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SOME METRICS ON TEICHMÜLLER SPACES OF SURFACES

OF INFINITE TYPE

LIXIN LIU AND ATHANASE PAPADOPOULOS

Abstract. Unlike the case of surfaces of topologically finite type, there are
several different Teichmüller spaces that are associated to a surface of topo-
logical infinite type. These Teichmüller spaces first depend (set-theoretically)
on whether we work in the hyperbolic category or in the conformal category.
They also depend, given the choice of a point of view (hyperbolic or confor-
mal), on the choice of a distance function on Teichmüller space. Examples

of distance functions that appear naturally in the hyperbolic setting are the
length spectrum distance and the bi-Lipschitz distance, and there are other
useful distance functions. The Teichmüller spaces also depend on the choice
of a basepoint. The aim of this paper is to present some examples, results
and questions on the Teichmüller theory of surfaces of infinite topological type
that do not appear in the setting the Teichmüller theory of surfaces of finite
type. In particular, we point out relations and differences between the various
Teichmüller spaces associated to a given surface of topological infinite type.
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1. Introduction

Let X be a connected oriented surface of infinite topological type. Unlike the
case of a surface of finite type, there are several Teichmüller spaces associated to X .
Such a Teichmüller space can be defined as a space of equivalence classes of marked
hyperbolic surfaces homeomorphic to X , the marking being a homeomorphism be-
tween a base hyperbolic structure on X and a hyperbolic surface homeomorphic to
X . To define a distance function (and then, a topology) on Teichmüller space, we
ask that this marking be either length spectrum bounded or a bi-Lipschitz home-
omorphism. Depending on such a choice, the Teichmüller spaces that we obtain
are setwise different. Taking a different point of view, a Teichmüller space associ-
ated to X can also be defined as a space of equivalence classes of marked Riemann
surfaces homeomorphic to X , the marking being here a quasiconformal homeomor-
phism between a base Riemann surface structure on X and a Riemann surface
homeomorphic to X . We shall be more precise below. Unlike the case of surfaces
of finite type, the various definitions of Teichmüller spaces are not equivalent and
the resulting Teichmüller space strongly depends on the point of view (hyperbolic
or conformal), on the distance function we choose on the set of equivalence classes
of marked surfaces, and on the choice of a base surface. The aim of this paper is
to review some of the Teichmüller spaces associated to X , precisely when X has
infinite type, and to point out some differences, some relations and some analogies
between these various Teichmüller spaces.

The plan of this paper is as follows.
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2 LIXIN LIU AND ATHANASE PAPADOPOULOS

In Section 2, we study the length spectrum Teichmüller spaces associated to a
surface of infinite type. This study involves the consideration of the length spectrum
distance between hyperbolic surfaces.

In Section 3, we study the bi-Lipschitz Teichmüller spaces associated to a hyper-
bolic surface of infinite type, and this involves the consideration of the bi-Lipschitz
distance between hyperbolic surfaces.

In Section 4, we consider the quasiconformal point of view. We define the quasi-
conformal Teichmüller space of a Riemann surface of infinite type and the quasicon-
formal metric on this space. This space is related to the bi-Lipschitz Teichmüller
space. We give a sufficient condition under which the three Teichmüller spaces
coincide as sets.

Each section contains basic definitions and results, and some open questions.
We now fix some notation which will be used throughout the paper.
We consider a connected orientable surface X of genus g ≥ 0, with p ≥ 0 punc-

tures and n ≥ 0 boundary components, and we assume that g + n + p is countably
infinite. We note right away that even in the case of surfaces with no punctures
and no boundary components, two surfaces of countably infinite genus are not nec-
essarily homeomorphic. (For instance, the surfaces represented in Figures 1, 2 and
3 below are pairwise non-homeomorphic.) This contrasts with the case of surfaces
of finite type in which the triple (genus, number of punctures, number of boundary
components) determines the surface up to homeomorphism. The classification of
noncompact surfaces has a long history, and for this subject we refer the reader
to the work of Kerékjártó [15], to the later paper by Richards [26], and to recent
update by Prishlyak and Mischenko [25]. In particular, there exist invariants for
surfaces of infinite type. (We note that these invariants are, unlike those of surfaces
of finite type, not discrete.)

Using Zorn’s Lemma, on any topological surface X as above, we can find a
countable family of disjoint simple closed curves Ci, i = 1, 2, . . . such that each
connected component of S −∪∞

i=1Ci is homeomorphic to a pair of pants, that is, a
sphere with three holes. Here, a hole is either a puncture (that is, a point removed
from the surface) or an open disk removed. In the latter case the surface has a
boundary component at the hole.

All the hyperbolic structures that we consider on X will be complete, such that
each boundary component of this surface a closed geodesic and each puncture of
this surface has a neighborhood isometric to a cusp, that is, to the quotient of a
region of the form {(x, y) |x > a} in the upper half-space model of the hyperbolic
plane H2, with a > 0, by the transformation z 7→ z + 1. The neighborhood of a
cusp is biholomorphically equivalent to a punctured disk in C.

For future reference, we reformulate our requirements as follows:

(⋆) The surface X admits a pants decomposition P with a countable number of
pair of pants. The hyperbolic structures that we consider on X are all metrically
complete, and they have the property that if we replace each boundary component
of a pair of pants in the decomposition P by the closed geodesic in its homotopy
class, then each pair of pants becomes a sphere with three holes, a hole being either
a boundary component which is a closed geodesic (and this can hold when the hole
is either a boundary component of X or a closed curve in the pants decomposition
P) or a cusp (and this holds when the hole is a puncture of X). In the case where the
surface is just a Riemann surface (i.e. not necessarily equipped with a hyperbolic
metric), then, we assume that the unique complete hyperbolic metric on X \ ∂X
that uniformizes the complex structure on that surface, after cutting the flares if
such cylindrical ends exist, satisfies the above conditions.
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We point out right away that the completeness of a hyperbolic surface satisfying
Property (⋆) is not a redundant property. This contrasts with the case of hyperbolic
surfaces of finite type with geodesic boundary, where a surface is complete if and
only if the neighborhood of each puncture is a cusp. Examples of non-complete
infinite type hyperbolic surfaces with no punctures and no boundary components
have been given by Basmajian in [4].

It is easy (although not completely trivial) to prove that any hyperbolic surface
satisfying (⋆) has infinite diameter.

A large part of the classical quasiconformal theory of Teichmüller space (as
started by Teichmüller, and developed by Ahlfors and Bers) is valid for surfaces
of infinite type. In contrast, Thurston’s surface theory does not easily extend to
surfaces of infinite type. For instance, on any surface of infinite type, we can find
an infinite sequence of homotopy classes of simple closed curves which are disjoint,
pairwise nonhomotopic and nonhomotopic to a point, and such a sequence does not
converge in any reasonable sense to a homotopy class of measured foliations.

We shall consider ordered pairs (f, H), where H is a hyperbolic metric on a
surface S homeomorphic to X , and f : X → S a homeomorphism. Such a pair
(f, H) is called a marked hyperbolic surface (in general, with a base surface X being
understood). The homeomorphism f is called the marking of H , or of S. We shall
also consider a hyperbolic metric on X as a marked hyperbolic surface, taking as
marking the identity map. Finally, we shall also talk about markings f : H0 → H
between hyperbolic surfaces, when considering the hyperbolic surface H0 on S as a
basepoint in our space.

A simple closed curve on X is a one-dimensional submanifold of X homeomorphic
to a circle. We shall call a curve on X essential if it is a simple closed curve which
is neither homotopic to a point nor to a puncture (but it can be homotopic to a
boundary component).

We let S = S(X) be the set of homotopy classes of essential curves on X .
The intersection number i(α, β) of two elements α and β in S is the minimum

number of intersection points of two closed curves representing the classes α and β.
Given a hyperbolic structure H on X and given a homotopy class α of essential

curves on X , we denote by lH(α) the length of the closed H-geodesic on X in the
class α.

Finally, we note that the Teichmüller spaces that we consider in this paper are,
in the classical terminology, “reduced Teichmüller spaces”. We shall recall the
definitions below.

We thank Daniele Alessandrini and the referee for carefully reading the original
manuscript and for their very useful remarks.

2. The length spectrum Teichmülller spaces

Throughout this section, H0 is a fixed hyperbolic metric on the surface X called
the base hyperbolic structure. With this, a marking f : X → S (where S is a hy-
perbolic surface) becomes a homeomorphism between hyperbolic surfaces. Given a
homeomorphism f between two surfaces S and S′ equipped with hyperbolic metrics
H and H ′ respectively, we say that f is length-spectrum bounded if the following
holds:

(1) K(f) = sup
α∈S(H)

{

lH′(f(α))

lH(α)
,

lH(α)

lH′(f(α))

}

< ∞.

We shall call the quantity K(f) that appears in (1) the length-spectrum constant
of f . Note that this quantity only depends on the homotopy class of f .
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We consider the collection of marked hyperbolic structures (f, H) relative to the
base structure H0 and where the marking f : H0 → H is length-spectrum bounded.
Given two such marked hyperbolic structures (f, H) and (f ′, H ′), we write (f, H) ∼
(f ′, H ′) if there exists an isometry (or, equivalently, a length spectrum preserving
homeomorphism, see Proposition 2.2 below) f ′′ : H → H ′ which is homotopic to
f ′ ◦ f−1. We note that all the homotopies of a surface that we consider in this
paper preserve the punctures and preserve setwise the boundary components of
the surface at all times. The relation ∼ is an equivalence relation on the set of
length-spectrum bounded marked hyperbolic surfaces (f, H), based at (X, H0).

Definition 2.1. The length-spectrum Teichmüller space Tls(H0) is the space of ∼-
equivalence classes [f, H ] of length-spectrum bounded marked hyperbolic surfaces
(f, H). The basepoint of this Teichmüller space is the equivalence class [Id, H0].

We note that the fact that we do not ask our homotopies to preserve pointwise
the boundary of the surface corresponds to working with what is usually called the
reduced Teichmüller space, instead of Teichmüller space. (In the latter case, the
homotopies that define the equivalence relation are required to induce the identity
map on each boundary component.) There is a substantial difference between the
two theories. For instance, in the quasiconformal setting that we consider in Section
4 below, the Teichmüller space of the unit disk in C is, in the non-reduced theory,
infinite-dimensional (and it is called the universal Teichmüller space), whereas in
the reduced theory, this space is reduced to a point. Of course, for surfaces that do
not have boundary components, the reduced and non-reduced Teichmüller spaces
coincide. We also note that in conformal geometry, dealing with boundary points
of a Riemann surface generally involves working with the Poincaré metric and its
boundary theory, that is, using hyperbolic geometry.

Since all the Teichmüller spaces that we use in this paper are reduced, we shall
use, for simplicity, the terminology Teichmüller space instead of reduced Teichmüller
space.

The topology of Tls(H0) is induced by the length-spectrum metric dls, defined by
taking the distance dls([f, H ], [f ′, H ′]) between two points in Tls(H0) represented
by two marked hyperbolic surfaces (f, H) and (f ′, H ′) to be

dls([f, H ], [f ′, H ′]) =
1

2
log K(f ′ ◦ f−1).

(It may be useful to recall here that the length-spectrum constants of length-
spectrum bounded homeomorphism only depends on the homotopy class of such a
homeomorphism.)

The fact that the function dls satisfies the properties of a metric is straight-
forward, except perhaps for the separation axiom, which is a consequence of the
following:

Proposition 2.2. Let H and H ′ be two hyperbolic metrics on a surface X and
suppose that f : (X, H) → (X, H ′) is a homeomorphism whose length-spectrum
constant K(f) equals 1. Then, f is isotopic to an isometry.

Proof. From the hypothesis, it follows that for each α in S(X) we have lH(α) =
lH′(f(α)). We show that f is isotopic to an isometry. Consider a sequence Ki,
i = 0, 1, . . . of finite type subsurfaces with boundary satisfying Ki ⊂ Ki+1 for all
i ≥ 0 and ∪∞

i=0Ki = X . For each i ≥ 0, let Li ⊂ X (respectively Mi ⊂ X) be
the hyperbolic subsurface of X isotopic to Ki and having geodesic boundary, with
respect to the hyperbolic metric H (respectively H ′). Then, for each i ≥ 0, f is
homotopic to a map f ′

i : X → X which sends homeomorphically Li to Mi. From a
well known result for surfaces of finite type, since f ′

i preserves the length spectrum
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and since each Li is of finite type, the restriction of f ′

i to each Li is isotopic to an
isometry f ′′

i : Li → Mi. Now an isometry between two surfaces of finite type is
unique in its isotopy class. Thus, for each i ≥ 1, the restriction of f ′

i to Li−1 is
equal to f ′′

i−1. By taking the union of the maps f ′′

i , we obtain an isometry from
(X, H) to (X, H ′).

�

The length function α 7→ lH(α) on S(X) associated to a hyperbolic structure
H on X induces a length function α 7→ lx(α) associated to an element x of the
Teichmüller space Tls(H0). The first observation is the following:

Proposition 2.3. For any base hyperbolic metric H0 on X and for any α in S,
the map x 7→ log lx(α) defined on Tls(H0) is 2-Lipschitz.

Proof. Let x and x′ be two points in Tls(H0), represented by marked surfaces (f, H)
and (f ′, H ′) respectively. Then, for any α in S and for any length-spectrum bounded
homeomorphism f ′′ : H → H ′ with associated length-spectrum constant K(f ′′),
we have

| log lx(α) − log lx′(α)| =
∣

∣

∣
log lH′ (α)

lH (α)

∣

∣

∣

≤ max
{

log lH′ (α)
lH (α) , log lH(α)

lH′ (α)

}

≤ log K(f ′′).

Taking the infimum over all length-spectrum bounded homeomorphisms f ′′ :
H → H ′ in the homotopy class of f ′ ◦ f−1, we obtain

| log lx(α) − log lx′(α)| ≤ 2dls(x, x′).

�

The next observation is the existence of pairs of marked hyperbolic structures on
X which are not related by any length-spectrum bounded homeomorphism. This
will show that two Teichmüller spaces Tls(H0) and Tls(H1) based at two different
hyperbolic structures H0 and H1 on X are in general different as sets.

 

C1 C2 C3

. . .

Figure 1.

Example 2.4. Consider the surface drawn in Figure 1, where C1, C2, . . . are the
curves in the homotopy classes represented. We equip this surface with two hyper-
bolic metrics H0 and H1 such that for all i = 1, 2, . . ., lH0

(Ci) = 1 and lH1
(Ci) = 1/i.

The metrics H0 and H1 have the further property that any closed ball of radius 1
on the surface is contained in a finite number of pairs of pants (of the given de-
composition), and therefore it is compact. Thus, by the theorem of Hopf-Rinow,
the two metrics are complete. It is clear that the hyperbolic structures H0 and
H1 are not length-spectrum equivalent, and therefore H1 6∈ Tls(H0). In particular,
Tls(H0) 6= Tls(H1).
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Example 2.5. As a different example of the same phenomenon, we take X to be
the surface represented in Figure 2 and we let T be the step-1 right-translation
suggested in this figure, transforming Ci into Ci+1 for every i in Z. Consider a
hyperbolic structure H0 on X that is translation-invariant. In other words, we
suppose that all the two-holed tori that are in the complement of the curves Ci

are isometric, and that the twist parameters about these curves are all equal. For
each i = 1, 2, . . ., let τi be the i-th power of the positive Dehn twist along Ci.
Let f = τ1 ◦ τ2 ◦ τ3 ◦ . . . be the infinite composition of the τi’s and let H1 be the
hyperbolic structure f(H0). By using the Hopf-Rinow theorem as in Example 2.4
above, we can see that the metrics H0 and H1 are complete. Let D0 be an essential
simple closed curve on X satisfying i(C0, D0) > 0 and i(Ci, D0) = 0 for all i 6= 0.
For each i in Z, let Di = T i(D0). Then, we have

lH1
(Di)

lH0
(Di)

→ ∞

as i → ∞. Therefore, H0 and H1 are not related by a length-spectrum bounded
homeomorphism. Hence, H1 6∈ Tls(H0), and again we have Tls(H0) 6= Tls(H1).

More generally, we have the following:

Proposition 2.6. Given a hyperbolic structure H0 on an infinite type surface X,
there exists a hyperbolic structure H1 on X such that H0 and H1 are not length-
spectrum equivalent. In particular, Tls(H0) 6= Tls(H1).

Proof. Consider an infinite collection Ci, i = 1, 2, . . . of disjoint pairwise non-
homotopic essential curves on X . Up to taking a subsequence of (Ci), we can
find, for each i = 1, 2, . . ., a curve Di satisfying i(Ci, Di) > 0 and i(Ci, Dj) = 0 for
all j 6= i. For each i = 1, 2, . . ., we take τi : X → X to be a power of a positive
Dehn twist along Ci satisfying lH0

(τi(Di)) > i. Let f be the infinite composition
f = τ1 ◦ τ2 ◦ . . .. Then,

lH0
(f(Di))

lH0
(Di)

→ ∞

as i → ∞. This shows that the hyperbolic structure f(H0) is not related to H0 by
a length-spectrum bounded homeomorphism. �

We denote by Hom(X) the group of self-homeomorphisms of X , and by Homls(H0)
the subgroup of Hom(X) consisting of self-homeomorphisms that are length-spectrum
bounded with respect to the metric H0. We observe that in general Homls(H0) 6=
Hom(X). This can be seen in the following example.

Example 2.7. Let X be the topological surface represented in Figure 3. We con-
sider a homeomorphism f obtained by applying a 2π/3-counterclockwise rotation
suggested by the picture. For i = 1, 2, . . ., the curves Ci, C′

i and C′′

i are in the
homotopy classes represented in this figure. We choose a hyperbolic metric H0 on
X such that for all i = 1, 2, . . ., lH0

(Ci) = 1/i, lH0
(C′

i) = i and lH0
(C′′

i ) = i2. By
using, as in the previous examples, the theorem of Hopf-Rinow, we can insure that

    

C−1 C0 C1 C2

. . . . . .

Figure 2.
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this metric is complete. It is clear that f is not homotopic to a length-spectrum
bounded homeomorphism.

More generally, we have the following.

Proposition 2.8. For any hyperbolic structure H0 on a surface X of infinite type,
we have Homls(H0)  Hom(X).

Proof. The homeomorphism of f : X → X constructed in the proof of Proposition
2.6 is not in Homls(H0). �

We let MCG(X) denote the quotient of the group Hom(X) by the normal sub-
group consisting of orientation-preserving homemorphisms that are homotopic to
the identity. (Recall that our homotopies preserve setwise the boundary compo-
nents, at each time.) The group MCG(X) is the mapping class group of X .

Definition 2.9 (The length-spectrum mapping class group). The length-spectrum
mapping class group of X relative to the hyperbolic metric H0, which we denote
by MCGls(H0), is the subgroup of MCG(X) consisting of homotopy classes of
homeomorphisms that are length-spectrum bounded with respect to the metric
H0.

It follows from Proposition 2.8 that for any hyperbolic structure H0 on a surface
X of infinite type, we have MCGls(H0)  MCG(X).

The group MCGls(H0) acts on the Teichmüller space Tls(H0) by the quotient of
the action of homeomorphisms on marked hyperbolic surfaces by right-composition
by the inverse. More precisely, for each marked hyperbolic surface (f, H) and for
each homeomorphism g : (X, H0) → (X, H) which is length-spectrum bounded, we
set

(2) g · (f, H) = (f ◦ g−1, H).

This action preserves the metric dls on Tls(H0).
The following is a natural question:

Question 2.10. Given any hyperbolic metric on an infinite-type surface, is the
natural map from MCGls(H0) into the isometry group Isom(Tls(H0), dls) of the

 
C1

C2

C′

1

C′

2

C′′

1
C′′

2

. . .

Figure 3.
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metric space (Tls(H0), dls) an isomorphism ? Is it an isomorphism onto an index-2
subgroup ? (The reason for talking about an index-two subgroup is that one may
have to extend the image of MCGls(H0) in Isom(Tls(H0), dls) by the homotopy class
of an orientation-reversing length-spectrum bounded homeomorphism of (X, H0),
if such a homeomorphism exists.)

Remark 2.11. The study of the image of MCGls(H0) in the isometry group
Isom(Tls(H0), dls) can also be asked in the case of finite-type surfaces, and it does
not seem to have been settled. We recall that in the case of a finite-type hyperbolic
surface S, we have MCGls(S) ≃ MCG(S), and that a famous result by Royden,
completed by Earle and Kra, says that the natural homomorphism from the ex-
tended mapping-class group of S (which is an order-two extension of MCG(S))
into the isometry group of T(S) equipped with the Teichmüller metric is an iso-
morphism, except for some finite set of surfaces of small genus and small number
of boundary components (see [27] and [7]). For surfaces of finite type, Li and Liu
(see [17] and [18]) proved that the length-spectrum metric on Teichmüller space
defines the same topology as the Teichmüller metric, but of course this result is
not sufficient to prove that the result of Royden and Earle-Kra also applies to the
length-spectrum metric.

We denote by MCGf (X) the subgroup of MCG(X) consisting of the homotopy
classes of homeomorphisms supported on a subsurface of X of finite topological
type.

Proposition 2.12. We have a natural inclusion MCGf (X) ⊂ MCGls(H0).

Proof. Since every element of the mapping class group of a surface of finite topo-
logical type is a finite composition of Dehn twists, it suffices to show that a Dehn
twist about a simple closed curve in X is length spectrum bounded.

Let τβ be a Dehn twist about a simple closed curve β and let α be an arbitrary
element of S(X).

If i(α, β) = 0, then α = τβ(α) and lH0
(α) = lH0

(τβ(α)).
If i(α, β) 6= 0, then, by the Collar Lemma (cf. [3]), there exists a constant

t0, depending only on the hyperbolic length lH0
(β) such that the cylinder in X

defined as a t0/2-neighborhood of the closed geodesic β is embedded in X . Since
α traverses this cylinder i(α, β) times, we hace, lH0

(α) ≥ i(α, β)t0. Furthermore,
from the definition of a Dehn twist, we have

lH0
(τβ(α)) ≤ lH0

(α) + i(α, β)lH0
(β).

This gives

lH0
(τβ(α))

lH0
(α)

≤ 1 +
lH0

(β)

t0
.

Similarly, we have

lH0
(α)

lH0
(τβ(α))

≤ 1 +
lH0

(β)

t0
.

This implies that

log sup
α∈S(X)

{

lH0
(τβ(α))

lφ(H0)(α)
,

lφ(H0)(α)

lH0
(τβ(α))

}

< ∞.

Thus, τβ is length spectrum bounded.
�

Note that the inclusion in Proposition 2.12 is in general strict.
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Proposition 2.13. Let H be a hyperbolic metric on X such that there exists a
sequence αn, n = 1, 2, . . . of elements in S(X) represented by disjoint simple closed
curves satisfying lH(αn) → 0 as n → ∞. For every n = 1, 2, . . ., let τn be the
positive Dehn twist about αn. Then,

dls(τn(H), H) → 0.

Proof. Note that lτn(H)(α) = lH(τ−1
n (α)). We need to prove that

(3) log sup
α∈S(X)

{

lH(τ−1
n (α))

lH(α)
,

lH(α)

lH(τ−1
n (α))

}

→ 0 as n → ∞.

Let α be an element of S(X) and let n be a positive integer.
If i(α, αn) = 0, then α = τ−1

n (α) and lH(τ−1
n (α)) = lH(α).

Assume that i(α, αn) 6= 0 and let εn = lH(αn). By a version of the Collar
Lemma [3], there exists Bα > 0 such that

lH(α) = i(α, αn)| log εn| + Bα.

From the definition of a Dehn twist, we have

i(α, αn)| log εn| + Bα − i(α, αn)εn ≤ lH(τ−1
n (α))

≤ i(α, αn)| log εn| + Bα + i(α, αn)εn.

Then we have

lH(τ−1
n (α))

lH(α)
≤

i(α, αn)| log εn| + Bα + i(α, αn)εn

i(α, αn)| log εn| + Bα

= 1 +
i(α, αn)εn

i(α, αn)| log εn| + Bα

≤ 1 +
i(α, αn)εn

i(α, αn)| log εn|

≤ 1 +
εn

| log εn|
.

In the same way, we can show that

lH(α)

lH(τ−1
n (α))

≤ 1 +
εn

| log εn|
.

This proves that

sup
α∈S(X)

{

lH(τ−1
n (α))

lH(α)
,

lH(α)

lH(τ−1
n (α))

}

→ 1 as n → ∞,

which implies (3). �

We shall say that the action of a group on a topological space is discrete if the
orbit of any point is discrete.

As a consequence of Proposition 2.13, we have the following.

Corollary 2.14. There exist hyperbolic structures H such that the action of the
group MCGls(H) on the Teichmüller space Tls(H) equipped with the metric dls is
not discrete

Corollary 2.15. A necessary condition for the action of the group MCGls(H) on
the Teichmüller space Tls(H) equipped with the metric dls to be discrete is that there
exists a constant ǫ > 0, such that for any element α in S(X), lH(α) ≥ ǫ.
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Question 2.16. Find necessary and sufficient conditions on a hyperbolic structure
H on a surface of infinite type such that the action of the group MCGls(H) on the
Teichmüller space Tls(H) equipped with the metric dls is discrete. (It is known
that for surfaces of finite analytical type, the action is always discrete.)

Remark 2.17. It is known that for surfaces of infinite analytical type, the ac-
tion of the quasiconformal mapping class group MCGqc(H) on the quasiconformal
Teichmüller space Tqc(H0) is in general not discrete (see Section 4 below for the
definitions, and [22], [12] and [13] for work on this question).

Proposition 2.6 implies that for every hyperbolic metric H0 on an infinite-type
surface, we have MCGls(H0) 6= MCG(X).

Example 2.18 (A noncompact closed ball). Let X be the topological surface
represented in Figure 2. We let f : X → X be the homeomorphism defined as the
step-one translation to the right suggested by this picture, and we equip X with
a hyperbolic metric H which is invariant by the homeomorphism f . In particular,
the homotopy classes of curves Cn satisy Cn = fn(C0) for every n ∈ Z.

Let x ∈ Tls(H) denote the equivalence class of the marked hyperbolic surface
(Id, H). For each n ∈ Z, let τn denote the positive Dehn twist along Cn and let
xn ∈ Tls(H) denote the equivalence class of the marked surface (τn, H).

From the translation-invariance of H , the distance dls(x, xn) does not depend
on n. Thus, all the points xn are contained in a geometric ball B centered at x and
of a fixed radius.

We claim that there exists a constant K > 0 such that

(4) ∀m 6= n ∈ Z, dls(xm, xn) ≥ K.

Indeed, let α0 be the homotopy class of an essential curve satisfying i(α0, C0) 6= 0
and i(α0, Cn) = 0 for all n 6= 0 and for all m in Z, let αm denote the homotopy
class fm(α0). Then, for all integers m 6= n, the value

max

{

log
lHm

(αm)

lHn
(αm)

, log
lHn

(αm)

lHm
(αm)

}

is independent of m and n. Calling this constant K, we have (4).
Property (4) implies that the sequence xn does not have a convergent subse-

quence. Therefore the closed ball B is not compact.

We recall that a metric space is called proper if every closed ball is compact.
From the preceding example, there exist hyperbolic structures H such that the Te-
ichmüller space Tls(H) is not proper. We shall study properness in more generality
in Proposition 2.20 below. For that, we shall use the following.

α

β

Figure 4.
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Let F be a compact sphere with four holes, equipped with a hyperbolic structure
H with geodesic boundary and suppose that F is decomposed into a union of two
hyperbolic pairs of pants, P1 and P2. (See Figure 4 in which β is a boundary
components of P1 and of P2.) We assume that there exists a positive constant M
such that each boundary component C of either of the two pairs of pants P1 and
P2, including the curve β itself, satisfies

1

M
≤ lH(C) ≤ M.

We let α be a simple closed geodesic on F defined as follows. We first take, in each
of the pairs of pants P1 and P2 the shortest geodesic segment joining β to itself and
not homotopic to a point relative to the curve β (this shortest geodesic segment is
called the seam of the pair of pants). Then, we join together the endpoints of these
two seams by using geodesic segments contained in β, producing a closed curve in
F . Then, the curve α is the simple closed geodesic homotopic to that curve. (There
are two possibilities for joining the endpoints of the two seams, namely by turning
“to the left” or “to the right” along β, and making such a choice will not affect the
result we prove in the next lemma.)

Lemma 2.19. With the above notation, there exists a constant K > 1 that depends
only on M such that if τ denotes the positive Dehn twist along β, we have

max

(

lH(τ−1(α))

lH(α)
,

lH(α)

lH(τ−1(α))
,
lH(τ(α))

lH(α)
,

lH(α)

lH(τ(α))

)

> K.

Proof. The isometry type of the sphere with four holes F is determined by the
values of six parameters, five of them being the lengths of the geodesic boundary
components of the pairs of pants P1 and P2, of which two are equal, and the
sixth value being the twist parameter along the curve β. The values lH(τ(α))
and lH(τ−1(α)) are continuous functions of these parameters. Furthermore, for
any element α in S(F ), at least one of the two values |lH(τ(α)) − lH(α)| and
|lH(τ−1(α))− lH(α)| is nonzero. This can be deduced from the fact that the length
function θ 7→ lH(τθ(α)) under the twist deformation along the curve β is strictly
convex (see [10] p. 130).

Therefore, for each α ∈ S, the value

max

(

lH(τ−1(α))

lH(α)
,

lH(α)

lH(τ−1(α))
,
lH(τ(α))

lH(α)
,

lH(α)

lH(τ(α))

)

is strictly positive. Since in this maximum, each time a number occurs, then its
inverse also occurs, the value of the maximum is > 1. This value varies continuously
in terms of the six parameters referred to above. Under the hypotheses considered,
the six parameters vary in a compact set. This shows the existence of the constant
K. �

We now consider a surface X , equipped with a hyperbolic structure H and a
pair of pants decomposition P satisfying Property (⋆) stated in the introduction,
and such that if Ci, i = 1, 2, . . . is the collection of simple closed curves that are
boundaries of pairs of pants in the collection P, then,

(5) ∃M > 0, ∀i = 1, 2, . . . ,
1

M
≤ lH(Ci) ≤ M.

Proposition 2.20. Let H be a hyperbolic metric on an infinite type surface X
satisfying Property (5). Then, the Teichmüller space Tls(H) is not proper.

Proof. We can find a collection Fi, i = 1, 2, . . . of four-holed spheres with geodesic
boundary embedded in X and satisfying the following.
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(1) for each i = 1, 2, . . ., the four-holed sphere Fi is the union of two pairs of
pants in the collection P;

(2) for all i 6= j, the intersection of the interiors of Fi and Fj is empty.

In particular, in the interior of each four-holed sphere Fi, there is a curve β which
belongs to the collection {Ci}. For each four-holed sphere Fi, we denote by τi the
positive Dehn twist along the curve β in its interior. We let xi ∈ Tls(H) be the
point representing (τi, H) and we let x be the point representing (Id, H). By the
arguments used in the proof of Proposition 2.12, there exists a constant R > 0 such
that we have

∀i = 1, 2, . . . , dls(x, xi) ≤ R.

Thus, the sequence (xi) is contained in the closed ball B of radius R and centered
at x. From Lemma 2.19, we deduce that there exists a constant K such that for
each i 6= j, dls(xi, xj) ≥ K. This shows that the sequence xi does not have any
Cauchy subsequence. This implies that the closed ball B is not compact, which
proves that Tls(H) is not proper. �

It should be true that for any hyperbolic structure H on an infinite type surface,
Tls(H) is not proper, and this should follow from the fact that this space is infinite-
dimensional.

We also ask the following.

Question 2.21. If H and H ′ are arbitrary hyperbolic metrics on surfaces on an
infinite-type surface X , are the two Teichmüller spaces Tls(H) and Tls(H

′) locally
bi-Lipschitz equivalent ?

In this regard, we note that in [11], A. Fletcher proved that the answer to Ques-
tion 2.21 is yes if instead of the length-spectrum metric, one takes the Teichmüller
metric (see Section 4 below). As a matter of fact, Fletcher proved that the Te-
ichmüller metric on any Teichmüller space of an infinite-type Riemann surface is
locally bi-Lipschitz equivalent to the Banach space l∞ of bounded sequences with
the supremum norm.

We end this section by a discussion of the completeness of the length spectrum
metric.

In the paper [28] (Corollary 1.1), H. Shiga showed that for surfaces of infinite
type, the topology defined by the length spectrum metric is in general not complete,
but that under condition (5), this metric is complete. A natural question then is
the following:

Question 2.22. Give a necessary and sufficient condition on a hyperbolic metric H
on a surface of infinite type under which the Teichmüller space Tls(H) is complete.

Note that for surfaces of finite type, the completeness of the length spectrum
metric does not follow automatically from the completeness of the Teichmüller met-
ric, even though the topologies induced by the length spectrum and the Teichmüller
metrics are the same (see [18]). But it is true that the length spectrum metric in
the case of surfaces of finite type is complete. For completeness, we now provide a
proof of this fact.

We shall discuss the Teichmüller metric for Teichmüller spaces of surfaces of
infinite type in Section 4 below, but we assume here that the reader is familiar with
the Teichmüller metric of surfaces of finite type.

Let S be a Riemann surface of conformally finite type (g, n), where g is the genus
and n the number of punctures of S. For any ǫ > 0, let Tǫ(S) be the subset of
T(S) consisting of equivalence classes of marked hyperbolic surfaces in which the
length of any simple closed curve which is not homotopic to a puncture is at least
ǫ. We call Tǫ(S) the thick part of T(S). We recall that for surfaces of finite type, all
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the Teichmüller spaces coincide from the set-theoretic point of view, and therefore
we do not distinguish between the spaces Tls and Tqc. We denote by dls and dqc

respectively the length-spectrum and the Teichmüller metrics on T(S).
We shall use the following result, proved in [20].

Lemma 2.23. There exists a constant N(g, n, ǫ), depending only on g, n, ǫ, such
that for any x and y in Tǫ(S), we have

dls(x, y) ≤ dqc(x, y) ≤ 4dls(x, y) + N(g, n, ǫ).

We have the following.

Theorem 2.24. Let S be a conformally finite type hyperbolic surface and let xn, n =
0, 1, . . . be a sequence of elements in T(S). Then

lim
n→∞

dqc(xn, x0) = ∞ ⇐⇒ lim
n→∞

dls(xn, x0) = ∞.

Proof. We first recall that a result of Wolpert (see [1]) says that given any K-
quasiconformal map f : S0 → S, then, for any hyperbolic metrics H0 and H on S0

and S respectively and for any element α in S(S0), we have

(6)
1

K
≤

lH(f(α))

lH0
(α)

≤ K.

This implies that if limn→∞ dls(xn, x0) = ∞, then limn→∞ dqc(xn, x0) = ∞.
Now suppose that limn→∞ dqc(xn, x0) = ∞. Consider first the following two

cases:
(1) the sequence (xn) leaves any thick part Tǫ(S). In this case it is clear that

limn→∞ dls(xn, x0) = ∞.
(2) the sequence (xn) stays in some thick part Tǫ(S) for some ǫ > 0. In this

case, from Lemma 2.23 we have limn→∞ dls(xn, x0) = ∞.
Now we discuss the general case. Assume that dls(xn, x0) does not go to ∞ as

n → ∞. Then there exists subsequence xnk
, nk = 1, 2, , . . . of (xn) such that the set

{dls(xnk
, x0), nk = 1, · · · } is bounded. From the above discussion, if for some K0,

a subsequence xnk
, nk > K0 leaves any thick part of Tǫ(S), we get a contradiction.

Otherwise, there exists a subsequence of xnk
,nk = 1, 2, . . . which stays in some thick

part of Tǫ(S), which also leads a contradiction. �

Theorem 2.25. Let S be a conformally finite type Riemann surface. Then Tls(S)
equipped with the length spectrum metric is complete.

Proof. We need to prove that for any Cauchy sequence xn, n = 1, . . . in (T(S), dls),
there exists x0 ∈ T(S), such that limn→∞ dls(xn, x0) = 0.

The sequence (xn) is bounded in the metric dls. From Theorem 2.24, it follows
that (xn) is also bounded in the metric dqc. Since dqc is complete and since the
Teichmüller space considered is finite-dimensional, there exists a subsequence (xnk

)
of (xn) and x0 ∈ T(S) such that limnk→∞ dqc(xnk

, x0) = 0. From the topological
equivalence of dqc and dls on T(S) [18], it follows that

lim
nk→∞

dls(xnk
, x0) = 0.

As {xn}∞n=1 is a Cauchy sequence in the metric dls, limn→∞ dls(xn, x0) = 0. �

From [28] and [20], Theorem 2.25 is not true for certain Teichmüller spaces of
infinite type surfaces.
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3. The bi-Lipschitz Teichmüller spaces

We say that a homeomorphism f : (X1, d1) → (X2, d2) between metric spaces is
bi-Lipschitz if there exists a real number K ≥ 1 satisfying

(7)
1

K
d1(x, y) ≤ d2(f(x), f(y)) ≤ Kd1(x, y).

The real number K in (7) is called a bi-Lipschitz constant of f . Two metric spaces
are said to be bi-Lipschitz equivalent if there exists a bi-Lipschitz homeomorphism
between them.

Definition 3.1. Let H0 be a hyperbolic metric on the surface X . The bi-Lipschitz
Teichmüller space of H0, denoted by TbL(H0), is the set of equivalence classes [f, H ]
of pairs (f, H) where H is a hyperbolic metric on a surface homeomorphic to X
and where f : H0 → H (the marking of H) is a bi-Lipschitz homeomorphism, and
where two such pairs (f, H) and (f ′, H ′) are considered equivalent if there exists
an isometry f ′′ : H → H ′ homotopic to f ′ ◦ f−1.

The topology of TbL(H0) is the one induced by the bi-Lipschitz metric dbL,
defined by

dbL([f, H ], [f ′, H ′]) =
1

2
log inf{K},

where the infimum is taken over all bi-Lipschitz constants K of bi-Lipschitz home-
omorphisms f ′′ : H → H ′ homotopic to f ′ ◦ f−1, with (f, H) and (f ′, H ′) being
two hyperbolic surfaces representing the two points [f, H ] and [f ′, H ′] in TbL(H0).

To see that this defines indeed a metric on TbL(H0)., we note that if we take a
sequence of bi-Lipschitz maps homotopic to f ′ ◦ f−1 whose bi-Lipschitz constants
tend to 1, then there exists an isometry homotopic to f ′ ◦ f−1. One easy way to
see this is to use the following remarks that show that under these hypotheses, the
length-spectrum constant for the map f ′ ◦ f−1 must be 1, hence, by Proposition
2.2, there exists an isometry homotopic to f ′ ◦ f−1.

If f : H0 → H is a bi-Lipschitz homeomorphism with constant K, then, from
the definition of the length of a curve, we have, for every element α in S0,

1

K
≤

lH(f(α))

lH(α)
≤ K.

It follows that a bi-Lipschitz homeomorphism f between two hyperbolic surfaces
is also length-spectrum bounded, with length-spectrum constant bounded by any
bi-Lipschitz constant of f . This implies that we have a natural inclusion

(8) TbL(H0) →֒ Tls(H0)

and that for any x and y of TbL(H0), we have

(9) dls(x, y) ≤ dbL(x, y).

In particular, the inclusion map in (8) is continuous. It will follow from the discus-
sion in the next section that this inclusion is generally strict.

Using the inclusion map in (8), the same example as in 2.4 shows that there
exist pairs of marked hyperbolic structures on X which are not bi-Lipschitz equiva-
lent. Therefore the Teichmüller spaces TbL(H0) and TbL(H1) based at two different
hyperbolic structures H0 and H1 on X are in general setwise different.

Question 3.2. Characterize the hyperbolic surfaces H0 on an infinite-type hyper-
bolic surface such that the inclusion in (8) is strict.

Definition 3.3. The bi-Lipschitz mapping class group of the surface X relatively
to the base hyperbolic metric H0, denoted by MCGbL(H0), is the subgroup of
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MCG(X) consisting of homotopy classes of self-homeomorphisms of X that are
bi-Lipschitz with respect to the metric H0.

From (9), we have an inclusion

MCGbL(H0) ⊂ MCGls(H0).

Since we know that MCGls(H0)  MCG(X) (Proposition 2.8), we have MCGbl(H0)  
MCG(X).

The group MCGbL(H0) acts naturally on the Teichmüller space TbL(H0), by
right-composition with the inverse at the level of markings (see Formula (2) above),
and this action preserves the metric dbL.

Denoting as before MCGf (X) the subgroup of MCG(X) consisting of the ho-
motopy classes of homeomorphisms which are supported on a subsurface of finite
type of X , we have the following.

Proposition 3.4. There is a natural inclusion MCGf (X) ⊂ MCGbl(H0).

Proof. As in the proof of Proposition 2.12, we use the fact that any element of
the mapping class group of a surface of finite topological type is the product of
a finite number of Dehn twist elements. A Dehn twist homeomorphism along a
closed curve can be represented by a bi-Lipschitz homeomorphism supported on a
compact annular neighborhood of that curve. The composition of these bi-Lipschitz
homeomorphisms is a bi-Lipschitz homeomorphism of X .

�

4. The quasiconformal Teichmüller space of a surface of infinite

type

The Riemann surfaces, that is, the complex structures, that we shall consider
will often be induced by hyperbolic metrics, and for this reason we shall use a
metric definition of a quasiconformal map. We recall that if f : S → S′ is a
homeomorphism between two surfaces S and S′ equipped with Riemannian metrics,
and if f is differentiable at a point x of S, then the differential of f at x is an R-
linear map from the tangent space TxS of S at x to the tangent space Tf(x)S

′ of
S′ at f(x), and therefore, such a linear map sends circles in TxS centered at the
origin to ellipses in Tf(x)S centered at the origin. The quasiconformal dilatation
K(f)x of f at x is then equal to the eccentricity of an image ellipse, that is, the
ratio of the large axis to the small axis of this ellipse. This quantity is independent
of the choice of the circle in TxS centered at the origin. Now if f : S → S′ is a
homeomorphism, then the quasiconformal constant of f at a point x in S where
f is not necessarily differentiable is defined as follows. For r > 0, we consider the
quantities

Lf (x, r) = sup{dS′(f(x), f(y)) | dS(x, y) = r}

and

lf (x, r) = inf{dS′(f(x), f(y)) | dS(x, y) = r}.

The quasiconformal dilatation K(f)x of f at x is the element of R ∪ {∞} defined
as

K(f)x = lim sup
r→0

Lf(x, r)

lf(x, r)
.

In the case where f is differentiable at x, the two definitions coincide.
The quasiconformal dilatation of f at x depends only on the conformal classes

of the Riemannian metrics on S and S′. Therefore we can talk about the quasi-
conformal constant of a homeomorphism between Riemann surfaces, by choosing
Riemannian metrics in the given conformal classes and using the above definition.
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The maximal dilatation K(f) of a homeomorphism f : S → S′ between two Rie-
mann surfaces S and S′, also called the quasiconformal dilatation, or, in short, the
dilatation of f , is defined as the supremum of the quasiconformal dilatation K(f)x

of f over all points x of S. The homeomorphism f is said to be quasiconformal if
its dilatation is finite.

Definition 4.1. Consider a Riemann surface structure S0 on X . Its quasiconformal
Teichmüller space, Tqc(S0), is defined as the set of equivalence classes [f, S] of pairs
(f, S), where S is a Riemann surface homeomorphic to X and f : S0 → S a
quasiconformal homeomorphism (called the marking of S), and where two pairs
(f, S) and (f ′, S′) are considered to be equivalent (and are said to be conformally
equivalent) if there exists a conformal homeomorphism f ′′ : S → S′ homotopic to
f ′ ◦ f−1.

The space Tqc(S0) is equipped with the Teichmüller metric, defined as follows.
Given two elements [f, S] and [f ′, S′] of Tqc(S0) represented by marked confor-
mal surfaces (f, S) and (f ′, S′), their quasiconformal distance (also called the Te-
ichmüller distance, because it was introduced by Teichmüller) is defined as

(10) dqc([f, S], [f ′, S′]) =
1

2
log inf{K(f ′′)}

where the infimum is taken over maximal dilatations K(f ′′) of homeomorphisms
f ′′ : S → S′ homotopic to f ′ ◦ f−1.

The equivalence class of the marked Riemann surface (Id, S0) is the basepoint of
Tqc(S0).

It is important to note that the definition of the Teichmüller distance given in (10)
is the same as in the case of surfaces of finite conformal type, but that for surfaces of
infinite type, choosing different basepoints may lead to different Teichmüller spaces.
(But choosing a different basepoint by just applying a quasiconformal map leads to
the same Teichmüller space, up to biholomorphism.) Any homeomorphism between
two Riemann surfaces of finite conformal type is homotopic to a differentiable map,
which is automatically quasiconformal, but there exist homeomorphisms between
surfaces of infinite conformal type that are not homotopic to quasiconformal maps.
We shall discuss this fact in more detail below.

We refer to Nag [24] for an exposition of the quasiconformal theory of infinite-
dimensional Teichmüller spaces. In particular, it is known that the quasiconformal
metric is complete.

The quasiconformal dilatation and the bi-Lipschitz constant of a homeomorphism
are related to each other. We shall see precise relations between these two quantities
(see Theorem 4.3 below).

By the uniformization theorem, given any conformal structure S0 on X , there
is a hyperbolic structure H0 on X whose underlying conformal structure is S0.
We shall also denote the space Tqc(S0) by Tqc(H0), meaning that we consider the
conformal structure represented by the hyperbolic structure H0.

From Wolpert’s inequality (6) , there is a natural inclusion map

(11) Tqc(H0) →֒ Tls(H0).

This inclusion map is continuous since Wolpert’s result (6) also implies that for
any two elements x and y in Tqc(S0), we have

(12) dls(x, y) ≤ dqc(x, y).

Proposition 4.2. In general, we have Tls(H) 6= Tqc(H).

Proof. It suffices to construct a hyperbolic structure H on X and a self-homeomor-
phism of (X, H) which is not quasiconformal and which is length-spectrum bounded.
This is done in Proposition 4.7 below. �
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Concerning the comparison between the quasiconformal distance and the bi-
Lipschitz distance, there is the following.

Theorem 4.3 (Thurston [29] p. 268). For every hyperbolic structure H, we have
the set-theoretic equality

(13) Tqc(H) = TbL(H)

and there exists a constant C such that for every x and y in Tqc(H), we have

(14) dqc(x, y) ≤ dbL(x, y) ≤ Cdqc(x, y).

It may be worth recalling that we are considering, as in Thurston’s setting,
complete hyperbolic structures.

The equality between the Teichmüller spaces in (13) follows from the inequalities
between distances in (14). The left hand side inequality in (14) follows from the fact
that the quasiconformal dilatation is the supremum of an infinitesimal distortion
at each point, and the bi-Lipschitz constant measures distortion of distances at all
scales. The existence of a constant C for which the right hand side inequality is
satisfied is non-trivial, and it can be proved using the Douady-Earle quasiconformal
barycentric extension theory in [6] (see [29] p. 268).

Corollary 4.4. For any hyperbolic structure H on a surface X, we have the set-
theoretic equality MCGqc(H) = MCGbL(H).

Douady and Earle gave in [6] a proof of the fact that any quasiconformal Te-
ichmüller space Tqc(H0) is contractible (see [6] Theorem 3, where this result is also
attributed to Tukia). We ask the following:

Question 4.5. Are the Teichmüller spaces Tls(H0) contractible ? Are they even
connected ?

Again, using the inclusion map in (11) and taking the conformal structures S0

and S1 underlying the two hyperbolic structures H0 and H1 of Example 2.4, we
obtain an element H1 6∈ Tqc(H0). This gives an example of two Teichmüller spaces
Tqc(S0) and Tqc(S1) whose basepoints are two homeomorphic Riemann surfaces S0

and S1, such that Tqc(S0) 6= Tqc(S1) setwise.

Definition 4.6. Let S be a Riemann surface structure on the topological surface
X . The quasiconformal mapping class group of S, denoted by MCGqc(S), is the
subgroup of MCG(X) consisting of homotopy classes of homeomorphisms that are
quasiconformal with respect the structure S.

The group MCGqc(S) naturally acts on the Teichmüller space Tqc(S), by right-
composition with the inverse at the level of markings (see the action described in
(2)), and this action preserves the metric dqc.

The homomorphism of the group MCGqc(S) into the group of isometries of
Tqc(S) is injective (see [9] and [8]).

A theorem whose most general version is due to V. Markovic (see [21]) asserts
that any isometry of the space Tqc(S) is induced by an element of MCGqc(S).
Special cases of this result had been obtained by several people, including Earle
and Kra [7], Lakic [16] and Matsuzaki [23]. The earliest version of this theorem, in
the case of finite-type surfaces, is due to Royden [27].

Proposition 4.7. Let H be a hyperbolic structure on X such that there exists a
sequence of homotopy classes of disjoint essential closed curves on X whose length
tends to 0. Then, MCGqc(H)  MCGls(H).
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Proof. We produce an element T ∈ MCGls(H) with T 6∈ MCGqc(H).
Without loss of generality, we can assume that there exists a sequence αn, n =

1, 2 . . ., of homotopy classes of disjoint essential closed curves on X whose lengths

satisfy lH(αn) = εn with e−(n+1)2 < εn < e−n2

.
Let

tn =

[

log | log ǫn|

ǫn

]

+ 1, n = 1, 2, ...

([x] denoting the integral part of the real number x).
For each n = 1, 2, ..., let τn be the tn-th power of the positive Dehn twist about

αn. We take all the positive Dehn twists to be supported on disjoint annuli, and
we define T ∈ MCG(X) to be the infinite composition T = τ1 ◦ τ2 ◦ . . .. From [20],
we have that T is not in MCGqc(X).

Now we show that T ∈ MCGls(X). We need to show that

log sup
α∈S(X)

{

lH(f(α))

lH(α)
,

lH(α)

lH(f(α))

}

< ∞.

The proof parallels the proof of Proposition 2.13.
Let α be an arbitrary homotopy class of essential curves in X.
If i(α, αn) = 0, n = 1, 2, . . ., then α = T (α) and lH(T (α)) = lH(α).
Suppose that i(α, αn) 6= 0 for some n. Without loss of generality, we can assume

that i(α, αn) 6= 0, for all n = 1, 2, . . . , N . By the Collar Lemma, on any hyperbolic
surface, any closed geodesic whose length ǫ is sufficiently small has an embedded
collar neighborhood of width | log ǫ|. Thus, we can write

lH(α) = ΣN
n=1i(α, αn)| log εn| + Bα

where Bα > 0 is a constant that depends on the closed curve α.
From the definition of a Dehn twist, we have

ΣN
n=1i(α, αn)| log εn| + Bα − ΣN

n=1i(α, αn)tnεn ≤ lH(T (α))

≤ ΣN
n=1i(α, αn)| log εn| + Bα + ΣN

n=1i(α, αn)tnεn.

Therefore we have

lH(T (α))

lH(α)
≤

ΣN
n=1i(α, αn)| log εn| + Bα + ΣN

n=1i(α, αn)tnεn

ΣN
n=1i(α, αn)| log εn| + Bα

= 1 +
ΣN

n=1i(α, αn)tnεn

ΣN
n=1i(α, αn)| log εn| + Bα

≤ 1 +
ΣN

n=1i(α, αn) log | log εn|

ΣN
n=1i(α, αn)| log εn|

≤ 1 + ΣN
n=1

log | log εn|

| log εn|

≤ 1 + 2ΣN
n=1

log(n + 1)

n2

≤ 1 + 2Σ∞

n=1

log(n + 1)

n2
< ∞

which is bounded independently of α and n. In the same way, we can prove

that lH(α)
lH(T (α)) is also bounded independently of α and n. This implies that T ∈

MCGls(H).
�

Question 4.8. Proposition 4.7 gives a sufficient condition under which the inclu-
sion in (11) is strict. The question is to find sufficient and necessary conditions for
the same fact.
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Recall that MCGf (X) denotes the group of homotopy classes of homeomor-
phisms of X which are supported on subsurfaces of finite analytical type.

Proposition 4.9. For any conformal structure S on X, we have a natural inclusion
MCGf (X) ⊂ MCGqc(S).

Proof. Any homeomorphism of a subsurface of X of finite analytical type is ho-
motopic to a diffeomorphism, and therefore to a quasiconformal homeomorphism.
This quasiconformal homeomorphism can be extended to a quasiconformal home-
omorphism of X with the same quasiconformal dilatation constant. �

It was shown in [20] that the following is a necessary condition for the equality
Tqc(H0) = Tls(H0) = TbL(H0): there exists a positive constant ǫ, such that for any
element α in S(X), lH0

(α) ≥ ǫ.
Let Ci (i = 1, 2, . . .) be the collection of the simple closed curves that are bound-

aries of pairs of pants in the pants decomposition P of the surface X . We recall
that Condition (5) above, for a hyperbolic structure H on X , states the following:

∃M > 0, ∀i = 1, 2, . . . ,
1

M
≤ lH(Ci) ≤ M.

Theorem 4.10. Suppose that the base hyperbolic metric H satisfies Condition (5)
and let xn, n = 0, 1, . . . , be a sequence of points in Tqc(H). Then the following are
equivalent:

(a) limn→∞ dqc(xn, x0) = 0;
(b) limn→∞ dls(xn, x0) = 0;
(c) limn→∞ dbL(xn, x0) = 0.

Proof. From (14), we have (a)⇒(b). From Theorem 4.3, we have (a) ⇐⇒ (c).
Finally, from Shiga’s result in [28] (proof of Theorem 1.2), we have (b)⇒(a). �

We consider for a while surfaces of finite type.
The following follows from Lemma 2.23.

Lemma 4.11. Let S be a finite type Riemann surface of genus g with n punctures
and c boundary components, and let ǫ > 0. Suppose that there exists n0 > 0 such
that g + n + c ≤ n0. For any x and y in Tǫ(S), there exists a constant N(n0, ǫ),
depending only on n0 and ǫ, such that

dls(x, y) ≤ dqc(x, y) ≤ 4dls(x, y) + N(n0, ǫ).

Proof. For c = 0, this lemma is a reformulation of Lemma 2.23. For c 6= 0, the result
follows by taking doubles of surfaces along geodesic boundary components. �

Let S be a Riemann surface equipped with a hyperbolic metric and let α be a
simple closed geodesic on S. We recall that a time-t Fenchel-Nielsen deformation
of S with respect to α is a Riemann surface St obtained by cutting S along α and
regluing the cut off borders after twisting by a hyperbolic distance t along α. If S
is a marked surface, then St is also equipped with a natural marking. We refer to
[14] for background material.

The following two lemmas are inspired from Lemma 3.1 in [28], and a corre-
sponding lemma in [20].

Lemma 4.12. Let S be a hyperbolic surface and let α be a simple closed curve
on S which is not homotopic to a boundary component of S. Let St be the time-t
Fenchel-Nielsen deformation of S about α, let τ t

α : S → St be a quasiconformal
homeomorphism and let K(t) be its dilatation. Then limt→∞ K(t) = ∞.
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Proof. Let ρ be the hyperbolic distance on S. For s > 0, let

Wα = {p ∈ S|ρ(p, α) < s}.

The positive constant s is chosen to be so small that Wα is a tubular neighborhood
of α in S. We construct a quasiconformal homeomorphism gt from S to St which
represents the positive twisting along α by t. This map is best described by looking
to a lift to the universal covers of the two surfaces S and St.

We identify the universal covers of S and St with the upper-half model of the
hyperbolic plane, H2. We denote by π : H2 → S the covering map. We consider
connected components of π−1(Wα) and of π−1(α) in H2. Without loss of generality,
we may assume that the connected component of π−1(α) is the positive half of the

imaginary axis. Let W̃α be the connected component of π−1(Wα) containing the
positive half of the imaginary axis. For a suitable θ with 0 < θ < π

2 , we can express

W̃α as

W̃α = {z ∈ H2 |
π

2
− θ < arg z <

π

2
+ θ}.

Let ωt be the lift of a quasiconformal mapping in the homotopy class of gt,
normalized by ωt(0) = 0, ωt(i) = i and ωt(∞) = ∞. It is well known that ωt can be

extended to a homeomorphism of H2 and that the boundary mapping ωt|R depends
only on the homotopy class of gt.

Finally, we let δ be the geodesic in H2 which (as a set) is defined as

δ = {z ∈ H2, |z| = 1.}

Let z1 and z2, (ℜz1 < 0 < ℜz2) be the points of δ∩ W̃α. From the fact that gt is
the positive time-t Fenchel-Nielsen deformation, we have ωt(z1) = z1, ωt(z2) = etz2,

and ωt(δ∩W̃α) is an arc connecting z1 and etz2 in the component W̃α (see Figure 5).
There is a similar description of the image by ωt of a subarc of δ in each component
of π−1(Wα). Let z1 = − sin θ + i cos θ and z2 = sin θ + i cos θ. Then,

ωt(z2) = et(sin θ + i cos θ)

and
ℜωt(z2) −ℜz2 = (et − 1) sin θ.

−1 0 1

z1

etz2

z2

θ

Figure 5.

Now we study the action of the quasiconformal map ωt on the line at infinity R.
From the above construction we have

ωt(1) − 1 > ℜωt(z2) −ℜz2 = (et − 1) sin θ

and
−1 < ωt(−1) < 0.
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Summing up, we have

(15) − 1 < ωt(−1) < 0 < 1 + (et − 1) sin θ < ωt(1).

We use the following definition of the cross ratio of quadruples in H2:

[a, b, c, d] =
(a − b)(c − d)

(a − d)(c − b)
.

This definition extends to a notion of cross ratio defined for quadruples of points
at infinity, and we have

[−1, 0, 1,∞] = −1.

We shall use the geometric definition of a quasiconformal mapping, that involves
the ratios of moduli of quadrilaterals, and we refer to Ahlfors’ book [2] for this
definition.

We can talk about the conformal modulus of ideal quadrilaterals (quadrilaterals
having their vertices at infinity), and we have the following formula:

(16) Mod(H(−1, 0, 1,∞)) = 1.

We set

νt = [ωt(−1), ωt(0), ωt(1), ωt(∞)] = [ωt(−1), 0, ωt(1),∞] =
ωt(−1)

ωt(1)
.

Then

|νt| = |
ωt(−1)

ωt(1)
| ≤

1

1 + (et − 1) sin θ
→ 0, t → ∞.

Therefore, we have the following.

(17) Mod(H(ωt(−1), ωt(0), ωt(1), ωt(∞))) → 0, as t → ∞.

By the geometric definition of quasiconformal mappings, we get

(18)
1

K(ωt)
≤

Mod(H(ωt(−1), ωt(0), ωt(1), ωt(∞)))

Mod(H(−1, 0, 1,∞))
.

Summing up, (16), (17) and (18) give

(19) K(ωt) → ∞, n → ∞.

Since any quasiconformal mapping in the homotopy class of ωt induces the same
boundary map as ωt, its quasiconformal dilatation K(t) tends to infinity as t → ∞.

�

Lemma 4.13. Let S be a Riemann surface and let αn be a sequence of sim-
ple closed curves on S which are not homotopic to a boundary component of S.
Given an unbounded sequence tn of real numbers, let τ tn

αn
: S → Stn

be the time-tn
Fenchel-Nielsen deformation about αn, and let K(tn) be the dilatation of τ tn

αn
. Then

limtn→∞ K(tn) = ∞.

Lemma 4.13 can be proved in the same way as Lemma 4.12.

Theorem 4.14. Suppose that the base hyperbolic metric H0 satisfies Condition
(5). Then, Tqc(H0) = Tls(H0) = TbL(H0).

Proof. It is easy to see that if H0 satisfies Condition (5), then every element of
Tls(H0) satisfies that condition (but of course, not necessarily with the same con-
stant M). Since the hyperbolic length of the image of a homotopy class α of closed
curves by a K-Lipschitz homeomorphism is bounded from above by K times the
hyperbolic length of α, it follows that if H0 satisfies Condition (5), then every el-
ement of TbL(H0) satisfies that condition. Finally, using Wolpert’s inequality (6),
it is also easy to show that if H0 satisfies Condition (5), then every element of
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Tqc(H0) satisfies the same condition. (One can also use the set-theoretic equality
TbL(H0) = Tqc(H0) and their inclusion in Tls(H0).)

From (8), we have TbL(H0) ⊂ Tls(H0). From (11), we have Tqc(H0) ⊂ Tls(H0).
From Theorem 4.3, we have TbL(H0) = Tqc(H0). Therefore, it remains to show
that Tls(H0) ⊂ Tqc(H0). We now prove this by showing that any two hyperbolic
structures at bounded length spectrum distance are at bounded quasiconformal
distance.

We consider two decompositions of X by surfaces with disjoint interiors, X =
⋃

∞

n=1 Xn and X =
⋃

∞

n=1 X ′

n, satisfying the following properties:

• For each n = 1, 2, . . ., each of the surfaces Xn and X ′

n is of finite type,
and the sum of its genus, number of punctures and number of boundary
components is bounded by an integer n0 that is independent of n.

• If Si, i = 1, 2, . . . and S′

i, i = 1, 2, . . . are the decomposition curves of the
surface decompositions X =

⋃

∞

n=1 Xn and X =
⋃

∞

n=1 X ′

n respectively, then
{Si}∞i=1 ⊂ {Ci}∞i=1 and {S′

i}
∞

i=1 ⊂ {Ci}∞i=1, where Ci, i = 1, 2, . . . are the
curves in the pants decomposition P of the surface X satisfying condition
(5).

• We have {
⋃

∞

i=1 Si}
⋂

{
⋃

∞

i=1 S′

i} = ∅.

Let x1 = [f1, H1] and x2 = [f2, H2] be two elements of the Teichmüller space
Tls(H0) and let M0 = dls(x1, x2)

For i = 0, 1, 2 and for each n = 1, 2, . . ., let Hn
i , be the restriction of the hyper-

bolic structure Hi, on Xn, let fn
i : Hn

0 → Hn
i , be the restriction of fi to Hn

0 and
let xn

i = [fn
i , Hn

i ].
For any i = 1, 2 and for each n = 1, 2, . . ., we have xn

i ∈ Tǫ(Hn
0 ), where ǫ only

depends on the the constant M that appears in Condition (5). From Lemma 4.11,
we can write, for any n = 1, 2, . . .,

dls(x
n
1 , xn

2 ) ≤ dqc(x
n
1 , xn

2 ) ≤ 4dls(x
n
1 , xn

2 ) + N(n0, ǫ) ≤ 4M0 + N(n0, ǫ).

It remains to show that the amounts of twist along the curves Si, i = 1, . . ., are
bounded.

For an arbitrary integer p ≥ 1, we can find an integer np such that Sp ⊂ X ′

np
.

For i = 0, 1, 2, let H ′

ip
, be the restriction of Hi to X ′

np
and let f ′

ip
: H ′

0p
→ H ′

ip
,

i = 0, 1, 2, be the map obtained by restriction of f . Let x′

ip
= [f ′

ip
, H ′

ip
], i = 0, 1, 2,

Then, by the same arguments that we used above, we have

(20) dqc(x
′

1p
, x′

2p
) ≤ 4M0 + N(n0, ǫ).

From Lemmas 4.13 and 4.12, the amount of twist about Ci0 , i = 0, 1, 2 is bounded by
a constant B, depending only on M, M ′, n0, since otherwise, if this amount of twist
had no bounds, Lemma 4.12 would imply that the dilatation of the corresponding
quasiconformal mapping tends to infinity. This contradicts Inequality (20).

Since for an arbitrary integer p ≥ 1 dqc(x
′

1p, x
′

2p) ≤ 4M0 + N(n0, ǫ), and since
the twists about the boundary curves have a common upper bound, we have
dqc(x1, x2) < ∞. �

Theorem 4.15. Suppose that the base hyperbolic metric H0 satisfies Condition
(5). Let xn, n = 0, 1, . . . , be a sequence of marked Riemann surface relative to the
base hyperbolic structure H0. Then the following are equivalent:

(a) limn→∞ dqc(xn, x0) = ∞,
(b) limn→∞ dls(xn, x0) = ∞,
(c) limn→∞ dbL(xn, x0) = ∞.
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Proof. From (14) we know that (a) is equivalent to (c). From (9) we know that (a)
implies (b). By quoting Shiga’s result as we did in the proof of Theorem 4.10, we
have (b) implies (a). �

Combining Theorems 4.10 and 2.25, we obtain

Theorem 4.16. Suppose that the base hyperbolic metric H satisfies Condition (5).
Then Tqc(H), Tls(H) and TbL(H) are all complete.

Corollary 4.17. If the base hyperbolic metric H satisfies Condition (5), then
MCGqc(H) = MCGls(H).
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