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Abstract

We define the partition and n-point correlation functions for a ver-
tex operator superalgebra on a genus two Riemann surface formed by
sewing two tori together. For the free fermion vertex operator superal-
gebra we obtain a closed formula for the genus two continuous orbifold
partition function in terms of an infinite dimensional determinant with
entries arising from torus Szegö kernels. We prove that the partition
function is holomorphic in the sewing parameters on a given suitable
domain and describe its modular properties. Using the bosonized for-
malism, a new genus two Jacobi product identity is described for the
Riemann theta series. We compute and discuss the modular proper-
ties of the generating function for all n-point functions in terms of a
genus two Szegö kernel determinant. We also show that the Virasoro
vector one point function satisfies a genus two Ward identity.
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1 Introduction

Genus two (and higher) partition functions and correlation functions have
been studied for some time in string and conformal field theory e.g. [EO],
[FS], [DP], [Kn], [DVPFHLS]. Meanwhile, in the theory of Vertex Operator
Algebras (VOAs) [B], [FHL], [FLM], [Ka], [MN], [MT5] higher genus ap-
proaches based on algebraic geometry have also been developed e.g. [TUY],
[KNTY], [Z2], [U]. A more constructive VOA approach has recently been
described whereby genus two partition and n-point correlation functions are
defined in terms of genus one VOA data [T], [MT1], [MT2], [MT3], [MT4].
This approach is based solely on the properties of a VOA with no assumed
analytic or modular properties for partition or correlation functions. A com-
pact genus two Riemann surface can be obtained from tori by either sewing
two separate tori together, which we refer to as the ǫ-formalism, or by self-
sewing a torus, which we refer to as the ρ-formalism [MT2]. The theory of
partition and n-point correlation functions in the ǫ-formalism is described in
ref. [MT1] where these functions are explicitly computed for the Heisenberg
VOA and its modules including lattice VOAs. The corresponding functions
are considered in the ρ-formalism in ref. [MT3].

This paper extends these methods to the study of genus two partition
and n-point functions in the ǫ-formalism for Vertex Operator Superalgebras
(VOSA). In particular, we explicitly compute and prove convergence and
modular properties of the genus two continuous orbifold partition and n-point
functions for the rank two fermion VOSA V (H,Z + 1

2
)⊗2. (The alternative

ρ-formalism is considered elsewhere [TZ3]). These functions are computed
in terms of appropriate torus n-point functions described in [MTZ]. We also
make extensive use of the expression of the genus two Szegö kernel S(2) of
(7) in terms of genus one Szegö kernel data described in [TZ1]. The partition
function is then expressed as a certain infinite determinant whose components
arise from genus one Szegö kernel data. Furthermore, the generating function
of all n-point correlation functions is computed in terms of a genus two Szegö
kernel determinant.

Section 2 consists of a review of aspects of the ǫ-formalism for construct-
ing a genus two Riemann surface by sewing two separate tori with modular
parameters τ1, τ2 respectively for (τ1, τ2, ǫ) ∈ Dǫ, a specific domain for which
the sewing is defined [MT2]. We also review the construction of the genus
two Szegö kernel S(2) in terms of genus one Szegö kernel data [TZ1]. In
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particular we introduce an infinite block matrix

Q =

(
0 ξF1(τ1)

−ξF2(τ2) 0

)
,

where ξ = ±
√
−1 and Fa(τa) for a = 1, 2 are certain infinite matrices whose

entries involve twisted modular forms in τa associated with genus one Szegö
kernels [MTZ]. Section 3 is a review of Vertex Operator Superalgebras
(VOSA) and the Li–Zamolodchikov (Li–Z) metric on a VOSA [L], [Sche].
The free fermion rank one VOSA V (H,Z+ 1

2
) is also reviewed. In Section 4

we consider the orbifold partition and n-point function on a genus two sur-
face in the ǫ-formalism for a VOSA with a Li–Z metric. These are defined
in terms of genus one n-point orbifold functions associated with a pair of
commuting VOSA automorphisms fa, ga on a torus with modular parameter
τa for a = 1, 2.

Section 5 contains the main results of the paper wherein the partition
function and the generating function for n-point functions are computed
for the rank two fermion VOSA with continuous automorphisms generated
by the Heisenberg vector. In particular we prove in Theorem 5.1 that the
partition function is given by

Z(2)

[
f

g

]
(τ1, τ2, ǫ) = Z(1)

[
f1
g1

]
(τ1) Z

(1)

[
f2
g2

]
(τ2) det (I −Q) ,

where f = (f1, g1) and g = (f2, g2) and Z
(1)

[
fa
ga

]
(τa) is the orbifold partition

function on the torus with modular parameter τa. The partition function is
holomorphic for (τ1, τ2, ǫ) ∈ Dǫ, a specific domain on which the ǫ-formalism
can be carried out [MT2]. In Theorem 5.6 we find the generating function
for all genus two n-point functions as a differential form which is expressed
in terms of a finite dimensional determinant of genus two Szegö kernels S(2).
We also discuss the bosonization of the fermion VOSA wherein the partition
function can be expressed in terms of a genus two Riemann theta series and
the Heisenberg genus two partition function. This leads to a new genus
two version of the classical Jacobi product identity expressing the genus two
Riemann theta series in terms of certain infinite products. We also discuss
the genus two Ward identity satisfied by the Virasoro one point function in
this bosonized setting.

In Section 6 we discuss modular invariance of the genus two partition
and n-point generating form under a modular group preserving Dǫ. The
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Appendix describes some general aspects of Riemann surfaces such as the
period matrix, the projective connection and the prime form. We also recall
some facts from the classical and twisted elliptic function theory [MTZ].

We collect here notation for some of the more frequently occurring func-
tions and symbols employed. Z is the set of integers, C the complex numbers,
H the complex upper-half plane. We will always take τ to lie in H, and z
will lie in C unless otherwise noted. For a symbol z we set qz = exp(z) and
in particular q = q2πiτ = exp(2πiτ).

2 The Szegö Kernel on a Genus Two Rie-

mann Surface Formed from Two Sewn Tori

The central role played by the Szegö kernel S(g) for the fermion VOSA has
been long known e.g. [RS], [R], [DVFHLS], [DVPFHLS]. In this Section
we review the form of the Szegö kernel on a Riemann surface Σ(2) of genus
two obtained by sewing together two tori described in [TZ1]. Some further
details appear in Appendix 7.1.

2.1 The Szegö Kernel on a Riemann Surface

Consider a compact connected Riemann surface Σ(g) of genus g with canon-
ical homology cycle basis ai, bi for i = 1, . . . , g. Let ν

(g)
i be a basis of

holomorphic 1-forms with normalization
∮
ai
ν
(g)
j = 2πiδij and period ma-

trix Ω
(g)
ij = 1

2πi

∮
bi
ν
(g)
j ∈ Hg, the Siegel upper half plane (e.g. [FK], [Sp]).

Define the theta function with real characteristics [M], [F1], [FK]

ϑ(g)
[
α
β

] (
z|Ω(g)

)
=

∑
n∈Zg

eiπ(n+α).Ω(g).(n+α)+(n+α).(z+2πiβ), (1)

for α = (αj), β = (βj) ∈ R
g and z = (zj) ∈ C

g for j = 1, . . . , g.

The Szegö Kernel [Schi], [HS], [F1], [F2] is defined for ϑ
[
α
β

]
(0|Ω(g)) 6= 0

by

S(g)

[
θ

φ

]
(x, y) =

ϑ(g)
[
α
β

] (∫ x

y
ν(g) |Ω(g)

)

ϑ(g)
[
α
β

]
(0|Ω(g))E(g)(x, y)

, (2)
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where θ = (θj), φ = (φj) ∈ U(1)n for

θj = −e−2πiβj , φj = −e2πiαj , j = 1, . . . , g, (3)

and E(g)(x, y) is the prime form (see Appendix 7.1). The factors of −1 in (3)
are included for later convenience. The Szegö kernel has multipliers along the
ai and bj cycles in x given by −φi and −θj respectively and is a meromorphic
(1
2
, 1
2
)-form satisfying

S(g)

[
θ

φ

]
(x, y) ∼ 1

x− y
dx

1
2 dy

1
2 for x ∼ y,

S(g)

[
θ

φ

]
(x, y) = −S(g)

[
θ−1

φ−1

]
(y, x),

where θ−1 = (θ−1
i ) and φ−1 = (φ−1

i ).

2.2 Genus Two Riemann Surfaces Formed from Two
Sewn Tori

Consider the genus two Riemann surface formed by sewing together two
tori in the sewing scheme referred to as the ǫ-formalism in refs. [MT1],

[MT2], [TZ1]. Let Σ
(1)
a = C/Λa for a = 1, 2 be oriented tori with lattice

Λa = 2πi(Zτa ⊕ Z) for τa ∈ H. Choose a local coordinate za ∈ C/Λa on

Σ
(1)
a in the neighborhood of a point pa ∈ Σ

(1)
a and consider the closed disk

|za| ≤ ra for ra <
1
2
D(qa) where [MT2]

D(qa) = min
λ∈Λa,λ6=0

|λ|,

is the minimal lattice distance. Introduce a complex sewing parameter ǫ
where |ǫ| ≤ r1r2, and excise the disk

{za, |za| ≤ |ǫ|/rā} ⊂ Σ(1)
a ,

to form a punctured torus

Σ̂(1)
a = Σ(1)

a \{za, |za| ≤ |ǫ|/rā}.

Here and below, we use the convention

1 = 2, 2 = 1.
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Define the annulus

Aa = {za, |ǫ|/rā ≤ |za| ≤ ra} ⊂ Σ̂(1)
a ,

and identify A1 and A2 as a single region A = A1 ≃ A2 via the sewing
relation

z1z2 = ǫ. (4)

In this way we obtain a compact genus two Riemann surface Σ(2) = {Σ̂(1)
1 \A1}∪

{Σ̂(1)
2 \A2} ∪ A, parameterized by the domain [MT2]

Dǫ = {(τ1, τ2, ǫ) ∈ H1×H1×C | |ǫ| < 1

4
D(q1)D(q2)}. (5)

2.3 The Genus Two Szegö Kernel in the ǫ-Formalism

On a torus the prime form is E(1)(x, y) = K(1)(x − y, τ)dx−
1
2dy−

1
2 where

K(1)(z, τ) = ϑ1(z,τ)
∂zϑ1(0,τ)

and ϑ1(z, τ) = ϑ

[
1
2
1
2

]
(z, τ) for z ∈ C and τ ∈ H. For

(θ, φ) 6= (1, 1) with θ = − exp(−2πiβ) and φ = − exp(2πiα) the genus one
Szegö kernel is

S(1)

[
θ
φ

]
(x, y| τ) = P1

[
θ
φ

]
(x− y, τ)dx

1
2dy

1
2 , (6)

where

P1

[
θ
φ

]
(z, τ) =

ϑ(1)
[
α
β

]
(z, τ)

ϑ(1)
[
α
β

]
(0, τ)

1

K(1)(z, τ)

= −
∑

k∈Z

qk+λ
z

1− θ−1qk+λ
,

is a ‘twisted’ Weierstrass function [MTZ] and where qz = ez and φ = e2πiλ

for 0 ≤ λ < 1 (see Appendix 7.2 for details).
In [TZ1] we determine the genus two Szegö kernel

S(2)(x, y) = S(2)

[
θ(2)

φ(2)

]
(x, y), (7)
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with periodicities
(
θ(2), φ(2)

)
= (θa, φa) for a = 1, 2 on the inherited homology

basis on the genus two Riemann surface Σ(2) formed by sewing two tori Σ
(1)
a

in terms of genus one Szegö kernel data S
(1)
a (x, y) = S(1)

[
θa
φa

]
(x, y). Note

that we exclude those Riemann theta characteristics for which S(2) exists but
where one of the lower genus theta functions vanishes i.e. (θa, φa) 6= (1, 1) so

that S
(1)
a exists on the torus Σ

(1)
a for a = 1, 2.

In [TZ1] we show how to reconstruct S(2)(x, y) from the Laurant expan-

sions (68) of P1

[
θ
φ

]
(k, l, τ) with coefficients C

[
θ
φ

]
(k, l, τ) andD

[
θ
φ

]
(k, l, τ, z)

of (69) and (70) of Appendix 7.2. In particular, we define for k, l ≥ 1

Fa

[
θa
φa

]
(k, l, τa, ǫ) = ǫ

1
2
(k+l−1)C

[
θa
φa

]
(k, l, τa). (8)

We let Fa = (Fa

[
θa
φa

]
(k, l, ǫ)) denote the infinite matrix indexed by k, l ≥ 1.

We also define holomorphic 1
2
-forms on Σ̂

(1)
a

ha

[
θa
φa

]
(k, x, τa, ǫ) = ǫ

k
2
− 1

4 D

[
θa
φa

]
(1, k, τa, x) dx

1
2 ,

h̄a

[
θa
φa

]
(k, y, τa, ǫ) = ǫ

k
2
− 1

4 D

[
θa
φa

]
(k, 1, τa,−y) dy

1
2 . (9)

We let ha(x) = (ha

[
θa
φa

]
(k, x, τa, ǫ)) and h̄a(y) = (h̄a(

[
θa
φa

]
(k, y, τa, ǫ)) denote

infinite row vectors indexed by k.
Recalling the ǫ sewing relation (4) we note that

dz
1
2
a = (−1)ā ξ ǫ

1
2
dz

1
2
ā

zā
, (10)

where ξ ∈ {±
√
−1} depending on the branch of the double cover of Σ

(1)
a

chosen. It is useful to introduce the infinite block matrices

Ξ =

(
0 ξI

−ξI 0

)
, Q =

(
0 ξF1

−ξF2 0

)
, (11)

where I denotes the infinite identity matrix. Then Theorem 3.6 of [TZ1]
states that

S(2)(x, y) =

{
S
(1)
a (x, y) + ha(x) (I − FāFa)

−1 Fāh̄
T
a (y), for x, y ∈ Σ̂

(1)
a ,

ξ(−1)āha(x) (I − FāFa)
−1 h̄Tā (y), for x ∈ Σ̂

(1)
a , y ∈ Σ̂

(1)
ā ,

(12)

7



where T denotes the transpose. Equivalently, for x, y ∈ Σ̂(1,1) = Σ̂
(1)
1 ∪ Σ̂

(1)
2 ,

the disconnected union of punctured tori, we define the forms

S(1,1)(x, y) =

{
S
(1)
a (x, y), for x, y ∈ Σ̂

(1)
a

0, for x ∈ Σ̂
(1)
a , y ∈ Σ̂

(1)
ā ,

h(x) =

{
(h1(x), 0) , for x ∈ Σ̂

(1)
1

(0, h2(x)) , for x ∈ Σ̂
(1)
2 ,

h(x) =

{ (
h1(x), 0

)
, for x ∈ Σ̂

(1)
1(

0, h2(x)
)
, for x ∈ Σ̂

(1)
2 .

(13)

Thus h(x) describes an infinite row vector indexed by k ≥ 1 and a = 1, 2

with (h(x)) (k, a) = δabhb

[
θb
φb

]
(k, x, τb, ǫ) for x ∈ Σ̂

(1)
b and similarly for h(x).

With these definitions (12) is equivalent to

S(2)(x, y) = S(1,1)(x, y) + h(x)Ξ(I −Q)−1h
T
(y), (14)

for x, y ∈ Σ̂(1,1).
Lastly, defining the determinant of I −Q by the formal power series in ǫ

log det (I −Q) = Tr log (I −Q) = −
∑

n≥1

1

n
Tr(Qn),

it is shown in ref. [TZ1] that

det(I −Q) = det(I − F1F2), (15)

is non-vanishing and holomorphic on Dǫ.

3 Vertex Operator Superalgebras

3.1 General Definitions

We discuss some aspects of Vertex Operator Superalgebra theory to establish
context and notation. For more details see [B], [FHL], [FLM], [Ka], [MN],
[MT5]. A Vertex Operator Superalgebra (VOSA) is a quadruple (V, Y, 1, ω)
as follows: V is a superspace i.e. a complex vector space V = V0̄⊕V1̄ = ⊕αVα

8



with index label α in Z/2Z so that each a ∈ V has a parity (fermion number)
p(a) ∈ Z/2Z. V has non-negative 1

2
Z-grading with

V =
⊕

r∈ 1
2
Z

Vr, for dimVr <∞,

related to the superspace grading by

V0̄ =
⊕

r∈Z
Vr, V1̄ =

⊕

r∈Z+ 1
2

Vr. (16)

1 ∈ V0 is the vacuum vector and ω ∈ V2 is the conformal vector with proper-
ties described below. Y is a linear map Y : V → (EndV )[[z, z−1]], for formal
variable z, so that for any vector a ∈ V

Y (a, z) =
∑

n∈Z
a(n)z−n−1.

The component operators (modes) a(n) ∈ EndV are such that

a(n)1 = δn,−1a,

for n ≥ −1. Furthermore, for a ∈ Vα

a(n) : Vβ → Vβ+α. (17)

The vertex operators satisfy locality:

(x− y)N [Y (a, x), Y (b, y)] = 0,

for all a, b ∈ V and N ≫ 0, where the commutator is defined in the graded
sense:

[Y (a, x), Y (b, y)] = Y (a, x)Y (b, y)− (−1)p(a)p(b)Y (b, y)Y (a, x). (18)

The vertex operator for the vacuum is Y (1, z) = IdV , whereas that for ω is

Y (ω, z) =
∑

n∈Z
L(n)z−n−2,

where L(n) = ω(n+ 1) forms a Virasoro algebra for central charge c

[L(m), L(n)] = (m− n)L(m+ n) +
c

12
(m3 −m)δm,−n.

9



L(−1) generates translations with

Y (L(−1)a, z) =
d

dz
Y (a, z).

L(0) determines the grading with L(0)a = wt(a)a for a ∈ Vr and r = wt(a),
the weight of a.

3.2 The Li–Zamolodchikov (Li–Z) Metric

The subalgebra {L(−1), L(0), L(1)} ∼= SL(2,C) associated with Möbius trans-
formations on z naturally acts on a VOSA (e.g. [B], [Ka]). In particular,

γλ =

(
0 λ
−λ 0

)
: z 7→ w = −λ

2

z
, (19)

is generated by Tλ = exp(λL(−1)) exp( 1
λ
L(1)) exp(λL(−1)) where

TλY (u, z)T
−1
λ = Y

(
exp(− z

λ2
L(1))

(
− z
λ

)−2L(0)

u,−λ
2

z

)
. (20)

Later we will be particularly interested in the Möbius map z 7→ w = ǫ/z
associated with the sewing condition (4) with

λ = −ξǫ 1
2 , (21)

with ξ ∈ {±
√
−1} as previously introduced in (10).

For u ∈ V of half-integral weight the action of −γλ = γ−λ is distinguished
from that of γλ whereas for integral weight they are equivalent. In particular
we must distinguish the choices λ = ±

√
−1 in (19) corresponding to the

inversion map z 7→ z−1 normally used to define the adjoint vertex operator.
Following ref. [Sche] we therefore define

Y †(u, z) =
∑

n

u†(n)z−n−1 = TλY (u, z)T
−1
λ . (22)

One can verify that
(
Y †)† (u, z) = (−1)2wt(u)Y (u, z) for u of weight wt(u).

For a quasi-primary vector u (i.e. L(1)u = 0) of weight wt(u)

u†(n) = λ−2wt(u)(−λ2)n+1u(2wt(u)− n− 2), (23)

10



e.g. L†(n) = (−λ2)nL(−n). Furthermore

Y †(u, w)dwwt(u) = Y (u, z)dzwt(u), (24)

where for half-integral wt(u) we choose the branch covering for which

(
dw

dz

)wt(u)

=

(
λ

z

)2wt(u)

. (25)

We say a bilinear form 〈 , 〉λ on V is invariant if for all a, b, u ∈ V [Sche]

〈Y (u, z)a, b〉λ = (−1)p(u)p(a)〈a, Y †(u, z)b〉λ, (26)

i.e. 〈u(n)a, b〉λ = (−1)p(u)p(a)〈a, u†(n)b〉λ. Thus it follows that 〈L(0)a, b〉λ =
〈a, L(0)b〉λ so that 〈a, b〉λ = 0 if wt(a) 6= wt(b) for homogeneous a, b. One
also finds 〈a, b〉λ = 〈b, a〉λ [FHL], [Sche].

〈 , 〉λ is unique up to normalization if L(1)V1 = V0 (we choose the nor-
malization 〈1, 1〉λ = 1 throughout) and is non-degenerate if and only if V is
simple [L]. We call such a unique non-degenerate symmetric bilinear form
the Li–Zamolodchikov (Li–Z) metric. Given any V basis {uα} we define the
Li–Z dual V basis {uβ} where 〈uα, uβ〉λ = δαβ .

3.3 Free Fermion VOSA

Consider the rank one free fermion VOSA V (H,Z + 1
2
) with H = Cψ for a

(fermion) vector ψ of parity 1 [FFR], [Ka] with modes obeying

[ψ(m), ψ(n)] = ψ(m)ψ(n) + ψ(n)ψ(m) = δm+n+1,0. (27)

The superspace is spanned by Fock vectors we denote by1

Ψ(k) ≡ ψ(−k1)ψ(−k2) . . . ψ(−ks)1, (28)

for distinct ordered integers 1 ≤ k1 < . . . < ks and where ψ(k)1 = 0 for
k ≥ 0. The VOSA is generated by Y (ψ, z) with conformal vector ω =
1
2
ψ(−2)ψ(−1)1 of central charge c = 1

2
for which Ψ(k) has L(0) weight

wt(Ψ(k)) =
∑

1≤i≤s(ki − 1
2
) ∈ 1

2
Z. In particular wt(ψ) = 1

2
.

1Denoted by Ψ(−k) in ref. [MTZ]
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Since ψ†(n) = λ−1(−λ2)n+1ψ(−n − 1) it follows from (23) that the Fock
vectors form an orthogonal basis with respect to the Li–Z metric 〈 , 〉λ with

Ψ(k) = (−1)[wt(Ψ)] λ2wt(Ψ)Ψ(k), (29)

for Ψ(k) of weight wt(Ψ) and where [x] denotes the integral part of x.
We next consider the rank two fermion VOSA V (H,Z+ 1

2
)⊗2, the tensor

product of two copies of the rank one fermion VOSA. We employ the off-
diagonal basis ψ± = 1√

2
(ψ1 ± iψ2) for fermions ψ1 = ψ ⊗ 1 and ψ2 = 1⊗ ψ.

The VOSA is generated by Y (ψ±, z) =
∑

n∈Z ψ
±(n)z−n−1 where the modes

obey the commutation relations

[ψ+(m), ψ−(n)] = δm,−n−1, [ψ+(m), ψ+(n)] = 0, [ψ−(m), ψ−(n)] = 0.

The VOSA vector space V is a Fock space spanned by2

Ψ(k, l) ≡ ψ+(−k1) . . . ψ+(−ks)ψ−(−l1) . . . ψ−(−lt)1, (30)

for distinct positive integers k1, . . . , ks and distinct l1, . . . , lt with ψ
±(k)1 = 0

for all k ≥ 0. We define the conformal vector to be

ω =
1

2
[ψ+(−2)ψ−(−1)+ψ−(−2)ψ+(−1)]1, (31)

whose modes generate a Virasoro algebra of central charge 1. Then ψ±

has L(0)-weight 1
2
and Ψ(k, l) has L(0)-weight wt(Ψ) =

∑
1≤i≤s(ki − 1

2
) +∑

1≤j≤t(lj − 1
2
). Similarly to (29), the Li–Z dual of Ψ(k, l) is

Ψ(k, l) = (−1)st (−1)[wt(Ψ)] λ2wt(Ψ)Ψ(l,k),

where the (−1)st factor arises from the ordering chosen in (30). For the
parameter choice (21) we find for Ψ(k, l) of parity pΨ that

Ψ(k, l) = (−1)st (−ξ)pΨǫwt(Ψ)Ψ(l,k). (32)

The weight 1 space is V1 = Ca for Heisenberg vector

a = ψ+(−1)ψ−(−1)1, (33)

with modes obeying
[a(m), a(n)] = mδm,−n.

Then ω = 1
2
a(−1)21 is the standard conformal vector for the Heisenberg

VOA M . Thus V can be decomposed into irreducible M-modules M ⊗ em

for a(0) eigenvalue m ∈ Z e.g. [FFR], [Ka]. Furthermore, a(0) is a generator
of continuous V automorphisms e2πiγa(0) for real γ.

2Denoted by Ψ(−k,−l) in ref. [MTZ]
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4 Partition Functions and Correlation Func-

tions on a Genus Two Riemann Surface

In this section we consider the partition and n-point correlation functions for
a VOSA on a Riemann surface of genus two formed by sewing two tori. In
the next section we will compute these quantities in the case of a rank two
fermion VOSA with arbitrary automorphisms generated by a(0).

4.1 Torus n-Point Correlation Functions

We first review aspects of genus one orbifold n-point (correlation) functions
for twisted VOSA modules. For more details see refs. [Z1], [DLM], [MT4],
[DZ], [MTZ].

Let σ ∈ Aut(V ) denote the parity (fermion number) automorphism

σa = (−1)p(a)a, (34)

for all a ∈ V . Let f, g ∈ Aut(V ) denote two commuting automorphisms that
also commute with σ. Consider a σg-twisted V -module Mσg with vertex
operators Yσg [DLM], [DZ], [MTZ]. We assume that Mσg is stable under σ
and f i.e. both σ and f act on Mσg. Then for vectors v1, . . . , vn ∈ V we
define the torus orbifold n-point function by [Z1], [MTZ]

Z(1)

[
f

g

]
(v1, z1; . . . ; vn, zn; τ)

≡ STrMσg

(
f Yσg(q

L(0)
1 v1, q1) . . . Yσg(q

L(0)
n vn, qn)q

L(0)−c/24
)
, (35)

where q = exp(2πiτ), qi = exp(zi), i = 1, . . . , n, for variables z1, . . . , zn and
where STrM denotes the supertrace defined by

STrM(X) = TrM(σX).

It follows from (17) that the n-point function (35) is non-vanishing provided

p1 + . . .+ pn = 0 mod 2, (36)

for parity pi = p(vi).

13



Taking all vi = 1 in (35) yields the genus one orbifold partition function

which we denote by Z(1)
[
f
g

]
(τ). Taking n = 1 in (35) gives the genus one

1-point function which we denote by Z(1)
[
f
g

]
(v; τ) and is independent of z.

In order to consider modular-invariance of n-point functions at genus 1,
Zhu [Z1] introduced a second isomorphic ‘square-bracket’ VOSA (V, Y [, ], 1, ω̃)
associated to a given VOSA (V, Y (, ), 1, ω). The new vertex operators are
defined by a change of coordinates

Y [v, z] =
∑

n∈Z
v[n]z−n−1 = Y (qL(0)z v, qz − 1),

while the new conformal vector ω̃ = ω− c
24
1. We set Y [ω̃, z] =

∑
n∈Z L[n]z

−n−2

and write wt[v] = k if L[0]v = kv, V[k] = {v ∈ V |wt[v] = k}. Only primary
vectors are homogeneous with respect to both L(0) and L[0], in which case
wt(v) = wt[v]. One can show that n-point functions can be expressed in
terms of 1-point functions to find [MT4]

Z(1)
[
f
g

]
(v1, z1; . . . ; vn, zn; τ)

= Z(1)
[
f
g

]
(Y [v1, z1 − zn] . . . Y [vn−1, zn−1 − zn]vn; τ). (37)

4.2 Genus Two n-Point Correlation Functions

In the ǫ-sewing scheme we sew two tori Σ
(1)
a , a = 1, 2 with modular param-

eters τa via the sewing relation (4). Similarly to ref. [MT1] for VOAs, we
define the genus two orbifold n-point correlation function in the ǫ-sewing
scheme for a VOSA V with a Li–Z metric as follows. Let fa, ga be V auto-
morphisms and let Mσga be σga-twisted V -modules stable under σ and fa for
commuting fa, ga and σ. We combine f1, g1 orbifold correlation functions on
Σ

(1)
1 with f2, g2 orbifold correlation functions on Σ

(1)
2 . For x1, . . . , xk ∈ Σ

(1)
1

with |xi| ≥ |ǫ|/r2 and yk+1, . . . , yn ∈ Σ
(1)
2 with |yi| ≥ |ǫ|/r1, define the genus

14



two orbifold n-point function as the following formal series in ǫ

Z(2)

[
f

g

]
(v1, x1; . . . ; vk, xk|vk+1, yk+1; . . . ; vn, yn; τ1, τ2, ǫ)

=
∑

u∈V
Z(1)

[
f1
g1

]
(Y [v1, x1] . . . Y [vk, xk]u; τ1)

·Z(1)

[
f2
g2

]
(Y [vk+1, yk+1] . . . Y [vn, yn]ū; τ2), (38)

where f (respectively g) denotes the pair f1, f2 (respectively g1, g2). The
sum is taken over any V -basis where ū is the dual of u with respect to the
Li–Z metric 〈 , 〉sqλ of (26) as defined by the square bracket Virasoro operators
{L[n]} and with λ of (21).

Remark 4.1 (38) reduces to the definition given in ref. [MT1] as follows.
For u, v of equal square bracket weight we have

〈u, v〉sqλ = ǫ−wt[u]〈u, v〉sq, (39)

where 〈u, v〉sq denotes the standard Li–Z metric corresponding to the choice
λ = ±

√
−1. Then (38) can be rewritten as

Z(2)

[
f

g

]
(v1, x1; . . . ; vk, xk|vk+1, yk+1; . . . ; vn, yn; τ1, τ2, ǫ)

=
∑

r∈Z/2

ǫr
∑

u∈V[r]

Z(1)

[
f1
g1

]
(Y [v1, x1] . . . Y [vk, xk]u; τ1)

·Z(1)

[
f2
g2

]
(Y [vk+1, yk+1] . . . Y [vn, yn]ū; τ2),

where here u ranges over any V[r]-basis and ū is the dual of u with respect to
the standard Li–Z metric 〈u, v〉sq.

In the case where no states vi are inserted then (38) defines the genus two
partition (or 0-point) function

Z(2)

[
f

g

]
(τ1, τ2, ǫ) =

∑

u∈V
Z(1)

[
f1
g1

]
(u; τ1)Z

(1)

[
f2
g2

]
(ū; τ2). (40)
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The definition (38) depends on the choice of insertion points xi ∈ Σ̂
(1)
1

and yj ∈ Σ̂
(1)
2 . However, similarly to the situation for a VOA discussed in

ref. [MT1], we may define an associated formal differential form for quasi-
primary vectors as follows:

Proposition 4.2 Let vi ∈ V be quasi-primary vectors of square bracket
weight wt[vi] for i = 1, . . . , n. Let xi ∈ Σ̂

(1)
1 and yi ∈ Σ̂

(1)
2 be related by

the sewing relation
xiyi = ǫ = −λ2.

Then the formal differential form

F (2)

[
f

g

]
(v1, . . . , vn; τ1, τ2, ǫ)

≡ (−1)NkZ(2)

[
f

g

]
(v1, x1; . . . ; vk, xk|vk+1, yk+1; . . . ; vn, yn; τ1, τ2, ǫ)

·
k∏

i=1

dx
wt[vi]
i

n∏

j=k+1

dy
wt[vj ]
j , (41)

is independent of the choice of k = 0, . . . , n where Nk is the number of odd
parity vectors in the set {v1, . . . , vk} and where the branch covering (25) is
chosen with (

dyi
dxi

)wt[vi]

=

(
λ

xi

)2wt[vi]

.

Proof. For k ∈ {1, . . . , n} consider

Z(2)

[
f

g

]
(v1, x1; . . . ; vk, xk|vk+1, yk+1; . . . ; vn, yn)

k∏

i=1

dx
wt[vi]
i

n∏

j=k+1

dy
wt[vj]
j

=
∑

u∈V
Z(1)

[
f1
g1

]
(Y [v1, x1] . . . Y [vk, xk]u; τ1)

k∏

i=1

dx
wt[vi]
i

·Z(1)

[
f2
g2

]
(Y [vk+1, yk+1] . . . Y [vn, yn]ū; τ2)

n∏

j=k+1

dy
wt[vj ]
j . (42)
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We have Y [vk, xk]u =
∑

v∈V 〈v̄, Y [vk, xk]u〉
sq
λ v where v is summed over any

V -basis. Since vk is quasi-primary, (24) implies

〈v̄, Y [vk, xk]u〉sqλ = 〈v̄, Y †[vk, yk]u〉sqλ
(
dyk
dxk

)wt[vk]

= (−1)pkp(v)〈Y [vk, yk]v̄, u〉sqλ
(
dyk
dxk

)wt[vk]

,

using invariance (26) and where pk = p(vk). Hence (42) becomes

∑
v∈V (−1)pkp(v)Z(1)

[
f1
g1

]
(Y [v1, x1] . . . Y [vk−1, xk−1]v; τ1)

k−1∏
i=1

dx
wt[vi]
i

(−1)pk(pk+1+...+pn)Z(1)
[
f2
g2

]
(Y [vk, yk]Y [vk+1, yk+1] . . . Y [vn, yn]v̄; τ2)

n∏
j=k

dy
wt[vj]
j ,

using
∑

u∈V 〈Y [vk, yk]v̄, u〉
sq
λ ū = Y [vk, yk]v̄ and locality. Finally, (36) implies

non-vanishing contributions arise only if p(v) = p1 + . . . + pk−1 so that
(−1)pkp(v)(−1)pk(pk+1+...+pn) = (−1)pk . But Nk = pk + Nk−1 where Nk−1 is
the number of odd parity vectors in the set {v1, . . . , vk−1}. Hence (−1)pk =
(−1)Nk−1−Nk and the result follows. �

5 The Free Fermion VOSA

5.1 Genus One

Consider the rank 2 free fermion VOSA V (H,Z + 1
2
)⊗2 generated by ψ±.

In this case, the parity automorphism (34) is described by σ = eiπa(0) for
Heisenberg vector a. We also define two commuting automorphisms f, g by3

σf = e2πiβa(0), σg = e−2πiαa(0),

for real α, β. It is also convenient to define θ = −e−2πiβ , φ = −e2πiα, in
accordance with (3). The twisted partition function is then e.g. [Ka], [MTZ]

Z(1)

[
f

g

]
(τ) = qα

2/2−1/24
∏

l≥1

(
1− θ−1ql−

1
2
+α

)(
1− θql−

1
2
−α

)
. (43)

3Note some notational changes from ref. [MTZ]
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(43) vanishes for (α, β) = (1
2
, 1
2
) i.e. (θ, φ) = (1, 1). We will assume that

(θ, φ) 6= (1, 1) for the remainder of this discussion.
In ref. [MTZ] it is shown by using associativity how to compute all twisted

genus one n-point functions from a generating function which is the 2n-point
function for n ψ+ and n ψ− vectors:

Z(1)

[
f

g

]
(ψ+, x1;ψ

−, y1; . . . ;ψ
+, xn;ψ

−, yn; τ) = detP · Z(1)

[
f

g

]
(τ), (44)

where P is the n× n matrix:

P =

(
P1

[
θ

φ

]
(xi − yj, τ)

)
, (45)

for 1 ≤ i, j ≤ n and where P1

[
θ
φ

]
(z, τ) is the twisted Weierstrass function

defined in (67). Thus, in particular, for a homogeneous square bracket weight
Fock vector

Ψ[k, l] ≡ ψ+[−k1] . . . ψ+[−ks]ψ−[−l1] . . . ψ−[−lt]1, (46)

we find that the genus one 1-point function is given by [MTZ]

Z(1)

[
f

g

]
(Ψ[k, l], τ) = δst(−1)s(s−1)/2Z(1)

[
f

g

]
(τ) detC

[
θ

φ

]
(k, l, τ), (47)

where C
[
θ
φ

]
(k, l, τ) is the s× s matrix:

C

[
θ

φ

]
(k, l, τ) =

(
C

[
θ

φ

]
(ki, lj, τ)

)
, (48)

for 1 ≤ i, j ≤ s as defined by (69). Note that (47) is non-vanishing for Ψ[k, l]
of even parity (integer weight) in agreement with (36).

5.2 The Genus Two Partition Function

We now come to the main results of this paper where for the rank two fermion
VOSA we compute the genus two partition function and the generating form
on the genus two Riemann surface formed by sewing together two tori as
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defined by (38). Consider commuting automorphisms fa, ga for a = 1, 2
parameterized by

σfa = e2πiβaa(0), σga = e−2πiαaa(0),

and define θa = −e−2πiβa , φa = −e2πiαa where (θa, φa) 6= (1, 1). (The case
where (θa, φa) = (1, 1) will be considered elsewhere [TZ4]). Recall the infinite
matrices Fa, Q of (8) and (11)

Fa

[
θa
φa

]
=

(
ǫ
1
2
(k+l−1)C

[
θa
φa

]
(k, l, τa)

)
, Q =


 0 ξF1

[
θ1
φ1

]

−ξF2

[
θ2
φ2

]
0


 .

We find the partition function (40) is as follows:

Theorem 5.1 The genus two partition function for the rank two fermion
VOSA is a non-vanishing holomorphic function on Dǫ given by

Z(2)

[
f

g

]
(τ1, τ2, ǫ) = Z(1)

[
f1
g1

]
(τ1) Z

(1)

[
f2
g2

]
(τ2) det (I −Q) . (49)

To prove this result we first note some determinant formulas for finite
matrices. Let R be an N × N matrix and let k = (k1, . . . , kn) denote n
ordered subindices with 1 ≤ k1 < . . . < kn ≤ N . We refer to k as an
N-subindex of length n. Let

R(k, l) = (Rkrls) r, s = 1, . . . , n, (50)

denote the n × n submatrix of R indexed by a pair k, l of N -subindices of
length n. We define R(k, l) = 1 in the degenerate case n = 0.

Proposition 5.2 Let R be an N×N matrix and I the identity matrix. Then

det (I +R) =

N∑

n=0

∑

j

detR(j, j), (51)

where the inner sum runs over all N-subindices of length n.

Proof. Consider det(I+xR) =
∑

σ∈SN
ǫσ

∏N
i=1(δiσ(i)+xRiσ(i)) for parameter

x where ǫσ is the signature of σ ∈ SN the permutation group. Consider the
subset of SN consisting of all permutations ρ fixing at least N − n indices.
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Each ρ is a permutation on some j = (j1, . . . , jn), an N -subindex of length n,
where the remaining N−n indices are fixed. Then det(I+xR) =

∑
0≤n≤N

anx
n

for

an =
∑

j

∑

ρ

ǫρ

n∏

i=1

Rjiρ(ji) =
∑

j

detR(j, j).

�

Corollary 5.3 Let A,B be M ×M matrices and let R =

[
0 tA

t−1B 0

]
be a

2M×2M block matrix for parameter t 6= 0. Then det(I+R) is t independent
and is given by

det(I +R) =

M∑

m=0

(−1)m
∑

k,l

detA(k, l) detB(l,k), (52)

where the inner sum runs over all pairs k, l of M-subindices of length m.

Proof. Clearly I+R =

[
tIM 0
0 IM

] [
IM A
B IM

] [
t−1IM 0

0 IM

]
forM×M

identity matrix IM so that det(I + R) is independent of t. Next apply (51)
to the block matrix R. The block structure of R and the t independence
of det(I + R) imply that the inner sum of (51) runs over 2M-indices of
length 2m of the form j = (k1, . . . , km,M + l1, . . . ,M + lm). The pair k, l are
M-subindices of length m so that

det(I +R) =

M∑

m=0

∑

k,l

det

[
0 A(k, l)

B(l,k) 0

]
.

The result then follows. �

Proof of Theorem 5.1. We wish to compute the genus two partition
function of (40) for the rank two fermion VOSA:

Z(2)

[
f

g

]
(τ1, τ2, ǫ) =

∑

u∈V
Z(1)

[
f1
g1

]
(u, τ1)Z

(1)

[
f2
g2

]
(ū, τ2),

where u is summed over any V -basis and ū is the square bracket Li-Z dual.
We choose the Fock basis {Ψ[k, l]} with 1 ≤ k1 < . . . < ks and 1 ≤ l1 <
. . . < lm of (46) with square-bracket dual from (32)

Ψ[k, l] = (−1)sm (−ξ)pΨǫwt[Ψ]Ψ[l,k]. (53)
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Furthermore, (47) implies the corresponding torus one point functions are
non-vanishing for m = s with even parity pΨ = 0 where

Z(1)
[
f1
g1

]
(Ψ[k, l], τ1)

Z(1)
[
f1
g1

]
(τ1)

= (−1)m(m−1)/2 detC

[
θ1
φ1

]
(k, l, τ1),

Z(1)
[
f2
g2

]
(Ψ[k, l], τ2)

Z(1)
[
f2
g2

]
(τ2)

= (−1)m(m−1)/2(−1)mǫwt[Ψ] detC

[
θ2
φ2

]
(l,k, τ2).

Hence (suppressing the τ1, τ2, ǫ dependence) it follows that

Z(2)
[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] =
∑

m≥0

(−1)m
∑

k,l

ǫwt[Ψ] detC

[
θ1
φ1

]
(k, l) detC

[
θ2
φ2

]
(l,k).

But wt[Ψ] =
∑m

i=1(ki + li − 1) so that the ǫki+lj− 1
2 factors may be absorbed

into the above m×m determinants to find

Z(2)
[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] =
∑

m≥0

(−1)m
∑

k,l

detF1

[
θ1
φ1

]
(k, l) detF2

[
θ2
φ2

]
(l,k),

with Fa of (8). Let A and B denote the finite matrices found by truncating
F1 and F2 to an arbitrary order in ǫ. Thus applying (52) to A and B with
t = −ξ it follows that

Z(2)
[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] = det(I −Q),

as an identity between two formal series in ǫ. However, it is shown in ref.
[TZ1] that det(I−Q) is non-vanishing and holomorphic on Dǫ and hence the
Theorem holds. �

We may similarly compute the genus two partition function in the ǫ-
formalism for the original rank one fermion VOSA V (H,Z + 1

2
) where, in

this case, we may only construct a σ-twisted module. Then one finds:
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Corollary 5.4 For the rank one free fermion VOSA V (H,Z+ 1
2
) the genus

two partition function in the ǫ-formalism for fa, ga ∈ {1, σ} is given by

Z(2)

[
f

g

]
(τ1, τ2, ǫ) = Z(1)

[
f1
g1

]
(τ1) Z

(1)

[
f2
g2

]
(τ2) det (I −Q)1/2 , (54)

where Z(1)
[
fa
ga

]
(τa) is the rank one torus partition function. �

5.3 The Genus Two Generating Function

In this section we compute the genus two generating form for all n-point
functions for the rank two free fermion VOSA. This is the genus two analogue
of (44) and is defined by

G(2)
n

[
f

g

]
(w1, . . . , wn, z1, . . . , zn) = F (2)

[
f

g

]
(ψ+, ψ−, . . . , ψ+, ψ−; τ1, τ2, ǫ),

(55)

the formal 2n-form of (41) found by alternatively inserting ψ+ at wi ∈ Σ̂(1,1)

and ψ− at zi ∈ Σ̂(1,1) for i = 1, . . . , n where Σ̂(1,1) denotes the disconnected

union of the two punctured tori. In order to describe G(2)
n

[
f
g

]
we recall the

Szegö kernels and half-forms of (7) and (13) and define matrices

S(2) =
(
S(2)(wi, zj)

)
, S(1,1) =

(
S(1,1)(wi, zj)

)
,

H+ = ((h(wi))(k, a)) , H− =
(
(h(zi))(l, b)

)T
.

S(2) and S(1,1) are finite matrices indexed by wi, zj for i, j = 1, . . . , n; H+ is
semi-infinite with n rows indexed by wi and columns indexed by k ≥ 1 and
a = 1, 2 and H− is semi-infinite with rows indexed by l ≥ 1 and b = 1, 2 and
with n columns indexed by zj. We then find

Proposition 5.5

det

[
S(1,1) H+Ξ
H− I −Q

]
= detS(2) det(I −Q).

with Q,Ξ of (11).
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Proof. Consider the matrix identity

[
S(1,1) H+Ξ
H− I −Q

]
=

[
In H+Ξ(I −Q)−1

0 I

] [
S(1,1) −H+Ξ(I −Q)−1H− 0

H− I

] [
In 0
0 I −Q

]
,

where In is the n×n identity matrix. But the genus two Szegö kernel of (14)
implies (

S(1,1) −H+Ξ(I −Q)−1H−) (wi, zj) = S(2)(wi, zj).

The result follows on taking the determinant. �

We may next describe the generating form:

Theorem 5.6 The generating form for the rank two free fermion VOSA is
given by

G(2)
n

[
f

g

]
(w1, . . . , wn, z1, . . . , zn) = Z(2)

[
f

g

]
(τ1, τ2, ǫ) detS(2). (56)

Remark 5.7 Relative to the genus two partition function, the normalized
2-point for ψ+ and ψ− is given by the Szegö kernel and more generally,
the 2n-point function is given by a Szegö kernel determinant. This agrees
with the assumed form of the higher genus fermion 2n-point function in [R]
or as found by string theory methods using a Schottky parameterisation in
[DVPFHLS].

In order to prove Theorem 5.6 we require an extension of Proposition 5.2.

Proposition 5.8 Let R and Jp =

(
0 0
0 IN−p

)
be N × N matrices where

IN−p is the identity (N − p)× (N − p) matrix for 0 ≤ p ≤ N . Then

det (Jp +R) =

N−p∑

n=0

∑

jp

detR(jp , jp), (57)

where the inner sum runs over all N-subindices of length n + p of the form
jp = (1, . . . , p, j1, . . . , jn).
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Proof. The proof follows along the same lines as Proposition 5.2 where here
we consider det(Jp + xR) = xp

∑
σ∈SN

ǫσ
∏p

i=1Riσ(i)

∏N
i=p+1(δiσ(i) + xRiσ(i)).

Then det(Jp + xR) = xp
∑

0≤n≤N−p

anx
n for

an =
∑

jp

∑

ρ

ǫρ

p∏

i=1

Riρ(i)

n∏

r=1

Rjrρ(jr) =
∑

jp

detR(jp , jp),

where ρ is a permutation of jp = (1, . . . , p, j1, . . . , jn). The result then follows
as before. �

Corollary 5.9 Let A,B be M ×M matrices and let U be a p ×M matrix
and W be a M × p matrix with p ≤ M . Define the (p + 2M) × (p + 2M)
block matrix

R =




0 0 U
0 0 tA
W t−1B 0


 ,

where t is a non-zero scalar parameter. Then det(Jp + R) is independent of
t and is given by

det(Jp +R) =
M∑

m=p

(−1)m
∑

k,l

detUA(k, l) detWB(l,k), (58)

where k and l are M-subindices of length m− p and m respectively. UA(k, l)
and WB(l,k) are the m×m submatrices with components

UA(k, l)ij =

{
Ui lj i = 1, . . . , p
Aki−p lj i = p+ 1, . . . , m,

WB(l,k)ij =

{
Wli j j = 1, . . . , p
Bli kj−p

j = p+ 1, . . . , m.

Proof. det(Jp +R) is t invariant since

(Jp +R)|t=1 = diag(Ip, t
−1IM , IM) (Jp +R) diag(Ip, tIM , IM),

for identity matrices Ip and IM . t invariance and the off-diagonal structure
of R imply that the inner sum in (57) is taken over (p + 2M)-subindices of
length 2m described by

jp = (1, . . . , p, p+ k1, . . . , km−p, p+M + l1, . . . , p+M + lm),
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for 1 ≤ k1 < . . . < km−p ≤ M and 1 ≤ l1 < . . . < lm ≤ M i.e. k and l are
M-subindices of length m− p and m respectively. Hence

det(Jp +R) =

M∑

m=p

∑

k,l

det

[
0 UA(k, l)

WB(l,k) 0

]
.

The result then follows. �

Proof of Theorem 5.6. Following Proposition 4.2 we may evaluate G(2)
n

[
f
g

]

by inserting the quasi-primary vectors ψ± in any way on the disconnected
union of punctured tori Σ̂(1,1). In particular, we choose ψ+ at wi ∈ Σ̂

(1)
1 and

ψ− at zi ∈ Σ̂
(1)
2 for i = 1, . . . , n. Thus, reordering operators and using (38)

and (41) we find

G(2)
n

[
f

g

]
= G(2)

n

[
f

g

]
(w1, . . . , wn, z1, . . . , zn)

= (−1)n(n−1)/2(−1)n
∑

u∈V
Z(1)

[
f1
g1

]
(Y [ψ+, w1] . . . Y [ψ+, wn]u, τ1)

·Z(1)

[
f2
g2

]
(Y [ψ−, z1] . . . Y [ψ

−, zn]ū, τ2)

n∏

i=1

dw
1
2
i dz

1
2
i . (59)

Choose the Fock basis {Ψ[k, l]} with 1 ≤ k1 < . . . < ks and 1 ≤ l1 < . . . < lm
of (46) with square bracket dual (53). The corresponding torus one point
functions are non-vanishing for n + s = m with parity pΨ = n mod 2 from
(36). Expanding (45) using (68) one finds (see Proposition 15 of ref. [MTZ]
for details)

Z(1)
[
f1
g1

]
(Y [ψ+, w1] . . .Ψ[k, l], τ1)

Z(1)
[
f1
g1

]
(τ1)

= (−1)m(m−1)/2 detE1(k, l),

Z(1)
[
f2
g2

]
(Y [ψ−, z1] . . .Ψ[k, l], τ2)

Z(1)
[
f2
g2

]
(τ2)

= (−1)m(m+1)/2(−ξ)pΨǫwt[Ψ] detE2(l,k),
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for m×m matrices with components

(E1(k, l))ij =





D
[
θ1
φ1

]
(1, lj, τ1, wi) i = 1, . . . , n

C
[
θ1
φ1

]
(ki, lj, τ1) i = n+ 1, . . . , m,

(E2(l,k))ij =





D
[
θ2
φ2

]
(li, 1, τ2,−zj) j = 1, . . . , n

C
[
θ2
φ2

]
(li, kj, τ2) j = n+ 1, . . . , m,

for C
[
θa
φa

]
, D

[
θa
φa

]
of (69) and (70). Since pΨ = n mod 2 one finds ξpΨ =

(−1)n(n+1)/2ξn so that altogether

G(2)
n

[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] =
∑

m≥0

(−1)m
∑

k,l

ǫwt[Ψ]ξn detE1(k, l) detE2(l,k).

But wt[Ψ] =
∑m−n

i=1 (ki − 1
2
) +

∑m
j=1(lj − 1

2
) so that factors of ǫ

1
2
lj− 1

4 and

ǫ
1
2
ki− 1

4 may be absorbed into the rows and columns of the above determinants.

Furthermore, factors of dw
1
2
i and dz

1
2
i can be absorbed into the first n rows

and columns of detE1 and detE2 repectively. Lastly, a factor of ξ can be
absorbed into the first n rows of detE1(k, l) to find

G(2)
n

[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] =
∑

m≥0

(−1)m
∑

k,l

detG1(k, l) detG2(l,k),

for m×m matrices

(G1(k, l))ij =

{
ξh1(lj, τ1, wi) i = 1, . . . , n
F1(ki, lj, τ1) i = n+ 1, . . . , m,

(G2(l,k))ij =

{
h2(li, τ2, zj) j = 1, . . . , n
F2(li, kj, τ2) j = n+ 1, . . . , m,

with Fa, ha of (8) and (9). Finally, let A, B, U and W denote the finite
matrices found by truncating F1, F2, h1(wi) and h2(zj) respectively to an
arbitrary order in ǫ. Thus applying Corollary 5.9 to A, B, U and W with
n = p and t = −ξ it follows that as a formal series in ǫ we have

G(2)
n

[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] = det

[
0 H+Ξ
H− I −Q

]
,
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where H+Ξ = (0, h1(lj, wi)) and H
− =

(
0, (h2(li, zj)

)T
. Finally, using Propo-

sition 5.5 for wi ∈ Σ̂
(1)
1 and zi ∈ Σ̂

(1)
2 we find a convergent series in ǫ

G(2)
n

[
f
g

]

Z(1)
[
f1
g1

]
Z(1)

[
f2
g2

] = detS(2) det(I −Q),

and hence the Theorem follows on applying Theorem 5.1. �

Remark 5.10 The other choices of the insertion points for ψ± give rise to
corresponding H± and S(1,1) terms in Proposition 5.5 leading to the same
result (56).

As an illustration of the use of the generating form we compute the one-point
function for the Virasoro vector ω̃ = 1

2
(ψ+[−2]ψ− + ψ−[−2]ψ+). Let w, z ∈

Σ̂
(1)
1 and consider the generating form G(2)

1

[
f
g

]
(w, z) = S(2)(w, z)Z(2)

[
f
g

]

(where we suppress the τ1, τ2, ǫ dependence). Using (37) we find

∂wZ
(2)

[
f

g

]
(ψ+, w;ψ−, z) = ∂wZ

(2)

[
f

g

]
(Y [ψ+, w − z]ψ−, z)

= − 1

(w − z)2
Z(2)

[
f

g

]
+ Z(2)

[
f

g

]
(ψ+[−2]ψ−, z) + . . .

and similarly for ∂z. Letting S(2)(w, z) = K(2)(w, z)dw
1
2dz

1
2 it follows that

the Virasoro 1-point form is given by

F (2)

[
f

g

]
(ω̃, z) = dz2 lim

w→z

[
1

2
(∂w − ∂z)K

(2)(w, z) +
1

(w − z)2

]
Z(2)

[
f

g

]
.

(60)
An alternative expression for this is shown below in Proposition 5.14.

5.4 Bosonization and a Genus Two Jacobi Product

Identity

Consider the decomposition of the rank two fermion VOSA into irreducible
modulesM⊗em modules (form ∈ Z) of the Heisenberg subVOAM generated
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by the Heisenberg state a. The genus one partition function (43) can thus
also be expressed as (e.g. [Ka], [MTZ])

Z(1)

[
f

g

]
(τ) =

e−2πiαβ

η(τ)
ϑ(1)

[
α

β

]
(τ),

for theta function (1) and Dedekind eta-function η(τ) = q1/24
∞∏
n=1

(1−qn). All
n-point functions can be similarly computed in terms of Heisenberg module
traces [MTZ] so that the genus two partition function (49) can also be com-
puted in this bosonized formalism to obtain [MT1]

Z(2)

[
f

g

]
(τ1, τ2, ǫ) = e−2πiα·βZ

(2)
M (τ1, τ2, ǫ) ϑ

(2)

[
α

β

]
(Ω(2)), (61)

for genus two Riemann theta function with characteristics α = (α1, α2), β =
(β1, β2) and where

Z
(2)
M (τ1, τ2, ǫ) =

1

η(τ1)η(τ2) det (I −A1A2)
1/2
,

is the genus two partition function for the rank one free Heisenberg VOA M .
Aa for a = 1, 2 is an infinite matrix with components indexed by k, l ≥ 1
[MT1], [MT2]

Aa(k, l, τa, ǫ) = ǫ(k+l)/2 (−1)k+1(k + l − 1)!√
kl(k − 1)!(l − 1)!

Ek+l(τa),

for standard Eisenstein series En(τ) = En

[
1
1

]
(τ). Comparing with The-

orem 5.1 we find a new identity relating the genus two theta function to
determinants on Dǫ as follows

Theorem 5.11

ϑ(2)
[
α
β

]
(Ω(2))

ϑ(1)
[
α1

β1

]
(τ1) ϑ(1)

[
α2

β2

]
(τ2)

= det (I − A1A2)
1/2 det (I −Q) .

�
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It is shown in ref. [MT1] that det (I − A1A2) can be expressed as an infinite
product as follows. Let σ2n = (k1, . . . , k2n) denote a cycle permutation on
2n positive integers. We may canonically associate each σ with an oriented
graph N consisting of 2n valence 2 nodes labelled by k1, . . . , k2n. N is said
to be rotationless when it admits no non-trivial rotations (a rotation being
an orientation-preserving automorphism of N which preserves node labels).
Lastly, we define a weight function ζA on N by

ζA(N) =

n∏

i=1

A1(k2i−1, k2i)A2(k2i, k2i+1),

where k2n+1 ≡ k1. We then find [MT1]

det (I −A1A2) =
∏

N∈R
(1− ζA(N)) ,

where R denotes the set of rotationless oriented cycle graphs with an even
number of nodes. This expansion can be similarly applied to det (I −Q) =
det (I − F1F2) with corresponding weight function ζF . Hence Theorem 5.11
implies a genus two Jacobi product-like formula

Proposition 5.12

ϑ(2)
[
α
β

]
(Ω(2))

ϑ(1)
[
α1

β1

]
(τ1) ϑ(1)

[
α2

β2

]
(τ2)

=
∏

N∈R
(1− ζA(N))1/2 (1− ζF (N)) .

�

Remark 5.13 The bosonization procedure can be applied to obtain an alter-
native expression for the genus two generating form of Theorem 5.6 to obtain
Fay’s tresecant identity relating detS(2) to a product of prime forms [TZ4].

5.5 A Genus Two Ward Indentity

We may also recompute the 1-point function (60) for the Virasoro vector
ω̃ = 1

2
a[−1]a in the bosonized version of the rank two free fermion VOSA.

We introduce the differential operator [F1], [U], [MT1]

D =
1

2πi

∑

1≤i≤j≤2

ν
(2)
i (x)ν

(2)
j (x)

∂

∂Ω
(2)
ij

, (62)
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for holomorphic 1-forms ν
(2)
i . We also recall the genus two projective con-

nection s(2)(x) of Appendix 7.1. Using (61) and results of [MT1] we find

Proposition 5.14 The Virasoro 1-point form for the rank two fermion VOSA
satisfies a genus two Ward identity

F (2)(ω̃, x; τ1, τ2, ǫ) = e−2πiα·βZ
(2)
M (τ1, τ2, ǫ)

(
D +

1

12
s(2)(x)

)
ϑ(2)

[
α

β

]
(Ω(2)).

(63)

The Ward identity (63) is similar to previous results in physics and mathe-
matics e.g. [EO], [KNTY].

6 Modular Invariance Properties

We next consider the automorphic properties of the genus two partition
function for the rank two fermion VOSA. In [MTZ] we define the action

of γ =

(
a b
c d

)
∈ SL(2,Z) on a genus one orbifold partition function

Z(1)
[
f
g

]
(τ) as follows:

Z(1)

[
f

g

]∣∣∣∣ γ(τ) = Z(1)

(
γ.

[
f

g

])
(γ.τ), (64)

where γ.τ = aτ+b
cτ+d

and γ.
[
f
g

]
=

[
fagb

fcgd

]
. For the rank two fermion VOSA we

find modular invariance with [MTZ]

Z(1)

[
f

g

]∣∣∣∣ γ(τ) = e(1)γ

[
f

g

]
Z(1)

[
f

g

]
(τ), (65)

where e
(1)
γ

[
f
g

]
∈ U(1) is a specific multiplier system.4

In Theorem 5.1 we showed that the genus two partition function is holo-
morphic on the domain Dǫ of (5). Dǫ is preserved under the action of
G ≃ (SL(2,Z) × SL(2,Z)) ⋊ Z2, the direct product of the left and right

4Note a notational change for the multiplier from that of ref. [MTZ]
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torus modular groups, which are interchanged upon conjugation by an invo-
lution β defined as follows [MT2]

γ1(τ1, τ2, ǫ) =

(
γ1.τ1, τ2,

ǫ

c1τ1 + d1

)
,

γ2(τ1, τ2, ǫ) =

(
τ1, γ2.τ2,

ǫ

c2τ2 + d2

)
,

β(τ1, τ2, ǫ) = (τ2, τ1, ǫ),

for (γ1, γ2) ∈ SL(2,Z) × SL(2,Z) with γi =

(
ai bi
ci di

)
. There is a natural

injection G→ Sp(4,Z) in which the two SL(2,Z) subgroups are mapped to

Γ1 =








a1 0 b1 0
0 1 0 0
c1 0 d1 0
0 0 0 1







, Γ2 =








1 0 0 0
0 a2 0 b2
0 0 1 0
0 c2 0 d2







,

and the involution is mapped to

β =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 .

In a similar way to (64) we define an action of γ ∈ G on the genus two
orbifold twisted partition function (40) by

Z(2)

[
f

g

]∣∣∣∣ γ(τ1, τ2, ǫ) = Z(2)

(
γ.

[
f

g

])
γ. (τ1, τ2, ǫ) ,

generated by γi ∈ Γi and β with

γ1.




f1
f2
g1
g2


 =




fa1
1 g

b1
1

f2
f c1
1 g

d1
1

g2


 , γ2.




f1
f2
g1
g2


 =




f1
fa2
2 g

b2
2

g1
f c2
2 g

d2
2


 , β.




f1
f2
g1
g2


 =




f2
f1
g2
g1


 .

We may now describe the modular invariance of the genus two partition
function for the rank two VOSA of Theorem 5.1 under the action of G. Define
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a genus two multiplier system e
(2)
γ

[
f
g

]
∈ U(1) for γ ∈ G in terms of the genus

one multiplier system as follows

e(2)γi

[
f

g

]
= e(1)γi

[
fi
gi

]
, e

(2)
β

[
f

g

]
= 1, (66)

for G generators γi ∈ Γi and β. We then find

Theorem 6.1 The genus two orbifold partition function for the rank two
VOSA is modular invariant with respect to G = (SL(2,Z)× SL(2,Z))⋊ Z2

with multiplier system (66) i.e.

Z(2)

[
f

g

]∣∣∣∣ γ (τ1, τ2, ǫ) = e(2)γ

[
f

g

]
Z(2)

[
f

g

]
(τ1, τ2, ǫ) .

Proof. We recall from Theorem 5.1 that the genus two partition function
can be expressed as

Z(2)

[
f

g

]
(τ1, τ2, ǫ) =

∑

k,l

(−1)m ǫwt[Ψ]Z(1)

[
f1
g1

]
(Ψ[k, l], τ1)Z

(1)

[
f2
g2

]
(Ψ[l,k], τ2),

for 1 ≤ k1 < . . . < km and 1 ≤ l1 < . . . < lm with Fock basis {Ψ[k, l]} of
square bracket weight wt[Ψ] =

∑m
i=1(ki + li − 1). Let us consider the action

of γ1 ∈ Γ1. It follows from (71) (see also Proposition 21. of [MTZ]) that

Z(1)

(
γ1.

[
f1
g1

])
(Ψ[k, l], γ1.τ1) = e(1)γ1

[
f1
g1

]
(c1τ1+d1)

wt[Ψ]Z(1)

[
f1
g1

]
(Ψ[k, l], τ1).

Hence from (66) we find

Z(2)

[
f

g

]∣∣∣∣ γ1 = e(1)γ1

[
f1
g1

]∑

k,l

(−1)m
(

ǫ

c1τ1 + d1

)wt[Ψ]

(c1τ1 + d1)
wt[Ψ]

·Z(1)

[
f1
g1

]
(Ψ[k, l], τ1)Z

(1)

[
f2
g2

]
(Ψ[l,k], τ2)

= e(1)γ1

[
f1
g1

]
Z(2)

[
f

g

]
.

A similar result holds for γ2 ∈ Γ2 whereas invariance under β is obvious. The
result follows. �
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Remark 6.2 Modular invariance can also inferred from Theorem 5.11 using
modular properties of the Riemann theta function together with those for the
Heisenberg genus two partition function described in [MT1].

Finally, we can also obtain modular invariance for the generating form G(2)
n

[
f
g

]

described in Theorem 5.6. In particular, as is described in [TZ1], the genus
two Szegö kernel of (12) is invariant under the action of G. Hence it follows
that

Theorem 6.3 G(2)
n

[
f
g

]
is modular invariant with respect to G with multiplier

system (66). �

7 Appendix

7.1 Some Riemann Surface Theory

Consider a compact Riemann surface Σ(g) of genus g with canonical homology
cycle basis a1, . . . , ag, b1, . . . , bg. In general there exists g holomorphic 1-forms

ν
(g)
i , i = 1, . . . , g which we may normalize by e.g. [FK]

∮

ai

ν
(g)
j = 2πiδij .

The genus g period matrix Ω(g) is defined by

Ω
(g)
ij =

1

2πi

∮

bi

ν
(g)
j ,

for i, j = 1, . . . , g. Ω(g) is symmetric with positive imaginary part i.e. Ω(g) ∈
Hg, the Siegel upper half plane. It is useful to introduce the normalized
differential of the second kind defined by [Sp], [M], [F1]:

ω(g)(x, y) ∼ dxdy

(x− y)2
for x ∼ y,

for local coordinates x, y, with normalization
∫
ai
ω(g)(x, ·) = 0 for i = 1, . . . , g.

Using the Riemann bilinear relations, one finds that

ν
(g)
i (x) =

∮

bi

ω(g)(x, ·).
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The projective connection s(g) is defined by [G]

s(g)(x) = 6 lim
x→y

(
ω(g)(x, y)− dxdy

(x− y)2

)
.

s(g)(x) is not a global 2-form but rather transforms under a general conformal
transformation x→ φ(x) as

s(g)(φ(x)) = s(g)(x)− {φ; x}dx2,

where {φ; x} = φ′′′

φ′
− 3

2

(
φ′′

φ′

)2

is the Schwarzian derivative.

There exists a (nonsingular and odd) character
[
γ
δ

]
such that [M], [F1]

ϑ(g)
[γ
δ

]
(0) = 0, ∂ziϑ

(g)
[γ
δ

]
(0) 6= 0,

for the theta function with real characteristics (1). Define

ζ(x) =

g∑

i=1

∂ziϑ
(g)

[γ
δ

]
(0)ν

(g)
i (x),

a holomorphic 1-form, and let ζ(x)
1
2 denote the form of weight 1

2
on the

double cover Σ̃ of Σ. We also refer to ζ(x)
1
2 as a (double-valued) 1

2
-form on

Σ. We define the prime form E(x, y) by

E(x, y) =
ϑ(g)

[
γ
δ

] (∫ x

y
ν(g)

)

ζ(x)
1
2 ζ(y)

1
2

∼ (x− y)dx−
1
2dy−

1
2 for x ∼ y,

where
∫ x

y
ν(g) = (

∫ x

y
ν
(g)
i ) ∈ C

g. E(x, y) = −E(y, x) is a holomorphic differ-

ential form of weight (−1
2
,−1

2
) on Σ̃ × Σ̃. E(x, y) has multipliers along the

ai and bj cycles in x given by 1 and e−iπΩ
(g)
jj −

∫ x

y
ν
(g)
j respectively [F1].

7.2 Twisted Elliptic Functions

Let (θ, φ) ∈ U(1) × U(1) denote a pair of modulus one complex parameters
with φ = exp(2πiλ) for 0 ≤ λ < 1. For z ∈ C and τ ∈ H we define ‘twisted’
Weierstrass functions for k ≥ 1 as follows [MTZ]

Pk

[
θ

φ

]
(z, τ) =

(−1)k

(k − 1)!

′∑

n∈Z+λ

nk−1qnz
1− θ−1qn

,
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for q = q2πiτ where
′∑

means we omit n = 0 if (θ, φ) = (1, 1). We have a
Laurant expansion

P1

[
θ

φ

]
(z, τ) =

1

z
−

∑

n≥1

En

[
θ

φ

]
(τ)zn−1, (67)

in terms of twisted Eisenstein series for n ≥ 1, defined by

En

[
θ

φ

]
(τ) = −Bn(λ)

n!
+

1

(n− 1)!

′∑

r≥0

(r + λ)n−1θ−1qr+λ

1− θ−1qr+λ

+
(−1)n

(n− 1)!

∑

r≥1

(r − λ)n−1θqr−λ

1− θqr−λ
,

where
′∑

means we omit r = 0 if (θ, φ) = (1, 1) and where Bn(λ) is the
Bernoulli polynomial defined by

qλz
qz − 1

=
1

z
+
∑

n≥1

Bn(λ)

n!
zn−1.

We also have Laurant expansions

P1

[
θ

φ

]
(x− y, τ) =

1

x− y
+

∑

k,l≥1

C

[
θ

φ

]
(k, l) xk−1 yl−1,

P1

[
θ

φ

]
(z + x− y, τ) =

∑

k,l≥1

D

[
θ

φ

]
(k, l, z) xk−1 yl−1, (68)

where for k, l ≥ 1 we define

C

[
θ

φ

]
(k, l, τ) = (−1)l

(
k + l − 2

k − 1

)
Ek+l−1

[
θ

φ

]
(τ), (69)

D

[
θ

φ

]
(k, l, τ, z) = (−1)k+1

(
k + l − 2

k − 1

)
Pk+l−1

[
θ

φ

]
(z, τ). (70)

In [MTZ] we show that for (θ, φ) 6= (1, 1), Ek

[
θ
φ

]
is a twisted modular form

of weight k i.e.

Ek

(
γ.

[
θ

φ

])
(γ.τ) = (cτ + d)kEk

[
θ

φ

]
(τ), (71)

where for γ =

(
a b
c d

)
∈ SL(2,Z) we have γ.τ = aτ+b

cτ+d
and γ.

[
θ
φ

]
=

[
θaφb

θcφd

]
.
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