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Abstract

We prove that the specialization toq = 1 of a Kirillov-Reshetikhin module for an un-
twisted quantum affine algebra of classical type is projective in a suitable category. This
yields a uniform character formula for the Kirillov-Reshetikhin modules. We conjecture
that these results holds for specializations of minimal affinization with some restriction
on the corresponding highest weight. We discuss the connection with the conjecture of
Nakai and Nakanishi onq-characters of minimal affinizations. We establish this conjec-
ture in some special cases. This also leads us to conjecture an alternating sum formula
for Jacobi-Trudi determinants.

Introduction

The study of finite-dimensional representations of quantumaffine algebras has at-
tracted a lot of attention over the last twenty years. Nevertheless, there are many natural
questions which remain unanswered, for instance, the basicproblem of determining the
character of an irreducible representation of a quantum affine algebra. Part of the reason
for the difficulty is that there are far too many irreducible representations and although
character is known for a generic representation, the character in the non–generic case
is difficult to understand. A particular family of these non–generic modules are the
Kirillov-Reshetikhin modules and more generally the family of minimal affinizations of
a dominant integral weight.

In [19] Kirillov and Reshetikhin conjectured the existenceof certain simple mod-
ules over a quantum affine algebra whose tensor products (and in particular the mod-
ules themselves) have prescribed decompositions as directsums of simple modules over
the quantized enveloping algebra of the underlying simple Lie algebrag. They are
parametrized by pairs (m, i) wherem is a positive integer andi is a node of the Dynkin
diagram ofg. More generally, after [3] one can consider minimal affinizations of sim-
ple finite dimensional modules overUq(g), namely, minimal (in some natural partial
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order) simple modules over the quantum affine algebra with the “top” part isomorphic
to the given simple finite dimensionalUq(g)-module. Kirillov-Reshetikhin modules and
minimal affinizations were and still are being actively studied (to namebut a few, cf.
[4, 8, 15, 16, 17, 26, 27, 28], see also [7] for extensive bibliography on the subject).
One of their pleasant properties is that they admit specializations atq = 1 which can be
naturally regarded as modules over the current algebrag ⊗ C[t]. Moreover wheng is of
classical type they are actually modules for the truncated current algebrag ⊗ C[t]/(t2)
which is isomorphic to the semidirect product ofg with its adjoint representation.

The specializations of Kirillov-Reshetikhin modules and minimal affinizations are
indecomposable but no longer simple and it is only natural toask whether they have any
distinguished homological properties. In the present work, we apply the methods devel-
oped in [5, 6] to construct, for each dominant weightλ of g, a natural Serre subcategory
of the category of graded modules over the truncated currentalgebra. We describe the
projective cover of an arbitrary simple object in this category explicitly in terms of gen-
erators and relations. We are also able to obtain an alternating character formula, which
expresses the (graded) character of the projective cover ofa simple object in terms of the
character of the simple object and the (graded) characters of (finitely many) projectives
following it in a natural partial order. The formula involves coefficients which can be
computed from analyzing the module structure of the exterior algebra of an abelian ideal
(naturally associated with the irreducible object) in a fixed Borel subalgebra ofg.

We show in Proposition 3.6 that any specialized Kirillov-Reshetikhin module is a
projective object in one of these subcategories. In general, we prove by using a result of
[26] and Theorem 1 of this paper, that the specialization of aminimal affinization is a
quotient of the projective cover of an irreducible object inthe corresponding subcategory.
A reformulation of the conjecture in [26] is that the minimalaffinization is isomorphic
to the projective cover.

The characters of minimal affinizations are not known in general and there are con-
jectures of Nakai and Nakanishi ([27]) that they are given byJacobi-Trudi type formulae.
This was established by [18] for the typeB. Combining Theorem 2 of this paper with the
conjectures of [26] and [27], we conjecture an alternating formula for the Jacobi-Trudi
determinants, which can be stated in a purely combinatorialway. We are able to verify
this conjecture in certain cases which proves that specializations of minimal affinization
are projective objects in our subcategories and allows us toconjecture that this is always
the case forg of classical type.

The paper is organized as follows. Section 1 contains the main results and the neces-
sary preliminaries. The main results are proven in Section 2. Finally, Section 3 contains
a brief exposition of the necessary results on Kirillov-Reshetikhin modules and minimal
affinizations and connects the existing literature to the main results and conjectures of
the paper.
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1. The main results

1.1.

Let g be a finite-dimensional complex simple Lie algebra with a fixed Cartan subal-
gebrah. Let R be the corresponding root system and fix a set{αi : i ∈ I } ⊂ h∗ (where
I = {1, . . . , dimh}) of simple roots forR. The root latticeQ is theZ-span of the sim-
ple roots whileQ+ is theZ+-span of the simple roots, andR+ = R∩ Q+ denotes the
set of positive roots inR. Given i ∈ I , let ǫi : Q+ → Z+ be the homomorphism of
free semi-groups defined by settingǫi(α j) = δi, j , j ∈ I , and define ht :Q+ → Z+ by
ht(ν) =

∑

i∈I ǫi(ν), ν ∈ Q+.

The restriction of the Killing formκ : g × g→ C to h × h induces a non–degenerate
bilinear form (·, ·) onh∗ and we let{ωi : i ∈ I } ⊂ h∗ be the fundamental weights defined
by 2(ω j , αi) = δi, j(αi , αi). Let P (respectivelyP+) be theZ- (respectivelyZ+-) span of
the {ωi : i ∈ I } and note thatQ ⊆ P. Givenλ, µ ∈ P we say thatµ ≤ λ if and only if
λ − µ ∈ Q+. Clearly≤ is a partial order onP. The setR+ has a unique maximal element
with respect to this order which is denoted byθ and is called the highest root ofR+.

1.2.

Givenα ∈ R, let gα ⊂ g be the corresponding root space and define subalgebrasn±

of g by
n± =

⊕

α∈R+
g±α.

We have isomorphisms of vector spaces

g = n− ⊕ h ⊕ n+, U(g) � U(n−) ⊗ U(h) ⊗ U(n+), (1.1)

whereU(a) is the universal enveloping algebra of the Lie algebraa. For α ∈ R+, fix
elementsx±α ∈ g±α andhα ∈ h such that they span a Lie subalgebra ofg isomorphic to
sl2, i.e., we have

[hα, x
±
α] = ±2x±α , [x+α , x

−
α ] = hα,

and more generally, assume that the set{x±α : α ∈ R+} ∪ {hαi : i ∈ I } is a Chevalley basis
for g. We abbreviatex±i := x±αi

andhi := hαi , i ∈ I .
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1.3.

Let V be ah-module. Givenµ ∈ h∗, the setVµ = {v ∈ V : hv = µ(h)v, h ∈ h} is
called theµ-weight space ofV . We say thatV is a weight module and that wtV is the
set of weights ofV, if

V =
⊕

µ∈h∗

Vµ, wt V = {µ ∈ h∗ : Vµ , 0}.

Let Z[h∗] be the integral group algebra ofh∗ and forµ ∈ h∗, lete(µ) be the corresponding
generator ofZ[h∗]. If all weight spaces ofV are finite dimensional, define chV ∈ Z[h∗]
by

chV =
∑

µ∈h∗

dimVµ e(µ).

Observe that for two such modulesV1 andV2, we have

ch(V1 ⊕ V2) = chV1 + chV2, ch(V1 ⊗ V2) = chV1 chV2.

1.4.

For λ ∈ P+, let V(λ) be theg-module generated by an elementvλ with defining
relations:

hvλ = λ(h)vλ, h ∈ h x+i vλ = 0 = (x−i )λ(hi )+1vλ = 0, i ∈ I .

It is well-known that

dimV(λ) < ∞, dimV(λ)λ = 1, wt V(λ) ⊂ λ − Q+.

An irreducible finite-dimensionalg-module is isomorphic toV(λ) for a uniqueλ ∈ P+

and any finite-dimensionalg-module is completely reducible. In other words, ifF (g) is
the category of finite-dimensionalg-modules with morphisms being maps ofg-modules,
thenF (g) is a semisimple category and the isomorphism classes of simple objects are
indexed by elements ofP+.

1.5.

For the rest of the paper we will be concerned with the Lie algebra g ⋉ gad. As a
vector space

g⋉ gad = g ⊕ g,

and the Lie bracket is given by

[(x, y), (x′, y′)] = ([x, x′], [x, y′] + [y, x′]).
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In particular if we identifyg (respectively,gad) with the subspace{(x, 0) : x ∈ g} (re-
spectively,{(0, y) : y ∈ g}), thengad is an abelian Lie ideal ing ⋉ gad. Givenx ∈ g, set
(x)ad = (0, x) ∈ gad.

Define aZ+-grading ong⋉gadby requiring the elements ofg to have degree zero and
elements ofgad to have degree one. Then the universal enveloping algebraU(g ⋉ gad)
is a Z+-graded algebra and as a trivial consequence of the PBW theorem, there is an
isomorphism of vector spaces

U(g⋉ gad) � S(g) ⊗ U(g),

whereS(g) is the symmetric algebra ofg.

1.6.

Let G2 be the category whose objects areZ+-gradedg ⋉ gad-modules with finite-
dimensional graded pieces and where the morphisms areg ⋉ gad-module maps which
preserve the grading. In other words ag⋉ gad-moduleV is an object ofG2 if and only if

V =
⊕

k∈Z+

V[k], dimV[k] < ∞,

gV[k] ⊂ V[k], gadV[k] ⊂ V[k+ 1],

and if V,W ∈ ObG2, then

HomG2(V,W) = { f ∈ Homg⋉gad(V,W) : f (V[k]) ⊂W[k]}.

For r ∈ Z+, let τr be the grading shift functor onG2: thusτrV has the sameg ⋉ gad-
module structure asV but the grading is uniformly shifted byr. Given ag-moduleV,
define evr V ∈ G2 by

(evr V)[s] =















0, s, r,

V, s= r,
(x, y)(v) = xv, x, y ∈ g, v ∈ V

and observe that evr V = τr ev0 V. The following is easily checked.

Lemma. A simple object inG2 is isomorphic toevr V(λ) for some r∈ Z+ andλ ∈ P+.
Moreover ifν, µ ∈ P+ and p, s ∈ Z+, we have

evp V(ν) � evs V(µ) ⇐⇒ p = s, ν = µ.

Equivalently, the isomorphism classes of simple objects inG2 are indexed by the set
Λ = P+ × Z+.
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Given (λ, r) ∈ Λ, set

[V : evr V(λ)] = dim Homg(V(λ),V[r]).

If V is finite-dimensional, then [V : evr V(λ)] is just the multiplicity of evr V(λ) in a
Jordan-Holder series forV. Define the graded character cht of V ∈ ObG2 by

cht V =
∑

r∈Z+

tr chV[r] =
∑

(λ,r)∈Λ

tr [V : evr V(λ)] chV(λ)

and observe that this is a well defined element ofZ[h∗][[ t]]. Clearly, cht τrV = tr cht V.

1.7.

Given any subsetΓ of Λ, letG2[Γ] be the full subcategory ofG2 defined by,

V ∈ ObG2[Γ] ⇐⇒ [V : evr V(λ)] , 0 =⇒ (λ, r) ∈ Γ (1.2)

Lemma 1.6 implies thatG2 = G2[Λ] and also that the isomorphism classes of simple
objects inG2[Γ] are indexed by elements ofΓ. Given V ∈ ObG2, denote byVΓ the
maximal quotient ofV which lies inG2[Γ]. It is standard thatVΓ is well–defined and
it is possible thatVΓ is zero. It is clear from the definition that ifΓ′ ⊂ Γ, thenVΓ

′

is a
quotient ofVΓ and also that ifV is a projective object ofG2[Γ] thenVΓ

′

is a projective
object ofG2[Γ′].

Given Γ ⊂ Λ and r ∈ Z+, we setτrΓ = {(µ, r + s) : (µ, s) ∈ Γ}. Clearly, if
V ∈ ObG2[Γ] thenτrV ∈ ObG2[τrΓ].

1.8.

The categoryG2[Γ] is in general not semisimple and one of the goals of this paper is
to understand the structure of the projective covers of simple objects inG2[Γ] for suitable
subsetsΓ. We recall some results from [5] and [6]. For (λ, r) ∈ P+, set

P(λ, r) = U(g⋉ gad) ⊗U(g) evr V(λ). (1.3)

The following was proved in [6, Proposition 2.2].

Proposition. Let (λ, r) ∈ Λ.

(i) The object P(λ, r) is the projective cover inG2 of its unique irreducible quotient
evr V(λ). Moreover, the kernel of the canonical morphism P(λ, r) → evr V(λ) is
generated by P(λ, r)[r + 1].

(ii) For (µ, s) ∈ Λ, we have

[P(λ, r) : evs V(µ)] = dim Homg(Ss−r (g) ⊗ V(λ),V(µ)).
6



(iii) P(λ, r) is theg ⋉ gad-module generated by the element pλ,r = 1⊗ vλ with defining
relations:

n+pλ,r = 0, hvλ = λ(h)pλ,r , (x−i )λ(hi )+1pλ,r = 0,

for all h ∈ h and i∈ I.

One way of summarizing the first main result of this paper is the following: to give
an analog of the preceding proposition for the projective covers of simple objects of
G2[Γ]. As we have remarked in Section 1.7, the moduleP(λ, r)Γ is projective inG2[Γ].
If (λ, r) ∈ Γ then P(λ, r)Γ is projective with unique irreducible quotient evr V(λ). In
particular,P(λ, r)Γ is indecomposable and is the projective cover of evr V(λ). In other
words, one has the analog of Proposition 1.8(i) for all subsetsΓ of Λ.

1.9.

The analog of Proposition 1.8(ii) was also studied in [5] and[6]. This time the result
is not true for an arbitrary subset ofΛ and one way of identifying subsets for which
this remained true was to introduce a strict partial order onΛ and to consider interval
closed subsets in this order. To explain this, given (λ, r), (µ, s) ∈ Λ, we say that (µ, s)
covers (λ, r) if and only if s = r + 1 andµ − λ ∈ R ⊔ {0}. It follows immediately that
for any (µ, s) ∈ Λ the set of (λ, r) ∈ Λ such that (µ, s) covers (λ, r) is finite. Let4 be
the unique partial order onΛ generated by this cover relation. A subsetΓ of Λ is called
interval closed if for allγ 4 γ′ ∈ Γ, we have [γ, γ′] := {γ′′ ∈ Λ : γ 4 γ′′ 4 γ′} ⊂ Γ.
The following result is a straightforward reformulation of[5, Propositions 2.6 and 2.7].

Proposition. LetΓ be an interval closed subset ofΛ and let(λ, r) ∈ Γ. Then

[P(λ, r)Γ : evs V(µ)] =















dim Homg(Ss−r(g) ⊗ V(λ),V(µ)), (µ, s) ∈ Γ,

0, (µ, s) < Γ.

1.10.

We now state one of the main results of this paper. The first result establishes the
analog of Proposition 1.8 by imposing a further restrictionon Γ. Givenλ ∈ P+ and any
subsetS of R, defineΓ(λ,S) ⊂ Λ by

Γ(λ,S) = {(µ, r) ∈ Λ : µ = λ −
∑

β∈S

nββ, nβ ∈ Z+,
∑

β∈S

nβ = r},

and note that the subsetΓ(λ,S) need not be interval closed in general. For (µ, r) ∈ Γ, let
pΓµ,r be the image ofpµ,r in P(µ, r)Γ.

Theorem 1. LetΨ ⊂ R+ be such that

Ψ = {α ∈ R : (α, ξ) = max
β∈R

(β, ξ)}, for someξ ∈ P+,
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and letΓ = Γ(λ,Ψ) for someλ ∈ P+. ThenΓ is a finite interval closed subset ofΛ and
for all (µ, r) ∈ Γ the moduleP(µ, r)Γ is finite-dimensional and is the projective cover of
evr V(µ) in G2[Γ]. Moreover, it is generated by the elementpΓµ,r with defining relations,

n+ pΓµ,r = 0, hpΓµ,r = µ(h)pΓµ,r , h ∈ h, (x−i )µ(hi )+1pΓµ,r = 0, i ∈ I , (1.4)

n+adpΓµ,r = 0 = hadpΓµ,r , (x−α)ad pΓµ,r = 0, α ∈ R+ \Ψ. (1.5)

1.11.

The following Corollary to Theorem 1 is immediate.

Corollary. Let (µ, r) ∈ Γ(λ,Ψ). Then

τr P(µ, 0)Γ(µ,Ψ)
� P(µ, r)Γ.

1.12.

Our next main result establishes an alternating character formula for the modules
P(µ, r)Γ under the same restrictions onΓ as in Theorem 1. GivenS ⊂ R+, set

n±S =
⊕

α∈S

g±α.

Clearly n±S is a weighth-module and moreover ifk ∈ Z+ then
∧kn±S is also a weight

h-module. IfΨ ⊂ R+ is an in Theorem 1, then it is easy to see thatn±
Ψ

is an (abelian) Lie
ideal in (h ⊕ n±) and hence

∧kn±
Ψ

is a (h ⊕ n±)-module. Moreover,n± acts nilpotently
on
∧kn±

Ψ
.

Theorem 2. LetΨ = {α ∈ R : (α, ξ) = maxβ∈R(β, ξ)} for someξ ∈ P+. For allλ ∈ P+,
we have

∑

(ν,s)∈Γ(λ,Ψ)

(−t)scλν,s cht P(ν, 0)Γ(ν,Ψ)
= chV(λ),

where
cλν,s = dim{v ∈ (

∧sn−
Ψ

)ν−λ : (x−i )ν(hi )+1(v) = 0, ∀ i ∈ I }.

1.13.

Suppose thatg is of type Bn, Cn or Dn+1. Assume that the nodes of the Dynkin
diagram are labeled as in [1]. Assume also thatλ ∈ P+ is such thatλ(hi) = 0, i ≥ n. Set

iλ = max{i ∈ I : λ(hi) > 0}

and let

Ψλ = {α ∈ R+ : ǫiλ (α) = 2}.

8



Then eitherΨλ = ∅ orΨλ = {α ∈ R+ : (α, ωiλ) = maxβ∈R(β, ωiλ)}. For 1≤ i ≤ iλ, set

λi =

∑

i≤k≤iλ

λ(hk),

and define the the Jacobi-Trudi determinantHλ corresponding toλ by

Hλ = det(hλi−i+ j)1≤i, j≤iλ ∈ Z[P],

hk =















chV(kω1), g = Bn,Dn+1
∑

0≤r≤k/2 chV((k− 2r)ω1), g = Cn,

where we adopt the convention thathk = 0 if k < 0. The following conjecture is
motivated by Theorems 1 and 2 of this paper along with the conjectures in [26] and [27].
We will explain this further in the last section of the paper.Recall that ifV ∈ ObG2 is
finite-dimensional then chV is just the specialization of cht V at t = 1.

Conjecture. Let g be of typeBn, Cn or Dn+1 and letλ ∈ P+ be such thatλ(hi) = 0, i ≥ n.
Then

chP(λ, 0)Γ(λ,Ψλ) = Hλ,

or equivalently by Theorem 2,
∑

(ν,s)∈Γ(λ,Ψλ)

(−1)scλν,sHν = chV(λ). (1.6)

Our final result is the following.

Proposition. The conjecture is true if one of the following holds

(i) λ = mωi for i ∈ I,

(ii) iλ ≤ 5.

2. Proof of Theorems 1 and 2

Throughout this section we fixξ, λ ∈ P+ and set

Ψ = {α ∈ R : (α, ξ) = max
β∈R

(β, ξ)} ⊂ R+, Γ = Γ(λ,Ψ).

The following property ofΨ (cf. [6, Lemma 2.3]) is crucial for this section. Suppose
that

∑

α∈R

mαα =
∑

β∈Ψ

nββ, mα, nβ ∈ Z+.

Then
∑

β∈Ψ

nβ ≤
∑

α∈R

mα, and
∑

β∈Ψ

nβ =
∑

α∈R

mα =⇒ mα = 0, α < Ψ. (2.1)

9



2.1.

We begin by proving thatΓ is interval closed. As the first step, we prove the follow-
ing Lemma. It is tempting to think that this result is clear from the definition of the partial
order. As an example, suppose thatµ = λ−α−β whereα, β ∈ Randα+β < R∪{0}, then
one is inclined to believe that (λ, 0) ≺ (µ, 2). However there is a subtlety here, namely
the partial order requires the existence ofν ∈ P+ such that (λ, 0) ≺ (ν, 1) ≺ (µ, 2) which
is not obvious, since it could happen very easily thatλ − α, λ − β < P+. The proof of
this Lemma also shows that for an arbitraryS the setΓ(λ,S) cannot be expected to be
interval closed.

Lemma. Letλ ∈ P+, S ⊂ R. Then

(µ, r) ∈ Γ(λ,S) =⇒ (λ, 0) 4 (µ, r).

Proof. SinceΓ(λ,S) ⊂ Γ(λ,R), it suffices to prove the Lemma forΓ(λ,R). We proceed
by induction onr and note that induction begins since the result is obviouslytrue for
r ≤ 1. For the inductive step, we may assume that (λ, 0) 4 (ν, s) for all (ν, s) ∈ Γ(λ,R)
with s < r. Let (µ, r) ∈ Γ(λ,R). If λ − µ can be written as a sum ofs < r roots then
(µ, s) ∈ Γ(λ,R) and hence we have (λ, 0) 4 (µ, s) ≺ (µ, r).

Assume now thatλ − µ cannot be written as a sum ofs roots fromR with s < r.
Chooseβk ∈ R, 1 ≤ k ≤ r with ht(β1) ≥ ht(βk) such thatλ = µ −

∑r
j=1 β j. We claim

that there exists another expressionλ − µ =
∑r

j=1 γ j with γ j ∈ R, ht(γ1) ≥ ht(γs),
1 ≤ s≤ r and such thatµ+γ1 ∈ P+. Note that this claim implies the assertion since then
(µ + γ1, r − 1) ∈ Γ(λ,R) and the induction hypothesis yields

(λ, 0) ≺ (µ + γ1, r − 1) ≺ (µ, r).

To prove the claim, we use downward induction on ht(β1). The induction starts when
ht(β1) is maximal since thenβ1 = θ ∈ P+ and soµ + β1 ∈ P+. For the inductive step,
if µ + β1 < P+, choosei ∈ I such that (µ + β1)(hi ) < 0 in which case we haveβ1(hi) < 0
and soβ1 + αi ∈ R∪ {0}.

On the other hand, sinceλ ∈ P+, it follows that there exists 1< s≤ r such that

(

µ +

s−1
∑

k=1

βk

)

(hi) < 0,
(

µ +

s
∑

k=1

βk

)

(hi) ≥ 0.

Thenβs(hi ) > 0 and henceβs − αi ∈ R∪ {0}. Setting

γ1 = β1 + αi , γs = βs − αi , γ j = β j , 2 ≤ j ≤ r, j , s,

we see thatλ − µ =
∑r

j=1 γ j . If γ1 = 0 or γs = 0 thenλ − µ can be written as a sum
of less thanr roots which is a contradiction. Thus,γ1, γs ∈ R and we have obtained an
expression ofλ−µ as a sum ofr roots with ht(γ1) ≥ ht(γs), 1 ≤ s≤ r and ht(γ1) > ht(β1).
The induction hypothesis applies to this new expression andhence completes the proof
of the claim.
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2.2.

Proposition. (i) Givenµ ∈ P+, there exists at most one s∈ Z+ such that(µ, s) ∈ Γ.

(ii) The subsetΓ is interval closed and finite.

(iii) Suppose that(µ, r), (ν, s) ∈ Γ and (µ, r) ≺ (ν, s). Then(ν, s− r) ∈ Γ(µ,Ψ).

Proof. Part (i) is immediate from (2.1). To prove (ii), by Lemma 2.1 it is enough to
show that if (µ, r) ∈ Λ and (ν, s) ∈ Γ satisfy (λ, 0) ≺ (µ, r) ≺ (ν, s) then (µ, r) ∈ Γ. We
can write,

λ − µ =
∑

α∈R

nαα, µ − ν =
∑

α∈R

kαα, λ − ν =
∑

β∈Ψ

mββ,

with nα, kα,mβ ∈ Z+ such that
∑

α∈R

nα ≤ r,
∑

α∈R

kα ≤ s− r,
∑

β∈Ψ

mβ = s,

and hence we get
∑

β∈Ψ

mββ =
∑

α∈R

(nα + kα)α,
∑

α∈R

(nα + kα) ≤ s=
∑

β∈Ψ

mβ.

Using (2.1) we see that this implies that

nα = kα = 0, α < Ψ,
∑

α∈R

nα = r,
∑

α∈R

kα = s− r,

which proves simultaneously that (µ, r) ∈ Γ and (ν, s) ∈ τrΓ(µ,Ψ) or equivalently (ν, s−
r) ∈ Γ(µ,Ψ). Note that the set (λ − Q+) ∩ P+ is finite and now using part (i) we see that
Γ is finite.

2.3.

It follows from Proposition 1.9 and Proposition 2.2(ii) that P(µ, r)Γ is finite-dimen-
sional. To complete the proof of Theorem 1 we must determine the defining relations for
P(µ, r)Γ. As a first step, we have,

Lemma. The generator pΓµ,r of P(µ, r)Γ satisfies the relations(1.4)and (1.5).

Proof. Sincepµ,r ∈ P(µ, r) satisfies (1.4) inP(µ, r) it follows that they also hold for its
imagepΓµ,r . We prove thatpΓµ,r satisfies the relations (1.5). Suppose first that (n+)adpΓµ,r ,
0 and chooseα ∈ R+ such that ht(α) is maximal with the property (x+α)adpΓµ,r , 0. Then

n+
(

(x+α)adpΓµ,r
)

= 0.
11



It follows from the standard representation theory of simple Lie algebras thatµ+α ∈ P+

and sinceP(µ, r)Γ ∈ ObG2[Γ], we conclude that

(µ + α, r + 1) ∈ Γ, (µ, r) ≺ (µ + α, r + 1).

Using Proposition 2.2(iii), we see that this forces (µ + α, 1) ∈ Γ(µ,Ψ). But sinceα ∈ R+,
this is impossible by the definition ofΓ(µ,Ψ). Hence we have a contradiction and we
have proved that

(n+)adpΓµ,r = 0. (2.2)

Next, suppose that (h)adpΓµ,r , 0 for someh ∈ h. Since [n+, had] ⊂ n+ad, we see by
using (2.2) that

n+(h)adpΓµ,r = 0,

hence (µ, r + 1) ∈ Γ. But since (µ, r) ∈ Γ this is impossible by Proposition 2.2(i), and so
we have

(h)adpΓµ,r = 0. (2.3)

Finally, if (n−R+\Ψ)adpΓµ,r , 0, chooseα ∈ R+ \ Ψ with ht(α) minimal such that

(x−α)adpΓµ,r , 0. Suppose that there existsβ ∈ R+ such that

x+β (x
−
α)adpΓµ,r , 0.

By (2.2) and (2.3) we see that this impliesα − β ∈ R+ and in fact that

(x−α−β)adpΓµ,r = [x+β , (x
−
α)ad]p

Γ

µ,r , 0.

The minimality of ht(α) now forcesα − β ∈ Ψ, and since

(λ, α) = (λ, α − β) + (λ, β) ≥ (λ, α − β)

the definition ofΨ forcesα ∈ Ψ. But this contradicts our assumption thatα ∈ R+ \ Ψ.
Thus,n+(x−α)adpΓµ,r = 0, which implies that (µ − α, r + 1) ∈ Γ and so (µ − α, 1) ∈ Γ(µ,Ψ)
by Proposition 2.2(ii). Sinceα < Ψ, we obtain a contradiction.

2.4.

To complete the proof of Theorem 1 we must show that (1.4) and (1.5) are the defin-
ing relations.

Proposition. Let (µ, r) ∈ Γ and suppose thatPΨ(µ, r) ∈ ObG2 is theg ⋉ gad-module
generated by an elementpµ,r with grade r and (graded) defining relations:

n+pµ,r = 0, hpµ,r = µ(h)pµ,r , h ∈ h, (x−αi
)µ(hi )+1pµ,r = 0, i ∈ I , (2.4)

n+adpµ,r = 0 = hadpµ,r , (x−α)ad pµ,r = 0, α ∈ R+ \ Ψ. (2.5)

ThenPΨ(µ, r) is an idecomposable object inG2[Γ] and evr V(µ) is its unique simple
quotient.
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Assuming this proposition the proof of Theorem 1 is completed as follows.

Proof of Theorem 1.By Lemma 2.3,pΓµ,r satisfies the defining relations (2.4) and (2.5)
hence the assignmentpµ,r 7→ pΓµ,r defines a surjective morphismφ : PΨ(µ, r)→ P(µ, r)Γ

in G2. Let K be the kernel of this morphism so that we have a short exact sequence

0→ K → PΨ(µ, r)→ P(µ, r)Γ → 0.

SinceP(µ, r)Γ is projective inG2[Γ] while PΨ(µ, r) ∈ ObG2[Γ] by the above Proposition,
this sequence splits. SincePΨ(µ, r) is indecomposable, it follows thatK = 0 and the
theorem is proved.

2.5.

We shall need the following elementary result on integrablerepresentations ofg.

Lemma. Suppose that V is an integrableg-module, that is for all v∈ V we have
dimU(g)v < ∞. Then V is isomorphic to a direct sum of simpleg-modules. Moreover,

0 , v ∈ Vµ, v ∈ U(n−)
(
⊕

ν∈h∗ : µ<ν

Vν
)

=⇒ n+v , 0.

Proof. By assumption,V is a sum of finite dimensionalg-modules. Since any finite-
dimensionalg-module is semisimple, the first statement follows say by [24, §XVII.2].
To prove the second assertion, write

V =
⊕

λ∈P+
V[λ],

whereV[λ] is the isotypical component ofV corresponding toλ ∈ P+. Suppose that

0 , v ∈ Vµ, n+v = 0.

Then sinceU(g)v is finite-dimensional, it follows thatU(g)v � V(µ) and hence that
v ∈ V[µ]. Since

µ < ν =⇒ Vν ⊂
⊕

λ∈P+ : µ<λ

V[λ],

and
V[µ] ∩

⊕

λ∈P+ : µ<λ

V[λ] = {0},

it follows that
v < U(n−)

(
⊕

ν∈h∗ :µ<ν

Vν
)

,

which proves the Lemma.
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2.6.

We now prove Proposition 2.4.

Proof of Proposition 2.4.It is clear that evr V(µ) is a quotient ofPΨ(µ, r) and hence
PΨ(µ, r) is non–zero. Moreover, since the sum of proper submodules of PΨ(µ, r) is again
a proper submodule,PΨ(µ, r) has the unique maximal proper submodule and therefore
evr V(µ) is the unique simple quotient ofPΨ(µ, r). In particular,PΨ(µ, r) is indecompos-
able.

It remains to prove thatPΨ(µ, r) is an object inG2[Γ] provided that (µ, r) ∈ Γ. By
Proposition 2.2(iii) we haveτrΓ(µ,Ψ) ⊂ Γ. Since

τrPΨ(µ, 0) � PΨ(µ, r),

it suffices to prove that

PΨ(µ, 0) ∈ ObG2[Γ(µ,Ψ)], ∀ µ ∈ P+, (2.6)

or equivalently that

[PΨ(µ, 0) : evs V(ν)] , 0 =⇒ (ν, s) ∈ Γ(µ,Ψ). (2.7)

Now,
[PΨ(µ, 0) : evs V(ν)] , 0 ⇐⇒ Homg(PΨ(µ, 0)[s],V(ν)) , 0,

and hence (2.7) follows if we prove that for any (ν, s) ∈ Λ and we have

0 , v ∈ PΨ(µ, 0)[s]ν, n+ v = 0 =⇒ (ν, s) ∈ Γ(µ,Ψ). (2.8)

By the PBW theorem, we have a decomposition ofZ+-graded vector spaces

PΨ(µ, 0) = U(n−)U((n−
Ψ

)ad)pµ,0 = U((n−
Ψ

)ad)pµ,0 ⊕ n−U((n−)U((n−
Ψ

)ad)pµ,0.

If v satisfies the assumptions in the left hand side of (2.8) then Lemma 2.5 implies that
v has a non–zero projection onto the subspace

(

U((n−
Ψ

)ad)pµ,0
)

[s]ν of PΨ(µ, 0)[s]ν. Fix a
numbering{β1, . . . , βℓ} of Ψ and note that

(

U((n−
Ψ

)ad)pµ,0
)

[s]ν is spanned by elements of
the form

(x−β1
)r1
ad · · · (x

−
βℓ

)rℓ
adpµ,0, (r1, . . . , rℓ) ∈ Zℓ+,

ℓ
∑

k=1

rk = s, ν = µ −
ℓ
∑

k=1

rkβk,

which proves that (ν, s) ∈ Γ(µ,Ψ).
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2.7.

For (µ, r), (ν, s) ∈ Γ set

c(µ,r)
(ν,s) = dim Homg(V(ν),

∧s−rg ⊗ V(µ))

d(µ,r)
(ν,s) = dim Homg(V(ν),Ss−r (g) ⊗ V(µ)).

where we use the conventionc(µ,r)
(ν,s) = d(µ,r)

(ν,s) = 0 if s< r.

Lemma. For (µ, r), (ν, s) ∈ Γ with (ν, s− r) ∈ Γ(µ,Ψ), we have

c(µ,r)
(ν,s) = dim{v ∈ (

∧s−rn−
Ψ

)ν−µ : (x+i )ν(hi )+1(v) = 0, ∀ i ∈ I }, (2.9)

d(µ,r)
(ν,s) = dim{v ∈ Ss−r(n−

Ψ
)ν−µ : (x−i )ν(hi )+1(v) = 0, ∀ i ∈ I }. (2.10)

In particular, c(µ,0)
(ν,s) = cµν,s.

Proof. Using a standard vector space isomorphism and [29] we have

Homg(V(ν),
∧s−rg ⊗ V(µ)) � Homg(V(ν) ⊗ V(µ)∗,

∧s−rg),

� {v ∈ (
∧s−rg)ν−µ : (x−i )ν(hi )+1(v) = 0, ∀ i ∈ I }.

Hence (2.9) follows if we prove that

(
∧s−rg)ν−µ = (

∧s−rn−
Ψ

)ν−µ. (2.11)

Observe that (
∧s−rg)ν−µ is spanned by monomialsx1 ∧ · · · ∧ xs−r , wherexi ∈ gγi , with

γi ∈ R∪ {0} and

s−r
∑

i=1

γi = ν − µ = −β1 − · · · − βs−r , βk ∈ Ψ, 1 ≤ k ≤ s− r.

Using (2.1) we see thatγk ∈ −Ψ for all 1 ≤ k ≤ sand (2.11) (and hence (2.9)) is proved.
The proof of (2.10) is similar and we omit the details.

2.8.

We shall need the following result which was established in [6, Propositions 3.3].

Proposition. Let (µ, r), (ν, s) ∈ Γ.

(i) We have,

Ext j
G2[Γ](evr V(µ), evs V(ν)) , 0 =⇒ j = s− r, (ν, s− r) ∈ Γ(µ,Ψ).

(ii) Suppose that(ν, s− r) ∈ Γ(µ,Ψ). There exists an isomorphism of vector spaces

Exts−r
G2[Γ](evr V(µ), evs V(ν)) � Homg(V(ν),

∧s−rg ⊗ V(µ)).
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2.9.

Fix an enumeration of the setΓ. Define|Γ| × |Γ|-matricesA(t) andE(t) with entries
in Z[t], by

A(t) =
(

ts−r [P(µ, r)Γ : evs V(ν)]
)

(ν,s),(µ,r)∈Γ
,

E(t) =
(

ts−r dim Exts−r
G2[Γ](evr V(µ), evs V(ν))

)

(ν,s),(µ,r)∈Γ
=

(

ts−rc(µ,r)
(ν,s)

)

(ν,s),(µ,r)∈Γ
,

where we have used Proposition 2.8(ii) and Lemma 2.7.

Proof of Theorem 2.It was proved in [6, Proposition 2.6 and 3.8] that

A(t)E(−t) = Id.

Therefore, for all (ν, s), (κ, p) ∈ Γ
∑

(µ,r)∈Γ

ts−r [P(µ, r)Γ : evs V(ν)](−t)r−pc(κ,p)
(µ,r) = δ(ν,s),(κ,p).

In particular, taking (κ, p) = (λ, 0) and using Lemma 2.7 we obtain

ts
∑

(µ,r)∈Γ

(−1)r [P(µ, r)Γ : evs V(ν)]cλµ,r = δ(ν,s),(λ,0).

Multiplying both sides by chV(ν) and taking the sum over all (ν, s) ∈ Γ we conclude that
∑

(µ,r)∈Γ

(−1)rcλµ,r cht P(µ, r)Γ = chV(λ). (2.12)

Applying Corollary 1.11 completes the proof of Theorem 2.

3. Conjecture 1.13 and characters of minimal affinizations

Our interest in the modulesP(µ, r)Γ stems from the study of finite-dimensional rep-
resentations of quantum loop algebras. In the special case when g is a classical Lie
algebra andµ = mωi, i ∈ I , we shall see that the modulesP(µ, r)Γ are the specialization
of the famous Kirillov-Reshetikhin modules. Conjecture 1.13 is concerned with relating
the case of an arbitraryµ to generalizations of the Kirillov-Reshetikhin modules, called
minimal affinizations. These were introduced in [3] and studied furtherin [11, 12, 13].
More recent results which are pertinent to this section can be found in [18, 26, 27]. We
begin this section by briefly explaining these results. The interested reader is referred
to [7] and the references in that paper for further details onthe representation theory of
quantum loop algebras.
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3.1.

Let C[t, t−1] be the ring of Laurent polynomials in a variablet and letL(g) be the
loop algebra ofg, i.e L(g) = g ⊗ C[t, t−1] with the Lie bracket given by

[x⊗ f , y⊗ g] = [x, y] ⊗ f g, x, y ∈ g, f , g ∈ C[t, t−1].

We identifyg with the subalgebrag ⊗ 1 of L(g). Observe that we have a natural isomor-
phism of Lie algebras

g⋉ (g)ad � g ⊗ C[t]/(t − a)2
� g ⊗ C[t, t−1]/(t − b)2, a ∈ C, b ∈ C×.

If we regardC[t] as being graded by powers of (t − a), then the first isomorphism above
is one ofZ+-graded Lie algebras.

3.2.

Let q be an indeterminate and letUq(g) andUq(L(g)) be the corresponding quantized
enveloping algebras defined over the fieldC(q) of rational functions inq. These algebras
admit anA-form (whereA = C[q, q−1]), namely freeA-submodulesUA(g), UA(L(g))
such that

Uq(g) � C(q) ⊗A UA(g), Uq(L(g)) � C(q) ⊗A UA(L(g)).

As a result, one can specializeq to be a non-zero complex numberǫ as follows. Given
ǫ ∈ C×, let Cǫ = A/(q− ǫ) and set

Uǫ(g) = Cǫ ⊗A UA(g), Uǫ(L(g)) = Cǫ ⊗A UA(L(g)).

If ǫ = 1, thenU1(g) andU1(L(g)) are (essentially) the universal enveloping algebras of
g andL(g) respectively.

3.3.

The theory of integrable representations ofUq(g) (and also ofUǫ(g) if ǫ is not a
primitive root of unity) is identical to that ofU(g) (see [25]). Namely any integrable
representation is completely reducible, the isomorphism classes of irreducible represen-
tations are parametrized by elements ofP+ and the (suitably defined) character of an
irreducible representationVq(λ) is given by the Weyl character formula. MoreoverVq(λ)
admits anA-form and one can define in the obvious way a representationVǫ(g) of the
algebraUǫ(g), whereǫ ∈ C×. If ǫ is not a root of unity, thenVǫ(g) is an irreducible
representation ofUǫ(g) andV1(λ) is the usual finite-dimensional representation ofU(g)
with highest weightλ, i.e. V1(λ) � V(λ).
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3.4.

On the other hand, the theory of integrable representationsof Uq(L(g)) is quite differ-
ent from that ofU(L(g)). The one point of similarity is the classification of irreducible
finite-dimensional representations ofUq(L(g)) and U(L(g)) (see [2, 9, 10]). Thus the
isomorphism classes of irreducible finite-dimensional representations ofUq(g) (respec-
tively U(L(g))) are parametrized byI -tuples of polynomials with constant term 1, called
the Drinfeld polynomials, inC(q)[u] (respectivelyC[u]) whereu is an indeterminate. It
was shown in [14] that if the Drinfeld polynomialsπ = (πi)i∈I satisfyπi ∈ A[u], then
the corresponding irreducible representation admits anA-form. Hence we can special-
ize q to one and we get a representation ofU(L(g)) but in this case, the the specialized
representation is usually reducible.

Much of the literature on the subject revolves around determining characters of ir-
reducible representations of quantum loop algebras. For the purposes of this paper, we
shall be interested in theUq(g)-character of an irreducible finite-dimensional represen-
tationV of Uq(L(g)), namely in the multiplicities [V : Vq(λ)] = dim HomUq(g)(V(λ),V),
for λ ∈ P+. This has proved to be a very hard problem and the strategy hasbeen to iden-
tify interesting families of irreducible representationsand focus on determining their
character.

3.5.

One such family are the so–called Kirillov-Reshetikhin modules, which appeared
originally in [19] and were motivated by their work on solvable lattice models. It is
now customary to call a member of the two parameter family of isomorphism classes of
irreducible modules forUq(L(g)) with Drinfeld polynomials

πi,m = (π j) j∈I , π j =























m−1
∏

k=0
(1− q

1
2 (αi ,αi )(m−1−2k)u), j = i,

1, otherwise,

a Kirillov-Reshetikhin module and it is denoted byV(πi,m).

The characters of these modules were conjectured in [19] andthe conjecture was
established in [4] except for a few nodes of the Dynkin diagram of En, n = 6, 7, 8. In the
course of proving the conjecture, it was shown ([4, Theorem 2and Corollary 2.1]) that
for i ∈ I satisfyingǫi(θ) ≤ 2, theq = 1 specializationV1(πi,m) of V(πi,m) is actually a
module forg ⊗ C[t]/((t − 1)2). Note that the conditionǫi(θ) ≤ 2 holds for alli ∈ I if g is
a classical Lie algebra.

Furthermore ifϕ is the automorphism ofg⊗C[t] defined byx⊗ t → x⊗ (t+ 1), then
ϕ∗V1(πi,m) is a graded module forg ⊗ C[t] and hence for the graded quotient

g ⊗ C[t]/(t2) � g⋉ gad.
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More precisely, it was shown that ifǫi(θ) = 1 thenϕ∗V1(πi,m) �G2 ev0 V(mωi) while for
i ∈ I with ǫi(θ) = 2, ϕ∗V1(πi,m) is generated, as ag ⋉ gad-module, by an elementvi,m

subject to the relations

n+vi,m = 0, hvi,m = mωi(h)vi,m, h ∈ h, (x−αi
)m+1vi,m = 0 = x−α j

vi,m, j , i ∈ I (3.1)

n+advi,m = 0 = hadvi,m, (x−αi
)ad vi,m = 0. (3.2)

3.6.

As an application of Theorem 1 we obtain a homological interpretation of the module
ϕ∗V1(πi,m). Let g be a classical Lie algebra and giveni ∈ I set

Ψi = {α ∈ R+ : ǫi(α) = 2}.

Then eitherΨi = ∅ orΨi = {β ∈ R : (ωi , β) = maxα∈R(ωi , α)}.

Proposition. For all i ∈ I, m ∈ Z+ we haveϕ∗V1(πi,m) ∈ ObG2 and

ϕ∗V1(πi,m) �G2 P(mωi , 0)Γ, Γ = Γ(mωi ,Ψi).

In particular, ϕ∗V1(πi,m) is the projective cover ofev0 V(mωi) in the categoryG2[Γ].

Proof. Clearly if Ψi = ∅ thenΓ = {(mωi , 0)} and the assertion is trivial. Suppose that
Ψi , ∅. Then by Theorem 1 it is sufficient to prove that

ϕ∗V1(πi,m) �G2 PΨi (mωi , 0),

wherePΨi (mωi , 0) was defined in Proposition 2.4. Sinceαi < Ψi , the assignmentvi,m 7→

pmωi ,0 defines a surjective morphismϕ∗V1(πi,m) → PΨi (mωi , 0) of objects ofG2. The
proposition follows if we prove thatvi,m satisfies the defining relations ofpmωi ,0 and for
this, we only need to show that

(x−α)advi,m = 0, α ∈ R+ \Ψi . (3.3)

The argument is by induction on ht(α). Note first thatα j < Ψi for all j ∈ I . If j , i we
have 2(x−j )advi,m = [x−j , (h j)ad] vi,m = 0 by (3.1), (3.2), while forj = i, (3.3) is just the
last relation in (3.2). Thus, the induction begins. For the inductive step, choosej ∈ I
such thatβ = α − α j ∈ R+. Then clearlyβ < Ψi as well and sincex−α = c[x−j , x

−
β
] for

somec ∈ C× we can write, using the defining relations

(x−α)advi,m =















c x−j (x−
β
)advi,m, j , i,

c (x−i )ad x−
β

vi,m, j = i.

In the first case, the right hand side is zero by the induction hypothesis. In the second
case, it is also zero since thenǫi(β) = 0 and sox−

β
can be written as a commutator of the

x−j with j , i. Thenx−
β
vi,m = 0 by (3.1). This completes the inductive step.
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Corollary. Let i ∈ I, m ∈ Z+. Then

cht ϕ
∗V1(πi,m) =

∑

(µ,s)∈Γ(mωi ,Ψi )

tsdmωi
µ chV(µ),

where
dλµ = dim{v ∈ S(n−

Ψi
)µ−λ : (x−i )µ(hi )+1(v) = 0, ∀i ∈ I }.

3.7.

From the mathematical point of view, it is obvious to ask if there are analogs of the
Kirillov-Reshetikhin modules for a generalλ ∈ P+. The notion of a minimal affinization
was introduced in [3] to answer exactly this question. We saythat a simpleUq(L(g))-
moduleV(π) associated to Drinfeld polynomialsπ ∈ (C(q)[u]) |I | is an affinization of
Vq(λ), λ ∈ P+ if

[V(π) : Vq(λ)] = 1, [V(π) : Vq(µ)] , 0 =⇒ µ ≤ λ.

In fact, this happens if and only ifλ =
∑

i∈I (degπi)ωi . We say thatV(π) is a minimal
affinization ofVq(λ) if given any other affinizationV(π′) of Vq(λ), one of the following
holds:

(i) V(π′) is isomorphic toV(π) as aUq(g)-module or

(ii) for all ν ∈ P+ either [V(π) : Vq(ν)] ≤ [V(π′) : Vq(ν)] or there existsν′ > ν such
that [V(π) : Vq(ν′)] < [V(π′) : Vq(ν′)].

It was proved in [3] that there are finitely manyUq(g)-isomorphism classes of minimal
affinizations associated with a givenλ. In the case whenλ = mωi, it was proved that
the Kirillov-Reshetikhin moduleV(πi,m) is indeed minimal. The more general problem
of determiningπ so thatV(π) was a minimal affinization was addressed in [11, 12]. The
results were complete except in the case wheng is of type Dn or En, where there are
significant problems arising from the trivalent node.

3.8.

There is recent literature on the subject of minimal affinizations. The results of [14]
show that one can specialize a minimal affinizationV(π) of λ to get an indecomposable
representationV1(π) of L(g) and a graded representationϕ∗V1(π) of g ⊗ C[t]. In [26] a
partial result, similar to the one for Kirillov-Reshetikhin modules discussed above was
given. We formulate it in the language of this paper, the translation from the language
of [26] is the same as the one given formωi in Proposition 3.6. Suppose thatg is of type
Bn, Cn or Dn+1, with the numbering of the nodes in the Dynkin diagram as in [1], and
suppose for simplicity thatλ ∈ P+ is such thatλ(hi ) = 0, i ≥ n. Set

iλ = max{i ∈ I : λ(hi) > 0}
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and letΨλ := Ψiλ as defined in Section 3.6.

Then we have the following:

Proposition. Theg ⊗ C[t]-moduleϕ∗V1(π) satisfies

(g ⊗ t2C[t])ϕ∗V1(π) = 0.

In particular, we can regardϕ∗V1(π) as a module forg⋉ gad and moreover, in this case
it is a quotient ofPΨλ(λ, 0) in the categoryG2.

It is conjectured in [26] (with a weaker restriction onλ) that in factϕ∗V1(π) �
PΨλ(λ, 0). To prove this conjecture it is sufficient to show that the two modules have
the sameg-character and this brings us naturally to another recent conjecture and re-
sult on minimal affinizations. In [27] W. Nakai and T. Nakanishi conjectured that the
Uq(g)-character of a minimal affinization ofVq(λ) is given, as an element ofZ[P], by
the Jacobi-Trudi determinantHλ (see Section 1.13). In the case whenλ = mωi the con-
jecture is known to be true through the work of [21, 22, 23], [28] and [17] (cf. [27] for the
details). Together with Proposition 3.6 we see that Conjecture 1.6 is true forλ = mωi.
The conjecture is also proved forg of typeBn andλ ∈ P+ with λ(hn) = 0 in [18]. Using
this result Moura was able to prove his conjecture wheniλ ≤ 3.

3.9.

It should be clear by now that Conjecture 1.13 is an amalgamation of the conjectures
of Moura, Nakai-Nakanishi and Theorem 1 of this paper. One way to prove Conjec-
ture 1.13 would be to proceed by induction oniλ. We will need the following easily
verified description of the setΨi , 1 ≤ i < n.

Ψi =















{ωr + ωs − ωr−1 − ωs−1 : 1 ≤ r < s≤ i}, g = Bn,Dn+1

{ωr + ωs − ωr−1 − ωs−1 : 1 ≤ r ≤ s≤ i}, g = Cn,
(3.4)

where we setω0 = 0. As a consequence, we have

Lemma. Letλ ∈ P+ be such that iλ < n and let(µ, s) ∈ Γ(λ,Ψλ). Then iµ ≤ iλ.

3.10.

If iλ = 1 thenλ = kω1 and the result is known. Foriλ = i, we proceed by a
further induction (with respect to≤) on λ. If λ ∈ P+ is minimal with iλ = i, then for all
(µ, s) ∈ Γ(λ,Ψλ) we have by Lemma 3.9 thatiµ < i and hence the induction hypothesis
applies. The idea now is to use the Koike-Terada formulae [20, Theorems 1.3.2, 1.3.3]

chV(λ) =























det
( ∑ j

r=0 hλi−i− j+2r
)

1≤i, j≤iλ , g = Bn,Dn+1,

det
(

hλi−i+ j − hλi−i+ j−2

+ (1− δ j,1)(hλi−i− j+2 − hλi−i− j)
)

1≤i, j≤iλ , g = Cn,
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for the character of a simpleg-module to check that (1.6) holds as an identity in the ring
Z[hk : k ∈ Z+].

So far, we have used a computer program to check this forλ ∈ P+ with iλ ≤ 5. As
an example of the computation, suppose thatg is of typeBn, Dn+1 and thatiλ = 3. Then

Ψλ = Ψ3 = {ω2, ω1 + ω3 − ω2, ω3 − ω1}.

Since |Ψλ| = 3, we conclude that
∧sn−

Ψλ
= 0 if s > 3. Since the setΨλ is linearly

independent in this case,η ∈ wt
∧

n−
Ψλ

if and only if η =
∑

β∈S β for someS ⊂ Ψλ and all

weight spaces of
∧

n−
Ψλ

are one-dimensional. The definition ofcλµ,s implies that the left

hand side of (1.6) contains at most eight terms,cλµ,s = 0 if s > 3 andcλµ,s ≤ 1. Finally,
it is easy to check thatcλµ,s = 1 if and only if µ = λ −

∑

β∈S β ∈ P+ whereS ⊂ Ψλ and
|S| = s. We list the elements (µ, s) ∈ Γ(λ,Ψλ) for which cλµ,s = 1 below

(λ, 0)

(λ − ω2, 1) λ(h2) ≥ 1

(λ − ω1 + ω2 − ω3, 1) λ(h1), λ(h3) ≥ 1

(λ + ω1 − ω3, 1) λ(h3) ≥ 1

(λ − ω1 − ω3, 2) λ(h1), λ(h3) ≥ 1

(λ + ω1 − ω2 − ω3, 2) λ(h2), λ(h3) ≥ 1

(λ + ω2 − 2ω3, 2) λ(h2) ≥ 2

(λ − 2ω3, 3) λ(h3) ≥ 2.

Suppose thatλ satisfiesiλ = 4. We have|Ψ4| = 6 and so the left hand side of (1.6)
contains at most 64 terms. In fact,|wt

∧

n−
Ψ3
| = 54 and 6 weight spaces have dimension

2 while 2 weight spaces are of dimension 3. In the table below we list the elements
(µ, s) of Γ(λ,Ψ) which contribute to the sum in (1.6) together with the values of cλµ,s. To
shorten the notation, we use the convention thatcλµ,s = 0 if µ < P+. We have

(λ, 0) 1 (λ + ω1 − ω3, 1) 1

(λ + ω1 − ω2 + ω3 − ω4, 1) 1 (λ + ω2 − ω4, 1) 1

(λ − ω2, 1) 1 (λ − ω1 + ω2 − ω3, 1) 1

(λ − ω1 + ω3 − ω4, 1) 1 (λ + 2ω1 − ω2 − ω4, 2) 1

(λ + ω1 + ω2 − ω3 − ω4, 2) 1 (λ + ω1 + ω3 − 2ω4, 2) 1

(λ + ω1 − ω2 − ω3, 2) 1 (λ + ω1 − 2ω2 + ω3 − ω4, 2) 1

(λ − ω4, 2)
∑3

i=1
δ(λ(hi) ≥ 1) (λ + ω2 − 2ω3, 2) 1

(λ − ω2 + 2ω3 − 2ω4, 2) 1 (λ − ω1 + 2ω2 − ω3 − ω4, 2) 1

(λ − ω1 + ω2 + ω3 − 2ω4, 2) 1 (λ − ω1 − ω3, 2) 1

(λ − ω1 − ω2 + ω3 − ω4, 2) 1 (λ − 2ω1 + ω2 − ω4, 2) 1
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(λ + 2ω1 − 2ω4, 3) 1 (λ + 2ω1 − 2ω2 − ω4, 3) 1

(λ + ω1 − ω3 − ω4, 3) δ(λ(h2) ≥ 1)+ 1 (λ + ω1 − ω2 + ω3 − 2ω4, 3) 2

(λ + ω2 − 2ω4, 3) δ(λ(h1) ≥ 1)+ δ(λ(h3) ≥ 1) (λ + 2ω2 − 2ω3 − ω4, 3) 1

(λ + 2ω3 − 3ω4, 3) 1 (λ − 2ω3, 3) 1

(λ − ω2 − ω4, 3) δ(λ(h1) ≥ 1)+ δ(λ(h3) ≥ 1) (λ − 2ω2 + 2ω3 − 2ω4, 3) 1

(λ − ω1 + ω3 − 2ω4, 3) δ(λ(h2) ≥ 1)+ 1 (λ − ω1 + ω2 − ω3 − ω4, 3) 2

(λ − 2ω1 + 2ω2 − 2ω4, 3) 1 (λ − 2ω1 − ω4, 3) 1

(λ + 2ω1 − ω2 − 2ω4, 4) 1 (λ + ω1 + ω2 − ω3 − 2ω4, 4) 1

(λ + ω1 + ω3 − 3ω4, 4) 1 (λ + ω1 − ω2 − ω3 − ω4, 4) 1

(λ + ω1 − 2ω2 + ω3 − 2ω4, 4) 1 (λ + ω2 − 2ω3 − ω4, 4) 1

(λ − 2ω4, 4)
∑3

i=1
δ(λ(hi) ≥ 1) (λ − ω2 + 2ω3 − 3ω4, 4) 1

(λ − ω1 + 2ω2 − ω3 − 2ω4, 4) 1 (λ − ω1 + ω2 + ω3 − 3ω4, 4) 1

(λ − ω1 − ω3 − ω4, 4) 1 (λ − ω1 − ω2 + ω3 − 2ω4, 4) 1

(λ − 2ω1 + ω2 − 2ω4, 4) 1 (λ + ω1 − ω3 − 2ω4, 5) 1

(λ + ω1 − ω2 + ω3 − 3ω4, 5) 1 (λ + ω2 − 3ω4, 5) 1

(λ − ω2 − 2ω4, 5) 1 (λ − ω1 + ω2 − ω3 − 2ω4, 5) 1

(λ − ω1 + ω3 − 3ω4, 5) 1 (λ − 3ω4, 6) 1,

whereδ(P) = 1 if P is true andδ(P) = 0 otherwise. Note that for one-dimensional
weight spaces the extra condition in the definition ofcλµ,s is always vacuous.

Letg be of typeCn and assume thatiλ = 3. We have|Ψ3| = 6 and so the left hand side
of (1.6) contains at most 64 terms. In fact,|wt

∧

n−
Ψ3
| = 51 and 13 weight spaces have

dimension 2. In the table below we list the elements (µ, s) of Γ(λ,Ψ) which contribute
to the sum in (1.6) together with the value ofcλµ,s, with the same conventions as above

(λ, 0) 1 (λ + 2ω1 − 2ω2, 1) 1

(λ + ω1 − ω3, 1) δ(λ(h2) ≥ 1) (λ + 2ω2 − 2ω3, 1) 1

(λ − ω2, 1) δ(λ(h1) ≥ 1) (λ − ω1 + ω2 − ω3, 1) 1

(λ − 2ω1, 1) 1 (λ + 3ω1 − 2ω2 − ω3, 2) 1

(λ + 2ω1 − 2ω3, 2) δ(λ(h2) ≥ 1) (λ + 2ω1 − 3ω2, 2) 1

(λ + ω1 − ω2 − ω3, 2) δ(λ(h1) ≥ 1)+ δ(λ(h2) ≥ 2) (λ + ω1 + 2ω2 − 3ω3, 2) 1

(λ + ω2 − 2ω3, 2) δ(λ(h1) ≥ 1)+ δ(λ(h2) ≥ 1) (λ − 2ω1 + 2ω2 − 2ω3, 2) 1

(λ − ω1 − ω3, 2) δ(λ(h1) ≥ 2)+ δ(λ(h2) ≥ 1) (λ − ω1 + 3ω2 − 3ω3, 2) 1

(λ − 2ω2, 2) δ(λ(h1) ≥ 1) (λ − 2ω1 − ω2, 2) 1

(λ − 3ω1 + ω2 − ω3, 2) 1 (λ + 3ω1 − 3ω3, 3) 1

(λ + 2ω1 − ω2 − 2ω3, 3) δ(λ(h2) ≥ 2)+ 1 (λ + 3ω1 − 3ω2 − ω3, 3) 1

(λ + ω1 + ω2 − 3ω3, 3) δ(λ(h1) ≥ 1)+ δ(λ(h2) ≥ 1) (λ − 3ω1 − ω3, 3) 1

(λ − 2ω3, 3) 2δ(λ(h1) ≥ 1∧ λ(h2) ≥ 1) (λ + 3ω2 − 4ω3, 3) 1

(λ − ω1 + 2ω2 − 3ω3, 3) δ(λ(h1) ≥ 2)+ 1 (λ − 3ω2, 3) 1
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(λ − ω1 − ω2 − ω3, 3) δ(λ(h1) ≥ 2)+ δ(λ(h2) ≥ 2) (λ − 3ω1 + 3ω2 − 3ω3, 3) 1

(λ − 2ω1 + ω2 − 2ω3, 3) δ(λ(h2) ≥ 1)+ 1

(λ + ω1 − 2ω2 − ω3, 3) δ(λ(h1) ≥ 1)+ 1

(λ + 2ω1 + ω2 − 4ω3, 4) 1 (λ + 3ω1 − ω2 − 3ω3, 4) 1

(λ + ω1 − 3ω3, 4) δ(λ(h1) ≥ 1)+ δ(λ(h2) ≥ 1) (λ + 2ω1 − 2ω2 − 2ω3, 4) 1

(λ + 2ω2 − 4ω3, 4) δ(λ(h1) ≥ 1) (λ + ω1 − 3ω2 − ω3, 4) 1

(λ − ω2 − 2ω3, 4) δ(λ(h1) ≥ 1)+ δ(λ(h2) ≥ 2) (λ − ω1 − 2ω2 − ω3, 4) 1

(λ − ω1 + ω2 − 3ω3, 4) δ(λ(h1) ≥ 2)+ δ(λ(h2) ≥ 1) (λ − 2ω1 + 3ω2 − 4ω3, 4) 1

(λ − 2ω1 − 2ω3, 4) δ(λ(h2) ≥ 1) (λ − 3ω1 + 2ω2 − 3ω3, 4) 1

(λ + 2ω1 − 4ω3, 5) 1 (λ + ω1 − ω2 − 3ω3, 5) 1

(λ + ω2 − 4ω3, 5) δ(λ(h1) ≥ 1) (λ − 2ω2 − 2ω3, 5) 1

(λ − ω1 − 3ω3, 5) δ(λ(h2) ≥ 1) (λ − 2ω1 + 2ω2 − 4ω3, 5) 1

(λ − 4ω3, 6) 1

It should be noted that in this case the extra condition in thedefinition ofcλµ,s (cf. 1.10)
is not vacuous even for one-dimensional weight spaces.

These computations illustrate the general phenomenon. Thesum in the left hand
side of (1.6) contains at most 2|Ψλ | terms although the number of simples occurring in
P(λ, 0)Γ(λ,Ψλ) and their multiplicities grow much faster. Moreover, forλ ≫ 0 (1.6) be-
comes

∑

S⊂Ψ

(−1)|S|Hλ−∑β∈S β = chV(λ).
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Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupesengendrés par des réflexions.
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