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The Golod-Shafarevich inequality for Hilbert series of

quadratic algebras and the Anick conjecture

Natalia Iyudu and Stanislav Shkarin

Abstract

We study the question on whether the famous Golod-Shafarevich estimate, which
gives a lower bound for the Hilbert series of a (noncommutative) algebra, is attained.
This question was considered by Anick in his 1983 paper ’Generic algebras and CW-
complexes’, Princeton Univ. Press., where he proved that the estimate is attained for

the number of quadratic relations d 6
n2

4 and d >
n2

2 , and conjectured that it is the
case for any number of quadratic relations. The particular point where the number of

relations is equal to n(n−1)
2 was addressed by Vershik. He conjectured that a generic

algebra with this number of relations is finite dimensional.

We prove that over any infinite field, the Anick conjecture holds for d >
4(n2+n)

9
and arbitrary number of generators, and confirm the Vershik conjecture over any field
of characteristic 0. We give also a series of related asymptotic results.

Keywords: Quadratic algebras, Golod–Shafarevich theorem, the Anick conjecture, the
Vershik conjecture
MSC: 16S37, 16S15, 16P90

1 Introduction

Let F(n,K) = K〈x1, . . . , xn〉 be a free associative algebra with n generators x1, . . . , xn, over
a field K. Recall that the free algebra carries the natural degree grading

F(n,K) =

∞
⊕

k=0

Fk(n,K), where Fk(n,K) = spanK{xj1 . . .xjk : 1 6 j1, . . . , jk 6 n}.

To define this grading we suppose that generators xi all have degree one. We deal with
quadratic algebras generated in degree one, that is, algebras given by homogeneous relations
of degree 2:

R = K〈x1, . . . , xn〉 / I, where I = Id {f1, . . . , fd} (1.1)

is the ideal generated by

f1, . . . , fd ∈ F2(n,K) : fj =

n
∑

k,m=1

cj,k,mxkxm, cj,k,m ∈ K. (1.2)

Since relations (1.2) are homogeneous, an algebra R inherits grading from the free algebra
F(n,K):

R =

∞
⊕

k=0

Rk, where I =

∞
⊕

k=0

Ik, for Ik = I ∩ Fk(n,K) and Rk = Fk(n,K)/Ik.
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Recall also that the Hilbert series of R is a polynomial generating function associated to the
sequence of dimensions of graded components aq = dim

K
Rq:

HR(t) =

∞
∑

q=0

(dim
K
Rq) t

q. (1.3)

It belongs to the ring Z[[t]] of formal power series on one variable and we consider the

following ordering on it. For two power series a(t) =
∞
∑

j=0
ajt

j and b(t) =
∞
∑

j=0
bjt

j (with

real coefficients) we write a(t) > b(t) if aj > bj for any j ∈ Z+. For such a power series

a(t) =
∞
∑

j=0
ajt

j , we denote by |a(t)| a series obtained from a(t) by replacing all coefficients

starting from the first negative one by zeros.
The famous result due to Golod and Shafarevich [4] gives a lower bound for the Hilbert

series of algebras with n generators and d quadratic relations. (Throughout the text, when-
ever we are talking on the number of relations, we mean the number of linearly independent
relations).

Theorem GS. Let K be a field, n ∈ N, 0 6 d 6 n2 and R be a quadratic K-algebra with n
generators and d relations. Then HR(t) > |(1 − nt+ dt2)−1|.

Let us note, that although we formulated above the Golod-Shafarevich estimate only for
quadratic algebras, it is known for algebra with any, finite or infinite number of relations.
Namely, it is as follows:

|(1− nt+

∞
∑

i=2

rit
i)−1| 6 HA,

where ri stands for the number of relations of degree i.
This estimate allowed to construct a counterexample for the Kurosh problem on the

nilpotency of nil algebra and to the General Burnside Problem on the existence of a finitely
generated infinite torsion p-group. It is also recognized due to other applications to p-groups
and class field theory [5, 4].

It will be convenient for our purposes to state the Golod-Safaevich theorem also in terms
of the numbers

hq(K, n, d) = min
R∈Rn,d

dimRq, (1.4)

where Rn,d is the set of all quadratic K-algebras R with n generators and d relations. For
n ∈ N and 0 6 d 6 n2, consider the series

Hmin
K,n,d(t) =

∞
∑

q=0

hq(K, n, d)tq. (1.5)

Then Theorem GS admits the following equivalent form.

Theorem GS′. Let K be a field, n ∈ N and 0 6 d 6 n2. Then Hmin
K,n,d(t) > |(1−nt+dt2)−1|.

Note that a priori it is not clear why the algebra with the series Hmin
K,n,d should exist in the

class Rn,d. In fact, it is not difficult to show that not only it does exist, but it is in ’general
position’ in one or another sense. Usually by ’generic quadratic algebra’ we mean generic
in the sense of Zariski topology. Namely, we consider an algebra from Rn,d as a point in

Kn2d, defined by the tuple of all coefficients of its defining relations. Then we say that a
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generic quadratic K-algebra with n relations and d generators has a property P, if the set
{cj,k,m} ∈ Kn2d of coefficient vectors for which the corresponding algebra R defined in (1.1)

has property P contains a dense Zariski open subset of Kn2d. The following proposition is
a well-known fact, see, for instance [2, 3, 7].

Proposition 1.1. Let K be an infinite field and n ∈ N, 0 6 d 6 n2. Then dim
K
Rq =

hq(K, n, d) for a generic quadratic K-algebra R with n generators and d relations. In partic-

ular, if Hmin
K,n,d(t) is a polynomial, then HR(t) = Hmin

K,n,d(t) for a generic quadratic K-algebra

R with n generators and d relations.

In the case Hmin
K,n,d is not a polynomial, there are more subtleties involved in the question

whether a generic algebra has this series. There are arguments (see [10]) showing that this is
the case, when K is an uncountable algebraically closed field. In [3] we suggested a slightly
modified notion of a ’generic’ algebra, in the case K = R. Namely, we say that the generic
in the Lebesgue sense algebra from Rn,d has the property P if the set of algebras not having
P has Lebesgue measure zero. We show that in this (weaker) sense a generic algebra has
the series Hmin even if it is infinite.

In his 1983 paper ”Generic algebras and CW-complexes”, Princeton Univ. Press, [1],
Anick studied the behavior of Hilbert series of algebras given by relations and formulated
the following conjecture.

Conjecture A. For any infinite field K, any n, q ∈ N and 0 6 d 6 n2, a generic quadratic

K-algebra R with n generators and d relations dimRq equals to the qth coefficient of the

series |(1− nt+ dt2)−1|. Equivalently, Hmin
K,n,d(t) = |(1− nt+ dt2)−1|.

In other words, Conjecture A states that the lower estimate of the Hilbert series by Golod
and Shafarevich is attained and a generic algebra has the minimal Hilbert series.

This question is very important to clarify in the light of key problems in the ring theory
concerned with the behavior of nilpotent elements. Examples of such problems are the
problem on the existence of simple nil ring, solved in affirmative by A.Smoktuniwicz [8], the
Köthe conjecture, the Burnside type problem for finitely presented rings (see [9]).

Values of terms hq(K, n, d) for q = 0, 1, 2 are obvious for an arbitrary algebra given by n
generators and d relations: h0(K, n, d) = 1, h1(K, n, d) = n and h2(K, n, d) = n2 − d. Anick
proved [1, 7] that his conjecture holds also for q = 3.

Theorem A. Let K be any field, n ∈ N and 0 6 d 6 n2. Then

h3(K, n, d) =

{

0 if d >
n2

2 ;

n3 − 2nd if d < n2

2 .
(1.6)

Since the number in the right-hand side of (1.6) happens to coincide with the third
coefficient near t3 in |(1 − nt+ dt2)−1|, Theorem A proves Conjecture A in the case q = 3

and in the case d >
n2

2 . Conjecture A is also known to be true if d 6
n2

4 [10, 7]. The

region n2

4 < d < n2

2 remained a white zone so far. Let us note that for d > n2

4 , the series
|(1−nt+dt2)−1| is a polynomial. Thus Conjecture A, if true, implies that a generic quadratic

K-algebra with infinite K, n generators and d > n2

4 relations is finite dimensional.
In [11] Vershik formulated a conjecture, which addresses a specific point of the ’difficult

interval’ n2

4 < d < n2

2 , d = n(n−1)
2 , which is the number of relations defining the algebra of

commutative polynomials or any PBW algebra.

Conjecture V. Let n ∈ N, n > 3. Then a generic quadratic C-algebra with n generators

and
n(n−1)

2 relations is finite dimensional.
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As it is mentioned in [7] there was an attempt to prove this conjecture in [12], but the
argument there was incorrect.

Our goal in this paper is to move the frame of the interval (n
2

4 , n
2

2 ) which remains unknown
since the Anick’s 1983 paper. Namely, we prove the following.

Theorem 1.2. For any infinite field, the Golod–Shafarevich estimate is attained for a

generic quadratic algebra with n generators and d >
4(n2+n)

9 quadratic relations.

Namely, the Hilbert series of the generic algebra is:

H(t) = |(1− nt+ dt2)−1| = 1 + nt+ (n2 − d)t2 + (n3 − 2nd)t3.

The point d = n(n−1)
2 falls into the interval from the Theorem1.2, for big enough n, so

we automatically get as a consequence an affirmative answer to the Vershik’s question for
n > 17. After some additional considerations, we get an affirmative answer for the Vershik’s
question for each n > 3 over a field of characteristic 0:

Theorem 1.3. Let K be a field of characteristic 0 and n ∈ N, n > 3. Then a generic

quadratic K-algebra R with n relations and
n(n−1)

2 relations has the Hilbert series and the

dimension given by the following formula

HR(t) =







1 + nt+ n(n+1)
2 t2 + n2t3 if n > 5;

1 + 4t+ 10t2 + 16t3 + t4 if n = 4;
1 + 3t+ 6t2 + 9t3 + 9t4 if n = 3,

dim
K
R =







3n(n+1)+2
2 if n > 5;

32 if n = 4;
28 if n = 3.

(1.7)

We will formulate more explicit results later in the text. In order to illustrate them, we
present their asymptotic versions straight away.

Let us note that the series of related questions on asymptotic characteristics of the Golod-
Shafarevich inequality were considered in [6]

For a field K, n, q ∈ N with q > 2, we denote

d(K, n, q) = min{d ∈ N : hq(K, n, d) = 0}. (1.8)

That is, d(K, n, q) is the minimal d for which there is a quadratic K-algebra R with n
generators and d relations satisfying Rq = {0}. Obviously, d(K, n, 2) = n2. Similarly

d(K, n,∞) = min
{

d ∈ N : min
q∈N

hq(K, n, d) = 0
}

. (1.9)

That is, d(K, n,∞) is the minimal d for which there is a finite dimensional quadratic K-
algebra R with n generators and d relations. In order to formulate our asymptotic results
we need the following lemma.

Lemma 1.4. Let K be a field and q ∈ N, q > 2 or q = ∞. Then the limit lim
n→∞

d(K,n,q)
n2 =

α(K, q) does exist and

α(K, q) = lim
n→∞

d(K, n, q)

n2
= inf

{

d(K, n, q)

n2
: n ∈ N

}

. (1.10)

Moreover, {α(K, q)}q>3 is decreasing, α(K,∞) = lim
q→∞

α(K, q) > 1
4 and α(K, 3) = 1

2 .
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Theorem 1.5. The equalities α(K, 4) = 3−
√
5

2 and α(K, 5) = 1
3 hold for any infinite field.

Moreover, 1
4 6 α(K,∞) 6 α(K, 6) 6 5

16 for any field K of characteristic 0.

Corollary 1.6. Let K be an infinite field and lim
n→∞

dn
n2 > 3−

√
5

2 with n, dn ∈ N and dn 6 n2.

Then for any sufficiently large n, a generic quadratic K-algebra with n generators and dn
relations has Hilbert series 1+nt+(n2−dn)t

2+max{0, (n3−2dnn
2)}t3 = |(1−nt+dnt

2)−1|.

Proof. Indeed, by Theorem 1.5, the Hilbert series in question must be a polynomial of degree
at most 3, whose specific shape is determined by Theorem A and Proposition 1.1.

Corollary 1.7. Let K be an infinite field and lim
n→∞

dn
n2 > 1

3 with n, dn ∈ N and dn 6 n2.

Then for any sufficiently large n, the Hilbert series of a generic quadratic K-algebra with n
generators and dn relations is a polynomial of degree at most 4.

Corollary 1.8. Let K be a field of characteristic 0 and lim
n→∞

dn
n2 > 5

16 with n, dn ∈ N and

dn 6 n2. Then for any sufficiently large n, a generic quadratic K-algebra with n generators

and dn relations has Hilbert series being a polynomial of degree at most 5 and therefore is

finite dimensional.

2 Notations and preliminary facts

Let K be a field, n, d, q ∈ N, 1 6 d 6 n2, q > 3 and {cj,k,m : 1 6 j 6 d, 1 6 k,m 6 n}
be variables taking values in K. Consider the ideal Ic with c = {cj,k,m} in K〈x1, . . . , xn〉
generated by f1, . . . , fd, fj =

n
∑

k,m=1

cj,k,mxkxm and the algebra Rc = K〈x1, . . . , xn〉/Ic.

Clearly the qth homogeneous component (Ic)q is spanned by µfjν, where 1 6 j 6 d and µ, ν
are two monomials in K〈x1, . . . , xn〉 with degµ+ deg ν = q− 2. Hence (Ic)q is the image of
the linear operator Lc : K

Ω → Fq(n,K), where Ω is the set of triples (j, µ, ν) with 1 6 j 6 d,
µ and ν being monomials satisfying degµ+ deg ν = q − 2 and Lc sends the standard basic
vector ej,µ,ν to µfjν. Then the dimension of (Ic)q equals to the rank rkLc of Lc. Hence
dim (Rc)q = nq − dim (Ic)q = nq − rc, where rc = rkLc. It immediately follows that

hq(K, n, d) = nq − r, where r = max
c

rc.

Since the rank of a linear map equals to the maximal size of its square submatrix with
non-zero determinant, there exist an r× r submatrix of the rectangular matrix of Lc, whose
determinant δ(c) is non-zero for some c. On the other hand, δ(c) is a polynomial in cj,k,m with
integer coefficients. Since a polynomial with integer coefficients over a field of characteristic
0 defines a zero function if and only if all its coefficients are zero, we see that the numbers
hq(K, n, d) do not depend on the choice of K provided K has characteristic 0.

Now if p is a prime number and K = Zp, then the fact that δ(c) is non-zero for some c
implies that the coefficients of δ(c) are not all zeros as elements of Zp. Hence some of the
coefficients of δ(c) considered as a polynomial with coefficients in Z are not multiples of p and
therefore are non-zero. Hence δ(c) remains non-zero for some c after replacing the field Zp

by Q. It follows that hq(Q, n, d) 6 hq(Zp, n, d). Similar argument shows that if hq(K, n, d)
does not depend on the choice of an infinite field K of a fixed positive characteristic p and
that hq(K, n, d) 6 hq(Zp, n, d) for any field K of characteristic p.

Next, if R is a quadratic K-algebra with n generators x1, . . . , xn and d relations, then
the quotient R0 of R by the ideal generated by xn′+1, . . . , xn is a quadratic K-algebra
with n′ generators and d relations, whose homogeneous components are quotients of the
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homogeneous components of R. It follows that hq(K, n′, d) 6 hq(K, n, d) if n′ 6 n. On
the other hand adding new relations to an algebra can only decrease the dimension of its
components. Hence hq(K, n, d) > hq(K, n, d′) if d 6 d′. Above observations are summarized
in the following proposition.

Proposition 2.1. For any field K, hq(K, n, d) increase with respect to n and decrease with

respect to d. Moreover, if n ∈ N, q, d ∈ Z+ and 0 6 d 6 n2 and p is a prime number, then

Hmin
K,n,d(t) = Hmin

Q,n,d(t) 6 Hmin
Zp,n,d

(t) for any field K of characteristic zero and Hmin
K1,n,d

(t) =

Hmin
K2,n,d

(t) 6 Hmin
Zp,n,d

(t) for any two infinite fields K1 and K2 of characteristic p.

In what follows it is convenient to give an alternative definition of the numbers hq(K, n, d).
We need the following notation. Let E be a vector space over a field K. For k ∈ Z+, we
denote the kth tensor power of E by E⊗k. That is, E⊗0 = K, E⊗1 = E and E⊗k =
E ⊗ . . . ⊗ E is the tensor product of k copies of E. If L is a subspace of E⊗2 = E ⊗ E,
then for k > 2 we can define the subspaces Ek(L,E) of E⊗k inductively: E2(L,E) = L and
Ek+1(L,E) = E ⊗ Ek(L,E) ∩ Ek(L,E) ⊗ E. We can also write two explicit expressions for
the space Ek(L,E):

Ek(L,E) =

{

(E ⊗ L⊗(k−2)/2 ⊗ E) ∩ L⊗(k/2) if k is even;

(E ⊗ L⊗(k−1)/2) ∩ (L⊗(k−1)/2 ⊗ E) if k is odd,
(2.1)

Ek(L,E) =

k−1
⋂

j=1

Lk,j, where Lk,j = E⊗(j−1) ⊗ L⊗ E⊗(k−1−j) for 1 6 j 6 k − 1. (2.2)

If E is an n-dimensional vector space over K with a fixed basis {e1, . . . , en}, we consider
the symmetric bilinear form [·, ·]j : E⊗j × E⊗j → K such that

[em1
⊗ . . .⊗ emj

, er1 ⊗ . . .⊗ erj ]j = δm,r, where m, r ∈ {1, . . . , n}j .

For a subspace N of E⊗j we write

N⊥ = {f ∈ E⊗j : [η, f ]j = 0 for all η ∈ N}.

From the definition of [·, ·]j it easily follows that the space N⊥ is naturally isomorphic to
the space of linear functionals on E⊗j annihilating N . Hence

dimN + dimN⊥ = dimE⊗j = nj. (2.3)

Moreover, one can easily see that (N⊥)⊥ = N and therefore the set of N⊥ for all d-
dimensional subspaces N of E⊗j coincides with the set of all (nj−d)-dimensional subspaces
of E⊗j .

Lemma 2.2. Let K be a field, n ∈ N, 1 6 d 6 n2, E be an n-dimensional vector space over

K with a basis {e1, . . . , en} and R be a quadratic K-algebra with n generators x1, . . . , xn and

d relations fs =
∑

16a,b6n

cs,a,bxaxb. Let also M be the d-dimensional subspace of E⊗E spanned

by
∑

16a,b6n

cs,a,bea ⊗ eb for 1 6 s 6 d. Then dimRq = dimEq(M⊥, E) for any q > 2.

Proof. Let q > 2. Under the linear isomorphism between Fq(K, n) which sends xm1
. . .xmq

to em1
⊗ . . .⊗ emq , the qth homogeneous component Iq of the ideal I generated by f1, . . . , fd

is mapped onto the subspace

M =

q−1
∑

j=1

M q,j

6



of E⊗q, where M q,j are defined in (2.2). Using the last display, is straightforward to see
that

M⊥ =

q−1
⋂

j=1

(M q,j)⊥ =

q−1
⋂

j=1

(M⊥)q,j = Eq(M⊥, E),

where the latter space is defined in (2.2). Now using (2.3), we see that

dimRq = nq − dim Iq = nq − dimM = dim Eq(M⊥, E),

which completes the proof.

Next lemma relates the spaces Eq(L,E) and the numbers hq(K, n, d).

Lemma 2.3. Let K be a field, q, n ∈ N, d ∈ Z+, q > 3, 0 6 d 6 n2. Then

hq(K, n, d) = min{dim Eq(L,E) : dimL = n2 − d}, (2.4)

where the minimum is taken over (n2 − d)-dimensional subspaces L of E ⊗E with E being

an n-dimensional vector space over K.

Proof. Follows immediately from the above lemma and the fact that the map M 7→ M⊥ is a
bijection between the sets of d-dimensional and (nq − d)-dimensional subspaces of E⊗q.

3 Main lemma

Lemma 3.1. Let K be a field, n, q,m ∈ N, q > 2, E be an n-dimensional vector space and

E1 ⊂ E2 ⊂ . . . ⊂ En−1 ⊂ En = E

is an increasing chain of subsets of E such that dimEj = j for 1 6 j 6 n. Let also L be a

subspace of E ⊗ E, n1, . . . , nm ∈ {1, . . . , n} and

G =
m
⊕

j=1

Enj
and LG =

⊕

16j,k6m

Lj,k, where Lj,k = (Ej ⊗ Ek) ∩ L.

Then

dimG =
m
∑

j=1

nj, dimLG =
m
∑

j,k=1

dimLnj ,nk
and dim Eq(LG, G) 6 mqdim Eq(L,E). (3.1)

Proof. The two equalities in (3.1) are trivial. Using the natural decomposition

G⊗q =
m
⊕

a1,...,aq=1

Ena1
⊗ . . . ⊗Enaq

, we see that Eq(LG) =
m
⊕

a1,...,aq=1

Fa, where

Fa = (Lna1
,na2

⊗ Ena3
⊗ . . .⊗ Enaq

) ∩ (Ena1
⊗ Lna2

,na3
⊗ Ena4

⊗ . . . ⊗ Enaq
) ∩ . . .

· · · ∩ (Ena1
⊗ . . .⊗ Enaq−2

⊗ Lnaq−1
,naq

).

Clearly each Fa is isomorphic to a subspace of Eq(L,E) and therefore dimFa 6 dim Eq(L,E)
for any a. Now since Eq(LG, G) is the sum of Fa and there are mq multi-indices a, we get
dim Eq(LG, G) 6 mqdim Eq(L,E).
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Lemma 3.2. Let K be a field, n,m ∈ N, q > 2 and d ∈ Z+, 0 6 d 6 n2. Then

hq(K,mn,m2d) 6 mqhq(K, n, d). (3.2)

Proof. Let h = hq(K, n, d) and E be an n-dimensional vector space over K. By Lemma 2.3,
there exists an (n2 − d)-dimensional subspace L of E ⊗ E such that dimEq(L) = h. Let
G be the direct sum of m copies of E. Clearly dimG = nm. Applying Lemma 3.1 with
n1 = . . . = nm = n, we find a subspace LG of G⊗G of dimension m2(n2−d) = (mn)2−m2d
such that dim E(LG, G) 6 mqh. By Lemma 2.3, hq(K,mn,m2d) 6 mqh, which is the desired
inequality.

Corollary 3.3. Let K be a field, n,m ∈ N, q > 3 and d ∈ Z+, 0 6 d 6 n2. If hq(K, n, d) = 0,
then hq(K,mn,m2d) = 0.

Corollary 3.4. Let K be a field, n,m ∈ N and d ∈ Z+, 0 6 d 6 n2. If Hmin
K,n,d(t) =

|(1− nt+ dt2)−1|, then Hmin
K,nm,m2d(t) = |(1 − nmt+ dm2t2)−1|.

Proof. Lemma 3.2 implies that Hmin
K,nm,m2d(t) 6 Hmin

K,n,d(mt) = |(1 − nmt+ dm2t2)−1|. The
opposite inequality follows from Theorem GS.

3.1 Proof of Lemma 1.4

Let K be a field and 3 6 q 6 ∞. For each k ∈ N, let dk = d(K, k, q) be the numbers
defined by (1.8) and (1.9). By definition of dn, hr(K, n, dn) = 0 for some r ∈ N, 3 6

r 6 q (actually r = q if q < ∞). Fix n ∈ N and let k ∈ N. Then there exists m ∈ N

and j ∈ {0, . . . , n − 1} such that k = mn − j. By Proposition 1.1 and Corollary 3.3,
hr(k,m

2dn) 6 hr(K,mn,m2dn) = 0. Hence hr(k,m
2dn) = 0 and therefore dk 6 m2dn.

Since k = mn− j and j 6 n− 1, we have m 6
k+n−1

n . Thus dk 6 dn
(k+n−1)2

n2 for any k ∈ N.
Equivalently,

dk
k2

6
dn(k + n− 1)2

n2k2
for any k, n ∈ N.

Passing to the limit as k → ∞, we get lim
k→∞

dk
k2 6

dn
n2 for any n ∈ N. Hence

inf
n∈N

dn
n2

6 lim
n→∞

dn
n2

6 lim
n→∞

dn
n2

6 inf
n∈N

dn
n2

.

That is, the limit lim
n→∞

dn
n2 does exist and equals inf

n∈N
dn
n2 .

From the definition of d(K, n, q) and Proposition 1.1 it immediately follows that d(K, n, q1) 6
d(K, n, q2) if q1 > q2. Hence the sequence {α(K, q)}q>3 is decreasing. The equality α(K,∞) =
lim
q→∞

α(K, q) is also straightforward. The inequalities α(K, 3) > 1
2 and α(K,∞) > 1

4 follow

from Theorem GS. By Theorem A, α(K, 3) 6 1
2 and therefore α(K, 3) = 1

2 .

4 Hilbert series of degrees 3 and 4

In this section we compute α(K, 4) and α(K, 5) for any infinite field K. We prove certain
non-asymptotic estimates and use them to prove Theorem 1.3.
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4.1 α(K, 4) for any infinite field

We use the same idea as in the proof of Lemma 3.1. First, we need the following lemma.

Lemma 4.1. Let K be any field, E be a vector space over K of dimension n ∈ N, and r ∈ N

be such that 1 6 r < n and d2+n2d 6 n4, where d = n2−r2. Then there exist two subspaces

L and M of E ⊗ E such that (L⊗ L) ∩ (E ⊗M ⊗ E) = {0} and dimL = dimM = d.

Proof. Pick a basis {e1, . . . , en} in E. Now we consider M = span {ej ⊗ ek : max{j, k} > r}
and L0 = span ({ej ⊗ ek : 1 6 j, k 6 r} ∪ {ej ⊗ ek + ek ⊗ ej : 1 6 j 6 r < k 6 n}). Clearly
M and L0 are subspaces of E ⊗ E of dimensions d = n2 − r2 and rn respectively. The
inequality d2 + n2d 6 n4 implies that rn > d and therefore dimL0 > d. It remains to show
that (L0 ⊗ L0) ∩ (E ⊗ M ⊗ E) = {0}. Indeed, then any d-dimensional subspace L of L0

satisfies (L⊗ L) ∩ (E ⊗M ⊗ E) = {0}.
Let ξ ∈ (L0 ⊗ L0) ∩ (E ⊗M ⊗ E). According to the definitions of L0 and M ,

ξ =
∑

r<max{k,l}6n

16j,m6n

aj,k,l,mej ⊗ ek ⊗ el ⊗ em =

=
∑

16j,k,l,m6r

bj,k,l,mej ⊗ ek ⊗ el ⊗ em +
∑

16j,k6r

16l6r<m6n

dj,k,l,m(ej ⊗ ek ⊗ el ⊗ em + ej ⊗ ek ⊗ em ⊗ el)+

+
∑

16l,m6r

16j6r<k6n

sj,k,l,m(ej ⊗ ek ⊗ el ⊗ em + ek ⊗ ej ⊗ el ⊗ em)+

+
∑

16j6r<k6n

16l6r<m6n

vj,k,l,m(ej ⊗ ek ⊗ el ⊗ em + ej ⊗ ek ⊗ em ⊗ el + ek ⊗ ej ⊗ el ⊗ em + ek ⊗ ej ⊗ em ⊗ el),

where aj,k,l,m, bj,k,l,m, cj,k,l,m, dj,k,l,m, sj,k,l,m and vj,k,l,m are coefficients from K.
If j, k, l,m 6 r, then the basic vector ej ⊗ ek ⊗ el ⊗ em appears in the above display only

once and with the coefficient bj,k,l,m. Hence bj,k,l,m = 0 for any j, k, l,m. If j > r and
k, l,m 6 r, then the basic vector ej ⊗ ek ⊗ el ⊗ em appears in the above display only once and
with the coefficient sk,j,l,m. Hence sj,k,l,m = 0 for any j, k, l,m. If m > r and j, k, l 6 r,
then the basic vector ej ⊗ ek ⊗ el ⊗ em appears in the above display only once and with the
coefficient dj,k,l,m. Hence dj,k,l,m = 0 for any j, k, l,m. If j,m > r and k, l 6 r, then the
basic vector ej ⊗ ek ⊗ el ⊗ em appears in the above display only once and with the coefficient
dk,j,l,m. Hence dj,k,l,m = 0 for any j, k, l,m. Thus the right-hand side of the above display
vanishes and so does ξ. Hence (L0 ⊗ L0) ∩ (E ⊗M ⊗ E) = {0}.

Just the same way as we speak of generic quadratic algebras with fixed number of relations
and generators, we can speak of generic vector subspaces of given dimension in a fixed finite
dimensional vector space over an infinite field. Let K be an infinite field and E be an
n-dimensional vector space over K. Using the argument exactly as in Section 2, one can
easily show that if there exist d-dimensional subspaces L0 and M0 of E ⊗ E satisfying
(L0 ⊗L0) ∩ (E ⊗M0 ⊗E) = {0}, then the equality (L⊗L)∩ (E ⊗M ⊗E) = {0} holds for
generic d-dimensional subspaces L and M of E ⊗ E. Similarly, if there exist d-dimensional
subspaces L0, N0 and M0 of E ⊗ E satisfying (L0 ⊗ N0) ∩ (E ⊗M0 ⊗ E) = {0}, then the
equality (L⊗N)∩ (E ⊗M ⊗E) = {0} holds for generic d-dimensional subspaces L, N and
M of E ⊗ E. Thus Lemma 4.1 implies the following fact.

Lemma 4.2. Let K be an infinite field, E be a vector space over K of dimension n ∈
N, and r ∈ N be such that 1 6 r < n and d2 + n2d 6 n4, where d = n2 − r2. Then

(L⊗L)∩ (E ⊗M ⊗E) = {0} and (L⊗N)∩ (E ⊗M ⊗E) = {0} for generic d-dimensional

subspaces L, N and M of E ⊗ E.
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Proposition 4.3. There exists a positive constant C such that

3−
√
5

2
n2 < d(K, n, 4) 6

3−
√
5

2
n2 + Cn3/2 (4.1)

for any n ∈ N and any infinite field K. In particular, α(K, 4) = 3−
√
5

2 for any infinite field

K.

Proof. Let n, d ∈ N and d 6 n2. Since the coefficient in |(1 − nt + dt2)| in front of t4 is

max{0, n4 − 3n2d + d2}, it is positive if d < 3−
√
5

2 n2. By Theorem GS, h4(K, n, d) > 0 if

d < 3−
√
5

2 n2. Hence d(K, n, 4) > 3−
√
5

2 n2 for any field K.
Let now K be an infinite field and n ∈ N. Choose m ∈ N such that (m − 1)2 < n 6 m2.

Now let r be the unique integer such that
√
5−1
2 m < r <

√
5−1
2 m + 1. Since r2 > 3−

√
5

2 m2,

we have d <
√
5−1
2 m2, where d = m2 − r2. The latter inequality implies d2 + m2d < m4.

Let E1, . . . , Em be m-dimensional vector spaces over K and E = E1 ⊕ . . .⊕ Em. Obviously
dimE = m2 > n. Consider the space

L =

m
⊕

j,k=1

Lj,k,

where Lj,k is a d-dimensional subspace of Ej ⊗ Ek if j 6= k and Lj,j = {0} for 1 6 j 6 m.
Clearly dimL = (m2 −m)d. According to (2.1), E4(L,E) = (L⊗ L) ∩ (E ⊗ L⊗ E). Hence

E4(L,E) =
m
⊕

j,k,l,s=1

Mj,k,l,s, where Mj,k,l,s = (Lj,k ⊗ Ll,s) ∩ (Ej ⊗ Lk,l ⊗ Es).

Since Lj,j = 0, we have Mj,k,l,s = {0} if j = k, or k = l, or l = s. If j 6= k, k 6= l and l 6= s,
then either (j, k), (k, l) and (l, s) are three different pairs or (j, k) = (l, s) 6= (k, l). In any
case Lemma 4.2 implies that Mj,k,l,s = {0} for generic d-dimensional Lj,k (j 6= k). According
to the last display E4(L,E) = {0} for generic d-dimensional Lj,k (j 6= k). Thus, there exists
a d(m2 −m)-dimensional subspace L of E ⊗ E such that E4(L,E) = {0}. By Lemma 2.3,
h4(K,m2,m4− (m2−m)d) = 0. Since n 6 m2, we get h4(K, n,m4− (m2−m)d) = 0. Hence

d(K, n, 4) 6 m4 − (m2 −m)d.

Since d = m2 − r2 and r <
√
5−1
2 m+ 1, we have d >

√
5−1
2 m2 − (

√
5 − 1)m − 1. Using this

inequality together with
√
n 6 m 6

√
n + 1 and the fact that the functions m 7→ m2 −m

and m 7→
√
5−1
2 m2 − (

√
5− 1)m− 1 on [1,∞) are increasing, we see that the above display

implies

d(K, n, 4) 6 (
√
n+ 1)4 − (n −

√
n)
(

√
5− 1

2
n− (

√
5− 1)

√
n− 1

)

=

=
3−

√
5

2
n2 +

5 + 3
√
5

2
n3/2 + (8−

√
5)n+ 3

√
n+ 1.

The above display immediately implies (4.1).

4.2 An estimate of d(K, n, 4) for any field

We prove the following specific lemma in the appendix.
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Lemma 4.4. Let K be any field and

R = K〈x1, x2, x3〉/Id{x1x2, x1x3, x2x3, x21 + x22 + x23}.
Then the Hilbert series of R is 1+3t+5t2 +4t3. In particular, h4(K, 3, 4) = 0 for any field

K.

Corollary 4.5. Let K be a field, E be a three-dimensional vector space over K with a basis

{e1, e2, e3} and L be the 5-dimensional subspace of E⊗E spanned by e2 ⊗ e1, e3 ⊗ e2, e3 ⊗ e1,
e1 ⊗ e1 − e2 ⊗ e2 and e1 ⊗ e1 − e3 ⊗ e3. Then E4(L,E) = {0}, where Ek(L,E) are defined in

(2.2).

Proof. Let R be the algebra defined in Lemma 4.4. From Lemmas 4.4 and 2.2 it follows that
0 = dimR4 = dimE4(M⊥, E), where M is the 4-dimensional subspace of E ⊗ E spanned
by the vectors e1 ⊗ e2, e1 ⊗ e3, e2 ⊗ e3 and e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3. It is straightforward to
verify that L = M⊥. Thus E4(L,E) = {0}.

Proposition 4.6. Let K be a field. Then the numbers d(K, n, 4) defined in (1.8) satisfy the

following inequality

d(K, n, 4) 6 dn =











4n2

9 if n = 3k, k ∈ N;
4n2+2n−2

9 if n = 3k + 2, k ∈ Z+;
4n2+4n−8

9 if n = 3k + 1, k ∈ N.

(4.2)

In any case d(K, n, 4) < 4(n2+n)
9 .

Proof. Let E3 be a 3-dimensional vector space over K with a basis {e1, e2, e3} and E2 =
span {e1, e2}. Consider the 5-dimensional subspace L of E3⊗E3 spanned by e2 ⊗ e1, e3 ⊗ e2,
e3 ⊗ e1, e1 ⊗ e1−e2 ⊗ e2 and e1 ⊗ e1−e3 ⊗ e3 and let L2,2 = (E2⊗E2)∩L, L2,3 = (E2⊗E3)∩L
and L3,2 = (E3 ⊗ E2) ∩ L. By Corollary 4.5, E4(L,E3) = {0}. It is also easy to see that
L2,3 = L2,2 is spanned by e2 ⊗ e1 and e1 ⊗ e1 − e2 ⊗ e2 and therefore dimL2,3 = dimL2,2 = 2.
On the other hand L3,2 is spanned by e2 ⊗ e1, e3 ⊗ e2, e3 ⊗ e1 and e1 ⊗ e1−e2 ⊗ e2 and therefore
dimL3,2 = 4.

Let n = 3k with k ∈ N. Then the direct sum G of k copies of E3 has dimension n. By
Lemma 3.1 with n1 = . . . = nk = 3, there exists a subspace LG of G ⊗ G of dimension
k2dimL = 5k2 = 5n2

9 such that E4(LG, G) = {0}. By Lemma 2.3, h4(K, n, 4n
2

9 ) = 0. Hence

d(K, n, 4) 6 4n2

9 .
Let n = 3k + 2 with k ∈ Z+. Then the direct sum G of E2 and k copies of E3 has

dimension n. By Lemma 3.1 with n1 = 2 and n2 = . . . = nk+1 = 3, there is a subspace
LG of G⊗G such that E4(LG, G) = {0} and dimLG = k2dimL+ k(dimL2,3 + dimL3,2) +

dimL2,2 = 5k2 + 6k + 2 = 5n2−2n+2
9 . By Lemma 2.3, h4(K, n, 4n

2+2n−2
9 ) = 0. Hence

d(K, n, 4) 6 4n2+2n−2
9 .

Let n = 3k + 1 with k ∈ N. Then the direct sum G of 2 copies of E2 and k − 1 copies
of E3 has dimension n. By Lemma 3.1 with n1 = n2 = 2 and n3 = . . . = nk+1 = 3, there
is a subspace LG of G ⊗ G such that E4(LG, G) = {0} and dimLG = (k − 1)2dimL +

2(k − 1)(dimL2,3 + dimL3,2) + 4dimL2,2 = 5k2 + 2k + 1 = 5n2−4n+8
9 . By Lemma 2.3,

h4(K, n, 4n
2+4n−8

9 ) = 0. Hence d(K, n, 4) 6 4n2+4n−8
9 .

Corollary 4.7. Let K be any field. Then h4(K, n, n(n−1)
2 ) = 0 for any n > 17 and for

n ∈ {9, 12, 14, 15}.
Proof. Let A = {9, 12, 14, 15} ∪ {n ∈ N : n > 17}. By Proposition 4.6, h4(K, n, dn) = 0,

where dn is defined in (4.2). It is straightforward to verify that n(n−1)
2 > dn for n ∈ A.

Hence h4(K, n, n(n−1)
2 ) = 0 for n ∈ A.
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4.3 Proof of Theorem 1.2

Proposition 4.6 was the main step in the proof of Theorem 1.2. It ensures that for d >
4(n2+n)

9
the fourth component of the generic Hilbert series vanishes. Now we combine this with the
already known due to Anick fact (Theorem A), that the third component of the generic
series always coincides with the third component of the Golod-Shafarevich series (which

vanishes for d >
n2

2 ). So, by looking at the third and fourth components of the Hilbert
series we obtain the statement of Theorem 1.2.

4.4 α(K, 5) for any field

The proof of the following Lemma is quite technical and is presented in the appendix.

Lemma 4.8. Let K be a field and R = K〈x1, x2, x3〉/I with I = Id{f1, f2, f3} and

f1 = x23 − x1x2, f2 = x3x2 − x2x3 + x2x1 − x1x3 − x1x2 + x21, f3 = x3x1 + x22 − x21.

Then the Hilbert series of R is HR(t) = 1 + 3t+ 6t2 + 9t3 + 9t4 = |(1− 3t+ 3t2)−1|.

Corollary 4.9. Let K be a field, E be a three-dimensional vector space over K with a

basis {e1, e2, e3} and L be the 5-dimensional subspace of E ⊗ E spanned by Consider the

6-dimensional subspace L of E3⊗E3 spanned by e3 ⊗ e3+ e1 ⊗ e2+ e1 ⊗ e1+ e2 ⊗ e2, e2 ⊗ e3+
e1 ⊗ e1+ e2 ⊗ e2, e1 ⊗ e3 + e1 ⊗ e1 + e2 ⊗ e2, e2 ⊗ e1− e1 ⊗ e1− e2 ⊗ e2, e3 ⊗ e2 − e1 ⊗ e1 − e2 ⊗ e2
and e3 ⊗ e1 + e1 ⊗ e1 − e2 ⊗ e1. Then E5(L,E) = {0}.

Proof. Let R be the algebra defined in Lemma 4.8. From Lemmas 4.8 and 2.2 it follows that
0 = dimR5 = dimE5(M⊥, E), where M is the 3-dimensional subspace of E ⊗ E spanned
by the vectors e3 ⊗ e3 − e1 ⊗ e2, e3 ⊗ e2 − e2 ⊗ e3 + e2 ⊗ e1 − e1 ⊗ e3 − e1 ⊗ e2 + e1 ⊗ e1 and
e3 ⊗ e1 + e2 ⊗ e2 − e1 ⊗ e1. It is straightforward to verify that L = M⊥. Thus E5(L,E) =
{0}.

Proposition 4.10. Let K be any field. Then the numbers d(K, n, 5) defined in (1.8) satisfy
the following inequality

d(K, n, 5) 6 δn =











n2

3 if n = 3k, k ∈ N;
n2+2n+1

3 if n = 3k + 2, k ∈ Z+;
n2+3n+1

3 if n = 3k + 1, k ∈ N.

(4.3)

In particular, α(K, 5) = 1
3 for any field K.

Proof. Let E3 be a 3-dimensional vector space over K with a basis {e1, e2, e3}, E2 =
span {e1, e2} and E1 = span {e1}. Consider the 6-dimensional subspace L of E3 ⊗ E3

defined in Corollary 4.9 and let Lj,k = (Ej ⊗ Ek) ∩ L for 1 6 j, k 6 3. By Corollary 4.9,
E5(L,E3) = {0}. Estimating from below the dimensions of Lj,k by the number of basic
vectors of L contained in Ej ⊗Ek, we get dimL3,3 = dimL = 6, dimL2,3 > 3, dimL3,2 > 3,
dimL2,2 > 1 and dimL3,1 > 1.

Let n = 3k with k ∈ N. Then the direct sum G of k copies of E3 has dimension n. By
Lemma 3.1 with n1 = . . . = nk = 3, there exists a subspace LG of G ⊗ G of dimension
k2dimL = 6k2 = 2n2

3 such that E5(LG, G) = {0}. By Lemma 2.3, h5(K, n, n
2

3 ) = 0. Hence

d(K, n, 4) 6 n2

3 .
Let n = 3k + 2 with k ∈ Z+. Then the direct sum G of E2 and of k copies of E3

has dimension n. By Lemma 3.1 with n1 = 2 and n2 = . . . = nk+1 = 3, there exists a
subspace LG of G ⊗ G such that E5(LG, G) = {0} and dimLG = k2dimL + k(dimL2,3 +
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dimL3,2) + dimL2,2 > 6k2 + 6k + 1 = 2n2−2n−1
3 . By Lemma 2.3, h4(K, n, n

2+2n+1
3 ) = 0.

Hence d(K, n, 4) 6 n2+2n+1
3 .

Let n = 3k+1 with k ∈ N. Then the direct sum G of E1 and k copies of E3 has dimension
n. By Lemma 3.1 with n1 = 1 and n2 = . . . = nk+1 = 3, there exists a subspace LG of G⊗G
such that E5(LG, G) = {0} and dimLG = k2dimL + k(dimL1,3 + dimL3,1) + dimL1,1 >

6k2 + k = 2n2−3n−1
3 . By Lemma 2.3, h5(K, n, n

2+3n+1
3 ) = 0. Hence d(K, n, 4) 6 n2+3n+1

3 .
Thus we have verified (4.3), from which it follows that α(K, 5) 6 1

3 . On the other hand,

for 0 6 d < n2

3 , the coefficient in |(1−nt+ dt2)−1| in front of t5 is n5− 4n3d+3nd2 > 0. By

Theorem GS, h5(K, n, d) > 0 for d < n2

3 . It follows that α(K, 5) > 1
3 . Thus α(K, 5) = 1

3 .

5 Further applications of Lemma 3.1

As we have seen in the last section, specific examples with 3 generators produce non-trivial
estimates for d(K, n, 4) and d(K, n, 5) for any K and n. We proceed along the same lines.
To this end we need more specific examples of Hilbert series of quadratic algebras. We
produce them via lucky guesswork and application of the software package GRAAL (’Graded
Algebras’ by A.Verevkin and A.Kondratiev) to find the Hilbert series. This program uses
the one-sided Gröbner basis technique to calculate the Hilbert series of Zp-algebras given
by generators and relations.

Example 5.1. Let R = Z2〈x1, . . . , x7〉/I with I = Id{f1, . . . , f19} and

f1 = x1x7, f2 = x3x7 + x4x6 + x6x2, f3 = x5x7 + x6x4 + x3x5 + x2x1 + x4x3,
f4 = x7x1 + x1x6, f5 = x7x2 + x6x1 + x1x5, f6 = x21 + x22 + x23 + x24 + x25 + x26 + x27,
f7 = x2x7 + x7x3, f8 = x6x7 + x3x6 + x4x5 + x5x2, f9 = x7x5 + x2x6 + x5x3 + x1x4 + x3x2,
f10 = x5x7 + x7x6, f11 = x7x6 + x6x2 + x5x1 + x3x4, f12 = x7x4 + x6x3 + x2x5 + x3x2 + x4x1,
f13 = x7x5 + x4x7, f14 = x7x2 + x3x6 + x6x4, f15 = x2x7 + x6x5 + x5x4 + x3x1 + x4x2,
f16 = x3x7 + x7x4, f17 = x4x7 + x2x6 + x6x3, f18 = x7x3 + x4x6 + x5x2 + x2x4 + x3x1,
f19 = x6x7 + x6x4 + x2x6 + x2x5 + x3x5 + x4x5.

Then the Hilbert series of R is HR(t) = 1 + 7t+ 30t2 + 77t3 = |(1− 7t+ 19t2)−1|.
Example 5.2. Let R = Z2〈x1, x2, x3, x4〉/I with I = Id{f1, . . . , f6} and

f1 = x1x2, f2 = x1x4 + x4x2 + x2x3, f3 = x1x3 + x3x4 + x4x1,
f4 = x21 + x22 + x23 + x24, f5 = x3x4 + x4x2 + x2x4, f6 = x2x3 + x3x1 + x1x3.

Then the Hilbert series of R is HR(t) = 1 + 4t+ 10t2 + 16t3 + t4 = |(1− 4t+ 6t2)−1|.
Example 5.3. Let R = Z2〈x1, x2, x3, x4〉/I with I = Id{f1, . . . , f5} and

f1 = x21 + x22 + x23 + x24, f2 = x1x2 + x2x3 + x3x4, f3 = x4x1 + x1x3 + x3x2,
f4 = x1x3 + x3x2 + x2x4, f5 = x1x4 + x4x3 + x3x2 + x2x4.

Then the Hilbert series of R is HR(t) = 1+4t+11t2+24t3+41t4+44t5 = |(1−4t+5t2)−1|.

5.1 Proof of Theorem 1.5

The equalities α(K, 4) = 3−
√
5

2 and α(K, 5) = 1
3 follow from Propositions 4.3 and 4.10

respectively.
Let K be a field of characteristic 0. Example 5.3 shows that d(Z2, 4, 6) 6 5. By Proposi-

tion 2.1 d(K, 4, 6) > 5. By Lemma 1.4

α(K,∞) 6 α(K, 6) = lim
n→∞

d(K, n, 6)

n2
= inf

n∈N

d(K, n, 6)

n2
6

d(K, 4, 6)

16
6

5

16
.

This completes the proof of Theorem 1.5.
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5.2 Proof of Theorem 1.3

Throughout this section K is a field of characteristic 0, n > 3. Lemma 4.8 together with
Theorem GS show that Hmin

K,3,3(t) = 1+3t+6t2+9t3+9t4 = |(1+3t− 3t2)−1|, which proves
Theorem 1.3 for n = 3.

Example 5.2 and Proposition 2.1 show that Hmin
K,4,6(t) 6 Hmin

Z2,4,6
(t) 6 1 + 4t + 10t2 +

16t3 + t4 = |(1 − 4t + 6t2)−1|. By Theorem GS, Hmin
K,4,6(t) > |(1 − 4t + 6t2)−1|. Hence

Hmin
K,4,6(t) = 1+4t+10t2+16t3+ t4 = |(1−4t+6t2)−1|, which proves Theorem 1.3 for n = 4.
From now on n > 5. It suffices to prove that

h4(K, n, δn) = 0, where δn =
n(n− 1)

2
. (5.1)

Indeed, Theorem A implies that h3(K, n, δn) = n2 and therefore Hmin
K,n,δn

(t) = 1 + nt +
n(n+1)

2 t2 + n2t3 = |(1 + nt− δnt
2)−1| provided (5.1) is true. Thus it remains to prove (5.1)

for n > 5.
If n ∈ A = {9, 12, 14, 15} ∪ {n ∈ N : n > 17}, Corollary 4.7 implies that (5.1) is satisfied.

It remains to consider n ∈ {5, 6, 7, 8, 10, 11, 13, 16}.
According to the remarks in the beginning of Section 2, the relations in Example 5.1

considered as relations in K〈x1, . . . , x7〉 define a quadratic K-algebra R such that HR(t) 6
1 + 7t + 30t2 + 77t3 = |(1 − 7t + 19t2)−1|. On the other hand, by Theorem GS, HR(t) >
|(1− 7t+ 19t2)−1|. Hence

HR(t) = 1 + 7t+ 30t2 + 77t3.

Let E be a 7-dimensional vector space over K with a basis {e1, . . . , e7} and Ej = span {e1, . . . , ej}
for 1 6 j 6 7. Let also M be the 19-dimensional subspace of E ⊗ E spanned by the ele-
ments obtained from the relations of R by replacing xjxk by ej ⊗ ek. It is straightforward to
verify that the 30-dimensional subspace L = M⊥ of E ⊗ E is spanned by the following 30
vectors: g1 = e1 ⊗ e2, g2 = e2 ⊗ e3, g3 = e1 ⊗ e3, g4 = e1 ⊗ e1 − e2 ⊗ e2, g5 = e1 ⊗ e1 − e3 ⊗ e3,
g6 = e2 ⊗ e4 − e3 ⊗ e1 + e4 ⊗ e2, g7 = e1 ⊗ e4 − e3 ⊗ e2 + e4 ⊗ e1, g8 = e1 ⊗ e1 − e4 ⊗ e4,
g9 = e2 ⊗ e1 − e4 ⊗ e3, g10 = e1 ⊗ e1 − e5 ⊗ e5, g11 = e5 ⊗ e1 − e3 ⊗ e4, g12 = e5 ⊗ e4 − e4 ⊗ e2,
g13 = e5 ⊗ e3 − e3 ⊗ e2 + e4 ⊗ e1, g14 = e5 ⊗ e2 − e4 ⊗ e5 − e2 ⊗ e4 + e3 ⊗ e5, g15 = e2 ⊗ e5 −
e3 ⊗ e5 − e3 ⊗ e2 + e1 ⊗ e4, g16 = e1 ⊗ e1 − e6 ⊗ e6, g17 = e6 ⊗ e1 − e1 ⊗ e5, g18 = e5 ⊗ e6,
g19 = e4 ⊗ e6−e6 ⊗ e2+e3 ⊗ e4−e2 ⊗ e4, g20 = e6 ⊗ e4−e2 ⊗ e1−e3 ⊗ e5−e3 ⊗ e6+e5 ⊗ e2−e2 ⊗ e4,
g21 = e2 ⊗ e6−e1 ⊗ e4−e6 ⊗ e3−e3 ⊗ e5+e4 ⊗ e1, g22 = e6 ⊗ e5−e4 ⊗ e2, g23 = e1 ⊗ e1−e7 ⊗ e7,
g24 = e7 ⊗ e1−e1 ⊗ e6, g25 = e3 ⊗ e7−e7 ⊗ e4−e4 ⊗ e6+e2 ⊗ e4+e4 ⊗ e1, g26 = e5 ⊗ e7−e7 ⊗ e6−
e2 ⊗ e1+e3 ⊗ e4, g27 = e7 ⊗ e2−e6 ⊗ e1−e6 ⊗ e4+e3 ⊗ e5, g28 = e2 ⊗ e7−e7 ⊗ e3+e2 ⊗ e4−e4 ⊗ e2,
g29 = e6 ⊗ e7− e3 ⊗ e5− e5 ⊗ e2+ e2 ⊗ e4 and g30 = e7 ⊗ e5− e4 ⊗ e7+ e6 ⊗ e3− e4 ⊗ e1− e1 ⊗ e4.

As usual, Lj,k = L ∩ (Ej ⊗ Ek) for 2 6 j, k 6 7. Denoting dj = dimLj,j for 1 6 j 6 7,
we easily obtain d7 = 30, d6 = 22, d5 = 15 and d4 = 9. Denoting dj,k = dimLj,k + dimLk,j

for 1 6 j < k 6 7 and estimating dimLl,m from below by the number of basic vectors gs in
El ⊗ Em, we get dim d6,7 > 47, d5,6 > 33 and d4,6 > 22.

By Lemma 2.2, the equality R4 = {0} implies

E4(L,E) = 0. (5.2)

Condition (2.2) implies that E4(Ln,n, En) = {0} for 1 6 n 6 7. Using this equality and
applying Lemma 2.3, we get h4(K, n, n2 − dn) = 0 for 1 6 n 6 7. This equality for
n ∈ {5, 6, 7} gives h4(K, 5, 10) = h4(K, 6, 14) = h4(K, 7, 19) = 0. Since δ5 = 10, δ6 = 15 > 14
and δ7 = 21 > 19, (5.1) is satisfied for n ∈ {5, 6, 7}.

Using Lemma 3.1 with m = 2 and n1 = n2 = 4, we see that there exists a subspace
N of G ⊗ G such that dimG = 8, dimN > 4d4 = 36 and E4(N,G) = 0. By Lemma 2.3,
h4(K, 8, 28) = 0, which is (5.1) for n = 8.
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Using Lemma 3.1 with m = 2 and n1 = n2 = 5, we see that there exists a subspace N
of G ⊗ G such that dimG = 10, dimN > 4d5 = 60 and E4(N,G) = 0. By Lemma 2.3,
h4(K, 10, 40) = 0. Hence h4(K, 10, 45) = 0 which is (5.1) for n = 10.

Using Lemma 3.1 with m = 2 and n1 = 5 and n2 = 6, we see that there exists a subspace
N of G ⊗ G such that dimG = 11, dimN > d6 + d5 + d5,6 > 22 + 15 + 33 = 70 and
E4(N,G) = 0. By Lemma 2.3, h4(K, 11, 51) = 0. Hence h4(K, 11, 55) = 0 which is (5.1) for
n = 11.

Using Lemma 3.1 with m = 2 and n1 = 6 and n2 = 7, we see that there exists a subspace
N of G ⊗ G such that dimG = 13, dimN > d7 + d6 + d6,7 > 30 + 22 + 47 = 99 and
E4(N,G) = 0. By Lemma 2.3, h4(K, 13, 70) = 0. Hence h4(K, 13, 78) = 0 which is (5.1) for
n = 13.

Using Lemma 3.1 with m = 3 and n1 = n2 = 6 and n3 = 4, we see that there exists a
subspace N of G⊗G such that dimG = 16, dimN > 4d6+d4+2d4,6 > 4·22+9+2·22 = 141
and E4(N,G) = 0. By Lemma 2.3, h4(K, 16, 115) = 0. Hence h4(K, 16, 120) = 0 which is
(5.1) for n = 16.

The proof of Theorem 1.3 is complete.

6 Appendix: Proof of Lemmas 4.4 and 4.8

In the proofs of both Lemmas 4.4 and 4.8 we use the non-commutative analog of the Buchberger
algorithm of constructing a Gröbner basis.

6.1 Proof of Lemma 4.4

Ordering the variables as x1 > x2 > x3 and considering the degree-lexicographical ordering on the
monomials, one can easily see that the set

{x2x3, x1, x3, x1x2, x
2
1 + x2

2 + x2
3, x

3
2 + x2

3x2, x
2
2x1 + x2

3x1, x
2
3, x

2
2, x

2
3x2x1}

is the reduced Gröbner basis of the ideal I = Id{x1x2, x1x3, x2x3, x
2
1 + x2

2 + x2
3}. By analyzing the

above basis, one can easily verify that {x2
3x2 + I, x2

3x1 + I, x3x
2
2 + I, x3x2x1 + I} is a linear basis in

R3 and that R4 = {0}. Hence the Hilbert series of R is 1 + 3t+ 5t2 + 4t3. The proof is complete.

6.2 Proof of Lemma 4.8

We consider the ordering x1 > x2 > x3 on the variables and the corresponding degree-lexicographical
ordering on the monomials.

First, we assume that the characteristic ofK is different from 2. Using the non-commutative analog
of the Buchberger algorithm of constructing a Gröbner basis, we find the following homogeneous
elements of I, written starting from the leading term (=highest monomial) and having the property
that neither of the leading terms are subwords of the others:
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g1 = x1x3−x2x1−x2
2+x2x3−x3x1−x3x2+x2

3, g2 = x1x2−x2
3, g3 = x2

1−x1x3+x2x1−x2x3+x3x2−x2
3,

g4 = x2
2x3+x2x3x1+2x2x3x2−3x2x

2
3−x3x

2
1+2x3x1x3−x3x

2
2+x3x2x3−x2

3x1+x2
3x2−x3

3,

g5 = x3
2+x3x2x1−x2

3x1+x2
3x2, g6 = x2

2x1+x2x3x1+x2x3x2−2x2x
2
3−x3x1x2+x3x1x3+x3x2x3−x3

3,

g7 = 2x2x3x2x1+x3x
3
1−x3x

2
1x3+6x3x1x2x1−3x3x1x

2
2−x3x1x2x3−x3x1x3x1+3x3x1x3x2−

−2x3x1x
2
3−5x3x2x

2
1−4x3x2x1x2+6x3x2x1x3−2x3x

2
2x1+x3x

3
2+2x3x

2
2x3−3x3x2x3x1+

+x3x2x3x2+3x3x2x
2
3+3x32x

2
1+4x2

3x1x2+x2
3x1x3−8x2

3x2x1−9x2
3x

2
2+9x2

3x2x3−5x3
3x2−3x4

3,

g8 = x2x3x
2
2−x3x

3
1−x3x

2
1x3−3x3x1x2x1+3x3x1x

2
2−x3x1x2x3+2x3x1x3x1+x3x1x3x2−x3x1x

2
3+2x3x2x

2
1−

−3x3x2x1x2−4x3x2x1x3+2x3x
2
2x1−x3x

2
2x3+x3x2x3x1+x3x2x3x2+x3x2x

2
3−

−3x2
3x

2
1+3x2

3x1x2+2x2
3x1x3+x2

3x2x1+4x2
3x

2
2−4x2

3x2x3+3x3
3x1−x3

3x2+2x4
3,

g9 = 2x2x3x2x3+x3x
3
1+9x3x1x2x1−5x3x1x

2
2+2x3x1x2x3−x3x1x3x1+2x3x1x3x2−2x3x1x32−10x3x2x

2
1−

−5x3x2x1x2+18x3x2x1x3−4x3x
2
2x1−2x3x

3
2+4x3x

2
2x3−4x3x2x3x1−4x3x2x3x2+3x3x2x

2
3+

+7x2
3x

2
1+5x2

3x1x2−4x2
3x1x3−16x2

3x2x1−19x2
3x

2
2+24x2

3x2x3−4x3
3x1+4x3

3x2−13x4
3,

g10 = 2x2x
2
3x1+x3x

3
1−x3x

2
1x3+4x3x1x2x1−x3x1x

2
2−x3x1x2x3−x3x1x3x1+3x3x1x3x2−2x3x1x

2
3−5x3x2x

2
1−

−6x3x2x1x2+6x3x2x1x3+x3x
3
2+2x3x

2
2x3−3x3x2x3x1+x3x2x3x2+3x3x2x

2
3+3x2

3x
2
1+

+6x2
3x1x2+x2

3x1x3−10x2
3x2x1−9x2

3x
2
2+9x2

3x2x3+2x3
3x1−5x3

3x2−3x4
3,

g11 = 2x2x
2
3x2−x3x

3
1−3x3x1x2x1+3x3x1x

2
2+x3x1x3x1−5x3x2x1x2+2x3x

2
2x1+x3x2x32−x2

3x
2
1+

+5x2
3x1x2−2x2

3x2x1−x2
3x

2
2+4x3

3x1−x4
3,

g12 = x2x
3
3+x3x1x2x1+x3x1x3x2−x3x1x

2
3−2x3x2x

2
1−3x3x2x1x2+3x3x2x1x3+x3x

2
2x3−x3x2x3x1+x3x2x

2
3+

+x2
3x

2
1+3x2

3x1x2−4x2
3x2x1−4x2

3x
2
2+4x2

3x2x3+x3
3x1−x3

3x2−2x4
3,

g13 = x2
3x2x3x1, g14 = x2

3x2x3x2, g15 = x2
3x2x

2
3, g16 = x3

3x2x1, g17 = x3
3x

2
2,

g18 = x3
3x2x3, g19 = x4

3x1, g20 = x4
3x2, g21 = x5

3.

It follows that the dimension of Rq does not exceed the number of monomials of degree q that do
not contain a subword being the leading monomial of one of gj . This observation gives dimR3 6 9,
dimR4 6 9 and dimR5 = 0. Thus HR(t) 6 1+3t+6t2+9t3+9t4 = |(1− 3t+3t2)−1|. On the other
hand, Theorem GS implies that HR(t) > |(1− 3t+3t2)−1|. Hence HR(t) = 1+3t+6t2+9t3+9t4 =
|(1− 3t+ 3t2)−1|.

It remains to consider the case charK = 2. Using the same algorithm, we find the following
homogeneous elements of I, written starting from the leading term (=highest monomial) and having
the property that neither of the leading terms are subwords of the others:

g1 = x2
1 + x2

2 + x3x1, g2 = x1x2 + x2
3, g3 = x1x3 + x2x1 + x2

2 + x2x3 + x3x1 + x3x2 + x2
3,

g4 = x2
2x1 + x2x3x1 + x2x3x2 + x3x2x1 + x3x

2
2 + x2

3x1 + x2
3x2 + x3

3,

g5 = x3
2 + x3x2x1 + x2

3x1 + x2
3x2, g6 = x2

2x3 + x2x3x1 + x2x
2
3 + x3x2x3 + x2

3x2 + x3
3,

g7 = x2x3x2x1 + x2x
2
3x1 + x3x2x3x2 + x2

3x2x1 + x3
3x1,

g8 = x2x3x
2
2 + x2x

2
3x2 + x2x

3
3 + x3x2x3x2 + x3x2x

2
3 + x2

3x2x1 + x2
3x2x3 + x3

3x2 + x4
3,

g9 = x2x3x2x3 + x2x
3
3 + x3x2x3x1 + x2

3x
2
2 + x2

3x2x3 + x3
3x1 + x4

3,

g10 = x2x
2
3x2 + x3x2x3x2 + x3x2x

2
3 + x2

3x2x1 + x2
3x

2
2 + x3

3x1 + x4
3,

g11 = x2x
3
3 + x3x2x3x2 + x3x2x

2
3 + x2

3x2x1 + x3
3x1, g12 = x3x2x3x1 + x3x2x

2
3 + x2

3x2x1 + x2
3x

2
2,

g13 = x3x2x
2
3x1, g14 = x2

3x2x3x2, g15 = x2
3x2x

2
3, g16 = x3

3x2x1,

g17 = x3
3x

2
2, g18 = x3

3x2x3, g19 = x4
3x1, g20 = x4

3x2, g21 = x5
3.

Again, the dimension of Rq does not exceed the number of monomials of degree q that do not
contain a subword being the leading monomial of one of gj. This observation gives dimR3 6 9,
dimR4 6 9 and dimR5 = 0. Thus HR(t) 6 1+3t+6t2+9t3+9t4 = |(1− 3t+3t2)−1|. On the other
hand, Theorem GS implies that HR(t) > |(1− 3t+3t2)−1|. Hence HR(t) = 1+3t+6t2+9t3+9t4 =
|(1− 3t+ 3t2)−1|. The proof is complete.
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