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Abstract

Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S.
Let a1, . . . , an and a1∗, . . . , an∗ be elements of H such that ai∗ is conjugate to ai for each
i = 1, . . . , n. Then, there is a uniform conjugator if and only if W (a1∗, . . . , an∗) is conjugate
to W (a1, . . . , an) for every word W in n variables and length up to a computable constant
depending only on δ, ♯S and

∑

n

i=1
|ai|.

As a corollary, we deduce that there exists a computable constant C = C(δ, ♯S) such that,
for any endomorphism ϕ of H , if ϕ(h) is conjugate to h for every element h ∈ H of length
up to C, then ϕ is an inner automorphism.

Another corollary is the following: if H is a torsion-free conjugacy separable hyperbolic
group, then Out(H) is residually finite.

When particularizing the main result to the case of free groups, we obtain a solution for
a mixed version of the classical Whitehead’s algorithm.

We show also that the Whitehead problem and the mixed Whitehead problem for torsion-
free hyperbolic groups are equivalent.

1 Introduction

Let G be a group and A be a subset of G. An endomorphism ϕ of G is called pointwise inner
on A if the element ϕ(g) is conjugate to g, for every g ∈ A. We call ϕ pointwise inner if it
is pointwise inner on G. The group of all pointwise inner automorphisms of G is denoted by
Autpi(G). Clearly, Inn(G)�Autpi(G) �Aut(G).

There are groups admitting pointwise inner automorphisms which are not inner. For exam-
ple, some finite groups (see [16]), some torsion-free nilpotent groups (see [17]), some nilpotent
Lie groups (see [6]), and direct products of such groups with arbitrary groups. The fact that
some nilpotent Lie groups admit such automorphisms was used in [6] to construct isospectral
but not isometric Riemannian manifolds.
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On the other hand, for free nilpotent groups (see [5]), for free groups (see [7, 8]), for non-
trivial free products (see [15]), and for fundamental groups of closed surfaces of negative Euler
characteristic (see [1]), all pointwise inner automorphisms are indeed inner. In the last paper,
this property was used to show that surface groups satisfy a weak Magnus property.

One of the results in the present paper states that torsion-free hyperbolic groups also fall
into this last class of groups. In fact, we prove a stronger computational version of this fact: en-
domorphisms of torsion-free hyperbolic groups which are pointwise inner on a ball of a uniformly
bounded (and computable) radius, are indeed inner automorphisms.

Theorem 1.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. Then, there exists a computable constant C (depending only on δ and the cardinal ♯S) such
that, for every endomorphism ϕ of H, if ϕ(g) is conjugate to g for every element g in the ball
of radius C, then ϕ is an inner automorphism.

An immediate consequence of Theorem 1.1 is that one can algorithmically decide whether
a given endomorphism of a torsion-free hyperbolic group (given by a finite presentation, and
images of generators) is or is not an inner automorphism. This can also be easily deduced
from the well-know fact that hyperbolic groups and their direct products are bi-automatic; an
alternative proof can also be found in [4, Theorem A]. However we stress, that the purpose of
the present paper is not the conjugacy problem for subsets of elements in hyperbolic groups.

Theorem 1.1 follows immediately from the main result of this paper:

Theorem 1.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. Let a1, . . . , an and a1∗, . . . , an∗ be elements of H such that ai∗ is conjugate to ai for every
i = 1, . . . , n. Then, there is a uniform conjugator for them if and only if W (a1∗, . . . , an∗) is
conjugate to W (a1, . . . , an) for every word W in n variables and length up to a computable
constant depending only on δ, ♯S and

∑n
i=1 |ai|.

Note that Theorem 1.1 was formulated in [2, Theorem 2]. Independently, A. Minasyan and
D. Osin [14] proved a variant of Theorem 1.2, for relatively hyperbolic groups but without the
statement on computability for the involved constant. Note also that our Theorem 1.1 and [14,
Theorem 1.1] both imply that if H is a torsion-free hyperbolic group, then the groups Inn(H)
and Autpi(H) coincide.

V. Metaftsis and M. Sykiotis [11, 12] proved that, for any (relatively) hyperbolic group H,
the group Inn(H) has finite index in Autpi(H). Their proof is not constructive, it uses ultrafilters
and ideas of F. Paulin on limits of group actions.

Furthermore, E.K. Grossman proved in [7] that if G is a finitely generated conjugacy separa-
ble group, then the group Aut(G)/Autpi(G) is residually finite. From this, one can immediately
deduce the following corollary.

Corollary 1.3 If H is a torsion-free conjugacy separable hyperbolic group, then Out(H) is
residually finite.

As a further application, we consider the case of a finitely generated free group F . Whitehead,
back in 1936 (see [18] or [9]), gave an algorithm to decide, given two tuples of elements of F ,
a1, . . . , an and b1, . . . , bn, whether there is an automorphism of F sending ai to a conjugate of bi,
for i = 1, . . . , n (with possibly different conjugators). Later, in 1974 (see [10] or [9]), J. McCool
solved the same problem with exact words: given two tuples of elements of F , a1, . . . , an and
b1, . . . , bn, one can algorithmically decide whether there is an automorphism of F sending ai to
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bi for i = 1, . . . , n. As a corollary of the main result in the present paper, we obtain a mixed
version of Whitehead/McCool’s algorithm (see Theorem 6.1 for details).

Finally we show, that if H is a torsion-free hyperbolic group and the Whitehead problem in
H is solvable, then the mixed Whitehead problem in H is also solvable (see Theorem 6.2).

The structure of the paper is as follows. In Section 2 we recall some definitions and basic
facts on hyperbolic metric spaces and hyperbolic groups. Also, we prove there several statements
(specially about norms and axes of elements, and about controlling cancelations in some products
of elements) which will be used later. The main theorem will be proved in Sections 3 to 5, first
in a very special case (Section 3), then in the case n = 2 (Section 4), and finally in the general
case (Section 5). These three sections are sequential and the arguments in each one are helpful
for the next one. Finally, and particularizing the results to the case of free groups, in Section 6
we deduce a mixed version of Whitehead’s algorithm.

2 Hyperbolic preliminaries

2.1 Hyperbolic spaces

Let (X , d) be a metric space.
If A,B are points or subsets of X , the distance between them will be denoted by d(A,B), or

simply by |AB| if there is no risk of confusion.
A path in X is a map p : I → X , where I is an interval of the real line (bounded or unbounded)

or else the intersection of Z with such an interval. In the last case the path is called discrete. If
I = [a, b] then p(a) and p(b) are called the endpoints of p. In that case we say that the path p
is bounded and goes from p(a) to p(b); otherwise, we use the terms infinite path and bi-infinite
path with the obvious meaning. Sometimes we will identify a path with its image in X .

We say that a path p is geodesic if d(p(r), p(s)) = |r− s| for every r, s ∈ I. The space (X , d)
is said to be a geodesic metric space if for every two points A,B ∈ X there is a geodesic from A
to B (not necessarily unique). Such a geodesic is usually denoted [AB].

By a geodesic n-gon A1A2 · · ·An, where n > 3, we mean a cyclically ordered list of points
A1, . . . , An ∈ X together with chosen geodesics [A1A2], [A2A3], . . . , [An−1An], [AnA1]; each of
these geodesics is called a side of the n-gon, and each Ai a vertex. A geodesic 3-gon is usually
called a geodesic triangle, and a geodesic 4-gon a geodesic rectangle.

Definition 2.1 Let (X , d) be a geodesic metric space and δ be a nonnegative real number.
A geodesic triangle A1A2A3 in X is called δ-thin if for any vertex Ai and any two points

X ∈ [Ai, Aj ], Y ∈ [Ai, Ak] with

|AiX| = |AiY | 6
1

2
(|AiAj |+ |AiAk| − |AjAk|),

we have |XY | 6 δ. The space X is called δ-hyperbolic if every geodesic triangle in X is δ-thin.

Directly from this definition it follows that each side of a δ-thin triangle is contained in
the δ-neighborhood of the union of the other two. By induction, one can easily extend this
observation to n-gons.

Proposition 2.2 If A1A2 · · ·An is a geodesic n-gon in a δ-hyperbolic geodesic space, then each
side is contained in the (n− 2)δ-neighborhood of the union of all the others. ⊔⊓

The following result is straightforward and will be used later (it is known as the rectangle
inequality).
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Proposition 2.3 (see Remark 1.21 in [3, Chapter III.H]) Any 4-gon ABCD in a δ-hyperbolic
geodesic space (X , d) satisfies the following inequality:

|AC|+ |BD| 6 max{|BC|+ |AD|, |AB|+ |CD|}+ 2δ. 2

Along the paper, we will need to use some approximations to the concept of geodesic. Here
is a technical result and two standard notions.

Lemma 2.4 Let A1, A2, . . . , An be n > 3 points in a δ-hyperbolic geodesic space satisfying the
following conditions:

(i) |Ai−1Ai+1| > |Ai−1Ai|+ |AiAi+1| − 2δ, for every 2 6 i 6 n− 1,

(ii) |Ai−1Ai| > (2n− 3)δ, for every 3 6 i 6 n− 1.

Then,

|A1An| >

n−1
∑

i=1

|AiAi+1| − (4n− 10)δ. (1)

Proof. The proof goes by induction on n. Note that for n = 3 the result is obvious.
Assume the result valid for n points and let us prove it for n + 1. Let A1, A2, . . . , An, An+1

be n + 1 points satisfying condition (i) for 2 6 i 6 n, and condition (ii) for 3 6 i 6 n. Clearly
then A1, A2, . . . , An satisfy the corresponding conditions and, by the inductive hypothesis, we
have equation (1), so

|A1An| >

n−1
∑

i=1

|AiAi+1| − (4n − 10)δ > |A1An−1|+ |An−1An| − (4n− 10)δ.

From condition (i) with i = n we have

|An−1An+1| > |An−1An|+ |AnAn+1| − 2δ. (2)

Adding these two last inequalities and applying condition (ii) for i = n, we get

|A1An|+|An−1An+1| > |A1An−1|+|AnAn+1|+2|An−1An|−(4n−8)δ > |A1An−1|+|AnAn+1|+2δ.

Therefore, the maximum in the rectangle inequality applied to A1An−1AnAn+1 (see Proposi-
tion 2.3),

|A1An|+ |An−1An+1| 6 max{|A1An−1|+ |AnAn+1|, |A1An+1|+ |An−1An|}+ 2δ,

is achieved in the second entry. Hence,

|A1An|+ |An−1An+1| 6 |A1An+1|+ |An−1An|+ 2δ. (3)

On the other hand, from the induction hypothesis (1) and inequality (2), we have

|A1An|+ |An−1An+1| >

(

∑n−1
i=1 |AiAi+1| − (4n− 10)δ

)

+ |An−1An|+ |AnAn+1| − 2δ

=
∑n

i=1 |AiAi+1|+ |An−1An| − (4n− 8)δ.

From this and inequality (3) we complete the proof:

|A1An+1| >

n
∑

i=1

|AiAi+1| − (4n − 6)δ =

n
∑

i=1

|AiAi+1| − (4(n+ 1)− 10)δ. 2
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Definition 2.5 Let (X , d) be a metric space and p : I → X be a path. Let k > 0, λ > 1 and
ǫ > 0 be real numbers. The path p is said to be k-local geodesic if d(p(r), p(s)) = |r − s| for all
r, s ∈ I with |r − s| 6 k. And it is said to be (λ, ǫ)-quasi-geodesic if, for all r, s ∈ I, we have

1

λ
|r − s| − ǫ 6 d(p(r), p(s)) 6 λ|r − s|+ ǫ.

Proposition 2.6 (see Theorem 1.13 (3) in [3, Chapter III.H]). Let X be a δ-hyperbolic geodesic
space and let p : [a, b] → X be a k-local geodesic with k > 8δ. Then, p is a (λ, ǫ)-quasi-geodesic,
where λ = k+4δ

k−4δ and ǫ = 2δ.

The following proposition (without the statement on computability for R) is Theorem 1.7
in [3, Chapter III.H]. The computability of R can be easily extracted from the proof there.

Proposition 2.7 (see Theorem 1.7 in [3, Chapter III.H]) If X is a δ-hyperbolic geodesic space,
p is a bounded (λ, ǫ)-quasi-geodesic in X and c is a geodesic segment joining the endpoints of p,
then im c and im p are contained in the R-neighborhood of each other, where R = R(δ, λ, ǫ) is a
computable function.

2.2 Hyperbolic groups

Let H be a group given, together with a finite generating set S.
The length of an element g ∈ H (with respect to S), denoted |g|, is defined as the length of

the shortest word in S±1 which equals g in H. This naturally turns H into a metric space; | · |
is usually called the word metric.

Let Γ(H,S) be the geometric realization of the right Cayley graph of H with respect to S.
We will consider Γ(H,S) as a metric space with the metric, induced by the word metric on H:
d(g1, g2) = |g−1

1 g2|. In particular, edges are isometric to the real interval [0, 1]. We highlight
the fact that there is a notational incoherence in using |AB| to denote the distance between the
points A and B in the Cayley graph Γ(H,S), while |a−1b| is the distance between the elements
a and b of H; however, there will be no confusion because we adopt the convention of using
capital letters when thinking elements of H as vertices of the Cayley graph.

The ball of radius r around 1 in Γ(H,S) is denoted B(r). The cardinality of any subset
M ⊆ H is denoted ♯M . For brevity, the cardinality of the set B(r) ∩ H is denoted by ♯B(r).
Clearly, an upper bound for ♯B(r) is the number of elements in the similar ball for the free group
with basis S, so ♯B(r) 6 2(2♯S − 1)r.

The groupH is called δ-hyperbolic with respect to S if the corresponding metric space Γ(H,S)
is δ-hyperbolic. It is well-known that if a group is hyperbolic with respect to some finite gen-
erating set, then it is also hyperbolic with respect to any other finite generating set (with a
possibly different δ). This allows to define hyperbolic groups: H is said to be hyperbolic if for
some finite generating set S, and some real number δ > 0, H is δ-hyperbolic with respect to S.
It is also well-known that a finitely generated group is free if and only if it is 0-hyperbolic with
respect to some finite generating set S.

Let us begin with some well-known results about hyperbolic groups that will be needed
later. The first one reproduces Proposition 3.20 of [3, Chapter III.H] plus the computability
of the involved constant, which can be easily extracted from the proof there. The second one
solves the conjugacy problem within this family of groups. The following one is about root-free
elements in the torsion-free case (g ∈ H is called root-free if it generates its own centralizer, i.e.
CH(g) = 〈g〉). And the next one is also extracted from [3].

5



Proposition 2.8 (see Proposition 3.20 in [3, Chapter III.H]). Let H be a δ-hyperbolic group
with respect to a finite generating set S. For every finite set of elements h1, . . . , hr ∈ H there
exists an integer n > 0 such that 〈hn1 , . . . , h

n
r 〉 is free (of rank r or less). Furthermore, the integer

n is a computable function of δ, ♯S and
∑r

i |hi|. ⊔⊓

Theorem 2.9 (see Theorem 1.12 in [3, Chapter III.Γ]). Let H be a δ-hyperbolic group with
respect to a finite generating set S. If u, v ∈ H are conjugate, then the length of the shortest
conjugator is bounded from above by a computable function of max{|u|, |v|}, δ and ♯S. ⊔⊓

Lemma 2.10 (see Lemma 4.3 in [13]) Let H be a torsion-free hyperbolic group, and let a, b two
elements, such that b /∈ CH(a). Then there is a computable integer k0 = k0(|a|, |b|) > 0, such
that for every k > k0 the element abk is root-free. ⊔⊓

Proposition 2.11 (see Corollary 3.10 (1) in [3, Chapter III.Γ]). Let H be a δ-hyperbolic group
with respect to a finite generating set S, and let g ∈ H be an element of infinite order. Then the
map Z → H given by n 7→ gn is a quasi-geodesic. ⊔⊓

The following lemma is well known and can be deduced straightforward from Proposi-
tion 2.11.

Lemma 2.12 Let H be a δ-hyperbolic group with respect to a finite generating set S, and let
g ∈ H be an element of infinite order. If gp and gq are conjugate then p = ±q. ⊔⊓

Now, we provide an alternative proof for Proposition 2.11, in order to gain computability of
the involved constants.

Lemma 2.13 The constants λ and ǫ in Proposition 2.11 are computable functions depending
only on δ, ♯S and |g|.

Proof. First we make the following two easy observations:

(1) Let k > 1 be a natural number and suppose that the map Z → H given by n 7→ gkn is
(λ′, ǫ′)-quasi-geodesic. Then the map Z → H given by n 7→ gn is (λ, ǫ)-quasi-geodesic with
λ = kλ′ and ǫ = ǫ′ + (k − 1)|g|. Thus, at any moment we can replace g by an appropriate
power gk.

(2) Let g0 be a conjugate of g in H, say g = h−1g0h for some h ∈ H, and suppose that
the map Z → H, n 7→ gn0 , is (λ′, ǫ′)-quasi-geodesic. Then, the map Z → H, n 7→ gn, is
(λ, ǫ)-quasi-geodesic, where λ = λ′ and ǫ = ǫ′ +2|h|. Thus, at any moment we can replace
g by any conjugate h−1gh.

Now, let us prove the result. Take an element g ∈ H of infinite order. By Lemma 2.12,
there must exists an exponent 1 6 r 6 1 + ♯B(8δ) such that the shortest conjugate of gr, say
g0, has length |g0| = k > 8δ (note that both r and the corresponding conjugate are effectively
computable by Lemma 2.9). Replacing g by g0 and applying the previous two paragraphs, we
may assume that |g| = k > 8δ and no conjugate of g is shorter than g itself.

Take a geodesic expression for g, say g = s1 · · · sk with si ∈ S±1, and consider the bi-infinite
path pg : Z → H defined by the following rule: if n > 0 and n = tk + r, where 0 6 r < k,
then pg(n) = gts1 · · · sr and pg(−n) = g−ts−1

k . . . s−1
k−r+1; this corresponds to the bi-infinite word

g∞ = · · · s1 · · · sks1 · · · sk · · · . Clearly, any segment of length k is of the form si · · · sks1 · · · si−1,
i.e. a conjugate of g and hence geodesic. So, pg is a k-locall geodesic and thus a (8δ + 1)-local

6



geodesic. Finally, by Proposition 2.6, pg is a (3, 2δ)-quasi-geodesic. Hence the map n 7→ gn is a
(3k, 2δ)-quasi-geodesic. ⊔⊓

Combining Proposition 2.7 with Proposition 2.11 and Lemma 2.13, we obtain the following
three corollaries.

Corollary 2.14 Let H be a δ-hyperbolic group with respect to a finite generating set S, and
let g ∈ H be of infinite order. Then for any integers i < j, the set {gi, gi+1, . . . , gj} and any
geodesic segment [gi, gj ] lie in the µ-neighborhood of each other, where µ = µ(δ, ♯S, |g|) is a
computable function.

Corollary 2.15 Let H be a δ-hyperbolic group with respect to a finite generating set S, and let
g ∈ H be of infinite order. For any natural numbers s, t we have

|gs+t| > |gs|+ |gt| − 2µ,

where µ = µ(δ, ♯S, |g|) is the constant from Corollary 2.14.

Proof. Consider the points A = 1, B = gs and C = gs+t and choose geodesics [AB], [BC]
and [AC]. By Corollary 2.14, there exists D ∈ [AC] such that |BD| 6 µ. Then,

|AC| = |AD|+ |DC| > (|AB| − |BD|) + (|CB| − |BD|) > |AB|+ |BC| − 2µ. 2

The last corollary in this subsection is about torsion-free hyperbolic groups. It uses the
following well known result.

Proposition 2.16 Let H be a torsion-free δ-hyperbolic group. Then, centralizers of nontrivial
elements are infinite cyclic. In particular, extraction of roots is unique in H (i.e. gr1 = gr2
implies g1 = g2). Furthermore, if for 1 6= g ∈ H, gp and gq are conjugate then p = q.

Proof. Cyclicity of centralizers is proven in [3, pages 462–463].
Suppose gr1 = gr2. Then both g1 and g2 belong to the infinite cyclic group CH(gr1) and so,

g1 = g2.
Finally, suppose that gp = h−1gqh; by Lemma 2.12, p = ǫq where ǫ = ±1. Extracting roots,

h−1gh = gǫ. Thus, h2 commutes with g so both are powers of a common element, say z ∈ H.
But h also commutes with z so they are both powers of a common y, and so is g too. Hence,
h−1gh = g and ǫ = 1. Thus, p = q. ⊔⊓

This proposition allows to use rational exponents in the notation, when working in torsion-
free δ-hyperbolic groups (with g1/s meaning the unique element x such that xs = g, assuming
it exists). For example, it is easy to see that in such a group, every element commuting with
gr 6= 1 must be a rational power of g.

Corollary 2.17 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. There exists a computable function f : N2 → N such that, for any two elements g, v ∈ H
with g of infinite order, and for any nonnegative integers p, q the following holds

|gpvgq| > |gp+q| − f(|g|, |v|).

Proof. Let µ = µ(|g|) be the computable constant given in Corollary 2.14: for any two
integers i < j, the set {gi, gi+1, . . . , gj} is contained in the µ-neighborhood of any geodesic with
endpoints gi and gj . Let N = ♯B(2δ + 2µ+ |v|) and M = 2(N + 1)(µ + 1).
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Given p, q > 0, consider the points A = 1, B = gp, C = gpv, and D = gpvgq, and choose
geodesics [AB], [AC], [CD] and [DA] (see Figure 1). Let P be the point in [CD] at distance
ℓ = 1

2(|AC|+ |CD| − |AD|) from C.

s

s s

s

s

s

s
s

A

B C

D

gp gq

v

� U

-

P
X

Y
s

Z
s

Figure 1

If ℓ < M then

|gpvgq| = |AD| = |AC|+ |CD| − 2ℓ >
(

|gp| − |v|
)

+ |gq| − 2ℓ > |gp+q| − |v| − 2M.

Otherwise, if ℓ > M we will prove that g and v commute and so, |gpvgq| = |gp+qv| > |gp+q|− |v|,
concluding the proof.

So, assume ℓ > M and let us prove that g and v commute.
Let X be an arbitrary point on [CD] with |CX| 6 ℓ. Then X is at distance at most δ

from the side [AC] of the geodesic triangle ACD. But this side is in the (δ + |v|)-neighborhood
of the side [AB] of the geodesic triangle ABC. And, by Corollary 2.14, this last one is in the
µ-neighborhood of the set {1, g, . . . , gp}. Hence, there is a point of the form Y = gp0 , 0 6 p0 6 p,
such that |XY | 6 2δ + µ + |v|. Similarly, X is in the µ-neighborhood of {C,Cg, . . . , Cgq}, i.e.
there exists a point of the form Z = Cgq0 = gpvgq0 , 0 6 q0 6 q, such that |XZ| 6 µ. Thus,
|gp−p0vgq0 | = |Y Z| 6 |Y X|+ |XZ| 6 2δ + 2µ + |v|.

Now, let X1, . . . ,XN+1 be points on [CD], such that |CXi| = 2i(µ + 1) (the existence of
all these points is ensured by our assumption ℓ > M). The previous paragraph gives us points
Yi = gpi and Zi = gpvgqi , with 0 6 pi 6 p and 0 6 qi 6 q, such that |XiYi| 6 2δ + µ + |v| and
|XiZi| 6 µ; thus, |gp−pivgqi | 6 2δ + 2µ + |v|, for all i = 1, . . . , N + 1. Furthermore, note that
qi 6= qj whenever i 6= j (otherwise, Zi = Zj and |XiXj | 6 |XiZi|+ |ZjXj | 6 2µ, a contradiction).

This way we have obtained N +1 elements gp−pivgqi all of them in the ball B(2δ+2µ+ |v|),
which has cardinal N . Thus, there must be at least one coincidence, gp−pivgqi = gp−pjvgqj , for
i 6= j. Hence, vgqj−qiv−1 = gpj−pi . Since qi 6= qj, Proposition 2.16 implies that qj − qi = pj − pi
and, extracting roots, vgv−1 = g. This means that g commutes with v, completing the proof. ⊔⊓

2.3 Controlling cancelation

Definition 2.18 Let H be a δ-hyperbolic group with respect to a finite generating set S. For
elements u, v ∈ H and a real number c > 0 we write uv = u ·

c
v if 1

2 (|u| + |v| − |uv|) < c. Also,

we write uvw = u ·
c
v ·

c
w if uv = u ·

c
v and vw = v ·

c
w.

The definition of u ·
c
v is equivalent to |uv| > |u| + |v| − 2c. So, if H is a free group, u ·

c
v

means precisely that the maximal terminal segment of u and the maximal initial segment of v
which can be canceled in the product uv both have length smaller than c.

Lemma 2.19 Let H be a δ-hyperbolic group with respect to a finite generating set S. If c ∈ R

and u, v, w ∈ H are such that uvw = u ·
c
v ·

c
w and |v| > 2c+ δ, then

|u ·
c
v ·

c
w| > |u|+ |v|+ |w| − (4c+ 2δ).
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Proof. Connect the points A = 1, B = u, C = uv and D = uvw by geodesic segments and
consider the geodesic rectangle ABCD. By assumption, |BC| > 2c+ δ. From u ·

c
v and v ·

c
w we

deduce
|AC| > |AB|+ |BC| − 2c > |AB|+ δ

and
|BD| > |BC|+ |CD| − 2c > |CD|+ δ,

respectively. From this and the rectangle inequality (Proposition 2.3), we deduce

(|AB|+ |BC| − 2c) + (|BC|+ |CD| − 2c) < |AC|+ |BD| 6 |BC|+ |AD|+ 2δ,

which implies

|u|+ |v|+ |w| − (4c + 2δ) = |AB|+ |BC|+ |CD| − (4c + 2δ) < |AD| = |uvw|. 2

Next, we give some results about controlling cancelation that will be used later. Note that
the important point in the following lemma is the constant c being independent from k.

Lemma 2.20 Let H be a δ-hyperbolic group with respect to a finite generating set S, and let
w, b ∈ H with b 6= 1. For every integer k > 0 and every z ∈ H, there exists x ∈ H and 0 6 l 6 k,
such that z−1wbkz = x−1 ·

c
bk−lwbl ·

c
x, where c = 3δ + µ(|b|) + |w| + 1 (and µ is the computable

function given in Corollary 2.14).

Proof. Fix k > 0 and z ∈ H, and let 0 6 l 6 k and x ∈ H be such that z−1wbkz =
x−1bk−lwblx, with the shortest possible length for x; we will prove that these l and x satisfy the
conclusion of the lemma. Suppose they do not, i.e. suppose that either x−1bk−lwbl = x−1·

c
bk−lwbl

or bk−lwblx = bk−lwbl ·
c
x is not true, and let us find a contradiction. We consider only the case

where the first of these expressions fails, i.e. |x−1bk−lwbl| 6 |x−1| + |bk−lwbl| − 2c; the second
case can be treated analogously.

Consider the points A = 1, B = x−1, C = x−1bk−l, D = x−1bk−lw, E = x−1bk−lwbl and
F = x−1bk−lwblx, and connect them by geodesic segments, forming a 6-gon. In terms of the
geodesic triangle ABE, our assumption says 1

2(|AB|+|BE|−|AE|) > c. By δ-hyperbolicity ofH,
there exist pointsX1 ∈ [AB] andX2 ∈ [BE] such that |BX1| = |BX2| = c and |X1X2| 6 δ. And,
by Proposition 2.2 applied to the rectangle BCDE, there exists a point X3 ∈ [BC]∪[CD]∪[DE]
such that |X2X3| 6 2δ.

Case 1: X3 ∈ [BC] (see Figure 2). Since C = Bbk−l, Corollary 2.14 implies that there
exists an element X4 = Bbs for some 0 6 s 6 k − l, such that |X3X4| 6 µ(|b|). Hence,
|X1X4| 6 |X1X2|+ |X2X3|+ |X3X4| 6 3δ + µ(|b|) < c and z−1wbkz = X4b

k−l−swbl+sX−1
4 .

Case 2: X3 ∈ [CD]. In this case, take X4 = C and we have |X1X4| 6 |X1X2| + |X2X3| +
|X3X4| 6 3δ + |w| < c as well. Similarly, z−1wbkz = X4wb

kX−1
4 .

Case 3: X3 ∈ [DE]. Since E = Dbl, Corollary 2.14 implies again that there exist an element
X4 = Dbs for some 0 6 s 6 l, such that |X3X4| 6 µ(|b|). Like in Case 1, we have |X1X4| < c
and z−1wbkz = X4b

k−swbsX−1
4 .

In any case, we have found an element X4 ∈ H and a decomposition of z−1wbkz of the form
z−1wbkz = X4b

k−swbsX−1
4 , with 0 6 s 6 k and |X1X4| < c. Since |X1B| = c, we have

|X4| = |AX4| 6 |AX1|+ |X1X4| < |AX1|+ |X1B| = |AB| = |x|,

contradicting the minimality of |x|. ⊔⊓
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The previous lemma in the particular case of w = 1 says that, for every b, z ∈ H and every
k > 0, there exists x ∈ H such that z−1bkz = x−1 ·

c
bk ·

c
x, (where c is a computable function

depending only on δ and |b|). In the following result we present a technical improvement (which
will be crucial later) showing that, in fact, one can choose a uniform x valid for every k.

Lemma 2.21 Let H be a δ-hyperbolic group with respect to a finite generating set S, and let
z, b ∈ H. There exists an element x ∈ H such that for every integer k holds z−1bkz = x−1 ·

c
bk ·

c
x,

where c = δ + µ(|b|).

Proof. Let x−1 be one of the shortest elements in the set G = {z−1bn |n ∈ Z}. Clearly
z−1bkz = x−1bkx for every k ∈ Z. We show that z−1bkz = x−1 ·

c
bk ·

c
x. Fix k ∈ Z and denote

A = 1, B = x−1, and C = x−1bk. We choose geodesic segments [AB], [BC] and [AC] and
consider the points X ∈ [BA], Y ∈ [BC] such that |BX| = |BY | = 1

2 (|BA|+ |BC| − |AC|). By
δ-hyperbolicity we have |XY | 6 δ. By Corollary 2.14, the point Y ∈ [BC] lies at distance at
most µ(|b|) from a point D ∈ G. By the choice of x−1, we have |AB| 6 |AD| and so

|AX| + |XB| = |AB| 6 |AD| 6 |AX| + |XY |+ |Y D| 6 |AX| + δ + µ(|b|).

Hence |XB| 6 c, i.e. 1
2(|x

−1| + |bk| − |x−1bk|) 6 c and hence, x−1bk = x−1 ·
c
bk. Inverting the

last element, and changing k by −k, we have bkx = bk ·
c
x. Thus, x−1bkx = x−1 ·

c
bk ·

c
x. ⊔⊓

2.4 The norm and the axis of an element

Definition 2.22 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S, and let g ∈ H. The norm of g, denoted ||g||, is defined as

min{d(x, gx) | x ∈ Γ(H,S)}.

The axis of g, denoted Ag, is the set of points x ∈ Γ(H,S) where this minimum is achieved,

Ag = {x ∈ Γ(H,S) | d(x, gx) = ||g||}.

The following facts are easy to see:

(1) Ag ∩H is nonempty, in particular

||g|| = min{|x−1gx| | x ∈ H}.

Moreover, Ag lies in the 1-neighborhood of Ag ∩H;

10



(2) ||g|| is a nonnegative integer satisfying 0 6 ||g|| 6 |g|. Moreover, ||g|| = 0 iff g = 1;

(3) Ag is CH(g)-invariant: for every x ∈ Ag and h ∈ CH(g) we have hx ∈ Ag;

(4) for any x ∈ Ag, any geodesic segment [x, gx] also lies in Ag;

(5) for any h ∈ H we have ||hgh−1|| = ||g|| and Ahgh−1 = hAg;

(6) for any g ∈ H and any x ∈ Γ(H,S), we have d(x, gx) 6 ||g|| + 2d(x,Ag).

Lemma 2.23 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. For any 1 6= g ∈ H, there exists a computable integer r = r(|g|) > 1 such that

∞
⋃

k=1

Agk ⊆ 〈g〉B(r).

Proof. By Property (1),
⋃

∞

k=1Agk lies in the 1-neighborhood of
⋃

∞

k=1Agk ∩H. The strategy
now is to see that this last set lies at bounded (in terms of |g|) distance from the centralizer
CH(g); and then, we will see that CH(g) lies at bounded distance from 〈g〉.

Take an arbitrary z ∈ ∪∞
k=1Agk ∩ H. By Properties (1)-(2), there is k > 1 such that

|z−1gkz| is minimal among the lengths of all conjugates of gk (in particular, |z−1gkz| 6 |gk|).
By Corollary 2.21, there exists x ∈ H such that z−1gkz = x−1 ·

c
gk ·

c
x, where the constant

c = c(|g|) is computable and independent from k. Thus, we have |x−1 ·
c
gk ·

c
x| 6 |gk|. Let us

consider two cases.

Case 1: |gk| > 2c + δ. By Lemma 2.19, |x−1 ·
c
gk ·

c
x| > 2|x| + |gk| − (4c + 2δ). Therefore

|x| < 2c+ δ. Moreover, z ∈ CH(g)x.
Case 2: |gk| 6 2c+ δ. From |z−1gkz| 6 |gk| and Theorem 2.9, we conclude that there exists

y ∈ H such that z−1gkz = y−1gky and the length of y is bounded by a computable constant,
depending only on |g| (i.e. on 2c+ δ). Moreover, z ∈ CH(g)y.

In both cases z lies at bounded (in terms of |g|) distance from CH(g).
It remains to prove that CH(g) is at bounded distance from 〈g〉. Let z ∈ CH(g). By

Lemma 2.12, there exists a (computable) natural number s 6 ♯B(4δ), such that gs is not
conjugate into the ball B(4δ). In this situation, the proof of Corollary 3.10 in [3, Chapter III.Γ]
shows that the distance from z to the set 〈gs〉 is at most 2|gs|+ 4δ. Hence, the distance from z
to 〈g〉 is bounded by a computable constant depending only on δ, ♯S and |g|. ⊔⊓

From this lemma, it is easy to deduce the following corollaries.

Corollary 2.24 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. For any 1 6= g ∈ H and any integer k 6= 0, there exists an element x ∈ Agk ∩H of length
at most r(|g|). ⊔⊓

Corollary 2.25 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. For any 1 6= g ∈ H and any integer k 6= 0, we have ||gk|| > |gk| − 2r(|g|).

Proof. Take the element x from Corollary 2.24. Then ||gk|| = d(x, gkx) = |x−1gkx| >

|gk| − 2|x| > |gk| − 2r(|g|). ⊔⊓

Corollary 2.26 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. For any 1 6= g ∈ H and any C > 0, there exists a computable integer k0 = k0(|g|, C) such
that for any k > k0 we have ||gk|| > C.
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Proof. Using Corollary 2.25, and Proposition 2.11 complemented with Lemma 2.13, we
deduce ||gk|| > |gk|− 2r(|g|) > 1

λk− ǫ− 2r(|g|) for every k > 0, where λ, ǫ and r are computable
functions of |g|. Now, the result follows easily. ⊔⊓

Corollary 2.27 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. There exist computable functions f1 : N → N and f2 : N → N such that, for every 1 6= g ∈ H
and every natural numbers s, t > 0, we have

||gs+t|| − f1(|g|) 6 ||gs||+ ||gt|| 6 ||gs+t||+ f2(|g|).

Proof. Take f1(n) = 4r(n) and the first inequality follows from Corollary 2.25:

||gs+t|| 6 |gs+t| 6 |gs|+ |gt| 6 ||gs||+ ||gt||+ 4r(|g|).

And taking f2(n) = 2r(n)+ 2µ(n), the second inequality follows from Corollaries 2.25 and 2.15:

||gs||+ ||gt|| 6 |gs|+ |gt| 6 |gs+t|+ 2µ(|g|) 6 ||gs+t||+ 2r(|g|) + 2µ(|g|). 2

Next, we will state several lemmas about distances to axes.

Lemma 2.28 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. Let 1 6= g ∈ H, let A be a point in Γ(H,S), and let B be a point in Ag at minimal distance
from A. Then, for every geodesic segment [BC] ⊂ Ag, we have

|AC| > |AB|+ |BC| − 2δ.

Proof. Consider a given geodesic segment [BC] contained in Ag, and choose geodesic seg-
ments [AB] and [AC]. Let X ∈ [BA] and Y ∈ [BC] be points such that |BX| = |BY | =
1
2(|BA| + |BC| − |AC|). Then |XY | 6 δ. Since the point Y also lies on Ag, we have that
|AB| 6 |AY |. Therefore |XB| 6 |XY | 6 δ. Thus,

|AC| = |AB|+ |BC| − 2|BX| > |AB|+ |BC| − 2δ. 2

Lemma 2.29 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. Let g ∈ H, and let k be an integer number such that ||gk|| > 5δ. Let A be an element of H,
and n > 0 be such that d(A, gkA) = ||gk|| + n. Then, A = gtv for some t ∈ Z and v ∈ H with
|v| 6 n

2 + 3δ + r(|g|), where r is the function introduced in Lemma 2.23.

Proof. By the hypothesis, g 6= 1. Let B be a point in Agk at minimal distance from A.

Let C = gkB and D = gkA. Since C ∈ Ag is at minimal distance from D (the same as |AB|),
Lemma 2.28 tells us that

|AC| > |AB|+ |BC| − 2δ

and
|DB| > |CD|+ |BC| − 2δ.

Moreover, |BC| = ||gk|| > 5δ. Therefore, by Lemma 2.4 applied to points A,B,C,D, we deduce

|AD| > |AB|+ |BC|+ |CD| − 6δ
= 2|AB|+ ||gk|| − 6δ.

Hence, |AB| 6 n
2 + 3δ. By Lemma 2.23, B lies at distance at most r(|g|) from 〈g〉. Hence, A

lies at distance at most n
2 + 3δ + r(|g|) from 〈g〉. This completes the proof. ⊔⊓
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Lemma 2.30 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S, and let g ∈ H with ||g|| > 5δ. Then the middle point of any geodesic segment [A, gA], where
A is a point of Γ(H,S), lies in the (5δ)-neighborhood of the axis Ag.

Proof. By the hypothesis, g 6= 1. Let B be a point in Ag at minimal distance from A. Let
C = gB and D = gA. Exactly like in the previous lemma, we obtain

2|AB|+ |BC| 6 |AD|+ 6δ. (4)

Now, take geodesic segments [AD] and [BC], and let M and N be their middle points, respec-
tively. Clearly, N ∈ Ag. In order to estimate the distance |NM |, we consider the geodesic
rectangle AMDN . By the rectangle inequality, we have

|NM |+ |AD| 6 max{|AM |+ |DN |, |DM |+ |AN |} + 2δ
= max{1

2 |AD|+ |DN |, 12 |AD|+ |AN |}+ 2δ.

But |AN | 6 |AB| + |BN | = |AB| + 1
2 |BC|. Therefore from (4), we have |AN | 6 1

2 |AD| + 3δ.
Analogously, |DN | 6 1

2 |AD|+ 3δ. From all this we deduce

|NM |+ |AD| 6
1

2
|AD|+

1

2
|AD|+ 3δ + 2δ.

Thus, |NM | 6 5δ. ⊔⊓

Proposition 2.31 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S, and let g, h ∈ H with ||g|| > 15δ, ||h|| > 15δ and ||gh|| > 5δ. Then the distance between
the axes Ag and Ah is at most

max{15δ,
1

2
(||gh|| − ||g|| − ||h||) + 18δ}.

Proof. By the hypotheses, g, h and gh are all nontrivial. Let d = d(Ag,Ah), and let X ∈ Ah

and Y ∈ Ag be such that |XY | = d. If d 6 15δ we are done so, let us assume d > 15δ.
Consider the points A1 = X, A2 = Y , A3 = gY , A4 = gX, A5 = ghX, A6 = ghY ,

A7 = ghgY , A8 = ghgX, and A9 = ghghX. By Lemma 2.28 and doing the appropriate
translation, we have |Ai−1Ai+1| > |Ai−1Ai| + |AiAi+1| − 2δ for every i = 2, . . . , 8. Moreover,
|Ai−1Ai| equals either d, or ||g||, or ||h|| which are all bigger than 15δ. So, Lemma 2.4 tells us
that

d(A1, A9) = d(X, (gh)2X) > d(X,Y ) + d(Y, gY ) + d(gY, gX) + d(gX, ghX) + d(ghX, ghY )

+d(ghY, ghgY ) + d(ghgY, ghgX) + d(ghgX, ghghX) − 26δ

= 2(d + ||g||+ d+ ||h||) − 26δ.

On the other hand,

d(A1, A5) = d(X, ghX) 6 d(X,Y ) + d(Y, gY ) + d(gY, gX) + d(gX, ghX) = d+ ||g|| + d+ ||h||.

Let now [A1A5] be a geodesic segment, and consider its translation (gh)[A1A5], say [A5A9].
Let M be the middle point of [A1A5] and M ′ = ghM be the middle point of [A5A9]. Since
1
2d(A1, A5) = d(A1,M) = d(M,A5) = d(M ′, A9), using the previous inequalities we have

d(M,M ′) > d(A1, A9)− d(A1,M)− d(M ′, A9)
= d(A1, A9)− d(A1, A5)
> 2d+ ||g|| + ||h|| − 26δ.

Finally, by Lemma 2.30, M lies at distance at most 5δ from the axis Agh. Therefore, d(M,M ′) =
d(M,ghM) 6 10δ + ||gh||. Hence d 6

1
2(||gh|| − ||g|| − ||h||) + 18δ. 2
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3 A special case of the main Theorem

In this section, we prove a special case of Theorem 1.2, namely the case of two words (n = 2) and
with the extra assumption that 〈a1, a2〉 is a cyclic subgroup of H. The proof contains ingredients
which will be used for the general case.

Let us start with the following lemma, which considers the situation where the product of
conjugates of two powers of a given element equals the product of these powers, and analyzes
how the involved conjugators must look like.

Lemma 3.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. There exists a computable function ~ : N → R

+ with the following property: for any three
elements b, x, y ∈ H and any two positive integers s, t, which satisfy ||bs||, ||bt|| > 15δ, ||bs+t|| >
5δ and

(x · bs · x−1)(y · bt · y−1) = bs+t, (5)

there exist integers n1, n2, n3, n4 and elements vx, vy ∈ H of length at most ~(|b|) such that

x = bn1vxb
n2 and y = bn3vyb

n4 .

Proof. Let b, x, y and s, t be as in the statement (in particular, b 6= 1). Consider the axes
Axbsx−1 = xAbs and Aybty−1 = yAbt . By Proposition 2.31 applied to the elements xbsx−1 and
ybty−1 (note that ||xbsx−1|| = ||bs|| > 15δ, ||ybty−1|| = ||bt|| > 15δ and ||(xbsx−1)(ybty−1)|| =
||bs+t|| > 5δ by hypothesis), the distance between xAbs and yAbt is at most

max{15δ,
1

2
(||bs+t|| − ||bs|| − ||bt||) + 18δ}.

By Corollary 2.27, this value does not exceed 1
2f1(|b|)+18δ, an upper bound which is independent

from s and t.
Now, take an element Q ∈ yAbt ∩ H such that d(Q,xAbs) 6

1
2f1(|b|) + 18δ + 1, and set

P = (ybty−1)−1Q. In particular, P ∈ yAbt ∩H and d(P,Q) = ||ybty−1|| = ||bt||. Then we have

d(P, bs+tP ) = d(P, (xbsx−1)(ybty−1)P ) = d(P, (xbsx−1)Q)

6 d(P,Q) + d(Q, (xbsx−1)Q)

6 d(P,Q) + 2d(Q,Axbsx−1) + ||bs||

6 ||bt||+ ||bs||+ f1(|b|) + 36δ + 2

6 ||bs+t||+ f1(|b|) + f2(|b|) + 36δ + 2,

where the last inequality uses Corollary 2.27 again. Next, apply Lemma 2.29 to conclude that
P = bn3v1 for some n3 ∈ Z and v1 ∈ H with |v1| 6

1
2f1(|b|) +

1
2f2(|b|) + r(|b|) + 21δ + 1. And

since P ∈ yAbt ∩ H, we deduce from Lemma 2.23 that y−1P = b−n4v2, for some n4 ∈ Z and
v2 ∈ H with |v2| 6 r(|b|). Hence,

y = bn3vyb
n4 ,

where vy = v1v
−1
2 has length bounded by

|vy| = |v1v
−1
2 | 6 |v1|+ |v2| 6

1

2
f1(|b|) +

1

2
f2(|b|) + 2r(|b|) + 21δ + 1.

14



Finally, inverting and replacing b to b−1 in equation (5), we obtain again the same equation
with x and y interchanged. So, the same argument shows that

x = bn1vxb
n2 ,

for some n1, n2 ∈ Z and some vx ∈ H with the same upper bound for its length.
Hence, the function ~(n) = 1

2f1(n) +
1
2f2(n) + 2r(n) + 21δ + 1 satisfies the statement of the

lemma. ⊔⊓

Corollary 3.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. There exists a computable function ~ : N → R

+ with the following property: if b, x1, x2, x3 ∈ H
and 0 6= m1,m2,m3 ∈ Z are such that ||bm1 ||, ||bm2 ||, ||bm3 || > 15δ, x1x2x3 = 1, m1+m2+m3 =
0, and x1b

m1x2b
m2x3b

m3 = 1, then each of the xi can be written in the form bn1ubn2vbn3 , where
n1, n2, n3 ∈ Z, and both u, v have length at most ~(|b|).

Proof. Inverting the last equation and cyclically permuting if necessary, we may assume that
m1 > 0 and m2 > 0. Now, Lemma 3.1 gives the conclusion. ⊔⊓

We can now prove the following special case of Theorem 1.2.

Proposition 3.3 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S. Then, for any g ∈ H there is a computable constant C = C(|g|) > 0 with the following
property: for every a, b ∈ 〈g〉 with ||a||, ||b||, ||ab±1 || > 15δ, and every conjugate b∗ of b, if abs∗ is
conjugate to abs for every s = −C, . . . , C, then b∗ = b.

Proof. Let a = gn and b = gm (with n,m 6= 0 and n 6= ±m), and let b∗ = x−1bx for some
x ∈ H (which can always be multiplied on the left by a power of b).

We may assume n,m > 0. Indeed, if n < 0, we replace g by g−1, and n by −n, and m by
−m; the statement does not change and we get n > 0. If then m < 0, we replace b by b−1 = g−m

and b∗ by b−1
∗ ; again the statement does not change and we get m > 0.

So, let us assume n,m > 0, ||a||, ||b||, ||ab±1|| > 15δ, and abs∗ being conjugate to abs for every
s = −C, . . . , C, where C is yet to be determined.

Taking C > 1, we have ab−1
∗ conjugate to ab−1, that is gn · x−1g−mx = h−1gn−mh for some

h ∈ H. Rewrite this last equation into the following two forms

xh−1gm−nhx−1 · xgnx−1 = gm, (6)

h−1gn−mh · x−1gmx = gn. (7)

If m > n, then from equation (6) and Lemma 3.1 we get

x = gpvgq

for some p, q ∈ Z and v ∈ H with |v| 6 ~(|g|). Otherwise, m < n and then from equation (7)
and Lemma 3.1 we get the same expression for x. Replacing x by g−px, we can assume p = 0,
i.e. x = vgq. And now, replacing b∗ by gqb∗g

−q, which does not affect neither the hypothesis
nor the conclusion of the proposition (recall that both a and b are powers of g), we may assume
that x = v, |v| 6 ~(|g|).

Let us impose that, abs∗ and abs = gn+sm are conjugate, for some positive value of s. By
Lemma 2.21, there exists zs ∈ H such that

gn · x−1gsmx = abs∗ = z−1
s ·

c
gn+sm ·

c
zs, (8)
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where the constant c depends only on |g|, δ and ♯S. By Proposition 2.11 and Lemma 2.13, we
can compute a constant C0 such that |gn+sm| > 2c + δ, for every s > C0. Taking at least this
value for C, and using Lemma 2.19 and Corollary 2.15, we deduce that

|gn|+ |gsm|+ 2|x| > |abs∗| > |gn+sm|+ 2|zs| − (4c+ 2δ) > |gn|+ |gsm| − 2µ+ 2|zs| − (4c + 2δ),

where µ = µ(|g|) is the computable function from Corollary 2.14. Hence, |zs| 6 ~(|g|) +µ(|g|) +
2c+ δ.

Finally, take C = C0+ ♯B
(

~(|g|)+µ(|g|)+2c+ δ
)

. Having abs∗ conjugate to abs for every s =

−C, . . . , C, we obtain elements zs, s = C0, . . . , C, all of them in the ball B
(

~(|g|)+µ(|g|)+2c+δ
)

by the previous paragraph.
Hence, there must be a repetition, i.e. there exist C0 < s1 < s2 < C such that zs1 = zs2

(denote it by z). We have
abs1∗ = z−1gn+s1mz (9)

and
abs2∗ = z−1gn+s2mz,

from which we deduce
bs2−s1
∗ = z−1gm(s2−s1)z.

This implies b∗ = z−1gmz, and then (9) implies a = z−1gnz. Since a = gn, the element z
commutes with g and so, again from (9), b∗ = b. 2

4 The main theorem for two words

The following lemma is a preliminary step in proving the main result for the case of two words
(Theorem 4.5). Note that equations (10) and (11) in its formulation have the following common
form: the product of certain conjugates of two elements equals the product of these two elements.

Lemma 4.1 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S,
and let b, w ∈ H. There exists a computable constant M = M(|b|, |w|) such that the following
holds: if b∗ is conjugate to b (say b∗ = h−1bh), and wbk∗ is conjugate to wbk for every k =
1, . . . ,M , then there exists an element d ∈ H and integers m, s, t, such that s+ t > 0 and

(d · bs · d−1)(dw · bt · w−1d−1) = bs+t, (10)

(d−1h · w · h−1d)(d−1 · bm · d) = wbm. (11)

Proof. The result is obvious if b = 1. Let us assume b 6= 1.
If we prove the statement for a particular conjugator h, then we immediately have the same

result for an arbitrary other, just replacing h to bqh and d to bqd (for q rational). So, we can
choose our favorite h.

By Lemma 2.21, there exists a conjugator h ∈ H such that, for any integer k > 0, we
have bk∗ = h−1 ·

c
bk ·

c
h, where c = δ + µ(|b|). Let us show the result for this particular h.

Since this expression remains valid while enlarging the constant c, we shall consider it with
c = 3δ + µ(|b|) + |w|+ 1 in order to match with other calculations below. Thus,

wbk∗ = w(h−1 ·
c
bk ·

c
h), (12)
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for every k > 0. Suppose that wbk∗ is conjugate to wbk for every k = 1, . . . ,M , where M is still
to be determined. Then, by Lemma 2.20, for each of these k’s there exist an element ek ∈ H
and an integer lk, such that 0 6 lk 6 k and

wbk∗ = e−1
k ·

c
(bk−lkwblk) ·

c
ek. (13)

By Corollary 2.17, and Proposition 2.11 and Lemma 2.13, there exists a computable constant
k0 = k0(|b|, |w|) > 0 such that both |bk−lkwblk | and |bk| are bigger than 2c+ δ for all k > k0.

We introduce the following notation: for two sequences of elements uk ∈ H and vk ∈ H
(where k runs through a subset of N) we write uk ≈ vk if |u−1

k vk| is bounded from above by a
computable function, depending on δ, ♯S, w, and b only (so, in particular, not depending on
k). The function will be clear from the context. Similarly, we write |uk| ≈ |vk| if ||uk| − |vk|| is
bounded from above by a computable function, depending on the same arguments.

Take k > k0. Then from (12) and (13), and with the help of Lemma 2.19, we deduce

|wbk∗ | ≈ 2|h| + |bk|

and
|wbk∗ | ≈ 2|ek|+ |bk−lkwblk | ≈ 2|ek|+ |bk|,

where the last approximation is due to Corollaries 2.15 and 2.17. Therefore |ek| ≈ |h|.
Now we will prove that ek ≈ h. For that, we realize the right hand side of (12) in the Cayley

graph Γ(H,S) as the path starting at 1 and consisting of 4 consecutive geodesics with labels
equal in H to the elements w, h−1, bk, and h. Analogously, we realize the right hand side of (13)
as the path starting at 1 and consisting of 3 consecutive geodesics with labels equal in H to the
elements e−1

k , bk−lkwblk , and ek (see Figure 3).

s

s
s

s

s

s
s

w
h bk

h

ek
bk−lkwblk

ek

1 wbk∗ =C*
� -

q
Y - *

X

Y

ss

A B

Figure 3

Both paths are (λ, ǫ)-quasigeodesics connecting 1 and C = wbk∗ , where λ and ǫ are computable
and depend only on c. We choose a geodesic [1, C] and denote X = wh−1bk, Y = e−1

k bk−lkwblk .
By Proposition 2.7, these quasigeodesics are both at bounded distance R = R(δ, c) from the

segment [1, C]. Therefore there are points A,B ∈ [1, C], such that |XA| 6 R and |Y B| 6 R.
In our notations we can write |XA| ≈ 0 and |Y B| ≈ 0. Therefore |AC| ≈ |XC| = |h| and
|BC| ≈ |Y C| = |ek|. Since |h| ≈ |ek|, we have |AC| ≈ |BC| and so |AB| ≈ 0. Hence,
|he−1

k | = |XY | 6 |XA| + |AB| + |BY | ≈ 0. This means that ek ≈ h and so, ek lies in the ball
with center h and radius depending only on |b| and |w|.

Let M be 1+k0 plus the number of elements in this ball. There must exist k0 6 k1 < k2 6 M
such that ek1 = ek2 . Denote this element by e and, rewriting equation (13) for these two special
values of k,

wbk1∗ = e−1(bk1−lk1wblk1 )e (14)

and
wbk2∗ = e−1(bk2−lk2wblk2 )e,

we get
bk2−k1
∗ = e−1(b−lk1w−1bk2−k1+lk1−lk2wblk2 )e.
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Let s = k2 − k1 + lk1 − lk2 and t = lk2 − lk1 (so s + t > 0). Recalling that bk2−k1
∗ = h−1bk2−k1h,

we can rewrite the previous equation as

he−1b−lk1w−1bswbtblk1eh−1 = bs+t.

Setting d = he−1b−lk1w−1, we deduce (dbsd−1) · (dwbtw−1d−1) = bs+t, which is equation (10).
And using equation (14), the definition of d and bk1∗ = h−1bk1h, we obtain (d−1hwh−1d) ·
(d−1bk1d) = wbk1 , which is equation (11) with m = k1. ⊔⊓

Now, using (10) and (11) and distinguishing the cases st 6= 0 or st = 0, we will obtain more
information about relations between w, b and h.

Proposition 4.2 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S and let b, w, d be elements of H satisfying equation (10). Suppose additionally that ||bk|| >
15δ for all k > 0, and that st 6= 0. Then, there exist integers p, q, r and elements u, v ∈ H of
length at most ~(|b|), such that

w = bpubrvbq.

Proof. This follows directly from Corollary 3.2. ⊔⊓

Proposition 4.3 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating
set S and let b, w, d, h be elements of H satisfying equations (10) and (11) with s+t > 0. Suppose
additionally that st = 0. Then h = bpwq for some rational numbers p, q.

Proof. Let us distinguish two cases.
Case 1: s = 0. In this case, equation (10) says that dw commutes with b. So, dw = bp

for some rational p. Plugging this into equation (11) we obtain hwh−1 = bp+mwb−p−m. Hence,
b−p−mh commutes with w and the result follows.

Case 2: t = 0. In this case, equation (10) says that d commutes with b. So, d = bp for some
rational p. Plugging this into equation (11) we obtain b−phwh−1bp = w. Hence, b−ph commutes
with w and the result follows. 2

Next, we need to obtain some extra information by applying Lemma 4.1 to sufficiently many
different elements w. To achieve this goal, given a pair of elements a, b ∈ H, we consider the
finite set

W = {(aib)2j | 1 6 i 6 1 +N, 1 6 j 6 1 + 3N2} ⊆ 〈a, b〉 6 H,

where
N = N(|b|) = ♯B (~(|b|)),

and ~ is the function from Lemma 3.1. Let us systematically apply Lemma 4.1 to every w ∈ W.

Lemma 4.4 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S. Let a, b ∈ H be elements generating a free subgroup of rank 2, and with ||bk|| > 15δ for all
k > 0. Suppose that for every w ∈ W, there exists a conjugate b∗ of b such that the elements
w, b, b∗ satisfy the hypothesis of Lemma 4.1 (i.e. wbk∗ is conjugate to wbk, for every integer
k = 1, . . . ,M(|b|, |w|)). Then, for at least one such w ∈ W, the conclusion of Lemma 4.1 holds
with st = 0.

Proof. Under the hypothesis of the lemma, suppose that we have equations (10) and (11)
with st 6= 0 for every w ∈ W, and let us find a contradiction.

Write W =
⊔1+N

i=1 Wi, where Wi = {(aib)2j | 1 6 j 6 1 + 3N2}, and fix a value for i ∈
{1, . . . , N + 1}.
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By Proposition 4.2, for every w ∈ Wi, there exist integers p, q, r, and elements u, v ∈ H of
length at most ~(|b|) such that

bpwbq = ubrv. (15)

(of course, these integers and elements depend on w). Since ♯Wi = 1 + 3N2 > 3(♯B(~(|b|)))2

(because 〈a, b〉 is free of rank 2) and the lengths of u and v are at most ~(|b|), there must
exist four diferent elements of Wi with the same u and v. That is, there exists w1 = (aib)σ,
w2 = (aib)τ , w3 = (aib)σ

′

and w4 = (aib)τ
′

(where the exponents 0 < σ < τ < σ′ < τ ′ all differ
at least 2 from each other) such that

bp1w1b
q1 = ubr1v, bp2w2b

q2 = ubr2v,
bp3w3b

q3 = ubr3v, bp4w4b
q4 = ubr4v.

Combining these equations, we get

bp2w2b
q2−q1w−1

1 b−p1 = ubr2−r1u−1, (16)

bp4w4b
q4−q3w−1

3 b−p3 = ubr4−r3u−1.

Hence, the left hand sides of these two equations commute. Let us rewrite them in the form

x = bα(aib)τ bβ(aib)−σbγ ,

x′ = bα
′

(aib)τ
′

bβ
′

(aib)−σ′

bγ
′

,

where 0 < σ < τ and 0 < σ′ < τ ′ all differ at least 2 from each other (and we have no specific
information about the integers α, β, γ, α′, β′, γ′). The key point here is that this commutativity
relation between x and x′ happens inside the free group 〈a, b〉.

Consider now the monomorphism 〈a, b〉 → 〈a, b〉 given by a 7→ aib, b 7→ b. Since x and
x′ both lie in its image, and commute, their preimages, namely y = bαaτ bβa−σbγ and y′ =
bα

′

aτ
′

bβ
′

a−σ′

bγ
′

, must also commute.
Suppose ββ′ 6= 0. Then, y is not a proper power in 〈a, b〉 (in fact, its cyclic reduction is

either aτ bβa−σbα+γ with α+ γ 6= 0, or aτ−σbβ, which are clearly not proper powers). Similarly,
y′ is not a proper power either. Then the commutativity of y and y′ forces y = y′±1, which is
obviously not the case. Hence, ββ′ = 0. Without loss of generality, we can assume β = 0.

Let us go back to equation (16) which, particularized to this special case, reads

bα(aib)τ b0(aib)−σbγ = ubδu−1,

that is
bα(aib)ρbγ = ubδu−1, (17)

where ρ = τ −σ > 2. Recall that all these arguments were started for a fixed value of i and that
the corresponding element u (which depends on the chosen i) has length at most ~(|b|).

Finally, it is time to move i = 1, . . . , 1 +N . Since 1 +N > ♯B(~(|b|)), there must exist two
indices 1 6 i1 < i2 6 1 +N giving the same u. Equation (17) in these two special cases is

bα(ai1b)ρbγ = ubδu−1

and
bα

′

(ai2b)ρ
′

bγ
′

= ubδ
′

u−1,

where ρ, ρ′ > 2 and 1 6 i1 < i2. Again, z = bα(ai1b)ρbγ and z′ = bα
′

(ai2b)ρ
′

bγ
′

commute. Since
i1, i2, ρ and ρ′ are all positive, this implies that some positive power of z equals some positive
power of z′. But it is straightforward to see that (after all possible reductions) the first a-syllable
of any positive power of z is ai1 (here we use ρ > 2); similarly the first a-syllable of any positive
power of z′ is ai2 . Since i1 6= i2, this is a contradiction and the proof is completed. ⊔⊓

Now can already prove the main Theorem 1.2, in the special case n = 2.
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Theorem 4.5 Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set
S, and consider four elements a, b, a∗, b∗ ∈ H such that a∗ is conjugate to a, and b∗ is conjugate
to b. There exists a computable constant L (only depending on |a|, |b|, δ and ♯S), such that if
(ai∗b

l
∗)

jbk∗ is also conjugate to (aibl)jbk for every i, j, k, l = −L, . . . , L then there exists a uniform
conjugator g ∈ H with a∗ = g−1ag and b∗ = g−1bg (i.e. (a∗, b∗) is conjugate to (a, b)).

Proof. The conclusion is obvious if a or b is trivial. So, let us assume a 6= 1 and b 6= 1. Note,
that 〈a〉 = 〈b〉 and even a = b±1 is allowed.

Suppose that (ai∗b
l
∗)

jbk∗ is conjugate to (aibl)jbk for every i, j, k, l = −L, . . . , L, where L is
still to be determined. We shall prove the result imposing several times that L is big enough,
in a constructive way. At the end, collecting together all these requirements, we shall propose a
valid value for L.

Since H is torsion-free, every nontrivial element has infinite cyclic centralizer (see Propo-
sition 2.16). Let a1, b1 be generators of CH(a) and CH(b). Inverting a1 or a2 if necessary, we
may assume that a = ap1 and b = bq1 for positive p and q. By Corollary 2.26, there exists a
computable natural number r0 such that for every r > r0, ||a

r
1|| > 15δ and ||br1|| > 15δ. So, after

replacing a, b, a∗, b∗ by ar0 , br0 , ar0∗ , br0∗ , we can assume that ||ar|| > 15δ and ||br|| > 15δ for every
r 6= 0. Moreover, if a, b generate a cyclic group, then after the above replacement either a = b
or ||ab−1|| > 15δ. Analogously, either a = b−1, or ||ab|| > 15δ.

For every word w on a and b, let us denote by w∗ the corresponding word on a∗ and b∗.
Now, observe that we can uniformly conjugate a∗ and b∗ by any element of H (and abuse
notation denoting the result a∗ and b∗ again), and both the hypothesis and conclusion of the
theorem does not change. In particular, for any chosen word of the form w = (aibl)jbk (with
i, j, k, l = −L, . . . , L), we can assume that w∗ = w (of course, with an underlying a∗ and b∗ now
depending on w); when doing this, we say that we center the notation on w. Note that centering
notation does not change a, b, therefore the constant L is not affected.

Let us distinguish two cases.
Case 1: 〈a, b〉 is a cyclic group, say 〈g〉. Centering the notation on a, we may assume that

a∗ = a. If a = bǫ, where ǫ = ±1, then we use that ab−ǫ
∗ is conjugate to ab−ǫ = 1 and deduce

immediately that b∗ = b. Now, assume that a 6= b±1, and so ||ab±1|| > 15δ. Part of our
hypothesis says that a∗b

l
∗ = abl∗ is conjugate to abl for every l = −L, . . . , L. Hence, taking L

bigger than or equal to the constant C = C(|g|) from Proposition 3.3, we obtain b∗ = b. This
concludes the proof in this case.

Case 2: 〈a, b〉 is not cyclic. By Proposition 2.8, there exists a sufficiently big and computable
natural number p such that 〈ap, bp〉 is a free subgroup of H of rank 2. Note that, multiplying the
constant by p, and using the uniqueness of root extraction in H, the result follows from the same
result applied to the elements ap, bp and ap∗, b

p
∗. So, after replacing a, b, a∗, b∗ by ap, bp, ap∗, b

p
∗, we

can assume that F2 ≃ 〈a, b〉 6 H.
With these gained assumptions, let us show that any constant

L > max{2 + 6N2,max
w∈W

M(|b|, |w|)},

works for our purposes, where the number N and the set W are defined before Lemma 4.4, and
the function M is defined in Lemma 4.1.

Part of our hypothesis says that, for every w = (aib)2j ∈ W, w∗b
k
∗ = (ai∗b∗)

2jbk∗ is conjugate
to wbk for every k = 1, . . . ,M(|b|, |w|).

Fix w ∈ W. Centering the notation on this w, we have that wbk∗ (= w∗b
k
∗) is conjugate to

wbk for every k = 1, . . . ,M(|b|, |w|). That is, w satisfies the hypothesis of Lemma 4.1 (with
the corresponding value of b∗). And this happens for every w ∈ W. Thus, Lemma 4.4 ensures
us that the conclusion of Lemma 4.1 holds with st = 0 for at least one w0 = (ai0b)2j0 ∈ W,
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1 6 i0 6 1 +N , 1 6 j0 6 1 + 3N2 (note that Lemma 4.4 can be applied because we previously
gained the assumptions ||br|| > 15δ for every r 6= 0, and F2 ≃ 〈a, b〉 6 H). For the rest of the
proof, let us center the notation on this particular w0.

Using Proposition 4.3, we conclude that every conjugator from b to b∗ (say b∗ = h−1bh) is
of the form h = bpwq

0 for some rational numbers p, q. Hence, w−q
0 bwq

0 = b∗. Then,

((w−q
0 awq

0)
i0b∗)

2j0 = w−q
0 (ai0b)2j0wq

0 = w−q
0 w0w

q
0 = w0 = w0∗ = (ai0∗ b∗)

2j0 .

Extracting roots twice, we conclude that w−q
0 awq

0 = a∗. Thus, w
q
0 is a uniform right conjugator

from (a, b) to (a∗, b∗). This concludes the proof for this second case. ⊔⊓

5 Main theorem for several words

Finally, we extend the result to arbitrary tuples of words, thus proving the main result of the
paper.

Proof of Theorem 1.2. The implication to the right is obvious (without any bound on the
length of W ).

Let A = {a1, . . . , an}, and assume that W (a1∗, . . . , an∗) is conjugate to W (a1, . . . , an) for
every word W in n variables and length up to a constant yet to be determined. As above, we
shall prove the result assuming several times this constant to be big enough, in a constructive
way. The reader can collect together all these requirements, and find out a valid explicit value
(which will depend only on δ, ♯S and

∑n
i=1 |ai|). Decreasing n if necessary, we may assume that

all ai are nontrivial. If n = 1 there is nothing to prove, so assume n > 2.
Suppose the elements a1, . . . , an generate a cyclic group, say 〈a1, . . . , an〉 6 〈g〉 6 H, with g

root-free. Applying Theorem 4.5 to every pair a1, aj , we get a computable constant such that
if W (a1∗, aj∗) is conjugate to W (a1, aj) for every word W of length up to this constant, then
a1 and aj admit a common conjugator, say xj. Taking the maximum of these constants over
all j = 2, . . . , n we are done, because x−1

j a1xj = a1∗ and x−1
j ajxj = aj∗ for j = 2, . . . , n imply

that x2x
−1
j ∈ CH(a1) = 〈g〉, and hence x−1

2 ajx2 = x−1
j (xjx

−1
2 ajx2x

−1
j )xj = x−1

j ajxj = aj∗ for
j = 2, . . . , n; thus, x2 becomes a common conjugator.

So, we are reduced to the case where two elements of A, say a1 and a2, generate a noncyclic
group. In this case, by Proposition 2.8, there is a big enough computable m such that 〈am1 , am2 〉
is a free group of rank 2. Replacing a1, a2 by am1 , am2 and a1∗, a2∗ by am1∗, a

m
2∗, and multiplying

the computable constant by m, we may assume that 〈a1, a2〉 is free of rank 2.
By Theorem 4.5 (and taking the constant appropriately big), a1 and a2 admit a common

conjugator. So, conjugating the whole tuple a1∗, . . . , an∗ accordingly, we may assume that
a1∗ = a1 and a2∗ = a2. We will prove that aj∗ = aj for every j = 3, . . . n as well.

By Lemma 2.10 twice, there exists a big enough computable k > 2 such that the elements
a1a

k
2 and a2(a1a

k
2)

k are root-free (and form a new basis for 〈a1, a2〉). Replacing a1 by a1a
k
2 and

a1∗ by a1∗a
k
2∗, and a2 by a2(a1a

k
2)

k and a2∗ by a2∗(a1∗a
k
2∗)

k, and updating the constant, we may
assume that both a1 and a2 are root-free in H.

For every j > 3, let us apply Theorem 4.5 to the pairs (a1, aj) and (a1∗ = a1, aj∗); we obtain
xj ∈ CH(a1) = 〈a1〉 such that aj∗ = x−1

j ajxj. Analogously, playing with the pair of indices 2, j,

we get yj ∈ CH(a2) = 〈a2〉 such that aj∗ = y−1
j ajyj . In particular, xj = a

pj
1 and yj = a

qj
2 for

some integers pj, qj. Furthermore, xjy
−1
j ∈ CH(aj), that is a

pj
1 a

−qj
2 = a

rj
j for some rational rj .

Note that if pjqj = 0 then aj∗ = aj as we want.
Again by Lemma 2.10, there is a big enough computable k′ > 2 such that b1 = a1a

k′
2 and

b2 = a2(a1a
k′
2 )

k′ are again root-free in H. Arguing like in the previous paragraph with these new
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elements, we deduce a similar conclusion: for each j = 3, . . . , n, either aj∗ = aj, or b
p′j
1 b

−q′j
2 = a

r′j
j

for some nonzero integers p′j, q
′
j and some rational r′j .

Thus, for each j = 3, . . . , n, we either have (1) aj∗ = aj , or (2) a
pj
1 a

−qj
2 = a

rj
j and b

p′j
1 b

−q′j
2 = a

r′j
j

for some nonzero integers pj, qj, p
′
j , q

′
j and some rationals rj, r

′
j . But this last possibility would

imply that the elements a
pj
1 a

−qj
2 and b

p′j
1 b

−q′j
2 = (a1a

k′
2 )

p′j(a2(a1a
k′
2 )

k′)−q′j commute in the free
group 〈a1, a2〉, which is not the case, taking into account that pjqjp

′
jq

′
jk

′ 6= 0. Therefore,
aj∗ = aj for each j = 1, . . . , n and the proof is complete. ⊔⊓

6 A mixed version for Whitehead’s algorithm

Particularizing the main result of the paper to the case of finitely generated free groups, we will
obtain a mixed version of Whitehead’s algorithm.

Let us consider lists of elements in a finitely generated free group F , organized in n blocks:

u1,1, . . . , u1,m1
; . . . ; ui,1, . . . , ui,mi

; . . . ; un,1, . . . , un,mn .

The mixed Whitehead problem consists in finding an algorithm to decide whether, given two such
lists, there exists an automorphism of F sending the first list to the second up to conjugation,
but asking for a uniform conjugator in every block (and possibly different from those in other
blocks).

Note that in the case where each block consists of one element (i.e. mi = 1 for all i =
1, . . . , n), this is exactly asking whether there exists an automorphism of F sending the first list
of elements to the second one up to conjugacy, with no restriction for the conjugators. This
problem (we call it the Whitehead problem for F ) was already solved by Whitehead back in 1936
(see [18] or [9]).

On the other hand, if there is only one block (i.e. n = 1), the problem is equivalent to
ask whether there exists an automorphism of F sending the first list of elements exactly to the
second. This was solved in 1974 by McCool (see [10] or [9]).

As a corollary of Theorem 1.2, we deduce a solution to the mixed Whitehead problem.

Theorem 6.1 Let F be a finitely generated free group. Given two lists of words in F , ui,j
and vi,j , for i = 1, . . . , n and j = 1, . . . ,mi, it is algorithmically decidable whether there exists
ϕ ∈ Aut(F ) and elements zi ∈ F such that ϕ(ui,j) = z−1

i vi,jzi for every i = 1, . . . , n and
j = 1, . . . ,mi.

Proof. For every i = 1, . . . , n, we compute the constant Ci (depending only on
∑mi

j=1 |ui,j | and
the ambient rank) given in Theorem 1.2 for the tuples of words ui,1, . . . , ui,mi

and vi,1, . . . , vi,mi
.

By Theorem 1.2, an automorphism α ∈ Aut(F ) sends each W (ui,1, . . . , ui,mi
) to a conjugate of

W (vi,1, . . . , vi,mi
) (for every W of length less than or equal to Ci), if and only if α sends each

ui,j to z−1
i vi,jzi, j = 1, . . . ,mi, for some uniform conjugator zi.

Now, let us enlarge each block of u’s and v’s with all the words of the form W (ui,1, . . . , ui,mi
)

and W (vi,1, . . . , vi,mi
), respectively, where W runs over the set of all words in mi variables and

length less than or equal to Ci. Our problem is now equivalent to deciding whether there exists
an automorphism ϕ ∈ Aut(F ) sending W (ui,1, . . . , ui,mi

) to a conjugate of W (vi,1, . . . , vi,mi
) for

every i, and for every W of length less than or equal Ci. This is decidable by the classical version
of Whitehead’s algorithm. ⊔⊓

This proof shows that the following theorem is true.

Theorem 6.2 Let H be a torsion-free hyperbolic group. If the Whitehead problem for H is
solvable, then the mixed Whitehead problem for H is also solvable.
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