
ar
X

iv
:1

00
7.

42
75

v2
  [

m
at

h.
D

S]
  1

5 
Ju

l 2
01

1

JOURNAL OF MODERN DYNAMICS doi: 10.3934/jmd.2011.5.285
VOLUME 5, NO. 2, 2011, 285–318
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ABSTRACT. A cyclic cover of the complex projective line branched at four
appropriate points has a natural structure of a square-tiled surface. We de-
scribe the combinatorics of such a square-tiled surface, the geometry of the
corresponding Teichmüller curve, and compute the Lyapunov exponents of
the determinant bundle over the Teichmüller curve with respect to the geo-
desic flow. This paper includes a new example (announced by G. Forni and
C. Matheus in [17]) of a Teichmüller curve of a square-tiled cyclic cover in
a stratum of Abelian differentials in genus four with a maximally degener-
ate Kontsevich–Zorich spectrum (the only known example found previously
by Forni in genus three also corresponds to a square-tiled cyclic cover [15]).
We present several new examples of Teichmüller curves in strata of holomor-
phic and meromorphic quadratic differentials with maximally degenerate
Kontsevich–Zorich spectrum. Presumably, these examples cover all possible
Teichmüller curves with maximally degenerate spectrum. We prove that this
is indeed the case within the class of square-tiled cyclic covers.

1. INTRODUCTION

The Kontsevich–Zorich cocycle is a dynamical system on the total space of
the Hodge bundle over the moduli space of Abelian or quadratic differentials.
It is a continuous-time cocycle in the standard sense: it is a flow which acts lin-
early on the fibers of the bundle. Its projection to the moduli space is given by
the Teichmüller geodesic flow. Since the Kontsevich–Zorich cocycle is closely
related to the tangent cocycle of the Teichmüller flow, its Lyapunov structure
determines that of the Teichmüller flow and has implications for its dynam-
ics. The Kontsevich–Zorich spectrum also plays a crucial role in applications of
Teichmüller theory to the dynamics of translation flows and interval exchange
transformations — in particular, to results on the deviation of ergodic averages
(see [38], [39], [40], [22], [14]), on existence and nature of the limit distributions
(see [7], [8]) and on the weak mixing property (see [2]).
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M. Kontsevich and A. Zorich conjectured that the Lyapunov spectrum of the
cocycle is simple (in particular, that all the exponents are non-zero) for SL(2,R)-
invariant canonical absolutely continuous measures on all connected compo-
nents of strata of the moduli spaces of Abelian (and quadratic) holomorphic
differentials. G. Forni [14] proved that, for the canonical measures on strata
of Abelian differentials, the exponents are all non-zero. A. Avila and M. Viana
[3] later completed the proof of the Kontsevich–Zorich conjecture in this case.
Recently, G. Forni developed his approach to give a general criterion for the
non-vanishing of the Kontsevich–Zorich exponents for SL(2,R)-invariant mea-
sures on the moduli space of Abelian differentials [16]. Based on this criterion
(and on a standard construction of an orienting double cover), R. Treviño [33]
proved the nonvanishing of the exponents for all canonical measures on strata
of quadratic differentials. The full Kontsevich–Zorich conjecture is still open for
strata of nonorientable quadratic differentials.

The aforementioned results lead to the natural questions as to whether or
not it is possible for the Kontsevich–Zorich cocycle to have zero exponents with
respect to other invariant measures. It is well-known to experts (cf. [34]) that it
is possible to construct invariant measures for the Teichmüller geodesic flow (for
instance, supported on periodic orbits) with maximally degenerate Kontsevich–
Zorich spectra, that is, with all exponents equal to zero with the exception of
the “trivial” ones. Answering a question of W. Veech, G. Forni found in [15] the
first example of a SL(2,R)-invariant measure with a maximally degenerate spec-
trum. The example is given by the measure supported on the SL(2,R)-orbit of
a genus three square-tiled cyclic cover, that is, a branched cover of the four-
punctured Riemann sphere, endowed with a quadratic differential with four
simple poles at the punctures. Any cover of this type is “parallelogram-tiled” in
the sense that it is also a branched cover of the torus with a single branching
point. The flat surface in Forni’s example, found independently by F. Herrlich,
M. Möller and G. Schmithuesen, is very peculiar, very symmetric, and has so
many remarkable properties that has been aptly named Eierlegende Wollmilch-

sau [20]. Later G. Forni and C. Matheus announced in the preprint [17] a second
example of the same kind in genus four (see also [27]). The present article has,
in fact, grown out of that announcement.

M. Möller conjectured in [30] that these two examples are the only Teich-
müller curves with maximally degenerate Kontsevich–Zorich spectra. He was
able to prove his conjecture up to a few strata in genus five where the arith-
metic conditions he derives to rule out maximally degenerate spectra could
not be verified [30]. Möller result naturally led to the more general conjecture
on whether the Teichmüller curves of the Eierlegende Wollmilchsau and the
Forni–Matheus curve indeed give the only examples of SL(2,R)-invariant mea-
sures (or even of SL(2,R)-orbits) with maximally degenerate Kontsevich–Zorich
spectra on strata of Abelian differentials. For sufficiently high genus the conjec-
ture is proved in [11] for SL(2,R)-invariant suborbifolds in the moduli space of
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holomorphic Abelian and quadratic differentials, as a corollary of the key for-
mula for the sum of the exponents. Other results in this direction for moduli
spaces of holomorphic (Abelian or quadratic) differentials in all genera have
been announced by A. Avila and M. Möller and, independently, by D. Aulicino.
Similar conjectures for strata of meromorphic quadratic differentials are at the
moment wide open, to the authors’ best knowledge.

In this paper, we systematically investigate these questions within the class
of all square-tiled cyclic covers. We remark that the idea of the construction
of a square-tiled cyclic cover already appeared in [15] (and in [17]) but only
in a particular case. Here we generalize the construction and derive the main
topological, geometric, and combinatorial properties of the resulting transla-
tion and half-translation surfaces. We then classify all the examples of Teich-
müller curves derived from square-tiled cyclic covers with maximally degener-
ate spectra in strata of Abelian holomorphic differentials and of quadratic holo-
morphic and meromorphic differentials. The main tool in our investigation of
the spectrum of Lyapunov exponents is the formula from [11] for the sum of the
non-negative Lyapunov exponents (that is, for the exponent of the determinant
bundle). The formula takes a particularly simple, explicit form in the case of
square-tiled cyclic covers. In fact, our paper can be considered as a companion
to the paper by A. Eskin, M. Kontsevich and A. Zorich [12] in which the authors
derive a completely explicit formula for each individual Lyapunov exponent of a
square-tiled cyclic cover. In a related paper D. Chen [9] computes the Lyapunov
exponent of the determinant bundle for square-tiled cyclic covers by different
methods and relates it to the slope of the corresponding Teichmüller curve.

Finally, we remark that the Eierlegende Wollmilchsau and the Forni–Matheus
example were originally found in [15] and [17], respectively, by a completely
different method based on the analysis of the action of the cyclic group of deck
transformations on the second fundamental form of the Hodge bundle (related
to the Kontsevich–Zorich spectrum by the variational formulas of [14], [15]).
This symmetry approach has led us to conduct a systematic investigation of
the spectrum of the Kontsevich–Zorich cocycle on equivariant subbundles of
the Hodge bundle, which will appear in a forthcoming paper [18].

Additional bibliographic remarks. Cyclic covers were already studied by I.
Bouw and M. Möller in [6] in a similar context, but with respect to completely
different (not square-tiled) flat structures. The papers [5] of I. Bouw and [28]
of C. McMullen investigate more general cyclic covers, but without any relation
to flat metrics. The paper [37] of A. Wright studies general square-tiled Abelian

(versus cyclic) covers.

1.1. Reader’s guide. Cyclic covers are defined in Section 2.1. In Section 2.2
we introduce a square-tiled flat structure on any appropriate cyclic cover. A
reader interested in the main results can then choose to pass directly to Sec-
tion 3.2. In Section 2.3 we characterize square-tiled cyclic covers defined by
holomorphic one-forms. We determine the corresponding ambient strata of
holomorphic 1-forms (of quadratic differentials in the general situation). In
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Section 2.4 we describe in detail how to explicitly construct the square-tiled
surface (MN (a1, a2, a3, a4), p∗q0), and in Section 2.6 we characterize its Veech
group and the corresponding arithmetic Teichmüller curve. In Section 2.5 we
describe the automorphism group of a cyclic cover. In Section 3.1 we recall a
general formula from [11] for the sum of positive Lyapunov exponents of the
Hodge bundle over an arithmetic Teichmüller curve. From this formula we de-
rive in Section 3.2 an explicit expression for the sum of exponents in the case
of an arbitrary square-tiled cyclic cover. We apply these results in Section 3.3
to determine square-tiled cyclic covers giving rise to arithmetic Teichmüller
curves with a maximally degenerate Kontsevich–Zorich spectrum.

In Appendix A we present an analytic computation of the spin-structure (dif-
ferent from the original computation in [27]), which allows us to determine
the connected component of the ambient stratum corresponding to the excep-
tional square-tiled cyclic cover in genus four. Appendix B is provided for the
sake of completeness: it is a technical exercise related to the proof of one of the
main Theorems (namely Theorem 18) .

2. SQUARE-TILED FLAT STRUCTURE ON A CYCLIC COVER

2.1. Cyclic covers. Consider an integer N such that N > 1 and a 4-tuple of in-
tegers (a1, . . . , a4) satisfying the following conditions:

(1) 0 < ai ≤ N ; gcd(N , a1, . . . , a4)= 1;
4∑

i=1
ai ≡ 0 ( mod N ) .

Let z1, z2, z3, z4 ∈ C be four distinct points. Conditions (1) imply that, possibly
after a desingularization, a Riemann surface MN (a1, a2, a3, a4) defined by equa-
tion

(2) w N
= (z − z1)a1 (z − z2)a2 (z − z3)a3 (z − z4)a4

is closed, connected and nonsingular. By construction, MN (a1, a2, a3, a4) is a
ramified cover over the Riemann sphere P

1(C) branched over the points z1, . . . ,
z4. By puncturing the ramification points we obtain a regular N -fold cover over
P

1(C)à {z1, z2, z3, z4}.

REMARK 1. It is easy to see that quadruples (a1, a2, a3, a4) and (ã1, ã2, ã3, ã4)
with ai = ãi (mod N ) for i = 1,2,3,4, define isomorphic cyclic covers, which
explains the first condition in formula (1). The condition on gcd in (1) is a nec-
essary and sufficient condition of connectedness of the resulting cyclic cover.
The third condition in formula (1) implies that there is no branching at infinity.

A group of deck transformations of this cover is the cyclic group Z/NZ with
a generator T : M → M given by

(3) T (z, w )= (z,ζw ) ,

where ζ is a primitive N th root of unity, ζN = 1. Throughout this paper we will
use the term cyclic cover when referring to a Riemann surface MN (a1, . . . , a4),
with parameters N , a1, . . . , a4 satisfying relations (1).
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SQUARE-TILED CYCLIC COVERS 289

2.2. Square-tiled surface associated to a cyclic cover. Any meromorphic qua-
dratic differential q(z)(d z)2 with at most simple poles on a Riemann surface
defines a flat metric g (z) = |q(z)| with conical singularities at zeroes and poles
of q . Let us consider a meromorphic quadratic differential q0 on P

1(C) of the
form

(4) q0 :=
c0(d z)2

(z − z1)(z − z2)(z − z3)(z − z4)
, where c0 ∈Cà {0} .

It has simple poles at z1, z2, z3, z4 and no other zeroes or poles. The quadratic
differential q0 defines a flat metric on a sphere obtained by the following con-
struction. Consider an appropriate flat cylinder. On each boundary compo-
nent of the cylinder mark a pair of opposite points and glue the resulting pairs
of cords by isometries. The four marked points become conical points of the
flat metric. For a convenient choice of parameters c0, z1, . . . , z4 the resulting flat
sphere can be obtained by identifying the boundaries of two copies of a unit
square. Metrically, we get a square pillow with four corners corresponding to
the four poles of q0, see Figure 1.

Now consider some cyclic cover MN (a1, a2, a3, a4) and the canonical projec-
tion p : MN (a1, a2, a3, a4) → P

1(C). Consider an induced quadratic differential
q = p∗q0 on MN (a1, a2, a3, a4) and the corresponding flat metric. By construc-
tion, the resulting flat surface is tiled with unit squares. In other words, we get a
square-tiled surface, see [10], [41] (also called an origami, [25], [32]; also called
an arithmetic translation surface, see [19]).

In this paper we mostly focus on square-tiled cyclic covers, which are pairs

(MN (a1, a2, a3, a4) , p∗q0) ,

where the meromorphic quadratic differential q0 on the underlying P
1(C) de-

fines a “unit square pillow with vertical and horizontal sides” as in Figure 1.

2.3. Singularity pattern of a square-tiled cyclic cover. The Riemann surface
MN (a1, a2, a3, a4) has gcd(N , ai ) ramification points over each branching point
zi ∈ P

1(C), where i = 1,2,3,4, on the base sphere. Each ramification point has
degree N /gcd(N , ai ). The flat metric has four conical points z = zi , i = 1, . . . ,4,
on the base sphere with a cone angle π at each conical point. Hence, the in-
duced flat metric on MN (a1, a2, a3, a4) has gcd(N , ai ) conical points over zi ;
each conical point has cone angle

(
N /gcd(N , ai )

)
π.

If one of the cone angles is an odd multiple of π, then the flat metric has
nontrivial holonomy; in other words, the quadratic differential q = p∗q0 is not

a global square of a holomorphic 1-form. Note, however, that although the con-
dition that all cone angles be even multiples of π is necessary, it is not a suffi-
cient condition for triviality of the holonomy of the flat metric.

Denote by H (m1, . . . ,mn) the stratum of Abelian differentials with zeroes of
degrees m1, . . . ,mn and by Q(d1, . . . ,dn) the stratum of meromorphic quadratic
differentials with singularities of degrees d1, . . . ,dn . Here mi ∈N, for i = 1, . . . ,n,
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290 GIOVANNI FORNI, CARLOS MATHEUS AND ANTON ZORICH

and
∑n

i=1 mi = 2g −2. We do not allow poles of orders higher than one for mero-
morphic quadratic differentials, so di ∈ {−1,1,2,3, . . . }, for i = 1, . . . ,n, and the
sum of degrees of singularities satisfies the equality

∑n
i=1 di = 4g −4.

LEMMA 2. If N is even and all ai , i = 1,2,3,4, are odd, the quadratic differential

q = p∗q0 is a global square of a holomorphic 1-form ω on MN (a1, a2, a3, a4),

where ω belongs to the stratum

(5) ω∈H

(
N

2gcd(N , a1)
−1, . . .

︸ ︷︷ ︸
gcd(N ,a1)

, . . . , . . . ,
N

2gcd(N , a4)
−1

︸ ︷︷ ︸
gcd(N ,a4)

)
.

The associated flat metric on such a square-tiled cyclic cover has a trivial linear

holonomy.

If N is odd, or if N is even but at least one of ai , i = 1,2,3,4, is also even, the

quadratic differential q = p∗q0 is not a global square of a holomorphic 1-form

on MN (a1, a2, a3, a4). In this case q belongs to the stratum

(6) q ∈Q

(
N

gcd(N , a1)
−2, . . .

︸ ︷︷ ︸
gcd(N ,a1)

, . . . , . . . ,
N

gcd(N , a4)
−2

︸ ︷︷ ︸
gcd(N ,a4)

)
,

and the flat metric on such a square-tiled cyclic cover MN (a1, a2, a3, a4) has non-

trivial linear holonomy.

REMARK 3. In the case, when gcd(N , ai ) = N
2 , the corresponding “conical points”

have cone angles 2π and so are actually regular points of the metric. Depend-
ing on the context we either consider such points as marked points or simply
ignore them.

REMARK 4. Lemma 2 implies, in particular, that the quadratic differential q =

p∗q0 is holomorphic if and only if inequalities ai ≤ N are strict for all i = 1,2,3,4.
If ai = N for at least one index i , then the quadratic differential q = p∗q0 is
meromorphic; that is, it has simple poles.

Proof of the Lemma. Let σi be a small contour around zi in the positive direc-
tion on the sphere (see Figure 1). The paths σi , i = 1,2,3 generate the funda-
mental group of the sphere punctured at the four ramification points.

Since the cone angle at each cone singularity of the underlying “flat sphere”
is π (whether it is glued from squares or not), the parallel transport along each
loop σi brings a tangent vector ~v to −~v . Let z ∈P

1(C) be a point of the loop σi ,
and let (w, z) be one of its preimages in the cover MN (a1, a2, a3, a4). By lifting
the loop σi to a path on the cover which starts at the point (w, z), we land at
the point (ζai w, z), where ζ is the primitive N th root of unity. Thus we get the
following representation of the fundamental group of the punctured sphere in
the cyclic group Z/NZ of deck transformations (3) and the holonomy group
Z/2Z of the flat metric on the sphere:

(7) Deck : σi 7→ ai ∈Z/NZ Hol :σi 7→ 1 ∈Z/2Z
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SQUARE-TILED CYCLIC COVERS 291

Since the metric on MN (a1, a2, a3, a4) is induced from the metric on the sphere,
the holonomy representation hol of the fundamental group of the covering sur-
face MN (a1, a2, a3, a4) factors through the one of the sphere, i.e., hol = Hol◦p∗.

Let us suppose that N is odd. Let αi = N /gcd(N , ai ). Then

Deck(σαi

i
) = ai ·

N

gcd(N , ai )
=

ai

gcd(N , ai )
N = 0 (mod N ) .

Hence σ
αi

i
can be lifted to a closed path on MN (a1, a2, a3, a4). On the other

hand, Hol(σαi

i
) = αi = N /gcd(N , ai ) = 1 (mod 2). Thus, the flat metric on the

cover MN (a1, a2, a3, a4) has nontrivial holonomy, and our quadratic differential
q is not a global square of a holomorphic 1-form.

Let us suppose that N is even, but some ai is also even. Since

gcd(N , a1, . . . , a4) = 1,

at least one of a j is odd. Since a1+·· ·+a4 is divisible by N , this sum is even, and
hence we have exactly two even entries. By relabeling the ramification points
on the sphere, if necessary, we may assume that a1, a3 are odd while a2, a4 are
even. Let us consider a path

ρ :=σ
(a2+a3)
1 σ

−a1
2 σ

−a1
3

For the induced deck transformation we get

Deck(ρ)= ((a2 +a3)a1 −a1a2 −a1a3) = 0 .

Hence, a lift of ρ is closed on MN (a1, a2, a3, a4). On the other hand, this path
acts as an element Hol(ρ) = (a2 + a3)− a1 − a1 = 1 (mod 2) in the holonomy
group Z/2Z. Hence, the holonomy of the metric along this closed path on the
cover MN (a1, a2, a3, a4) is nontrivial, and our quadratic differential q is not a
global square of a holomorphic 1-form.

Finally, suppose that N is even and all ai , i = 1,2,3,4 are odd. Any element
of the fundamental group of the underlying four-punctured sphere can be rep-
resented by a product

τ=
n∏

j=1
σ

p j

i j
, where p j =±1 and i j ∈ {1,2,3,4} .

Let ki be the algebraic number of entries of the “letter” σi in the word as above,
where σ−1

i
is counted with the sign minus, and i = 1,2,3,4. The loop τ as above

can be lifted to a closed loop on the cover if and only if Deck(τ) = 0, that is,
if and only if k1a1 + ·· · +k4a4 = 0 (mod N ). In this case Hol(τ) = k1 + ·· · +k4.
Since all ai are odd we have k1+·· ·+k4 = k1a1+·· ·+k4a4 (mod 2). Finally, since
N is even and k1a1 +·· ·+k4a4 = 0 (mod N ), we also have k1a1 +·· ·+k4a4 = 0
(mod 2). Thus, in this case, the flat metric on MN (a1, a2, a3, a4) has trivial linear
holonomy.
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Recall that a flat metric associated to a meromorphic quadratic differential
with at most simple poles has cone angle (d +2)π at a zero of order d (we con-
sider a simple pole as a “zero of degree −1”). A flat metric associated to a holo-
morphic 1-form has cone angle 2(k + 1)π at a zero of degree k . We have al-
ready evaluated the number of ramification points and their ramification de-
grees which define cone angles at all conical singularities, and hence the de-
grees of the corresponding quadratic (Abelian) differential. This completes the
proof of the Lemma.

LEMMA 5. In the case when the quadratic differential q = p∗q0 determining a

square-tiled flat structure is the global square of a holomorphic 1-form, that is,

q = ω2, the form ω is anti-invariant with respect to the action of a generator of

the group of deck transformations,

(8) T ∗ω=−ω .

Proof. By construction, the quadratic differential q = p∗q0 is invariant under
the action of deck transformations on MN (a1, a2, a3, a4). Hence, when N is
even, all ai , i = 1,2,3,4 are odd, and q = p∗q0 =ω2, the holomorphic 1-form ω

is either invariant or anti-invariant under the action of a generator of the group
of deck transformations (3).

Invariance ofωunder T ∗ would mean thatω can be pushed forward toP
1(C),

which would imply in turn that q0 is a global square of a holomorphic 1-form.
This is not true. Hence, ω is anti-invariant.

By Riemann–Hurwitz formula, the genus g of MN (a1, a2, a3, a4) satisfies

2−2g = 2N −
∑

ramification
points

(degree of ramification−1)

= 2N −

4∑

i=1
gcd(N , ai ) ·

(
N /gcd(N , ai )−1

)

=

4∑

i=1
gcd(N , ai )−2N

and hence,

(9) g = N +1−
1

2

4∑

i=1
gcd(ai , N ) .

The same result can be obtained by summing up the degrees of zeroes, which
gives 2g −2 for a holomorphic 1-form in (5), and 4g −4 for a quadratic differen-
tial in (6).

2.4. Combinatorics of a square-tiled cyclic cover. It is convenient to define a
square-tiled surface corresponding to a holomorphic 1-form by a pair of per-
mutations on the set of all squares, πh and πv , indicating for each square its
neighbor to the right and its neighbor on top respectively. Let us evaluate these
permutations for a square-tiled surface defined by a holomorphic 1-form ω on
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SQUARE-TILED CYCLIC COVERS 293

MN (a1, a2, a3, a4) (and in addition to the conditions in formula (1) we assume
that N is even and all ai are odd).

We start with an appropriate enumeration of the squares. By construction,
our “square-tiled pillow” (P1(C), q0) in the base of the cover

MN (a1, a2, a3, a4) →P
1(C)

is tiled with two unit squares. Since the above cover has degree N , our square-
tiled cyclic cover gets tiled with 2N squares.

Assume that the branch points z1, z2, z3, z4 are associated to the corners of
the pillow as in Figure 1. We associate the letters A,B ,C ,D to the four corners
respectively. We also associate the corresponding letters to the corners of each
square on the surface MN (a1, a2, a3, a4).

Let us color one of the faces of our pillow in white, and the other one in black.
Let us lift this coloring to MN (a1, a2, a3, a4). Choose some white square, and
associate the number 0 to it. Take a black square adjacent to the side [C D] of
the first one and associate the number 1 to it. Acting by deck transformations
we associate to a white square T k (S0) the number 2k , and to a black square
T k (S1) the number 2k +1. As usual, k is taken modulo N , so we may assume
that 0 ≤ k < N .

z1

z2 z3

z4

A

B C

D

σ1

τh

FIGURE 1. Flat sphere glued from two squares

Let us consider a small loop σi encircling zi in a positive direction; we as-
sume that σi does not have other ramification points inside an encircled do-
main, see Figure 1. Let us then consider a lift of σi to MN (a1, a2, a3, a4). The
end-point of the lifted path is the image of the action of T ai on the starting
point of the lifted path. Hence, starting at a square number j and “going around
a corner” on MN (a1, a2, a3, a4) in the positive (counterclockwise) direction we
get to a square number j +2a j (mod 2N ) (see Figure 2).

Let us consider a horizontal path τh as in Figure 1 and a lift of τh to the
surface MN (a1, a2, a3, a4). The end-point of the resulting path is the image of
the action of T a1+a4 = T −(a2+a3) on the starting point of the lifted path. Hence,
“moving two squares to the right” on MN (a1, a2, a3, a4) we move from a square
number j to a square number j +2(a1+a4) (mod 2N ) if vertices B and C are at
the bottom of the squares, and to a square number j −2(a1 + a4) (mod 2N ) if
vertices B and C are on top of the squares (see Figure 3).
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σ1

A

j

j+2a1
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j

σ−1
1

A
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j

σ−1
1

A

j

j−2a1

σ2

B

j

j+2a2

σ2

B

j

j+2a2 τh

A D A D

B C B C

j
j+2(a1+

+a4)

FIGURE 2. Local moves on a square-tiled cyclic cover

Using these rules, it is easy to determine the permutations πh and πv . Start
with two neighboring squares numbered by 0 and 1. By iterating the opera-
tion τh , we can determine all the squares to the right of 0 and 1 till we close up
and get a cylinder. Recall that we associate letters A,B ,C ,D to the corners of
the squares. By applying appropriate operations σi we find the squares located
atop of those which are already constructed. By applying appropriate opera-
tions σ−1

i
we find a direct neighbor to the right for every square which does not

belong to one of the previously constructed horizontal cylinders. Having two
horizontally adjacent squares, we apply iteratively the operation τh to obtain
all 2N /gcd(N , a1 +a4) squares in the corresponding cylinder (row), etc.

EXAMPLE 6. Figure 3 presents a construction of the enumeration for the square-
tiling of M6(1,1,1,3), where the exponents {1,1,1,3} are represented by vertices
{A,B ,C ,D} respectively. Note that by moving two squares to the right in the first
row (say, 0 −→ 8) we apply τh , while by moving two squares to the right in the
second row (say, 10 −→ 2) we apply τ−1

h
. In this example the permutations πh

and πv have the following decompositions into cycles

πh = (0,1,8,9,4,5)(11,10,3,2,7,6)

πv = (0,7,4,11,8,3)(1,6,9,2,5,10)

When N is odd, or when N is even but at least one of ai is also even, the
quadratic differential q = p∗q0 on MN (a1, a2, a3, a4) is not a global square of
a holomorphic 1-form. The holonomy of the flat structure defined by q is no
longer trivial: a parallel transport of a tangent vector v along certain closed
paths brings it to −v . In particular the notions of “up–down” or “left–right” are
no longer globally defined. However, the notions of horizontal direction and of
vertical direction are still globally well-defined. Our flat surface is square-tiled
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τh 0 1 8 0 1 8 9

A D A

B C B

A D A D

B C B C

τh 0 1 8 9 4 5 0 Closed up a cylinder

A D A D A D A

B C B C B C B

σ4 0 1 8 9 4 5

10
A D A D A D A

B C B C B C B

σ−1
1 0 1 8 9 4 5

10 3
A D A D A D A

B C B C B C B

τ−1
h 0 1 8 9 4 5

10 3 2

0 1 8 9 4 5

11 10 3 2 7 6

5

7 6 3 2
6

8

3 10 11 6 7 2

0

1 0 5 4 9

8 9 0 1

11

FIGURE 3. Cartoon movie construction of M6(1,1,1,3).

and its combinatorial geometry can still be encoded by a pair of permutations
πh and πv .

Note that the vertices of every square of our tiling are naturally labeled by
indices A,B ,C ,D according to the label of their projections on the Riemann
sphere. By convention, πh(2k) indicates the number of a black square adjacent
to the side [C D] of the white square 2k , and πh(2k +1) indicates the number of
a white square adjacent to the side [AB ] of the black square 2k +1. Similarly,
πv (2k) indicates the number of a black square adjacent to the side [AD] of the
white square 2k , andπh(2k+1) indicates the number of a white square adjacent
to the side [BC ] of the black square 2k +1.

With this definition the remaining part of the construction literally coincides
with the one for an Abelian differential, which was described above.

EXAMPLE 7. Figure 4 illustrates a square-tiling of M4(1,3,2,2). The flat metric
has nontrivial linear holonomy; the corresponding quadratic differential be-
longs to the stratum Q(2,2). In this example the permutations πh and πv are
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0 1 6 7 4 5 2 3

A D A D A D A D A

B C B C B C B C B

3

5 4 3 2 1 0 7 6

0
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0 1
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A D A

B C
B

A
D A

B C B

3
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6

1

05

5 4

2 3

0 1

7 6

FIGURE 4. These two ways to unfold the square-tiled cyclic
cover M4(1,3,2,2) represent decompositions into horizontal
and into vertical cylinders.

decomposed into cycles as

πh = (0,1,6,7,4,5,2,3)

πv = (0,5)(1,4)(2,7)(3,6)

REMARK 8. Note that when pairing sides of boundary squares of an abstract
square-tiled surface one has to respect the orientation of the surface.

We proceed below with an elementary lemma which will, however, be im-
portant later.

LEMMA 9. Consider a decomposition MN (a1, a2, a3, a4) =⊔cyli of a square-tiled

cyclic cover into cylinders cyli filled by closed horizontal trajectories. For every

cylinder cyli we denote by wi its width (the length of each closed horizontal tra-

jectory) and by hi its height (the length of each vertical segment).

Assuming that the branch points z1, z2, z3, z4 are numbered as indicated in

Figure 1, the widths of the corresponding cylinders and the sum of the heights of

all cylinders are given by the formulas:

wi =
2N

gcd(N , a1+a4)
, for all i , and

∑

i

hi = gcd(N , a1 +a4) .

Proof. Clearly, the operation τh = T (a1+a4) has order N
gcd(N ,a1+a4) . Hence, the

length of each horizontal trajectory is equal to 2N
gcd(N ,a1+a4) which, in turn, is

equal to the width of any cylinder. Since the area of the surface is 2N , the total
height of all cylinders is equal to gcd(N , a1 +a4).

REMARK 10. It is irrelevant whether or not the quadratic differential q = p∗q0

defining the square-tiled flat structure in Lemma 9 is a global square of a holo-
morphic 1-form, or not.

2.5. Symmetries of cyclic covers. We continue with a description of the iso-
morphisms of cyclic covers (certainly known to all who worked with them).
Note that in the Lemma below we do not use any flat structure.

LEMMA 11. Two cyclic covers MN (a1, . . . , a4) and MN (ã1, . . . , ã4) admit an iso-

morphism compatible with the projection to P
1(C)
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MN (a1, . . . , a4) ≃ MN (ã1, . . . , ã4)

❅
❅❘

�
�✠

P
1(C)

if and only if for some primitive element k ∈Z/NZ one has

(10) ãi = k ai (mod N ), for i = 1,2,3,4 .

In particular,

(11) MN (a1, a2, a3, a4) ≃ MN (N −a1, N −a2, N −a3, N −a4) .

Proof. Any isomorphism g of cyclic covers as above induces an isomorphism
g∗ of their groups of deck transformations such that,

�Deck(σi ) = g∗(Deck(σi )) , for i = 1, . . . ,4 .

Since by construction �Deck(σi ) = ãi and Deck(σi ) = ai in Z/NZ, for i = 1, . . . ,4,
and any automorphism of a cyclic group Z/NZ is given by the multiplication
by a primitive element k ∈Z/NZ, the above relation yields formula (10).

On the other hand, when condition (10) is satisfied, one can find integers
m1, . . . ,m4 such that ãi = k ai +mi N , where 0 < ãi ≤ N , and, hence, we have an
obvious isomorphism

w̃ = w k (z − z1)m1 (z − z2)m2 (z − z3)m3 (z − z4)m4

between the cyclic covers w N = (z − z1)a1 (z − z2)a2 (z − z3)a3 (z − z4)a4 and w̃ N =

(z − z1)ã1 (z − z2)ã2 (z − z3)ã3 (z − z4)ã4 .

Consider a particular case when {a1, . . . , a4} and {ã1, . . . , ã4} coincide as un-
ordered sets (possibly with multiplicities).

DEFINITION 12. A permutation π in S4 is called a symmetry of a cyclic cover
MN (a1, a2, a3, a4) if there exists an integer k such that

k ·ai (mod N )= aπ(i ) for i = 1,2,3,4.

2.6. Veech group of a square-tiled cyclic cover. The group SL(2,R) and PSL(2,R)
acts naturally on any stratum of holomorphic 1-forms and, respectively, mero-
morphic quadratic differentials with at most simple poles. The Veech groupΓ(S)
of a flat surface S is the stabilizer of the corresponding point of the stratum un-
der this action. In this section we study the Veech groups of square-tiled cyclic
covers. In particular, we prove the following statement.

THEOREM 13. The Veech group Γ(S) of any square-tiled cyclic cover S contains

the group Γ(2) (respectively Γ(2)/(± Id)) as a subgroup. The Veech group Γ(S) has

one of the indices 1, 2, 3 or 6 in SL(2,Z) (respectively in PSL(2,Z)).

If the Veech groups Γ(S1) and Γ(S2) of two square-tiled cyclic covers S1,S2 have

the same index in SL(2,Z) (respectively in PSL(2,Z)), then Γ(S1) and Γ(S2) are

conjugate.
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REMARK 14. A proper subgroup of SL(2,Z) containing Γ(2) is said to be a con-

gruence subgroup of level two. It is not hard to check that the conjugation class
of a congruence subgroup of level two is uniquely determined by its index. An
example of a congruence subgroup of SL(2,Z) of level two with index 3 is

Γ0(2) =

{(
a b

c d

)
: a ≡ d ≡ 1(mod 2),c ≡ 0(mod 2)

}
.

In the literature, the congruence subgroups of level two of SL(2,Z) are called
theta groups (sometimes denoted Θ).

Theorem 13 will be derived from Lemma 15 and from a more precise Theo-
rem 18.

Sometimes it is convenient to “mark” (in other words “label” or “give names
to”) the zeroes (and the simple poles) of the corresponding holomorphic 1-
form (respectively, quadratic differential). In this way, one gets the strata of
marked (in other words “labeled”, “named”), flat surfaces. The action of the
group SL(2,R) (respectively PSL(2,R)) on the strata of marked flat surfaces, and
the Veech group Γ(Smarked) of a marked flat surface Smarked are defined analo-
gously.

Let the flat surface S be a “unit square pillow”, that is, let S be P
1(C) endowed

with the quadratic differential (4), where the parameters are chosen in such
way that the flat surface S is glued from two unit squares, and their sides are
vertical and horizontal. The Veech group Γ(S) of such a flat surface S coincides
with PSL(2,Z). We will need the following elementary Lemma for the marked
version of the latter surface.

LEMMA 15. The action of the group PSL(2,Z) on the “unit square pillow with

marked corners” factors through the free action of the group S3 of permutations

of three elements by means of the surjective homomorphism

(12) PSL(2,Z) → PSL(2,Z/2Z) ≃S3 .

In particular, the Veech group Γ(Smarked) of the “unit square pillow with marked

corners” Smarked coincides with the kernel Γ(2)/(± Id) of this homomorphism.

Proof. Let the labels of the corners of the pillow be A,B ,C ,D, say, as in Figure
1. An element g of PSL(2,Z) acts on the flat surface (P1(C), q0), giving a new flat
surface isomorphic to the original one. It can still be obtained by gluing two
squares, but the labels A,B ,C ,D have moved around. Using an appropriate

z1

z2 z3

z4

B

A D

C

z1

z2 z3

z4

A

B C

D

z1

z2 z3

z4

D

C B

A

FIGURE 5. Symmetries of the flat surface
(
P

1(C), q0
)
.
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“pillow symmetry” as in Figure 5, one can always move back one chosen label
to the original position, but the other labels B ,C ,D are not fixed. Speaking more
formally, the “pillow symmetries” define the normal subgroup

(13) K=
{

() ; (1,2)(3,4) ; (1,3)(2,4) ; (1,4)(2,3)
}

of the symmetric group S4. The subgroup K is isomorphic to the Klein group.
The quotient of S4 over K is isomorphic to the symmetric group S3. The pro-
jection

(14) S4 →S3 ≃S4/K

is not canonical, since it depends on the choice of the fixed label. However, the
conjugacy class of the image of any element is defined canonically.

Note that the “pillow symmetries” are diffeomorphisms of our flat sphere
with differential ± Id in flat coordinates. Thus, all “unit square pillows with
marked corners” related by “pillow symmetries” define one and the same point
of the stratum Qmarked(−1,−1,−1,−1).

It is easy to see that under the convention that PSL(2,Z) keeps one of the

labels fixed, the elements

(
1 2
0 1

)
and

(
1 0
2 1

)
of PSL(2,Z) fix all the labels, and,

thus, belong to the Veech group of Smarked. It is a well-known fact that the above
two elements generate the kernel Γ(2)/(± Id) of the homomorphism of formula
(12), and that the group PSL(2,Z/2Z) = SL(2,Z/2Z) is isomorphic to S3.

It is also easy to check that under this identification the elements of S3 act
by the corresponding permutations of the three “free” labels; in particular, the
action of S3 on the six distinct “unit square pillows with marked corners” is
free.

Let S be a cyclic cover of a type MN (a1, . . . , a4) endowed with the flat struc-
ture induced from the flat structure (4) on P

1(C). As always, we assume that
when N is even and all ai are odd, the flat structure on S is defined by the holo-
morphic 1-form ω, such that ω2 = p∗q0; otherwise it is defined by the quadratic
differential q = p∗q0.

It is easy to see, that for any g in SL(2,R) (respectively, for any g in PSL(2,R)),
the image S̃ := g S is also represented by a cyclic cover. Moreover, any affine
diffeomorphism Ag : S → S̃ of the corresponding flat surfaces intertwines the
action of the group of the deck transformations on S and S̃, that is, Ag ◦T =

T̃ ◦ Ag . Similarly, for any g ∈ SL(2,Z) (respectively, for any g ∈ PSL(2,Z)) the
image of a square-tiled cyclic cover under the action of g is again a square-tiled

cyclic cover.
In the rest of this section (and, basically, in the remaining part of the paper)

we consider only square-tiled cyclic covers, in particular, to avoid cumbersome
notations, we denote by MN (a1, a2, a3, a4) a cyclic cover endowed with the flat
structure induced from the “square pillow” as in Figure 1. Under this conven-
tion, the order of the entries a1, . . . , a4 matters in the definition of a square-tiled
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cyclic cover MN (a1, a2, a3, a4). However, the square-tiled cyclic covers

MN (a1, a2, a3, a4), MN (a2, a1, a4, a3), MN (a4, a3, a2, a1), and MN (a3, a4, a1, a2) ,

related by “pillow symmetries” (see formula (13)) define the same flat surface.
The fact that the square-tiled cyclic cover MN (a3, a4, a1, a2) defines the same

flat surface as MN (a1, a2, a3, a4) implies, in particular, that in the case when the
flat structure on a square-tiled cyclic cover is defined by a holomorphic 1-form,

the element

(
−1 0
0 −1

)
of SL(2,Z) belongs to the Veech group of the correspond-

ing flat surface. Hence, the action of SL(2,Z) on square-tiled cyclic covers fac-
tors through the action of PSL(2,Z). We shall sometimes consider the latter
action without specifying it explicitly.

It is easy to see, that if an element g ∈ PSL(2,Z) permutes the marking of the
initial “unit square pillow with marked corners” by a permutation π ∈S4, then
the square-tiled cyclic cover MN (a1, a2, a3, a4) is mapped by g to the square-
tiled cyclic cover MN (aπ(1), aπ(2), aπ(3), aπ(4)). Since the elements of the sub-
group K of S4 correspond to isomorphic square-tiled cyclic covers, we con-
clude that the action of SL(2,Z) (respectively of PSL(2,Z)) on square-tiled cyclic
covers factors through the action on “unit square pillows with marked corners”.

By combining the latter observation with Lemma 15 we conclude that the
Veech group of MN (a1, a2, a3, a4) contains the groupΓ(2) (respectively the group
Γ(2)/(± Id)), that it has index at most 6 in SL(2,Z) (respectively, in PSL(2,Z)) and
that it is determined by its index up to conjugation.

To complete the proof of Theorem 13 it remains to prove that all indices 1, 2,
3, 6 are realized.

In order to describe this Veech group more precisely we need the following
remark. Let

f̂ : MN (a1, a2, a3, a4) → MN (ã1, ã2, ã3, ã4)

be an isomorphism of square-tiled cyclic covers, that is, a diffeomorphism with
differential equal to Id (respectively ± Id) in flat coordinates. It is not hard to see
that f̂ is part of a commutative diagram

MN (a1, a2, a3, a4)
f̂

−−−−→ MN (ã1, ã2, ã3, ã4)
yp

yp

(P1(C), q0)
f

−−−−→ (P1(C), q0) ,

where p is the canonical projection and f : P1(C) → P
1(C) is an automorphism

of the underlying flat sphere. We have seen that the only automorphisms of the
“square pillow” (P1(C), q0) are the “pillow symmetries” (see Figure 5). It follows
from formula (13) that all “pillow symmetries”, that is, all elements of the Klein
group K are involutions. Let s be the the “pillow symmetry” corresponding to
the automorphism f : P1(C) → P

1(C) or, equivalently, to its inverse. Let it act
on the canonical labeling of the corners of the pillow by a permutation ̹ ∈ K.
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Let ŝ be the induced automorphism of MN (ã1, ã2, ã3, ã4). By definition of ŝ the
diagram

MN (ã1, ã2, ã3, ã4)
ŝ

−−−−→ MN (ãκ(1), ãκ(2), ãκ(3), ãκ(4))yp

yp̃

(P1(C), q0)
s

−−−−→ (P1(C), q0)
commutes. Note that by construction the composition f ◦ s is the identity map,
which allows us to merge the two commutative diagrams above into the com-
mutative diagram

(15) MN (a1, . . . , a4) ≃ MN (ãκ(1), ãκ(2), ãκ(3), ãκ(4))

❅
❅❘

�
�✠

P
1(C) .

Let us consider the case when {a1, . . . , a4} and {ã1, . . . , ã4} coincide as unor-
dered sets (possibly with multiplicities). Since all symmetries of cyclic covers
such as those in formula (15) are described by Definition 12 and Lemma 11, our
considerations imply the following statement.

LEMMA 16. Consider π ∈ S4. The square-tiled cyclic covers MN (a1, a2, a3, a4)
and MN (aπ(1), aπ(2), aπ(3), aπ(4)) are isomorphic (that is define the same point of

the corresponding stratum) if and only if there exists a symmetry π′ of the cyclic

cover MN (a1, a2, a3, a4) such that the permutation π′ ·π−1 belongs to the Klein

subgroup K defined in formula (13).

By passing to the quotient S3 ≃S4/K we get the following immediate Corol-
lary of the Lemma above.

COROLLARY 17. For any square-tiled cyclic cover MN (a1, a2, a3, a4) the index of

its Veech group in SL(2,Z) (in PSL(2,Z) when the flat structure is defined by a

quadratic differential) coincides with the index of the image of the subgroup of

symmetries of MN (a1, a2, a3, a4) in S3 under the projection of formula (14).

In order to complete the proof of Theorem 13 it is sufficient to prove that
all indices 1,2,3,6 are realized. We prefer to prove a strengthened version of
Theorem 13.

THEOREM 18. The index of the Veech group of a square-tiled cyclic cover is de-

scribed by the following list.

• If for some triple of pairwise distinct indices i , j ,k ∈ {1,2,3,4} one has ai =

a j = ak , the index of the Veech group of the corresponding square-tiled

cyclic cover MN (a1, a2, a3, a4) is 1.

• If there is no such a triple of pairwise distinct indices, but there is a pair of

indices i 6= j , where i , j ∈ {1,2,3,4}, such that ai = a j , then the index of the

Veech group is 3.
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If all ai are pairwise distinct, then

• If MN (a1, . . . , a4) does not have nontrivial symmetries, or if any nontrivial

symmetry decomposes into two cycles of length 2, the index of the Veech

group is 6.

• If MN (a1, . . . , a4) has a symmetry represented by a cycle of length 4 or by a

single cycle of length 2, the index of the Veech group is 3.

• If MN (a1, . . . , a4) has a symmetry represented by a cycle of length 3, the in-

dex of the Veech group is 2.

All the symmetries listed above are realized.

Proof. If for some triple of pairwise distinct indices i , j ,k ∈ {1,2,3,4} the num-
bers ai = a j = ak coincide, it is clear that the index of the Veech group of the
square-tiled cyclic cover MN (a1, a2, a3, a4) is 1, say, as for M4(1,1,1,1) or for
M6(3,1,1,1).

Let us suppose that there is no such a triple of indices, but there is a pair of
indices i 6= j , where i , j ∈ {1,2,3,4}, such that ai = a j , say, as for M10(1,1,3,5)
or for M6(1,1,5,5). Then the transposition in the symmetric group S4 which
interchanges the two labels corresponding to ai and a j fixes the square-tiled
cyclic cover MN (a1, . . . , a4). The image of a transposition under the projection
(14) is again a transposition. Hence, the index of the Veech group in this case is
either 3 or 1.

Let us show, that index 1 is excluded. Let us suppose that the index of the
Veech group is 1, that is, for all permutations π ∈ S4 the flat surfaces repre-
sented by square-tiled cyclic covers MN (aπ(1), aπ(2), aπ(3), aπ(4)) are isomorphic.
Thus, without loss of generality we may assume that a2 = a1, and a3 6= a1,
a4 6= a1. Then

Deck(σ1σ
−1
2 ) = a1 −a2 = 0.

This property can be formulated in a form invariant under “pillow symmetries”,
namely: for at least one of the two vertical saddle connections of the “square
pillow” (P1(C), q0) the loop encircling one of the corresponding singularities in
positive direction, and then the other singularity in negative direction lifts to a
closed loop on MN (a1, a2, a3, a4). Clearly this property is not valid for the sur-
face MN (a1, a3, a2, a4) and we get a contradiction.

Consider now the remaining case when all ai are pairwise distinct.
If any nontrivial symmetry decomposes into two cycles of length 2, all the

symmetries are reduced to “pillow symmetries” and by Corollary 17 the index
of the Veech group of MN (a1, . . . , a4) is 6. This situation realizes, for example,
for M8(1,3,5,7).

Let us suppose that MN (a1, . . . , a4) has a symmetry represented by a cycle of
length 4. As an example, consider M10(1,3,9,7) and a symmetry corresponding
to the multiplication by k = 3. The image of such symmetry under projection
(14) is a transposition. By Corollary 17 this implies that the index of the Veech
group of MN (a1, . . . , a4) is either 3 or 1. It is an exercise to verify that index 1 is
excluded (see Appendix B).
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Let us suppose now that MN (a1, . . . , a4) has a symmetry represented by a cy-
cle of length 2. As an example, consider M40(1,9,5,25) and a symmetry induced
by multiplication by 9. A transposition is mapped by the projection (14) to a
transposition. Hence, the index of the Veech group in this case is again either 3
or 1. It is an exercise to verify that index 1 is excluded (see Appendix B).

Finally, let us suppose that MN (a1, . . . , a4) has a symmetry represented by a
cycle of length 3. As an example, consider M14(1,9,11,7) and a symmetry in-
duced by multiplication by k = 9. A cycle of length 3 is mapped by the projec-
tion (14) to a cycle of length 3. Hence, the index of the Veech group is either 2 or
1. If it were 1, one of the symmetries would be an odd permutation, i.e., a single
cycle of length 2 or 4. We have proved that the presence of such a symmetry
excludes index 1. Theorem 18 and, thus, Theorem 13 are proved.

To complete this section we note that the SL(2,R)-orbit of any square-tiled
surface (respectively, the PSL(2,R)-orbit in the case when the flat structure is
represented by a quadratic differential) inside the ambient moduli space of
Abelian or quadratic differentials is closed. Its projection to the moduli space of
curves is a Riemann surface with cusps, often called an arithmetic Teichmüller

curve, see [35], [19]. Any arithmetic Teichmüller curve is a finite cover of the
modular curve. Theorem 13 shows that for a square-tiled cyclic cover, the cor-
responding arithmetic Teichmüller curve is very small: it is a 1, 2, 3, or 6-fold
cover of the modular curve.

3. SUM OF LYAPUNOV EXPONENTS

3.1. Sum of the Lyapunov exponents for a square-tiled surface. Let us con-
sider a Teichmüller curve C . Each point x of C is represented by a Riemann
surface Sx . We can consider the cohomology space of H 1(Sx ,R) as a fiber of
a vector bundle H 1 over C , called the Hodge bundle. Similarly one defines
the bundles H 1,0 and H 1

C
. Note that each fiber is endowed with a natural in-

teger lattice H 1(Sx ,Z), which enables us to identify the fibers at nearby points
x1, x2. Hence, the bundle H 1 is endowed with a natural flat connection, called
the Gauss–Manin connection.

The Teichmüller curve C is endowed with a natural hyperbolic metric asso-
ciated to the complex structure of C ; the total area of C with respect to this
metric is finite. Consider a geodesic flow in this metric, and consider the mon-
odromy of the Gauss–Manin connection in H 1 with respect to the geodesic flow
on C . We get a 2g -dimensional symplectic cocycle. The geodesic flow on C is
ergodic with respect to the natural finite Lebesgue measure. Let us denote by
λ1 ≥λ2 ≥ ·· · ≥λ2g the Lyapunov exponents of the corresponding cocycle. Since
the cocycle is symplectic, its Lyapunov spectrum is symmetric in the sense that
λk =−λ2g−k+1 for all k = 1, . . . ,2g .

Note that C is isometrically immersed (usually embedded) into the corre-
sponding moduli space of curves with respect to the hyperbolic metric on the
Teichmüller curve C and Teichmüller metric in the moduli space. The cocycle
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described above is a particular case of a more general cocycle related to the Te-
ichmüller geodesic flow on the moduli space (sometimes called the Kontsevich–

Zorich cocycle).
The Lyapunov exponents of this cocycle are important in the study of the

dynamics of flows on surfaces and of interval exchange transformations. They
were studied by many authors including A. Avila and M. Viana [3]; M. Bain-
bridge [4]; I. Bouw and M. Möller [6]; G. Forni [13]–[15]; A. Eskin, M. Kontse-
vich and A. Zorich [11, 22, 42]; W. Veech [35]; see surveys [15] and [43] for an
overview. In particular, from elementary geometric arguments it follows that
one always has λ1 = 1.

We need two results from [11] concerning the sum λ1+·· ·+λg of all nonneg-
ative Lyapunov exponents of the Hodge bundle H 1 along the geodesic flow on
an arithmetic Teichmüller curve.

THEOREM 19 ([11]). The sum of all nonnegative Lyapunov exponents of the Hodge

bundle H 1 along the geodesic flow on an arithmetic Teichmüller curve in a stra-

tum H (m1, . . . ,mn), where m1+·· ·+mn = 2g −2, satisfies the following relation:

(16) 1+λ2 +·· ·+λg =
1

12
·

n∑

i=1

mi (mi +2)

mi +1

+
1

card(SL(2,Z) ·S0)

∑

Si∈SL(2,Z)·S0

∑

horizontal
cylinders cyli j

such t hat
Si=⊔cyli j

hi j

wi j
.

where S0 is a square-tiled surface representing the corresponding arithmetic Te-

ichmüller curve.

REMARK 20. Note that the sum of the top g Lyapunov exponents of the Hodge
bundle coincides with a single positive Lyapunov exponent of the complex line
bundle Λ

g H 1,0 often called determinant line bundle.

When an arithmetic Teichmüller curve belongs to a stratum Q(d1, . . . ,dn) of
quadratic differentials, one can consider the same vector bundle H 1 as above
and define the cocycle and the Lyapunov exponents exactly in the same way
as for holomorphic 1-forms. By reasons which will become clear below, it is
convenient to denote these Lyapunov exponents by λ+

1 ≥ ·· · ≥ λ+
2g . Since the

cocycle is symplectic, we again have the symmetry λ+
k
= −λ+

2g−k+1 for all k =

1, . . . ,2g . However, for quadratic differentials one has λ+
1 < 1 for any invariant

suborbifold (in fact, for any invariant probability measure, see [14]).
Following M. Kontsevich [22], in the case of quadratic differentials one can

define one more vector bundle, H 1
−, over Q(d1, . . . ,dn). Consider a pair (Rie-

mann surface S, quadratic differential q) representing a point of a stratum of
quadratic differentials Q(d1, . . . ,dn). By assumption, q is not a global square of
a 1-form. There exists a canonical (possibly ramified) double cover p2 : Ŝ → S

such that p∗
2 q = ω2, where ω is a holomorphic 1-form on Ŝ. Following [22] it
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will be convenient to introduce the following notation. Let ĝ be the genus of
the cover Ŝ. By effective genus we call the positive integer

(17) geff := ĝ − g .

The cohomology space H 1(Ŝ,R) splits into a direct sum H 1(Ŝ,R) = H 1
+(Ŝ,R)⊕

H 1
−(Ŝ,R) of invariant and anti-invariant subspaces with respect to the action

H 1(Ŝ,R) → H 1(Ŝ,R) induced on cohomology by the canonical involution which
commutes with the double covering map p2 : Ŝ → S. Note that the invariant
part is canonically isomorphic to the cohomology of the underlying surface,
that is, H 1

+(Ŝ,R) ≃ H 1(S,R).
We consider the subspaces H 1

+(Ŝ,R) and H 1
−(Ŝ,R) as fibers of natural vector

bundles H 1
+ and H 1

− over Q(d1, . . . ,dn). The bundle H 1
+ is canonically isomor-

phic to the bundle H 1. The splitting H 1 = H 1
+⊕H 1

− is equivariant with respect
to the Gauss–Manin connection. The symplectic form restricted to each sum-
mand is nondegenerate. Thus, the monodromy of the Gauss–Manin connec-
tion on H 1

+ and on H 1
− along Teichmüller geodesic flow defines two symplectic

cocycles. Following the notations established above, we denote the Lyapunov
exponents of the cocycle acting on H 1

+ by λ+
1 ≥ ·· · ≥ λ+

2g and the ones of the

cocycle acting on H 1
− by λ−

1 ≥ ·· · ≥ λ−
2geff

. As always for symplectic cocycles we

have the symmetries λ+
k
= −λ+

2g−k+1 and λ−
k
= −λ−

2geff −k+1. It follows from the

analogous result for the case of Abelian differentials that one always has λ−
1 = 1.

Unlike H 1
+, the vector bundle H 1

− on a stratum of quadratic differentials is
not induced from a vector bundle on an underlying moduli space of curves.
However, it can be descended to Q(d1, . . . ,dn)/C∗, where C

∗ is identified with
the subgroup of GL(2,R) acting on Q(d1, . . . ,dn) by multiplying a quadratic dif-
ferential by a nonzero constant. In particular, for any Veech surface (S, q) in
Q(d1, . . . ,dn) the bundle H 1

− can be descended from the PSL(2,R)-orbit O of
(S, q) in Q(d1, . . . ,dn) to the corresponding Teichmüller curve C =O/C∗.

THEOREM 21 ([11]). The sums of all nonnegative Lyapunov exponents of the

bundles H 1
+ and H 1

− along the geodesic flow on an arithmetic Teichmüller curve

in a stratum Q(d1, . . . ,dn), of meromorphic quadratic differentials with at most

simple poles, satisfy the following relations:

(18) λ+
1 +λ+

2 +·· ·+λ+
g =

1

24
·

n∑

i=1

di (di +4)

di +2

+
1

card(PSL(2,Z) ·S0)

∑

Si∈PSL(2,Z)·S0

∑

horizontal
cylinders cyli j

such t hat
Si=⊔cyli j

hi j

wi j
.

for the Lyapunov exponents of the bundle H 1 = H 1
+ and
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(19) 1+λ−
2 +·· ·+λ−

geff
=

1

24
·

n∑

i=1

di (di +4)

di +2
+

1

4
·

∑

j such that
d j is odd

1

d j +2

+
1

card(PSL(2,Z) ·S0)

∑

Si∈PSL(2,Z)·S0

∑

horizontal
cylinders cyli j

such t hat
Si=⊔cyli j

hi j

wi j
.

for the Lyapunov exponents of the bundle H 1
−. Here S0 is a square-tiled surface

representing the corresponding arithmetic Teichmüller curve, and g and geff are

the genus and the effective genus (17) of S0.

3.2. Sum of the Lyapunov exponents for a square-tiled cyclic cover. Now ev-
erything is ready to apply the results of the previous section to square-tiled
cyclic covers.

THEOREM 22. Let us consider an even integer N and a collection of odd integers

a1, a2, a3, a4 satisfying the relations in formula (1).

The sum of all nonnegative Lyapunov exponents of the Hodge bundle H 1 along

the geodesic flow on the arithmetic Teichmüller curve of the square-tiled cyclic

cover MN (a1, a2, a3, a4) is expressed by the formula below:

(20) 1+λ2 +·· ·+λg =
N

6
−

1

6N

4∑

i=1
gcd2(N , ai )

+
1

6N

(
gcd2(N , a1 +a2)+gcd2(N , a1 +a3)+gcd2(N , a1 +a4)

)

Proof. We apply formula (16) taking into account the following data. The sin-
gularity pattern (m1, . . . ,mn) of the holomorphic 1-form corresponding to the
square-tiled cyclic cover MN (a1, a2, a3, a4) is computed in Lemma 2, see for-
mula (5). The SL(2,Z)-orbit of the square-tiled surface MN (a1, a2, a3, a4) is de-
scribed by Theorem 18 and the cylinder decomposition for each square-tiled
surface in the orbit is given in Lemma 9. By plugging the above data in formula
(16) we obtain formula (20).

THEOREM 23. Let us consider integers N and a1, . . . , a4 satisfying the relations in

formula (1). Let us suppose, in addition, that either N is odd, or N is even and at

least one of ai , i = 1,2,3,4, is also even.

The sum of all nonnegative Lyapunov exponents of the bundle H 1
+ along the

geodesic flow on the arithmetic Teichmüller curve of the square-tiled cyclic cover
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MN (a1, a2, a3, a4) is expressed by the following formula:

(21) λ+
1 +λ+

2 +·· ·+λ+
g =

N

6
−

1

6N

4∑

i=1
gcd2(N , ai )

+
1

6N

(
gcd2(N , a1 +a2)+gcd2(N , a1 +a3)+gcd2(N , a1 +a4)

)

The sum of all nonnegative Lyapunov exponents of the bundle H 1
− along the

geodesic flow on the arithmetic Teichmüller curve of the square-tiled cyclic cover

MN (a1, a2, a3, a4) is expressed by the following formula:

(22) 1+λ−
2 +·· ·+λ−

geff
=

N

6

+
1

12N

∑

i such that
N

gcd(N ,ai ) is odd

gcd2(N , ai ) −
1

6N

∑

i such that
N

gcd(N ,ai ) is even

gcd2(N , ai )

+
1

6N

(
gcd2(N , a1 +a2)+gcd2(N , a1 +a3)+gcd2(N , a1 +a4)

)

Proof. We apply formulae (18) and (19) taking into account the following data.
The singularity pattern (d1, . . . ,dn) of the quadratic differential corresponding
to the square-tiled cyclic cover MN (a1, a2, a3, a4) is computed in Lemma 2, see
formula (6). The PSL(2,Z)-orbit of the square-tiled cyclic surface MN (a1, a2, a3, a4)
is described by Theorem 13 and a cylinder decomposition for each square-tiled
surface in the orbit is given in Lemma 9. By plugging the above data in (18) and
(19) we obtain (21) and (22) respectively.

REMARK 24. Actually, the Hodge bundles H 1,0 and H 1
C

over the Teichmüller
curve of a square-tiled cyclic cover have a very explicit decomposition into a
direct sum of one- and two-dimensional vector subbundles, see [5]. A similar
decomposition, used also in [6], [28] and [18], enables, in particular, to compute
explicitly all individual Lyapunov exponents for any square-tiled cyclic cover,
see [12].

3.3. Degenerate Lyapunov spectrum. In this section we list of all examples
of arithmetic Teichmüller curves coming from square-tiled cyclic covers with
maximally degenerate Lyapunov spectra. We recall that by elementary geomet-
ric reasons in strata of Abelian differentials λ1 is equal to one, while in strata
of quadratic differentials (which are not squares) λ−

1 is equal to one, for any
ergodic invariant measure. Thus, for strata of Abelian differentials we speak of
“maximally degenerate spectrum” whenever λ2 = ·· · =λg = 0, while for strata of
quadratic differentials (which are not squares) we speak of “maximally degen-
erate spectrum” of λ−-exponents, whenever λ−

2 = ·· · =λ−
geff

= 0 and “maximally

degenerate spectrum” of λ+-exponents, whenever λ+
1 = ·· · =λ+

g = 0.
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3.3.1. Abelian Differentials. We start with MN (a1, a2, a3, a4) square-tiled cyclic
covers which give rise to holomorphic 1-forms. By Lemma 2 this corresponds
to even N and odd ai , i = 1,2,3,4.

THEOREM 25. The cyclic cover M2(1,1,1,1) has genus one, so there is a single

nonnegative Lyapunov exponent λ1 of the Hodge bundle H 1 along the geodesic

flow on the arithmetic Teichmüller curve of this cyclic cover; as always λ1 = 1.

For the arithmetic Teichmüller curves corresponding to the square-tiled cyclic

covers

M4(1,1,1,1) ≃ M4(3,3,3,3) and M6(1,1,1,3) ≃ M6(5,5,5,3)

the Lyapunov spectrum is maximally degenerate, that is λ2 = ·· · =λg = 0.

For all other cyclic covers of the form MN (a1, a2, a3, a4) with even N and odd

ai , i = 1,2,3,4, one has λ2 > 0.

REMARK 26. The fact that the Lyapunov spectrum of M4(1,1,1,1) is maximally
degenerate was discovered by G. Forni in [15] by a symmetry argument. Later
G. Forni and C. Matheus discovered by the same approach that the Lyapunov
spectrum of M6(1,1,1,3) is also maximally degenerate, see [17] (and also [18]).

REMARK 27. M. Möller [30] has an independent and by far stronger result show-
ing that the two above-mentioned examples of arithmetic Teichmüller curves
with a maximally degenerate Lyapunov spectrum are really exceptional; see
Conjecture 29 and Remarks 30 and 31 below.

Proof. Applying formula (20) to M4(1,1,1,1) and M6(1,1,1,3) we get a relation
1+λ2 +·· ·+λg = 1. Since λ2 ≥ ·· · ≥ λg ≥ 0, this implies that, actually, λ2 = ·· · =

λg = 0.
It remains to prove that for all other collections N , a1, . . . , a4 the right-hand

side of formula (20) is strictly greater than 1. Applying formula (20) we see that
this statement is valid for the remaining two collections for N = 4. Now we can
assume that N ≥ 6.

Since gcd(N , ai ) is a divisor of N , and 1 ≤ ai < N , we conclude that gcd(N , ai )
might be N /2, N /3 or less. Hence, we always have

4∑

i=1
gcd2(N , ai ) ≤ N 2 .

This implies that if we have gcd(N , ai ) = gcd(N , a j ) = N /2 for two distinct in-
dices i 6= j , then ai = a j = N /2 and at least one of the summands in

gcd2(N , a1 +a2)+gcd2(N , a1+a3)+gcd2(N , a1 +a4)

is equal to N 2. This means that the expression on the right of (20) is strictly
greater than 1.

Thus, we can assume that there is at most one ai such that gcd(N , ai ) = N /2,
while for the other indices j 6= i we have gcd(N , a j ) ≤ N /3. Then

N

6
−

1

6N

4∑

i=1
gcd2(N , ai )≥

5N

72
.
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For N ≥ 16 we have 5N /72 > 1, and hence, for N ≥ 16 the expression on the
right of (20) is strictly greater than 1.

It remains to consider finite number of arrangements N , a1, . . . , a4, with 6 ≤

N ≤ 14. This can be done either by a straightforward check, or by considera-
tions similar to the ones as above.

FIGURE 6. Eierlegende Wollmilchsau

REMARK 28. Figure 6 presents the square-tiled cyclic cover M4(1,1,1,1). This
surface is also a 2-fold cover over a torus branched at four points. It has plenty of
unusual properties. In particular, it was noticed by T. Monteil that for every sad-
dle connection there is always a twin saddle connection with the same length
and the same direction, and there are no simple saddle connections joining a
singularity to itself. M. Möller has proved that the Teichmüller curves of the
square-tiled cyclic covers M4(1,1,1,1), presented in Figure 6, and M6(1,1,1,3),
presented in Figure 3, are also Shimura curves [30].

CONJECTURE 29. The only Teichmüller curves in the strata of Abelian differen-

tials in genus g ≥ 2 with maximally degenerate Lyapunov spectra, that is, such

that λ2 = ·· · = λg = 0, are the arithmetic Teichmüller curves of the cyclic cover-

ings M4(1,1,1,1) and M6(1,1,1,3).

REMARK 30. According to M. Möller [30], the conjecture holds in all genera
different from five and for some strata in genus five. For the remaining strata in
genus five the statement requires some extra verification.

PROBLEM. Are there any closed invariant suborbifolds (of any dimension) in

strata of Abelian differentials with maximally degenerate Lyapunov spectra (λ2 =

·· · =λg = 0) different from the two Teichmüller curves presented above?

REMARK 31. It is proved in [11] that there are no such regular SL(2,R)-invariant
suborbifolds in any stratum of Abelian differentials of genus 7 and higher and
in some strata in genera 5 and 6.

REMARK 32. In genus g = 2, M. Bainbridge [4] has proved that the second ex-
ponent λ2 equals to 1/2 for all ergodic SL(2,R)-invariant measures supported
in the stratum H (1,1), corresponding to two simple zeros of the holomorphic
differential, andλ2 equals to 1/3 for all ergodic SL(2,R)-invariant measures sup-
ported in the stratum H (2), corresponding to a double zero. In particular, in
genus 2 the Lyapunov spectrum is always non-degenerate and simple. Bain-
bridge’s result was already known conjecturally since [22] as a consequence of
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a formula for the sum of exponents for an SL(2,R)-invariant submanifold of the
hyperelliptic locus in any stratum. Such a formula has now been proved in [11].

Thus, any regular SL(2,R)-invariant suborbifold with maximally degenerate
Lyapunov spectrum might live in genera 3 and 4 and in some strata in genera 5
and 6 only.

3.3.2. Holomorphic quadratic differentials. Let us consider next square-tiled
cyclic covers MN (a1, a2, a3, a4), which give rise to holomorphic quadratic dif-
ferentials. In particular, we assume through Section 3.3.2 that inequalities in
formula (1) are strict.

THEOREM 33. A square-tiled cyclic cover M4(3,2,2,1) in the stratum Q(2,2) has

effective genus one, so there is a single nonnegative Lyapunov exponent λ−
1 of the

vector bundle H 1
− along the geodesic flow on the arithmetic Teichmüller curve of

this cyclic cover; as always λ−
1 = 1.

The Lyapunov spectrum of the vector bundle H 1
− along the geodesic flow on the

arithmetic Teichmüller curves of the following cyclic covers

• M5(2,1,1,1) ≃ M5(4,2,2,2) ≃ M5(1,3,3,3) ≃ M5(3,4,4,4) in Q(3,3,3,3);

• M6(5,3,2,2) ≃ M6(1,3,4,4) in the stratum Q(4,1,1,1,1);

• M8(4,2,1,1) ≃ M8(4,6,3,3) ≃ M8(4,2,5,5) ≃ M8(4,6,7,7) and M8(7,4,3,2) ≃
M8(1,4,5,6) in the stratum Q(6,6,2,2)

is maximally degenerate, that is, λ−
2 = ·· · =λ−

geff
= 0.

For all other cyclic covers of the form MN (a1, a2, a3, a4) with odd N , or with

even N and at least one even ai , i = 1,2,3,4, one has geff ≥ 2 and λ−
2 > 0. Here we

assume that 0 < ai < N for all i = 1,2,3,4.

Proof. Applying formula (22) to the cyclic covers from the list given in the The-
orem we check that 1+λ−

2 +·· ·+λ−
geff

= 1. Since λ−
2 ≥ ·· · ≥ λ−

geff
≥ 0 this proves

the equalities λ−
2 = ·· · = λ−

geff
= 0 in the cases mentioned above. The remaining

part of the proof is completely analogous to the one of Theorem 25.

PROBLEM. Are there any other Teichmüller curves in a stratum of holomorphic

quadratic differentials with effective genus at least two and with maximally de-

generate Lyapunov spectrum of the bundle H 1
−?

Are there any closed invariant submanifolds (suborbifolds) of dimension greater

than one satisfying this property?

REMARK 34. The only holomorphic quadratic differentials in genus one are the
squares of holomorphic 1-forms. In genus two the strata Q(4) and Q(3,1) are
empty, see [26]. The stratum Q(2,2) in genus two has effective genus one. The
remaining two strata, namely Q(2,1,1) and Q(1,1,1,1), have effective genera
two and three respectively; both of them are hyperelliptic, see [24]. It is proved
in [11] that one has λ−

2 = 1/3 for any regular PSL(2,R)-invariant suborbifold in
Q1(2,1,1) and one has λ−

2 +λ−
3 = 2/3 for any regular PSL(2,R)-invariant suborb-

ifold in Q1(1,1,1,1).
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It is proved in [11] that there are no regular PSL(2,R)-invariant suborbifolds
with maximally degenerate Lyapunov spectra on the bundle H 1

− in any stratum
of holomorphic quadratic differentials of genus 7 and higher and in some strata
in genera 5 and 6. Thus, if the answer to Problem 3.3.2 is affirmative, the corre-
sponding invariant suborbifold should correspond to genera 3 or 4 or to some
particular strata in genera 5 or 6.

A formula in [11], which generalizes formula (18), shows that one always has
λ+

1 > 0, hence the spectrum of Lyapunov exponents of the subbundle H 1
+ over

an PSL(2,R)-invariant submanifold in a stratum of holomorphic quadratic dif-
ferentials can never be maximally degenerate. Theorem 35 in the section below
shows that the situation is different for strata of meromorphic quadratic differ-
entials with at most simple poles.

3.3.3. Meromorphic quadratic differentials. Let us consider square-tiled cyclic
covers MN (a1, a2, a3, a4) which give rise to meromorphic quadratic differentials
with simple poles. This case corresponds to collections (N ; a1, a2, a3, a4) of pa-
rameters where at least one of the ai ’s is equal to N .

THEOREM 35. If ai = N for at least one of i = 1,2,3,4, then the Lyapunov spec-

trum of the vector bundle H 1
+ along the geodesic flow on the arithmetic Teich-

müller curve of the cyclic cover MN (a1, a2, a3, a4) is maximally degenerate: all

Lyapunov exponents λ+
i

are equal to zero.

Proof. Without loss of generality we may assume that a1 = N . Applying formula
(21) we get:

λ+
1 +λ+

2 +·· ·+λ+
g =

N

6
−

gcd2(N , N )

6N
−

1

6N

4∑

i=2
gcd2(N , ai )

+
1

6N

(
gcd2(N , N +a2)+gcd2(N , N +a3)+gcd2(N , N +a4)

)

= −
1

6N

4∑

i=2
gcd2(N , ai )+

1

6N

4∑

i=2
gcd2(N , ai ) = 0

THEOREM 36. The square-tiled cyclic cover M2(2,2,1,1) belongs to the stratum

Q(−14). There is a single nonnegative Lyapunov exponent λ−
1 = 1 of the vector

bundle H 1
− along the geodesic flow on the arithmetic Teichmüller curve of this

cyclic cover and no other Lyapunov exponents.

The Lyapunov spectrum of the vector bundle H 1
−⊕H 1

+ along the geodesic flow

on the arithmetic Teichmüller curve of the following cyclic covers in genus one

• M3(3,1,1,1) ≃ M3(3,2,2,2) in the stratum Q(13,−13);

• M4(4,2,1,1) ≃ M4(4,2,3,3) in the stratum Q(22,−14)

is maximally degenerate, that is, λ−
2 = ·· · =λ−

geff
= 0 and λ+

1 = 0.

For all other cyclic covers of the form MN (N , a2, a3, a4) one has geff ≥ 2 and

λ−
2 > 0.
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Proof. Without loss of generality we may assume that a1 = N ≥ 3. Formula (22)
applied to this case can be rewritten as follows:

1+λ−
2 +·· ·+λ−

geff
=

N

4

+
1

12N

∑

i≥2 such that
N

gcd(N ,ai ) is odd

gcd2(N , ai ) −
1

6N

∑

i such that
N

gcd(N ,ai ) is even

gcd2(N , ai )

+
1

6N

(
gcd2(N , a2)+gcd2(N , a3)+gcd2(N , a4)

)
≥

N

4
Hence, for N > 4 we get λ−

2 > 0. Applying the above formula to remaining data
for N = 2,3,4 we complete the proof of the Theorem.

REMARK 37. The maximally degenerate examples in Theorem 36 have the fol-
lowing origin. For each of the cyclic covers as above consider a canonical rami-
fied double cover, such that the induced quadratic differential is a global square
of a holomorphic 1-form. The resulting square-tiled surface is isomorphic to
the square-tiled cyclic cover M6(3,1,1,1) for the double cover over M3(3,1,1,1),
and also to the square-tiled cyclic cover M4(1,1,1,1) for the double cover over
M4(4,2,1,1). Thus the statement of Theorem 36 for such examples follows im-
mediately from Theorem 25.

PROBLEM. Are there other Teichmüller curves in strata of meromorphic qua-

dratic differentials with at most simple poles with effective genus at least two

and with maximally degenerate Lyapunov spectrum of the bundle H 1
+? Same

question for the bundle H 1
−? For both bundles H 1

− and H 1
+ simultaneously?

Are there any closed invariant submanifolds (suborbifolds) of dimension greater

than one satisfying this property?

APPENDIX A. PARITY OF THE SPIN STRUCTURE

The ambient stratum H (1,1,1,1) for the Eierlegende Wollmilchsau repre-
senting the square-tiled M4(1,1,1,1) is connected. The ambient stratum H (2,2,2)
for the square-tiled surface corresponding to the cyclic cover M6(1,1,1,3) con-
tains two connected components representing even and odd parity of the spin-
structure of the corresponding holomorphic 1-form, see [23]. The correspond-
ing parity of the spin-structure of the square-tiled cyclic cover M6(1,1,1,3) was
computed in [27] by combinatorial methods. We present another calculation to
illustrate an alternative analytic technique, which is less known in the dynami-
cal community.

PROPOSITION 38. A holomorphic 1-form ω defining a square-tiled surface asso-

ciated to the cyclic cover M6(1,1,1,3) has even parity of the spin structure, hence

(M6(1,1,1,3),ω) ∈H
even (2,2,2) .

Proof. Let us consider a holomorphic 1-form ω with zeroes of even degrees
only, that is, with a pattern of zeroes of the form (2d1, . . . ,2dn) and let K (ω) =
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2d1P1 +·· ·+2dn Pn be its zero divisor. An equivalent definition of the parity of

the spin structure φ(ω) associated to ω is the dimension of the space of holo-
morphic 1-forms with zeroes of degrees at least d1, . . . ,dn at P1, . . . ,Pn respec-
tively, computed modulo 2, that is,

φ(ω) := dim

∣∣∣∣
1

2
K (ω)

∣∣∣∣+1 (mod 2)

(see [1, 21, 29, 31] for more information on the spin-structure). Let us compute
the above dimension for the holomorphic 1-form ω defining the square-tiled
flat structure ω2 = p∗q0 on M6(1,1,1,3).

We recall that M6(1,1,1,3) is defined by the equation

w 6
= (z − z1)(z − z2)(z − z3)(z − z4)3 .

Let us consider the following 1-forms on M6(1,1,1,3),

α(c1,c2) = (c1z +c2)(z − z4)2 d z

w 5
c1,c2 = const

β= (z − z4)
d z

w 4
(23)

γ= (z − z4)
d z

w 3

We claim that all these forms are holomorphic (in the case of α(c1,c2), it is holo-
morphic for all values of parameters c1,c2 ∈ C). For example, let us check this
for γ. When w 6= 0 and z 6=∞, the form γ is clearly holomorphic. In a neighbor-
hood of any of the ramification points Pi , where i = 1,2,3, we have w 6 ∼ (z−zi ),
so d z ∼ w 5 d w , and with respect to a local coordinate w in a neighborhood of
P4, we get γ∼ w 2 d w . This shows that γ has a double zero at each of the points
P1,P2,P3. In a neighborhood of z4 we have w 2 ∼ (z − z4), so with respect to a

local coordinate w we get d z = w d w , and hence γ ∼ w 2
w d w

w 3
= d w . Hence,

each of the three preimages of z4 on our Riemann surface is a regular point of
γ. Finally, choosing a local coordinate t = 1/z in a neighborhood of z =∞ we
see that (z−zi ) ∼ t−1, d z ∼ t−2 d t , and w ∼ t−1, so γ∼ d t . Hence, any preimage
of z =∞ is a regular point of γ. In a similar way we can check that α(c1,c2) and
β are holomorphic (see [5], [6], [12] for more details). Clearly,

(24) α(c1,c2)+c3β+c4γ

is identically zero if and only if c1 = c2 = c3 = c4 = 0. By formula (9), we know that
the genus of M6(1,1,1,3) is equal to 4. Hence, we have constructed a basis of the
space of holomorphic 1-forms on M6(1,1,1,3): every holomorphic 1-form can
be represented as a linear combination (24), and this representation is unique.

Note that the formsα,β,γ are eigenforms of the deck transformation (z, w ) 7→
(z,ζw ), where ζ is a sixth primitive root of unity, ζ6 = 1. The corresponding ei-
genvalues are ζ,ζ2,ζ3. In particular, since ζ3 = −1, the form γ is anti-invariant
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with respect to a generator of the group of deck transformations. Our calcu-
lation shows that the eigenspace corresponding to the eigenvalue −1 is one-
dimensional. Hence, the form γ differs from the holomorphic 1-form ω defin-
ing our square-tiled flat structure on M6(1,1,1,3) only by a (non-zero) multi-
plicative constant.

Assume that c1,c2 are not simultaneously equal to zero. When the ratio−c2/c1

satisfies−c2/c1 ∉ {z1, z2, z3, z4,∞}, the holomorphic 1-formα(c1,c2) has six sim-
ple zeroes: one at each of the six preimages of the root of the polynomial (c1z +

c2). When c1 = 0, the holomorphic 1-form α(c1,c2) also has six simple zeroes:
one at each of the six preimages of z =∞. When −c2/c1 = zi , where i = 1,2,3,
the form α(c1,c2) has a single zero of degree 6 at Pi . Finally, when −c2/c1 = z4,
the formα(c1,c2) has three zeroes of degree two: one at each of the three preim-
ages of z = z4.

The holomorphic form β has 6 simple zeroes: one at each of the six ramifi-
cation points z = zi , where i = 1,2,3,4.

Our consideration implies that a linear combination (24) has a zero at each

ramification point P1,P2,P3 if and only if α(c1,c2) is not present in our linear
combination, i.e. if and only if c1 = c2 = 0. This means that

φ(ω) =φ(γ) = dimVect(β,γ) = 2 ≡ 0 (mod 2)

and our Lemma is proved.

APPENDIX B. AN EXERCISE IN ARITHMETICS

In this appendix we present an exercise promised in the proof of Theorem
18. We show that if a square-tiled cyclic cover MN (a1, a2, a3, a4) has a symmetry
represented by a single cycle of length 4 or 2, then the index of the Veech group
is different from 1.

We start with a symmetry represented by a cycle of length 4. If the index of
the Veech group is 1, then for all permutations π ∈S4 the flat surfaces repre-
sented by square-tiled cyclic covers MN (aπ(1), aπ(2), aπ(3), aπ(4)) are isomorphic.
By Lemma~9 this implies that for any i 6= j and any m 6= l , where i , j ,m, l ∈

{1,2,3,4} one has

(25) gcd(N , ai +a j ) = gcd(N , am +al ) .

Since the symmetry group is the entire S4, we may assume that the ramifica-
tion points are numbered in such way that the cycle π acts as

a1 → a2 → a3 → a4 → a1 ,

that is

ai = a1 ·k i−1 (mod N ), where i = 1,2,3,4.
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Conditions (1) imply that gcd(a1, N )= 1. Hence,

gcd(a1 +a2, N )= gcd(a1 · (1+k), N ) = gcd(1+k , N )

gcd(a1 +a3, N )= gcd(a1 · (1+k2), N )= gcd(1+k2, N )(26)

gcd(a2 +a3, N )= gcd(a1 · (k +k2), N )= gcd(k +k2, N ) .

By (25) we have

gcd(a1 +a2, N )= gcd(a1 +a3, N )= gcd(a2 +a3, N ) := d .

Clearly

gcd((a2 +a3)− (a1 +a3)), N )= gcd(a1 · (k −1), N )= gcd(k −1, N )

is divisible by d . Since gcd(k +1, N ) = d we conclude that 2 = (k +1)− (k −1) is
divisible by d , and, hence, d is either 1 or 2.

By (1) a1 +a2 +a3 +a4 is divisible by N . On the other hand,

gcd(a1 +a2 +a3 +a4, N )= gcd
(
(a1(1+k)(1+k2), N

)
=

= gcd
(
(1+k)(1+k2), N

)

divides the product gcd(1+ k , N ) · gcd(1+ k2, N ) which is equal to d 2 by (26).
Hence, N is one of the integers 1,2,4, which contradicts the assumption that all
ai , a j are pairwise distinct.

Let us suppose now that MN (a1, . . . , a4) has a symmetry represented by a cy-
cle of length 2 and let us show that the Veech group cannot have index 1. Since
the symmetry group is the entire S4, without loss of generality we may assume
that

k ·a1 (mod N )= a1

k ·a2 (mod N )= a2

k ·a3 (mod N )= a4

k ·a4 (mod N )= a3

Let ℓ := N /gcd(k−1, N ). Since (k−1)·a1 (mod N )= 0 and a1 ≤ N , 1 < k < N ,
we have ℓ> 1, and ℓ divides a1. Similarly, ℓ divides a2. Hence ℓ divides a1 +a2

and thus gcd(a1+a2, N ). We have seen that, when the index of the Veech group
is 1, the relations in formula (25) hold, in particular

gcd(a1 +a2, N )= gcd(a1 +a3, N ) .

Since ℓ is a divisor of both gcd(a1 + a3, N ) and a1, it divides a3, hence it also
divides a4 = k · a3 (mod N ). Thus, ℓ divides gcd(N , a1, a2, a3, a4). Since ℓ > 1,
this contradicts the second condition in formula (1).
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