, β) on the choice of

(g, β), we introduced in [7] a correction term, w(X, g, β), and proved that

the quantity

λ SW (X) = #M(X, g, β) − w(X, g, β)

is an invariant of X which reduces modulo 2 to its Rohlin invariant. The

precise definition of the correction term is as follows.

Let Y ⊂ X be a smooth connected 3-manifold dual to the generator

1 ∈ H1(X;Z) and choose a smooth compact spin manifold Z with boundary

Y . CuttingX open along Y we obtain a cobordismW from Y to itself, which

we use to construct the periodic-end manifold

Z+ = Z ∪ W ∪ W . . . ∪ W ∪ . . .
10



The metric g and perturbation β extend to an end-periodic metric and,

respectively, perturbation, on Z+. This leads to the end-periodic perturbed

Dirac operator D+(Z+) + β, where β acts via Clifford multiplication. We

prove that D+(Z+) + β is Fredholm in the usual Sobolev L2-completion for

generic (g, β). The correction term is then defined as

w(X, g, β) = indC (D+(Z+) + β) +
1

8
sign (Z).

View Y = Σ(a1, . . . , an) as a link of a complex surface singularity and

let X be the mapping torus of the involution on Y induced by complex

conjugation. The metric g realizing the Thurston geometry on Y is preserved

by this involution and hence gives rise to a natural metric on X called again

g. We showed in [7, Section 10] that the pair (g, 0) is generic and that the

space M(X, g, 0) is empty. One can easily see that the manifold Z+ has

a product end and hence the correction term can be computed as in (12)

using the Atiyah–Patodi–Singer index theorem :

w(X, g, 0) = −
1

2
ηDir(Y )−

1

8
η Sign(Y ).

The conjecture (1) now follows from Theorem 1.1.
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