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We generalize the notion of a Lie algebroid over an infinite jet bundle by replac-
ing the variational anchor with an N-tuple of differential operators the images
of which in the Lie algebra of evolutionary vector fields of the jet space are
subject to collective commutation closure. The linear space of such operators
becomes an algebra with bidifferential structural constants, of which we study
the canonical structure. In particular we show that these constants incorporate
bidifferential analogues of Christoffel symbols.

1 Introduction

Lie algebroids [21] are an important and convenient construction that appear, e.g.,
in classical Poisson dynamics [2] or the theory of quantum Poisson manifolds [1,
22]. Essentially Lie algebroids extend the tangent bundle TM over a smooth
manifold M, retaining the information about the C*®°(M)-module structure for
its sections. In the paper [10] we defined Lie algebroids over the infinite jet
spaces for mappings between smooth manifolds (e.g., from strings to space-time);
the classical definition [21] is recovered by shrinking the source manifold to a
point. A special case of Lie algebroids over spaces of finite jets for sections of
the tangent bundle was firstly considered in [15]. Within the variational setup
the anchors become linear matrix differential operators that map sections which
belong to horizontal modules [13] to the generating sections ¢ of evolutionary
derivations O, on the jet space; by assumption the images of such anchors are
closed under commutation in the Lie algebra of evolutionary vector fields. The two
main examples of variational anchors are the recursions with involutive images [8]
and the Hamiltonian operators (see [12,13,19] and [8]) the domains of which
consist of variational vectors and covectors, respectively.

In [8] we studied the linear compatibility of variational anchors, meaning that
N operators with a common domain span an N-dimensional linear space A such
that each point Ay € A is itself an anchor with involutive image. For example
Poisson-compatible Hamiltonian operators are linearly compatible and wvice versa
(Hamiltonian operators are Poisson-compatible if their linear combinations remain
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Hamiltonian). The linear compatibility! allows us to reduce the case of many
operators Ay, ..., Ay to one operator Ay = > A; - A; with the same properties.

In this paper we introduce a different notion of compatibility for the N opera-
tors. Strictly speaking we consider the class of structures which is wider than the
set of Lie algebroids over jet spaces, namely, we relax the assumption that each
operator alone is a variational anchor, but instead we deal with N-tuples of total
differential operators Ay, ..., Ay the images of which are subject to the collective
commutation closure: [ ile im A;, Z;\;l im Aj] C Z}?;l im Ag. This involutivity
condition converts the linear space of operators to an algebra with bidifferential
structural constants cffj, see (6) below. The Magri scheme [16] for the restriction
of compatible Hamiltonian operators to the hierarchy of Hamiltonians yields an
example of such an overlapping for N = 2 with ci?j =

We study the standard decomposition of the structural constants cfj, which is
similar to the previously known case (1) for N =1 ([7,8,10]). From the bidiffer-
ential constants ci} we extract the components ].“fj that act by total differential
operators on both arguments at once. Our main result, Theorem 3, states that
under a change of coordinates in the domain the symbols I‘ffj are transformed by a
proper analogue (11) of the classical rule I' — gT'g~! +dg g~! for the connection
l-forms I' and reparametrizations g. We note that the bidifferential symbols I“fj
are symmetric in their lower indices if the common domain of the N operators A;
consists of the variational covectors and hence its elements acquire their own odd
grading.?

This note is organized as follows. In Section 2 we introduce operators with
collective closure under commutation. For consistency we recall here the coho-
mological formulation [11] of the Magri scheme which gives us an example. In
Section 3 we study the properties of the bidifferential constants that appear in
such algebras of operators. The analogues of Christoffel symbols emerge here; as
an example we calculate them for the symmetry algebra of the Liouville equation.

2 Compatible differential operators

We begin with some notation; for a more detailed exposition of the geometry of
integrable systems we refer to [19] and [4,12,14,17]. In the sequel the ground field
is the field R of real numbers and all mappings are C*°-smooth.

Let o: Emtn W B"™ be a vector bundle over an orientable n-dimensional

manifold B™ and, similarly, let £: N — B" be another vector® bundle

'When the set of admissible linear combinations {A\} € R" has punctures near which the
homomorphisms Ax exhibit a nontrivial analytic behaviour, this concept reappears in the theory
of continuous contractions of Lie algebras (see [18] and references therein).

“Throughout this paper we deal with a purely commutative setup, refraining from the treat-
ment of supermanifolds. However, we emphasize that on a supermanifold the two notions of
parity and grading (or weight) may be totally uncorrelated, see [22].

3For this paper the established term ‘vector bundle’ is particularly unfortunate because in our
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over B". Consider the bundle 7o : J®(7}) — B™ of infinite jets of sections
for the bundle 7 and take the pull-back 7% (€): NH® xgn J®(1) — J®(m)
of the bundle ¢ along my. By definition the C°°(J*{w))-module of sections
D(15,(8)) = T(€) ®ceo(gny C(J®(m)) is called horizontal, see [13] for further
details.

For example let £ := m. Then the variational vectors ¢ € I'(m%,(m)) are the
generating sections of evolutionary derivations 9, on J*°(m). For convenience we
use the shorthand notation s<(r) = I'(nk,(m)) and Q&) = T(n%,(€)) in the
general setup.

‘We consider firstly the case N = 1 for which there is only one total differential
operator, A: I'Q(&r) — 2¢(n), with involutive image

[im A,im A] C im 4. (1)

The operator A transfers the bracket in the Lie algebra g(r) = (5¢(7),[, ]) to the
Lie algebraic structure |, |4 on the quotient of its domain by the kernel. The
standard decomposition of this bracket is [8,10]

[P, ala = Oa(p) (@) — Barg)(P) + {p.atta,  Pg €TQK). (2)

The linear compatibility of operators (4), which means that their arbitrary linear
combinations Ay = >, A; - A; satisfy (1), reduces the case of N > 2 operators to
the previous case with N =1 as follows.

Theorem 1 ([8]). The bracket {{, }}a, induced by the combination Ay =3 . A;-
A; on the domain of the linearly compatible normal® operators A; is

N
B =2 % Ba
2 =1

1434
im=]

The pairwise linear compatibility implies the collective linear compatibility of
A, ..., AN.

Proof. Consider the commutator [y, A 4:(p), p3F AjA;(q)], here p, g € TQ(&,).
On one hand it is equal to

= AN [Ai(p), 45(9)]

i#]
+ 2 N Ai(Oni) (@) — Basa) (P) + llps ). (3)

main Example 1 the sections of such a bundle are variational covectors and obey a nonvectorial
transformation law.

“By definition, a total differential operator A4 is normal if 4 o V = ( implies V = 0; in other
words it may be that ker A # 0, but the kernel does not have any functional freedom for its
elements, see [7].
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On the other hand the linear compatibility of A; implies

= Ax(04,»(2) — Ax(Our(9(P)) + Ar({{P. a1} 4, ).

The entire commutator is quadratically homogeneous in A, whence the bracket
{, Y4, is linear in A. From (3) we see that the individual brackets {{, }} 4, are
contained in it. Therefore

{p.aBay =D de- Up ata, + D A vlp, @),
£ £

where vo: TQ(E:) x TQ(E,) — Q&)

We claim that all summands ~,(:, -}, which do not depend upon A at all, vanish.
Indeed, assume the converse. Let there be £ € [1,..., N] such that v:(p,q) # 0;
without loss of generality suppose that £ = 1. Then set A = (1,0,...,0), whence

[Z)\ A;(p Zx\ Aj(q) } [ (MA1)(p), (A1A1)(Q)] = (M4 (A (p, q))

+(MAr) (8()\1A1)('p)(Q)_a(AlAl)(q) (@}+M{{p, q}}Al) = A1 41 (M[p, gla, )-

Consequently, v¢(p, q) € ker A; for all p and g. Now we use the assumption that
each operator A, is normal. This implies that v, = 0 for all £ which concludes the
proof. |

Now we let N > 1 and consider N-tuples of linear total differential operators
A1, ... AN FQ(&W) — z(mr), (4)

the images of which in the Lie algebra g(} of evolutionary vector fields on J* ()
are subject to collective closure of commutators.

Definition 1. We say that N > 2 total differential operators (4) are strongly
compatible if the sum of their images is closed under commutation in the Lie
algebra g(m) = (3¢(m),[, ]} of evolutionary vector fields,

[ZimAi,ZimAj] cSimAy,  1<ik<N. (5)

The involutivity {5) gives rise to the bidifferential operators

i T(&r) x TQ(&x) — TQU(&x)
through

[Ai(p), A5( ZAk v(@.a9)), pgeT&L). (6)

The structural constants C,]fj absorb the bidifferential action on p, g under com-
mutation in the images of the operators.
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Remark 1. If N = 1 and there is a unique operator A: I'Q(&;) — s(m) sat-
isfying (1), then we recover the definition of the variational anchor in the Lie
algebroid over the infinite jet space J°°(7), see [10]. By construction, ¢}, =, |4,
if N = 1. However, for N > 1 we obtain a wider class of structures because we
do not assume that the image of each operator A; alone is involutive. Therefore
it may well occur that cf # 0 for some & # 3.

The Magri scheme [16] for the restriction of two compatible Hamiltonian opera-
tors A, As onto the commutative hierarchy of the descendants H; of the Casimirs
Hy for A; gives us an example of (5) with N = 2 and cffj = 0. We consider it
in more detail; from now we standardly identify the Hamiltonian operators A
with the variational Poisson bivectors A, see [13]. We recall that the variational
Schouten bracket [, ] of such bivectors satisfies the Jacobi identity

[[[[Als A2]]= A3B + MAQ? A3]]= Al]] + [{[[A?n Al]}: AQ]] = 0. (7)

Hence the defining property [A, A] = 0 for a Poisson bivector A implies that
d4 = [A4,-] is a differential, giving rise to the Poisson cohomology H ﬁ. Obviously
the Casimirs Hy such that [A,Hp] = 0 for a Poisson bivector A constitute the
group HY.

Theorem 2 ([11,16]). Suppose [A1, A2] =0, Ho € HY is a Casimir of A1 and
the first Poisson cohomology w.r.t. da, = [Aa, ] vanishes. Then for any k > 0
there is a Hamiltonian Hy such that

[A2, Hi-1] = [A1, He]- (8)

Put iy := A1(8/6u(Hy)) such that 8y, = [A1r, Hi]. The Hamiltonians H;, 1 > 0,
pairwise Poisson commute w.r.t. either A1 or As, the densities of H; are conserved

on any equation uy, = @y and the evolutionary derivations O,, pairwise commute
for all k > 0.

Standard proof of existence. The main homological equality (8) is established
by induction on k. Starting with a Casimir Hg we obtain

0= [[AQ: O:[' = HA2: [[AI:HO]]]] = W|IA11 IIA2:H0]]]1 mod IIAI:‘A2E = O:
using the Jacobi identity (7). The first Poisson cohomology HY , = 0 is trivial by
an assumption of the theorem. Hence the closed element [Ag, Ho] in the kernel
of [Ay1,] is exact: [Aq, Ho] = [A1,H1] for some H;. For k > 1 we have

[A1, [A2, Hi]] = ~[As2, [A1, Hi]l = —~[A2, [A2, Hk—1]] =0

using (7) and by [A2, Az] = 0. Consequently by H), = 0 we have that [Aa, Hy] =
[A1, Hrr1], and we thus proceed infinitely. |
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We see now that the inductive step — the existence of the (k+1)th Hamiltonian
functional in involution — is possible if and only if Hy is a Casimir,® and therefore
the operators A; and As are restricted onto the linear subspace which is spanned
in the space of variational covectors by the Euler derivatives of the descendants
of Hp, i.e. of the Hamiltonians of the hierarchy. We note that the image under Ay
of a generic section from the domain of operators 4; and Ay cannot be resolved
w.r.t. A1 by (8). For example the first and second Hamiltonian structures for the
KdV equation, which equal, respectively, 4; = d/dz and Ay = 2 d—mg +2u-d 1t Uz,
are not strongly compatible unless they are restricted onto some subspaces of their
arguments. On the linear subspace of descendants of the Casimir [ udz we have
im Ap C im 47 and, since the image of the Hamiltonian operator 4; is involutive,
we conclude that [im A3, im As] C im A;.

On the other hand the strong compatibility of the restrictions of Poisson-
compatible operators A; and As onto the hierarchy is valid since their images
are commutative Lie algebras. Regarding the converse statement as a potential
generator of multidimensional completely integrable systems we formulate the
open problem: Is the strong compatibility of Poisson-compatible Hamiltonian op-
erators achieved only for their restrictions onto the hierarchies of Hamiltonians
in involution so that the bidifferential constants c - necessarily vanish? If so, this
would have a remarkable similarity with the techmque of the Bethe ansatz, one
component of which is the extension of a commutative algebra of Hamiltonian
operators on a Hilbert space to a bigger noncommutative algebra.

3 Bidifferential Christoffel symbols

Similarly to (2), we extract the total bidifferential parts of the structural con-
stants c . in (6) and obtain

zj - aA {p) (Q) aAj(q)( ) 5k + Fk (P, Q): p.qc FQ(&.—), (9)

where I'¥. € CDiff (TQ(&7) x TQ(éx) — TQ(ér)) and 8%, 8% are the Kronecker delta
symbols. By definition the three indices in I‘fj match the respective operators A;,
Aj, Ap in (6). (The total number of the indices is much greater than three;
moreover the proper upper or lower location of the omitted indices depends upon

the (co)vector nature of the domain I'Q(&;).) Obviously the convention

11 = {{ }}Al

holds if N = 1. At the same time for fixed ¢, 7, & the symbol F?’fj remains a
(class of) matrix differential operator in each of its two arguments p, g € T'Q(&x).

>The Magri scheme starts from any two Hamiltonians H—1, Hi that satisfy (8), but we
operate with maximal subspaces of the space of functionals such that the sequence {Hx} cannot
be extended with & < 0.
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The symbol I‘fj represents a class of bidifferential operators because they are not
uniquely defined. Indeed they are gauged by the conditions

N
ZAk (fi’Ai(;;:)(Q’)fS;'C — O4,(q)(P)8 + Tfi(p, Q)) =0, p,qgelQ(s). (10)
k=1

We let the r.h.s. of (10} be zero if the sum >_,im A, of the images is indecom-
posable, which mean that no nontrivial sections commute with all the others:
[Ak(p), Zﬁ;l im Ag] = 0 implies that p € ker A;. For this it is sufficient that the
sum of the images of A; in g(w) be semisimple and the Whitehead lemma holds
for it [5]. Otherwise the right-hand side of (10) belongs to the linear subspace of
such nontrivial sections.

Example 1 (see [9, 10]). Consider the Liouville equation Erioy = {tzy =
exp(2u)}. The differential generators of its conservation laws are w = u2 — Uy, €

2 a 6 M — 1d
ker dy[g i, and W= U, — Uyy € ker dml&' . The operators® [0 = u, + 53 and

0= Uy +1 5 d determine higher symmetrles @, P of ELioy by the formulas

¢ =0(p(z,[w), ¢=0(5, @)

for any variational covectors p, . The images of O and O are closed W.r.t. the
commutation; for instance the bracket (2) for O contains {p,q}}o = £ (p) -
g—p- d$( ), and similarly for 0. The two summands in the symmetry algebra
sym ELioy ~ im [ & im T commute between each other, [im [J,im 0] = 0 on &Eriou.
The operators [J, ] generate the bidifferential symbols

O
FDD—{{ }}D_dm 1—1®d$5 F“lefl““{{ }}EI 1--1®dy,
e =4dgg, M - 14 19 - _ 104 [‘Q —dg1
0 d’y il dz’ a0 dy? [ dz ¥

where the notation is obvious. We note that I‘gﬁ(p, q) = Fga-(p, g) = I‘%D(q, p) =

T'54(¢,p) = 0 on Evioy for any p(z, [w]) and g(y, []).

The matrix operators [, [J are well defined [7] for each 2D Toda chain Ereda as-
sociated with a semisimple complex Lie algebra. They exhibit the same properties
as above.

Remark 2. The operators [0, O yield the involutive distributions of evolutionary
vector fields that are tangent to the integral manifolds, the 2D Toda differential
equations. Generally there is no Frobenius theorem for such distributions. Still,
if the integral manifold exists and is an infinite prolongation of a differential
equation £ C J°(x), then by construction this equation admits infinitely many
symmetries of the form ¢ = A;(p) with free functional parameters p € I'Q(&;).
This property is close but not equivalent to the definition of systems of Liouville
type (see [7,9] and references therein).

fWe denote the operators by I and O following the notation of {7, 9], see also references
therein.
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The method by which we introduced the symbols I‘i} suggests that, under repa-
rametrizations g in the domain of the operators (4), they obey a proper analogue
of the standard rule T' — gT'g~! + dg - ¢~ for the connection 1-forms I'. This is
indeed so.

Theorem 3 (Transformations of I'# %), Let g be a reparametrization p — p =

gp, 9 — g = gq of sections p,q € I‘Q(&W) in the domains’ of strongly compatible
operators (4). In this notation the operators Ay, ..., An are transformed by
the formula A; — A; = A; o g‘1|w3w[ﬁ}]. Then the bidifferential symbols I‘i-“j €

CDiff (TQ(ér) x TQU&x) — TQ(Er)) are transformed according to the rule

Tfi(p, @) — T5(p,4) = (g0 T%) (9718, 977)
& -1z k -1
+05 - 8;15(51)(9) (9 p) — 05 - a}ii(f))(g) (9‘ Q')- (11)
Proof. Denote A = A; and B = Aj; without loss of generality we assume i = 1
and j = 2. We calculate the commutators of vector fields in the images of A and B
using two systems of coordinates in the domain. We equate the commutators

straighforwardly because the fibre coordinates in the images of the operators are
not touched at all. So we have originally

[A(p), B(a)] = B(8a@)(9)) — A(BB(g)(P))
N

+A(T45(P,9)) + BT3P 0) + > Ac(This(p. 0)).
k=3

On the other hand we substitute p = gp and § = gq into [fi(ji), B(g)] whence
by the Leibnitz rule we obtain

[A(5), B(@)] = B(043(9)(@) + (B 0 9) (843(0))
— A(055(9)(@)) — (Ao g) (855 ()
(A o g7) (I 5(9p, 9)) + (B o ™) (T2 5(9p, 90))

+Z Ap o g™ (T% 2 (9p, 99)).

Therefore

Thp(P, @) = (97" 0T 5) (92, 99) — (97" 0 3pg)(9)) (@),

I'fs(p.q) = ( oI'Z5) (90, 99) + (97" © Darpy(9)) (),
Thip.q) = (g7 oT% ) (gp,9q)  for k > 3.

"Under an invertible change & = w[w| of fibre coordinates (see Example 1) the variational
covectors are transformed by the inverse of the adjoint linearization g = [(E,{;’))%] whereas for

3“ .'bz'aan D:st.“'-kr

variational vectors, g = EE;”J is the linearization.
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Acting by g upon these equalities and expressing p = g~'p, ¢ = g~ 1§ we ob-
tain (11) and conclude the proof. |

Remark 3. Within the Hamiltonian formalism it is very productive to postulate
that the arguments of Hamiltonian operators, the variational covectors, are odd,®
see [22] and [13]. Indeed in this particular situation they can be conveniently
identified with Cartan 1-forms times the pull-back of the volume form dvol { B") for
the base of the jet bundle. We preserve this grading for such domains of operators
(when N = 1, we referred to such operators in [10] as variational anchors of second
kind). If moreover 7 and £ are superbundles with Grassmann-valued sections,
then the operators become bigraded [22]. Their proper grading is —1 because
their images in g{#) have grading zero, but the Zg-parity, if any, can be arbitrary.

Corollary 1. For strongly compatible operators the domain I'Q(Ex) of which con-
sists of variational covectors, the grading of the arguments equals 1. Therefore for
any t, 5,k € [1,...,N] and for any p,q € Q&) we have that

% (p,q) = —T%(q,p) = (~1)Plerldler . Tk (g, p) (12)

due to the skew-symmetry of the commutators in (5). Hence the symbols Fi-“j are
symmetric in this case.

Proposition 1. If two normal operators A; and A; are simultaneously linear and
strongly compatible, then their ‘individual’ brackets I, and l";-j are

{p.qPa =TL(p.q) +T(p,q) and {{p.q}a; =T}(p,q) + T%i(p.q)
for any p,q € TQ(&x).

Proof. For brevity denote A = A;, B = A; and consider the linear combina-
tion A + vB; by assumption its image is closed under commutation. By Theo-
rem 1 we have

(A +vB)({p, aBuatvs)
= WP A({p, ) + v A({lp, a} 5) + - B({{p, al} 4) +* B ({{p, a}} 4)-
On the other hand

| (14 + vB)(p), (44 +vB)(q)]
= u*[A(p), A(@)] + uv[A(p), B(q)] — wv[Ala), B(p)] + v*[B(p). B(q)].
Taking into account (9) and equating the coefficients of uv we obtain

A({{p. ¥} B) + B({{p. q}} )
= A(T4g(p,q)) + B(Tis(p, ) — A(T4s(a, p)) — B(T4p(a,p)).

Using the formulas I'45(q,p) = —I'4,(p,q) and I'E5(q,p) = —T'E,(p,q), see
(12), we isolate the arguments of the operators and obtain the assertion. &

8Here we assume for simplicity that all fibre coordinates in = are permutable.
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Conclusion

For every k-vector space V the space of endomorphisms Endg(V) is a monoid with
respect to the composition o. In this context one can study relations between
recursion operators. For instance the structural relations for recursion operators
of the Krichever-Novikov equations are described by hyperelliptic curves, see [3].
Likewise we have the relation Bio Ry — Reso Ry = R% between two recursions for
the dispersionless 3-component Boussinesq system, see [6]. Simultaneously the
space of endomorphisms carries the structure of a Lie algebra which is given by
the formula [R;, R;] = R; o Rj — R; o R; for every R;, R; € Endy(V).

In this paper we proceed further and consider the class of structures on the
linear spaces of total differential operators that generally do not in principle admit
any assoclative composition. (The bracket of recursion operators that appears
through (6) is different from the Richardson—Nijenhuis bracket [12], although we
use similar geometric techniques.) The classification problem for such algebras of
operators is completely open.

Discussion

‘We performed all the reasonings for local differential operators in a purely commu-
tative setup; all the structures were defined on the empty jet spaces. A rigorous
extension of these objects to Zo-graded nonlocal operators on differential equa-
tions is a separate problem for future research. In addition the use of difference
operators subject to (5) can be a fruitful idea au début for the discretization
of integrable systems with free functional parameters in their symmetries (e.g.,
Toda-like difference systems [20]).
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