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ON NONDEGENERATE COUPLING FORMS
JAREK KEDRA, ALEKSY TRALLE, AND ARTUR WOIKE

ABSTRACT. The aim of the present paper is to investigate new
classes of symplectically fat fibre bundles. We prove a general ex-
istence theorem for fat vectors with respect to the canonical invari-
ant connections. Based on this result we give new proofs of some
constructions of symplectic structures. This includes twistor bun-
dles and locally homogeneous complex manifolds. The proofs are
conceptually simpler and allow for obtaining more general results.

1. INTRODUCTION

1.1. Fat vectors. Let G — P — B be a principal bundle with a
connection. Let # and © be the connection one-form and the curvature
form of the connection, respectively. Both forms have values in the Lie
algebra g of the group GG. Denote the pairing between g and its dual
g* by (,). By definition, a vector u € g* is fat, if the two—form

(X,Y) = (0(X,Y),u)

is nondegenerate for all horizontal vectors X,Y . Note that if a connec-
tion admits at least one fat vector then it admits the whole coadjoint
orbit of fat vectors.

Let (M, w) be a symplectic manifold with a Hamiltonian action of a
group G and the moment map ¥ : M — g*. Consider the associated
Hamiltonian bundle

(M,w) = E:=PxgM — B.

Sternberg [23] constructed a certain closed two—form Q € Q*(E)
associated with the connection 6. It is called the coupling form and
pulls back to the symplectic form on each fibre and it is degenerate
in general. However, if the image of the moment map consists of fat
vectors then the coupling form is nondegenerate, hence symplectic.
This was observed by Weinstein in |27, Theorem 3.2] where he used
this idea to give a new construction of symplectic manifolds. In the
sequel, the bundles with a nondegenerate coupling form will be called
symplectically fat. Let us state the result of Sternberg and Weinstein

precisely.
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Theorem 1.2 (Sternebrg-Weinstein). Let G — P — B be a principal
bundle. Let (M,w) be a a symplectic manifold with a Hamiltonian G-
action and the moment map V : M — g*. If there exists a connection
in the principal bundle such that all vectors in W(M) C g* are fat, then
the coupling form on the total space of the associated bundle

F—>PxqgF—B
15 symplectic.

Notice that, if the base is symplectic then, according to Thurston
[24], the existence of a coupling form suffices to construct a fibrewise
symplectic form. Thus the most important and interesting examples
provided by fat bundles are the ones with nonsymplectic or highly
connected bases, e.g. spheres.

Another interesting feature of fat bundles is that they provide a
rich source of nontrivial symplectic characteristic classes. This follows
from the functoriality of the coupling form. More precisely, if €2 is the
coupling form for a Hamiltonian connection in a bundle

(M*™ w)—-ES B

then the fibre integrals yu; := m[Q"**] € H?*(BHam(M,w)) define
Hamiltonian characteristic classes. Thus, if the coupling form is non-
degenerate then the fibre integral of the top power is a nonzero top
cohomology class of the base. If the base is a sphere, then the corre-
sponding fibre integral in the universal bundle is an indecomposable
class. This is the first step to the understanding the ring structure of
H*(BHam(M,w))).

Certain explicit examples of symplectically fat bundles are discussed
by Guillemin, Lerman and Sternberg in [I1], [I6] (mostly fibrations of
coadjoint orbits over coadjoint orbits) and by the first two authors in
[25]. Some finiteness results for fat bundles were obtained by Derdzinski
and Rigas in [6] and Chaves in [5]. Notice, however, that they investi-
gate quite strong fatness conditions as their motivation is to construct
metrics of positive sectional curvature.

1.3. The main results.

(1) In Theorem 211 we establish an equivalence between the non-
degeneracy of a coupling form and the existence of a fat vector.
(2) In Theorem Bl we describe fat vectors with respect to the
canonical invariant connection in a principal bundle of the form

H—-G— G/H.
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This has been done by Lerman in [16] for compact semisimple
Lie groups. A compact semisimple Lie group is a compact real
form of a complex semisimple group. We observe that Lerman’s
proof works also for noncompact real forms. This gives a gen-
eralization of his result and has applications, going beyond the
examples known from [11] and [16].

(3) An application of the above result is a certain duality between
fat bundles over dual symmetric spaces. This duality is dis-
cussed in Section [l Examples include pairs where one manifold
is complex and not Kéhler and the second is Kéhler.

(4) In Theorem A7, we prove that the orthonormal frame bun-
dle over a manifold of pinched curvature with sufficiently small
pinching constant admits fat vectors. As a consequence, we
get a conceptually simpler proof of Reznikov’s construction of
symplectic forms on twistor bundles [21]. In fact, the result of
Reznikov is a consequence of the existence of a fat vector.

(5) The same method yields the structure of a symplectically fat
fibre bundle on a locally homogeneous complex manifold in the
sense of Griffiths and Schmid [9], see Theorem 5.7l A special
case is also mentioned by Amoros et al. in [I, Remark 6.18].
We see that this is an exemplification of a general construction
of a fat bundle.

(6) In Theorem B4l we show that the pu, class is indecomposable in
the cohomology ring H*(B Ham(M,w)) of the classifying space
of the group of Hamiltonian diffeomorphisms of a certain coad-
joint orbit of SO(2n).

(7) In Section[6l we prove that the tautological bundle over an infi-
nite dimensional space of symplectic configurations (in the sense
of Gal and Kedra [8]) admits fat vectors. This provides a large
class of examples of infinite dimensional symplectic manifolds.

Remark 1.4. Fat bundles have a physical meaning. The standard model
of elementary particles is a geometry of a certain principal bundle over
the spacetime. The coupling form was found by Sternberg as a descrip-
tion of the Yang-Mills field interacting with a particle arising from an
irreducible representation of the structure group.

A reduction of the structure group in the standard model is known as
breaking of symmetry. Our Theorem [B.Tl describes, in a sense, an oppo-
site phenomenon. More precisely, a fat vector for the canonical invari-
ant connection in a bundle H — G — G/H is an element X € h =g
avoiding certain Weyl chambers. It provides a symplectic structure on
the associated bundle H/V — G/V = G xyg H/V — G/H. When
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X approaches a forbidden Weyl chamber this symplectic structure de-
generates. This is due to the fact that the isotropy subgroup V C G
becomes bigger and it is no longer a subgroup of H.

1.5. Acknowledgements. The second author would like to thank Eu-
gene Lerman for answering his questions. He is also indebted to IHES
and the Max-Planck-Institute in Bonn for hospitality during the work
on this paper. The second author is partly supported by the Ministry
of Science and Higher Education, grant no. 1P03A 03330.

2. COUPLING FORMS AND FAT VECTORS

Let (M,w) be a closed symplectic 2n-manifold and let (M,w) -5
E 5 B be a Hamiltonian bundle, that is, a bundle with structure
group acting on M by Hamiltonian diffeomorphisms. A closed two
form Q € Q*(E) is called a coupling form if

(1) i*Q = w and
(2) mQ"*t =0, where dim M = 2n.

We construct the coupling form associated to a connection following
Guillemin-Lerman-Sternberg [11]. Let G — P — B be the associated
principal bundle with a connection 0 € Q'(P, g) with Hamiltonian re-
duced holonomy. Let © € Q?(P,g) be the curvature two—form. The
connection defines a horizontal distribution H C TE. Let ¥ : M — g*
be the moment map for the Hamiltonian action G — Ham(M, w). The
coupling form € is defined so that the horizontal distribution JH is
Q-orthogonal to the vertical distribution ker dm and

Q2 (X,Y) = we(X,Y) it X,Y € kerdn
P T (W), ©,(X5, YY) i XY € K

The vectors X,Y € T, ;& are the images of X*,Y* € T,,P under the
map x : P — FE defined by a point x € M by the formula

x(p) == [x,p] € E =P xg M.

The closeness of this form is proved on page 9 in [I1] or on page 225
in McDuff-Salamon [1§].

Conversely, given a coupling form Q € Q?(FE) the corresponding
connection is defined by the following horizontal distribution

H={XeTFE|QX,V)=0 forall V €kerdr}.
The curvature two-form on the associated principal bundle

Ham(M,w) - P - B
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is given by
Op (X, Y™) == Qp (X, Y) € CF(M),

for any horizontal vectors X*,Y* € T,P. Recall that the Lie algebra
of the group of Ham(M,w) Hamiltonian diffeomorphisms is identified
with the space C°(M) of smooth functions of the zero mean with
respect to the volume form defined by the symplectic structure.

The evaluation at a point defines an embedding M — C°(M)*
which is the moment map for the action of Ham(M,w) on (M,w). A
point x € M is called fat with respect to the Hamiltonian connection
6 if the curvature two-form © evaluated at z is nondegenerate on the
horizontal distribution. That is if the two-form

(X*, Y*) — Q[p’x} (X, Y)

is nondegenerate on H C T'P.

It is now clear that the nondegeneracy of the coupling form is equiv-
alent to the existence of a fat point. Due to the equivariance of the
moment map, if there exist one fat point then every point in M is fat
as M is a coadjoint orbit of Ham(M,w). This proves the first part of
the following.

Theorem 2.1. Let (M,w) — E = B be a Hamiltonian bundle. It
admits a connection H with a nondegenerate coupling form if and only
if the associated connection 6 in the principal bundle

Ham(M,w) - P - B

admits a fat point v € M C C*°(M)* = ham(M,w)*.

If H ¢ Ham(M,w) is the connected component of the holonomy
group of the above connection then every element u € §* in the image
of the moment map p: M — b* is fat. O

The second statement is implied by the following lemma whose proof
is straightforward.

Lemma 2.2. Let H — Q — B be a reduction of a principal bundle
G — P — B equipped with the induced connection. A vector u € h* is
fat if and only if every v € g* equal to u when restricted to by is fat. [

Example 2.3. Consider the bundle CP! — CP®* — HP'. For the
standard symplectic form ws; on CP? and any positive real number
r > 0 the form €, := r - w3 is a coupling form for the scaled standard
symplectic form r-w; on CP'. This coupling form induces a connection
with holonomy group equal to PSU(2). Since €2, is nondegenerate for
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all » > 0, we get that every nonzero vector in psu(2)* is fat with respect
to the induced connection on the principal bundle

PSU(2) — P — HP' = S*.

We used the fact that the manifolds (CP',r - w;) are all nonzero coad-
joint orbits of PSU(2) (cf. the remark at the bottom of page 224 of
Weinstein [27]).

3. FATNESS OF THE CANONICAL CONNECTION IN A PRINCIPAL
BUNDLE H - G — G/H

In the paper [16], Lerman investigated the fatness of the canonical
invariant connection in a principal bundle

H—-G— G/H,

where G is compact and semisimple, and G/H is a coadjoint orbit.
We shall show in this section that his proof essentially works in a more
general situation. Namely, that GG is a semisimple Lie group and H C G
is a subgroup of maximal rank such that the Killing form for G is
nondegenerate on the Lie algebra h C g of H.

Let us start with several known facts from Lie theory and introduce
notation. We denote by g the Lie algebra of a Lie group GG. The symbol
g¢ denotes the complexification. Let t be a maximal abelian subalgebra
in h. Then t¢ is a Cartan subalgebra in g°. We denote by A = A(g¢, t)
the root system of g¢ with respect to t¢. Under these choices the root
system for h¢ is a subsystem of A. Denote this subsystem as A(b).

If the Killing form B is nondegenerate on h then the subspace

m:={X €g|B(X,Y)=0,forallY €}
defines a decomposition
g=bom
The decomposition is adg-invariant and the restriction of the Killing
form to m is nondegenerate (see Theorem 3.5 in Section X of [I4]).

The decomposition complexifies to g¢ = h° @ m®. Thus, we have root
decompositions:

g° = t+> g%

a€eA
b = €+ > e
a€A(h)

me = Z g%
)

acA\A(h
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Since G is semisimple, the Killing form B defines an isomorphism g =
g* between the Lie algebra of G and its dual. If the Killing form is
nondegenerate on f, the composition

)

is an Adg-equivariant isomorphism. Let us denote this isomorphism
by u +— X,. Let C' C t be the Weyl chamber and let C,, denote its wall
determined by the root «.

Theorem 3.1. Let G be a semisimple Lie group, and H C G a com-
pact subgroup of maximal rank. Suppose that the Killing form B of
G is nondegenerate on the Lie algebra by C g of the subgroup H. The
following conditions are equivalent

(1) A vectoru € b* is fat with respect to the the canonical invariant
connection in the principal bundle

H—G— G/H.
(2) The vector X, does not belong to the set
Adg(Usearap)Ca-)

(3) The isotropy subgroup V. C H of u € h* with respect to the
coadjoint action s the centralizer of a torus in G.

Proof. The equivalence of the first and the second condition: The cur-
vature form of the canonical connection in the given principal bundle
has the form

1
QX" Y") = —5[X,V]), X.Yem

[13, Theorem 11.1]. Hence the fatness condition is expressed as the
non-degeneracy of the form

(X,Y) = B(Xy, [X, Y]g). (%)
Recall that here the pairing is given by the Killing form. Since X, € b,
B(X,,m) =0 and we get

B(Xu’ [X’ Y]h) = B(Xw [X> Y]) = B([XU>X]>Y)

It follows from the hypothesis that B is non-degenerate on m and the
form (*) is nondegenerate if and only if [ X, X] # 0. This is equivalent
to

(ker ady,) Nm = {0}.
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Without loss of generality we can assume that X, € t. Then the last
equality is, after complexification, equivalent to the condition that

a(Xy) #0

for all roots @ € A\A(h) (see the root decomposition of m¢) which
means that X, does not belong to a wall C, for a € A\A(h). The
general case (that is X, is not necessarily in t) follows since h =

UheH Adh(t)-

The equivalence of the first and the third condition: Let u € h* be fat.
Then its isotropy subgroup V' C H is connected and has the Lie algebra
b ={X e€bh|[X,X,] =0} Since the fatness of u implies

(kerady,) Nm = {0}

(see the previous part), we get v = {X € g|[X, X,| = 0} which means
that V' is the centralizer of the torus S := {exp(tX,)} C G.

Now, suppose that the isotropy subgroup V- C H C G is the cen-
tralizer of a torus S C G. Let X, € g be a generator of this torus.
That is S is the closure of the one-parameter subgroup defined by X,.
Clearly, V' is the coadjoint isotropy subgroup of u := B(X,, —). The
associated symplectic form is the fibrewise symplectic structure on the
associated bundle H/V — G/V — G/H. Since it is G-invariant, the
associated connection is induced by the canonical invariant connection
in the principal bundle H - G — G/H. O

Corollary 3.2. Let K be a compact semisimple group and let H C K
be a closed subgroup. The canonical invariant connection in the bundle

H—K— K/H
admits fat vectors if and only if rank K = rank H.

Proof. According to Theorem B.1], if rank K = rank H then there exist
fat vectors (for example, those which lie in the interior of the Weyl
chamber).

Let u € h* be a fat vector. By perturbing w slightly, if necessary,
we may assume that its isotropy subgroup is a maximal torus 7' C H.
The associated bundle

H/T - K xy H/T = K/T — K/H

admits a fibrewise symplectic structure. For cohomological reasons the
rank the torus 7" has to be of maximal rank in K. This implies that
the ranks of K and H are equal. U
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Remark 3.3. We see that the above argument shows that if rank K >
rank H, there is no chance for fatness even for other connections.

4. FAT VECTORS FOR ORTHONORMAL FRAME BUNDLES

4.1. Twistor bundles over spaces of constant nonzero curva-
ture. A twistor bundle over an even dimensional Riemannian manifold
(M, g) is the bundle of complex structures in the tangent spaces T, M.
More precisely, it is a bundle associated with the orthonormal frame
bundle to M with fibre SO(2n)/U(n). It generalizes a construction of
Penrose in dimension four 4], 20]

Reznikov proved that twistor bundles over manifolds with suitably
pinched curvature admits fibrewise symplectic forms [21]. The follow-
ing proposition proves his result for manifolds of constant non-zero
curvature.

Proposition 4.2. Let G be either SO(2n + 1) or SO(2n,1) and let
SO(2n) C G be the obuvious inclusion. Let J € s0(2n) be a matriz with

the blocks
0 -1
1 0

on the diagonal and zeros elsewhere. Then the vector u := B(J,—) €
50(2n)* is fat with respect to the canonical connection in the bundle

SO(2n) — G — G/SO(2n).

Proof. Choose a maximal torus so that its Lie algebra t consist of ma-
trices with 2 x 2-blocks of the form

0 —t
t; 0

on the diagonal, where t; € R and ¢ = 1,...,n. The roots for G are
given by

t; — tj for 4 % j, :l:(tl + tj> for i < j and =+t

where 7,7 = 1,...n. The forbidden walls are defined by the roots
+t;. Since J = (1,1,...,1) in the coordinates t;, it belongs to no
forbidden wall and according to Theorem [3.1] the corresponding vector
u € s0(2n)* is fat. O

Corollary 4.3 (Reznikov). The twistor bundle over even dimensional
sphere

SO@2n)/U(n) — SO@2n +1)/U(n) — S

1s symplectically fat, i.e. it admits a fibrewise symplectic structure. [



10 JAREK KEDRA, ALEKSY TRALLE, AND ARTUR WOIKE

Corollary 4.4 (Reznikov). Let I' C SO(2n,1) be a lattice trivially
intersecting SO(2n). The twistor bundle over an even dimensional hy-
perbolic manifold

SO(2n)/U(n) — I'\SO(2n,1)/U(n) — I'\SO(2n,1)/S0O(2n)
s symplectically fat, i.e. it admits a fibrewise symplectic structure.
Proof. Tt follows from Proposition [4.2] that the associated bundle
SO(2n)/U(n) — SO(2n,1)/U(n) — SO(2n,1)/SO(2n)

admits an invariant fibrewise symplectic structure. Hence it descends
to a fibrewise symplectic structure after taking the quotient by the
lattice I'. U

Remark 4.5. Since the orbit SO(2n)/U(n) is the minimal in the hierar-
chy of coadjoint orbits in the sense of [11], page 21], it follows that there
are more fat vectors defining topologically distinct coadjoint orbits.

4.6. SO(2n)-bundles over manifolds of pinched curvature. The
sectional curvature K, of a Riemannian manifold (M, g) is called e-
pinched if it satisfies the following inequality

1-e<|K <1

Theorem 4.7. The orthonormal bundle SO(2n) — P — M over Rie-
mannian manifold M with J’ﬁ—pinched curvature admits fat vectors

f € s0(2n)*.
Proof. Let J € s0(2n) be a matrix with the blocks

0 —1

1 0
on the diagonal and zeros elsewhere. The corresponding element f €
50(2n)* in the dual space is defined by (f, A) := Tr(A - J). We shall
show that f € so(2n)* is a fat vector.

Let g be a Riemannian metric with small enough pinching constant
and let © € Q*(P,s0(2n)) denote the corresponding curvature two-
form. Recall that the curvature tensor R(X,Y) for vector fields X,Y
on M is related to the curvature form of the Riemannian connection
by the formula

R(X,Y)Z = u(©(X*, Y)Y (2)), forX,Y, Z € TyuyM

where 7 : P — M is a bundle projection, and the point v € P is an
orthogonal frame u : R™ — T,y M. We need to show that

(X5 Y7) = (0(X7,Y7), f)
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is a non-degenerate 2-form on the horizontal distribution. For any
X*,Y* € H, which are the horizontal lifts of vectors X,Y € Ty, M
we make the following computation.

Tr(u-O,(X*,Y*) - J-u™h)
= Tr(Rpw)(X,Y) u-J-u™t).

Let J, := u-J -u~! denote the complex structure on TryM corre-
sponding to the frame u. It follows from the above calculation that the
vector f is fat if and only if the two-from

(X*,Y*) = TH(R(X,Y) - J)

is nondegenerate.
Let X1, J, X4, ..., X,,, J,X,, be an orthonormal basis of the horizontal
subspace H, = Ty, M. Then the inequality

Tr(R(X;, JuX;)J,) # 0

for all © = 1, ..., n implies that the desired nondegeneracy. This trace is
calculated in a usual way, taking into consideration the orthogonality
of vectors and the fact that J? = —id. We have

| Tr(R(X;, JuX5) - )| = R(X;, J,X;)JuX;, X;)

> (1—e) = ) g(R(X:, J.X) ] X, X;)
J#i
> (1—¢) Z|g (Xi, JuXi) Ju X, X5)|
J#i
> (1—-¢g)—(n—-1 Z —€
JFi
2
=z (I-¢)=(n—1)ze
2n +1
= 1-— .
3 £

In the calculation, we used the assumption of pinched sectional curva-
ture:

|K(Xi, JuXi)| = |9(R(Xi> JuXi)JuXiaXi)| >1—c¢,
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Berger’s inequality
2
|9(R(X:, X;) Xk, Xi)| < 35

([2], inequality (7), p. 69) and the skew symmetric property of the cur-
vature tensor (in the last two arguments). Finally, taking the pinching
constant,
3
2n+1
we get that the vector f is fat. U

e<

Remark 4.8. Notice that Berger proves the above mentioned inequality
for positively curved pinched manifolds. However, his calculation goes
through almost verbatim in the negative pinching case.

Corollary 4.9. Let £ € s0(2n)* be a covector in a small neighbourhood
of f and let M¢ denote its coadjoint orbit. Then the associated bundle
M¢ — P Xgso@n Me¢ — M over a manifold of sufficiently pinched
curvature admits a fibrewise symplectic form. U

Remark 4.10. A Riemannian manifold with positive pinched curvature
is known to be homeomorphic to a sphere. However, it is not known
if exotic spheres admit metrics of positive curvature (see Berger [3,
Section 12.2] for a survey).

In the negative curvature the situation is completely different. There
are examples of negatively curved closed manifolds with arbitrarily
small pinching constants. One source of examples is due to Farrell and
Jones [7]. They prove that a connected sum of a hyperbolic manifold
M with an exotic sphere admits a pinched negative (non-constant)
curvature and it is not diffeomorphic to M. Another construction is
due to Gromov and Thurston [I0]. They construct negatively curved
pinched metrics on certain branched coverings of hyperbolic manifolds.

Example 4.11. According to the above remark and Theorem [4.7] we
get a rich family of symplectic structures on twistor bundles over neg-
atively curved manifolds. Let M and M#3>. be homeomorphic but not
diffeomorphic manifolds equipped with metrics with pinched negative
curvature as constructed by Farrell and Jones. Are the total spaces of
the associated twistor bundles diffeomorphic? And if so then are they
symplectomorphic?

5. MORE EXAMPLES

5.1. Other fat bundles over non-symplectic bases. The twistor
bundle over a sphere is an interesting example because the base of
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the bundle is not symplectic. The following proposition provides more
examples if this kind. Its proof is straightforward.

Proposition 5.2. Let K be a compact semisimple Lie group and let
H C K be its maximal rank subgroup with finite fundamental group.
Then the bundle H — K — K/H admits fat vectors with respect to
the canonical connection and the base K/H is not symplectic. U

5.3. Non-homogeneous examples. Let T'— G — G/T be a princi-
pal bundle with the canonical invariant connection #, where the torus
T is a subgroup of maximal rank. Let (M,w) be a closed symplectic
manifold endowed with a Hamiltonian torus action 7" — Ham(M, w)
with the moment map ¥ : M — t*. Since the torus 7" is an abelian
group we can add a constant to the moment map and a resulting map-
ping will be equivariant. That is, we take ¥ +a, where a € t* and define
a two—form to be equal to w on vertical vectors and on the horizontal
distribution to be given by

Qulp, 2](X,Y) 1= (U(2) + a, 0,(X*.Y")).

By Theorem [B.] all vectors away the walls of the Weyl chambers are
fat. Choosing an element a € t* such that the image of ¥ + a does
not intersect the walls of the Weyl chambers we obtain a fibrewise
symplectic form on the associated bundle

M — G xp M — G/T.

If G is non-compact we can divide by a suitable lattice to obtain fat
bundles over locally homogeneous spaces I'\G/T.

This construction is an application of Thurston’s theorem because
choosing an element a € t* is equivalent to pulling back the symplectic
form from the base G/T representing the class a € t* = H*(G/T;R).

5.4. Locally homogeneous manifolds. The next proposition is a
corollary of Theorem B.Il Its proof is analogous to the one of Corol-

lary .41

Proposition 5.5. Let G be a semisimple Lie group, K C G its mazx-
imal compact subgroup of mazximal rank and I' C G a lattice trivially
intersecting K. Let V C K be a connected subgroup that is the central-
wzer of a torus in G. Then the bundle

KV -T'\G/V - T'\G/K
1s Hamultonian and it admits a fibrewise symplectic structure. O

In order to construct examples from the above proposition one needs
to find a compact subgroup V' C G that is the centralizer of a torus in
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G. A large family of examples is provided by locally homogeneous
complex manifolds investigated by Griffiths and Schmid in [9]. These
are manifolds of the form I'\G/V where G is a non-compact real form
of a complex semisimple group G and V = G N P, where P C G¢ is a
parabolic subgroup. They are indeed complex because G/V C G¢/B is
an open subvariety of a complex projective variety G¢/ B, and therefore,
inherits the G-invariant complex structure.

The proof of the following lemma uses standard facts from Lie al-
gebras which can be found for example in Chapter 6 of [26]. We also
adopt the notation from this book.

Lemma 5.6. Let G be a semisimple Lie group of non-compact type
which is a real form of a complexr semisimple Lie group G¢. Let P be
a parabolic subgroup in G¢ such that V = P N G is compact. Then
V = Zg(S) is the centralizer of a torus S C G.

Proof. Let v C € C g C g° denote the Lie algebras corresponding to the
groups in the statement of the lemma. Here £ C g is a maximal compact
subalgebra. Let p C g° be the parabolic subalgebra corresponding to
PcCQaG.

Let A be a root system for g¢ and let II C A be the subsystem of
simple roots such that

for some M, C II. This is possible due to the fact that £¢ is reductive
in g°. Now observe that

= (pNg)=pnt.
Since p is a parabolic subalgebra we have
P=td >, g
a€[Mp|UAT

where M, C II and A" is the set of positive roots with respect to II.

We then get
e =1t Z o
a€[MpNMy)
which means that v° = 3. (a) is the centralizer of an Abelian subalgebra
a C t. There exists a vector X € a such that 34 (a) = 34(X) and this
vector can be chosen to be real, that is X € a N g. This implies

b =0°Ng=3.(X)Ng=3(X)

which proves that V' C G is a centralizer of the torus S := exp(tX). O
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Notice that it follows from the above proof that V = Z5(S) = Zk(5)
where K C G is the maximal compact subgroup of G corresponding to
the subalgebra ¢. This implies that K/V is a Kéhler manifold and the
bundle

KV -GV —-G/K

is a Hamiltonian fat bundle. Choosing an appropriate lattice I' C G
we obtain the following result.

Theorem 5.7. Let G be a noncompact real form of a complex semisim-
ple Lie group G¢ and let P C G¢ be a parabolic subgroup such that
V= PNG s compact. Let K C G be a mazximal compact subgroup
containing V' and let I' C G be a cocompact lattice trivially intersecting

K. Then the bundle
KV -T'\G/V - TI'\G/K
1s Hamultonian and admits a fibrewise symplectic structure. O

5.8. A relation to a question of Weinstein. Weinstein [27] was in-
terested in constructing a simply connected symplectic and not Kéahler
manifold as a total space of a bundle. We don’t know if there are sim-
ply connected symplectically fat bundles. However, the above theorem
provides many examples of symplectically fat bundles which have non-
Kéhler fundamental groups. Hence they are not homotopy equivalent
to Kéahler manifolds. This idea was used first by Reznikov in [21] for
twistor bundles over spaces of negative curvature.

Proposition 5.9. Let K/V — I'\G/V — I'\G/K be a fibre bundle as
in Theorem[271. Suppose that G/ K is not Hermitian symmetric. Then
the bundle is symplectically fat and its total space is mnot homotopy
equivalent to a Kdhler manifold.

Proof. In view of Theorem [5.7] it remains to prove that I'\G/V' is non-
Kéhler. The proof is analogous to the proof of Theorem 6.17 in [I].
Suppose that the total space is homotopy equivalent to a Kéhler mani-
fold M. Since the bundle is Hamiltonian with compact structure group
the projection 7 induces a surjective homomorphism on homology. This
follows from a general cohomological splitting for Hamiltonian bundles
[15] Corollary 4.10].

Now, according to a theorem of Siu [I, Theorem 6.14|, the com-
position of the homotopy equivalence M — I'\G/V and the bundle
projection is homotopic to a holomorphic map for some invariant com-
plex structure on G/K. This contradicts the assumption that G/K is
not Hermitian symmetric. U
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6. INFINITE DIMENSIONAL EXAMPLES

Let (M, w) and (W, wy ) be symplectic manifolds and let Symp (M, W)
denote the space of symplectic embeddings of M into W. The group of
symplectic diffeomorphisms of (M, w) acts freely from the right on this
space of embeddings while symplectic diffeomorphisms of (W, wy/ ) act
from the right. We denote the quotient by Conf(M, W) and following
Gal and Kedra [§] it is called the space of symplectic configurations
of M in W. There is a principal bundle

Symp(M,w) — Symp(M, W) — Conf (M, W).

It admits a symplectic connection H whose curvature two-form is given
by the following formula [8, Section 4.2]

O(X,Y)(f) = {Hx, Hy} o f,

where f € Symp(M, W) is a symplectic embedding and X, Y are hor-
izontal vectors at f. Recall, that a vector tangent to the space of
embedding is a section of the pull back bundle f*(TW). Such a section
can be extended to a Hamiltonian vector field in a neighbourhood of
f(M) Cc W. The functions Hx, Hy : W — R are the Hamiltonians of
these extensions.

Proposition 6.1. If the dimension of W is bigger than the dimension
of M then the connection H is fat.

Proof. This form is nondegenerate on the horizontal subspace at an
embedding f if and only if for any nonzero function H : W — R
constant on f(M) there exists a function F' : W — R also constant
on f(M) such that the Poisson bracket {H, F'} is nonzero on f(M).
The statement easily follows from the local expression of the Poisson
bracket. U

Corollary 6.2. The coupling form on the total space of the associated
tautological bundle over symplectic configurations

M — E = Symp(M, W) Xsymp(mw) M — Conf(M, W)
1s nondegenerate. O

We obtain this way a large family of examples of infinite dimen-
sional symplectic manifolds. Notice that the symplectic form can be
calculated using the following formula

g (Sglonsel ool ) = o (D o))
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where ¢y = g = f and ¢, = ¢y € Symp(M, W). These examples are
interesting because they admit a Hamiltonian action of the group of
Hamiltonian diffeomorphisms of the manifold (W, wy).

Proposition 6.3. The group Ham(W,wy ) acts on the total space E of
the tautological bundle over the symplectic configurations from the left
and the action preserves the symplectic form. Moreover, the moment
map

v Symp(Ma W) XSymp(M,w) M — bam(VVa WW)* = COO(W)*
1s defined by the following formula

(WIf, ], ) = F(f(x))-

Proof. Let ® € Ham(W,ww) and let ® : E — E be defined by

O[f,z] := [® o f,z]. We need to show that ® preserves the symplectic
form 2. This is the following calculation.

~ d d d d
80170 Glonal lonal) = Yaorr (R0 sl G0 ovial)

= gy ( 20D, o))

— @ (o) G

— e o) )

— 9y lon S fonal)

Let ev : E — W be the evaluation map defined by ev[f,z] = f(z).
Given a function F' : W — R we denote by F the vector field on E
generated by F. We have to check that

d(F o ev) = ipf

for every function F' : W — R. Let f; € Symp(M, W) be a path of
embeddings with fy = f and let Xy denote the Hamiltonian vector
field on (W, wy ) generated by the flow ®, € Ham(W, wy ) defined by
the Hamiltonian F'. We have the following computation.
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P ocoly (lhosl) = FFCeilsa)

d
— SF(fia)
— dF(f(x)

= (ixpWw)f(2) (%ft(‘”))

= (ol (). o))

d d
= Q[f,x} <£[(Dt o f7 LU], E[fh .CL’])

~ (s (L)

7. A DUALITY OF FAT BUNDLES

Let G be a noncompact semisimple Lie group with a maximal com-
pact subgroup K C G and let I' C G be an irreducible cocompact
lattice trivially intersecting K. Assume that G is a real from of a
complex semisimple group G¢. Let M C G° be a maximal compact
subgroup. It was observed by Okun [19] that the map I'\G/K — BK
classifying the principal bundle

K —-I\G—-T\G/K =BT

lifts to a map f: I'\G/K — M/K after passing to a sublattice of fi-
nite index if necessary. Moreover this map is tangential, that is the
pull back of the tangent bundle of the target manifold is isomorphic
to the tangent bundle of the source manifold. The homomorphism
H*(M/K) — H*(BT') induced by the above tangential map was inves-
tigated by Matsushima in [I7]. His main result says that this homo-
morphism is injective in all degrees and surjective in degrees smaller
than the rank of G.

We want to apply this observation to a special case of those semisim-
ple noncompact Lie groups G whose maximal compact subgroup K C
G is of maximal rank. We obtain the following duality of fat bundles.

Proposition 7.1. Let I'\G/K be a locally symmetric space of noncom-
pact type and let M /K be its dual. Assume moreover that K C G is a
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maximal compact subgroup of maximal rank. The following statements

hold;

(1) There is a pullback diagram of K-principal bundles

(2) Both bundles have the same nonempty sets of fat vectors.

(3) The pull back of the horizontal distribution Hyy C TM is iso-
morphic (as a bundle) to the horizontal distribution Hp\g C
T(T\G).

(4) The morphism 3 does not preserve the connections.

Proof.

(1) The existence of the pull back diagram is a direct application
of the above mentioned result of Okun.

(2) It follows from Theorem Bl that the bundles have the same
and nonempty set of fat vectors.

(3) Since the Okun map f is tangential we get S*(T'(M/K)) =
T(I'\G/K). On the other hand we have the following isomor-
phisms of bundles 7*(T'(M/K)) = Hy and p*(T(I'\G/K)) =
Hp\a. Composing these isomorphisms we get the statement.

(4) Since M/K is simply connected and BI is not, the Okun map
has singularities. Hence the bundle morphism cannot preserve
the connections.

O

The following corollary is straighforward. The third part follows
from the uniqueness of the coupling class (see Section B.1]).

Corollary 7.2. Let £ € ¥ be a fat vector for the connections in Propo-
sition [Z1 and let H C K denote its isotropy subgroup. Then the fol-
lowing statements hold;



20 JAREK KEDRA, ALEKSY TRALLE, AND ARTUR WOIKE

(1) There is a pull back diagram of the associated bundles.
K/H—— K/H

L

N\G/H -2~ M/H

P,k

BT M/K

(2) The map B\ is tangential.
(3) The map B preserves the cohomology classes of symplectic forms.
In other words, it is a c-symplectic morphism.

O

Example 7.3. Applying the above proposition to the twistor bundle
over a hyperbolic manifold X := I'\SO(2n,1)/SO(2n) we obtain the
following pull back diagram.

SO(2n)/U(n) SO(2n)/U(n)

| |

I\SO(2n,1)/U(n) — SO(2n + 1)/U(n)

| |

X SZn

The lattice I' is a non-Kéhler group (see Theorem 6.22 in [I]) and
hence the symplectic manifold I'\SO(2n, 1)/SO(2n) is not Kahler. On
the other hand the manifold SO(2n + 1)/U(n) is Kéhler.

Example 7.4. Let G be a noncompact real form of a semisimple com-
plex Lie group G¢. Let P C G° be a parabolic subgroup such that
H = GNP is compact. Let I' C G be a suitable cocompact and
irreducible lattice. We obtain the pair of dual manifolds

I"\G/H and M/H
and, according to Griffiths and Schmid the first one is complex. In

general it is not Kéhler. The second manifold is always Kéhler.

8. APPLICATIONS TO HAMILTONIAN CHARACTERISTIC CLASSES

8.1. Hamiltonian characteristic classes defined by the coupling
class. The cohomology class of a coupling form is called the coupling
class. 1If either the fibre or the base is simply connected then the
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coupling class is unique. This follows directly from the two conditions
defining the coupling form and the Leray-Serre spectral sequence for
the fibration. Since the classifying space of the group of Hamiltonian
diffeomorphisms is simply connected, the coupling class can be defined
universally as the cohomology class Q € H?(Myam) where

(M,w) — Myam — B Ham (M, w)

is the universal Hamiltonian fibration for (M,w). By integrating the
powers of the coupling class we get Hamiltonian characteristic classes
wr, = m(QVF) € H?*(BHam(M,w)).

Let (M,w) — E 5 B be a Hamiltonian bundle classified by a map
¢ : B — BHam(M,w). The uniqueness of the coupling class and the
functoriality of the fibre integration implies that the characteristic class
pe(E) := c*(uy,) is equal to the fibre integral py (%), where Qp is the
coupling class of the bundle E. The following proposition is straight-
forward (cf. Theorem 4.1 in Weinstein [27]).

Proposition 8.2. Let (M*",w) — E — B be a Hamiltonian bundle
over 2k-dimensional base. If the coupling form Qg is nondegenerate
then the characteristic class g (E) is nonzero. O

8.3. Fat bundles over spheres. Applying the last proposition to the
examples of fat bundles over spheres we obtain the following result.

Theorem 8.4. Let SO(2n) — P — S* be the frame bundle. Let
¢ € s0(2n)* be a fat vector with respect to the canonical connection
(see Section[{.1) and let M¢ denote its coadjoint orbit. Then the class
pn € H*(BHam(M;)) is a nonzero indecomposable element. O

Indecomposability means that the class is not a sum of products of
classed of positive degree. Indeed, if the uy class was a sum of products
its pull back evaluated over a sphere would be zero and this would
contradict with the results of Section [£.1l In other words, the pu; can
be chosen to be a generator of the cohomology ring of the classifying
space of the group of Hamiltonian diffeomorphisms of M.

8.5. Hamiltonian actions of SU(2). The bundle CP' — CP* —
HP!' = S* admits a fibrewise symplectic structure for every symplectic
form on the fibre. Hence every nonzero vector in su(2) is fat with
respect to the induced connection in the associated principal bundle
SU(2) — P — S*, see Example 23 This proposition has been first
proved by Reznikov in [22] and its generalization by Kedra and McDuff
in [12).
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Proposition 8.6. Let SU(2) — Ham(M,w) be a nontrivial Hamilton-
tan action. It induces a surjective homomorphism

H*(BHam(M,w);R) — H*(BSU(2); R)
Proof. Consider the associated bundle
(M,w) = E := P xXgy@ M — S*

where P is the above principal bundle endowed with a connection with
respect to which all nonzero vectors are fat. Let p : M — su(2)* be
the moment map. The coupling form for the above fat connection is
nondegenerate away the subset

P xXsp@ p H(0) C E.

Since the complement of this subset is connected and of full measure,
we get that the integral of the top power of the coupling form over FE
is nonzero. Hence the fibre integral of the top power is nontrivial in
H*(S* R) which proves the statement. O
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