
GENERALIZATIONS OF CLAUSEN’S FORMULA
AND ALGEBRAIC TRANSFORMATIONS

OF CALABI–YAU DIFFERENTIAL EQUATIONS

GERT ALMKVIST, DUCO VAN STRATEN, AND WADIM ZUDILIN

Abstract. We provide certain unusual generalizations of Clausen’s and Orr’s
theorems for solutions of generalized hypergeometric equations of order 4 and 5.
As application, we present several examples of algebraic transformations of Calabi–
Yau differential equations.

Introduction

In our study of Picard–Fuchs differential equations of Calabi–Yau type [2], [3] we
discovered some curious relations between hypergeometric series

(1) mFm−1

(
a1, a2, . . . , am

b2, . . . , bm

∣∣∣∣ z

)
=

∞∑
n=0

(a1)n(a2)n · · · (am)n

(b2)n · · · (bm)n

zn

n!

and their natural generalizations. Although our original motivation is in the differ-
ential equations themselves, we are intrigued by seeing that many of our identities
can be extended to a more general form, which does not use all the properties of
their Calabi–Yau prototypes. Besides the very classical examples of such identities,
like Orr-type theorems in [14, Section 2.5], we have already indicated an example
related to a Calabi–Yau equation in [2, Proposition 6]. The main aim of the present
article is to systemize our findings and present algebraic transformations of certain
hypergeometric and related series in a general form. Specializations to Calabi–Yau
examples [2], [3] are discussed in some detail.

The paper is organized as follows. In Section 1 we review the notion of a Calabi–
Yau differential equation, while in Section 2 we recall some ‘standard’ relations
between Calabi–Yau differential equations of order 2 and 3, and of order 4 and 5;
these two sections may be regarded as an expanded introductory part. Section 3
is devoted to algebraic transformations of 2nd and 3rd order differential equations;
in Section 4 we discuss transformations of higher order equations with applications
to Calabi–Yau examples. In Section 5 we indicate a natural formal invariant of 4th
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order Calabi–Yau differential equations that can be used to verify whether two such
equations are related by an algebraic transformation. In Section 6 we discuss our
strategies to find and prove algebraic transformations for differential equations.

1. Calabi–Yau differential equations

Certain differential equations look better than others, at least arithmetically. To
illustrate this principle, consider the differential equation

(2)
(
θ2 − z(11θ2 + 11θ + 3)− z2(θ + 1)2

)
y = 0, where θ = z

d

dz
.

What is special about it? First of all, it has a unique analytic solution y0(z) = f(z)
with f(0) = 1; another solution may be given in the form y1(z) = f(z) log z + g(z)
with g(0) = 0. Secondly, the coefficients in the Taylor expansion f(z) =

∑∞
n=0 Anz

n

are integral, f(z) ∈ 1+zZ[[z]], which can be hardly seen from the defining recurrence

(3) (n + 1)2An+1 − (11n2 + 11n + 3)An − n2An−1 = 0 for n = 0, 1, . . . , A0 = 1

(cf. (1)), but follows from the explicit expression

(4) An =
n∑

k=0

(
n

k

)2(
n + k

n

)
, n = 0, 1, . . . ,

due to R. Apéry [5]; note that these numbers appear in Apéry’s proof of the irra-
tionality of ζ(2). Thirdly, the expansion q(z) = exp(y1(z)/y0(z)) = z exp(g(z)/f(z))
also has integral coefficients, q(z) ∈ zZ[[z]]. This follows from the fact that the func-
tional inverse z(q),

(5) z(q) = q
∞∏

n=1

(1− qn)5(n
5
),

where (n
5
) denotes the Legendre symbol, lies in qZ[[q]]. The formula in (5), due to

F. Beukers [7], shows that z(q) is a modular function with respect to the congruence
subgroup Γ1(5) of SL2(Z).

If the reader is not so much surprised by these integrality properties, then try to
find more such cases, replacing the differential operator in (2) by the more general
one

(6) θ2 − z(aθ2 + aθ + b) + cz2(θ + 1)2.

To ensure the required integrality one easily gets a, b, c ∈ Z, but for a generic choice
of the parameters already the second feature (y0(z) = f(z) ∈ 1+zZ[[z]]) fails ‘almost
always’. In fact, this problem was studied by F. Beukers [9] and D. Zagier [22]. The
exhaustive experimental search in [22] resulted in 14 (non-degenerate) examples of
the triplets (a, b, c) ∈ Z3 when both this and the third property (the integrality of
the corresponding expansion z(q)) happen; the latter follows from modular inter-
pretations of z(q).
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A natural extension of the above problem to 3rd order linear differential equations
is prompted by the other Apéry’s sequence used in his proof [5] of the irrationality
of ζ(3). One takes the family of differential operators

(7) θ3 − z(2θ + 1)(âθ2 + âθ + b̂) + ĉz2(θ + 1)3

and looks for the cases when the two solutions f(z) ∈ 1+zC[[z]] and f(z) log z+g(z)
with g(0) = 0 of the corresponding differential equation satisfy f(z) ∈ Z[[z]] and
exp(g(z)/f(z)) ∈ Z[[z]]. Apart from some degenerate cases, we have found in [2]

again 14 triplets (â, b̂, ĉ) ∈ Z3 meeting the integrality conditions; the second one
holds in all these cases as a modular bonus. Apéry’s example corresponds to the
case (â, b̂, ĉ) = (17, 5, 1).

How can one generalize the above problem of finding ‘arithmetically nice’ linear
differential equations (operators)? An approach we followed in [2], [3], at least up to
order 5, was not specifying the form of the operator, like in (6) and (7), but posing
the following:

(i) the differential equation is of Fuchsian type, that is, all its singular points
are regular; in addition, the local exponents at z = 0 are zero;

(ii) the unique analytic solution y0(z) = f(z) with f(0) = 1 at the origin have
integral coefficients, f(z) ∈ 1 + zZ[[z]]; and

(iii) the solution y1(z) = f(z) log z + g(z) with g(0) = 0 gives rise to the integral
expansion exp(y1(z)/y0(z)) ∈ zZ[[z]].

Requirement (i), known as the condition of maximally unipotent monodromy (MUM),
means that the corresponding differential operator written as a polynomial in vari-
able z with coefficients from C[[θ]] has constant term θm, where m is the order—
degree in θ; the local monodromy around 0 consists of a single Jordan block of
maximal size. Note that (i) guarantees the uniqueness of the above y0(z) and y1(z).
Condition (ii) can be usually relaxed to f(Cz) ∈ 1 + zZ[[z]] for some positive in-
teger C (without the scaling z 7→ Cz, many of the resulting formulas look ‘more
natural’).

In fact, in [2], [3] we posed on 4th (and 5th) order differential equations some extra
conditions as well: about the structure of the projective monodromy group (see the
‘Calabi–Yau’ or ‘self-duality’ condition (13) below) and about the integrality of a
related sequence of numbers, known as instanton numbers in the physics literature.
These arise as coefficients in the Lambert expansion of the so-called Yukawa cou-
pling, which we review in Section 5. However, it seems that in all examples these
additional conditions are satisfied automatically when (i)–(iii) hold.

Our experimental search [2], [3] resulted in more than 350 examples of such oper-
ators which we called differential operators of Calabi–Yau type, since some of these
examples can be identified with Picard–Fuchs differential equations for the periods
of 1-parameter families of Calabi–Yau manifolds. For an entry in our table from [3],
checking (i) is trivial, (ii) usually follows from an explicit form of the coefficients
of f(z) (when it is available), while (iii) can be verified in certain cases using some
of Dwork’s p-adic techniques. Substantial progress in this direction was obtained
recently by C. Krattenthaler and T. Rivoal [16]. According to standard conjectures
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(see, e.g., [4]) all our operators should be of geometric origin, meaning that they cor-
respond (as subquotients of the local systems) to factors of Picard–Fuchs equations
satisfied by period integrals for some family of varieties over the projective line.

Basic examples of Calabi–Yau differential equations are given by the general hy-
pergeometric differential equation

(8)

(
θ

m∏
j=2

(θ + bj − 1)− z

m∏
j=1

(θ + aj)

)
y = 0

of order m satisfied by the hypergeometric series (1). The equation (8) has (smallest
possible) degree 1 in z and condition (i) forces b2 = · · · = bm = 1 to hold. The latter
is the main reason for our identities below to involve the hypergeometric series with
this special form of the lower parameters.

2. Symmetric and antisymmetric squares

Given a 2nd order linear homogeneous differential equation

(9) y′′ + Py′ + Qy = 0, where ′ =
d

dz
,

and a pair of its two linearly independent solutions y0 = y0(z) and y1 = y1(z), one
can easily construct the 3rd order differential equation whose solutions are y2

0, y0y1,
and y2

1:

(10) y′′′ + 3Py′′ + (2P 2 + P ′ + 4Q)y′ + (4PQ + 2Q′)y = 0,

called the symmetric square of equation (9) (see [20, Chap. 14, Exercise 10]). Clearly,
equation (10) is independent of a choice of solutions y0, y1 of the equation (9). A
hypergeometric example of the relationship between solutions of (9) and (10) is
Clausen’s formula

(11) 2F1

(
a, b

a + b + 1
2

∣∣∣∣ z

)2

= 3F2

(
2a, 2b, a + b

a + b + 1
2
, 2a + 2b

∣∣∣∣ z

)
.

The situation changes drastically when one goes to linear homogeneous differen-
tial equations of order higher than 2. In principle, there is no difficulty in writing
formulas similar to (10) for the symmetric cubes, biquadratics, etc, but unfortu-
nately, as far as we know, this never results in some nontrivial identities for the
hypergeometric series (1).

If the coefficients of a 4th order linear differential equation

(12) y(4) + Py′′′ + Qy′′ + Ry′ + Sy = 0

satisfy the relation

(13) R =
1

2
PQ− 1

8
P 3 + Q′ − 3

4
PP ′ − 1

2
P ′′

then the operator is said to satisfy the Calabi–Yau condition [2]; it expresses the self-
duality of (12). If y0, y1, y2, y3 are linearly independent solutions, then condition (13)
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implies that the six functions

(14) wjk = W (yj, yk) = det

(
yj yk

y′j y′k

)
, 0 ≤ j < k ≤ 3,

are linearly dependent over C. These functions satisfy a 5th order linear differential
equation

(15) y(5) + P̃ y(4) + Q̃y′′′ + R̃y′′ + S̃y′ + T̃ y = 0,

independent of choice of solutions y0, y1, y2, y3 of (13) and called the anti-symmetric
square of (13) (see, for example, [2, Proposition 1]).

Proposition 1 ([1], [21]). Suppose that a 5th order equation (15) is the antisymmet-
ric square of a 4th order linear differential equation. Let U = U(z) be an arbitrary
function. Then, for any pair w0, w1 of solutions of (15), the function

(16) y = W (w0, w1)
1/2 · U

satisfies a 4th order equation (13) whose coefficients P , Q, R, and S are differential

polynomials in P̃ , Q̃, R̃, S̃, T̃ , and U . (The explicit expressions are given in [1].)

Following [1] we call the resulting 4th order equation (13) with the choice

(17) U = z5/2 · exp

{
−1

5

∫ z

P̃ (z) dz

}
the Yifan Yang pullback of equation (15), or the YY-pullback for short.

As an example, the YY-pullback of the equation

(18)
(
θ5 − z(θ + 1

2
)(θ + α)(θ + 1− α)(θ + β)(θ + 1− β)

)
y = 0,

satisfied by the hypergeometric function

(19) 5F4

(
1
2
, α, 1− α, β, 1− β
1, 1, 1, 1

∣∣∣∣ z

)
,

is given [1] by(
θ4 − z

(
2(θ + 1

2
)4 + 1

2
(θ + 1

2
)2(α(1− α) + β(1− β) + 3)(20)

− 1
4
α(1− α)β(1− β) + 1

8
α(1− α) + 1

8
β(1− β)

)
+ z2

(
θ + 1

2
+ 1

2
(α + β)

)(
θ + 1

2
+ 1

2
(α + 1− β)

)(
θ + 1

2
+ 1

2
(1− α + β)

)
×

(
θ + 1

2
+ 1

2
(1− α + 1− β)

))
y = 0.

As we will see in Theorems 2–7 below, many Calabi–Yau differential equations
related by algebraic transformations are Hadamard products of 2nd and 3rd order
Picard–Fuchs differential equations, with 0 a MUM point. Recall that the Hadamard

product of two series f(z) =
∑∞

n=0 Anz
n and f̂(z) =

∑∞
n=0 Ânz

n is defined by the

formula f(z) ∗ f̂(z) =
∑∞

n=0 AnÂnz
n. If f(z) and f̂(z) are the analytic solutions of

two differential equations Dy = 0 and D̂y = 0, respectively, then their Hadamard

product f(z) ∗ f̂(z) satisfies a differential equation D̃y = 0 (we pick the one of
minimal order), which we then call the Hadamard product of the two equations. The
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differential operator D̃ in this case is the Hadamard product of the corresponding

operators D and D̂. The Hadamard product is the analytic representation of the

multiplicative convolution. In particular, the singular points of the operator D̃

consist of the products of singular points of D and of D̂. The Hadamard product of
operators of geometric origin is again of geometric origin (see, e.g., [4]).

We will say that two (Calabi–Yau) differential equations or operators are equiva-
lent if they are related by an algebraic transformation. Note that algebraic trans-
formations preserve the order of differential equations with rational or algebraic
coefficients.

3. Apéry-like differential operators

To illustrate the above theorems and also to present some further algebraic trans-
formations, we will list 2nd and 3rd order Calabi–Yau equations keeping their names
used in [2], [3], and [15].

In writing down the series for analytic solutions of the Calabi–Yau differential
equations, one usually re-normalize the variable z 7→ Cz in order to make the series
expansions lying in 1 + zZ[[z]] (see condition (ii) in Section 1). Basic examples are

2F1-hypergeometric series satisfying 2nd order differential equations, and there are
exactly four such series having MUM at the origin (that is, satisfying condition (i)):

(21) 2F1

(
α, 1− α

1

∣∣∣∣ Cαz

)
=

∞∑
n=0

Anz
n ∈ 1 + zZ[[z]],

where

(22)
(A) α = 1

2
, C1/2 = 16 = 24, (B) α = 1

3
, C1/3 = 27 = 33,

(C) α = 1
4
, C1/4 = 64 = 26, (D) α = 1

6
, C1/6 = 432 = 24 · 33.

The corresponding differential operators are

(23) θ2 − Cαz(θ + α)(θ + 1− α),

and the integrality of the expansions in (21) follows from the explicit formulas

(24)

(A) An =

(
2n

n

)2

, (B) An =
(3n)!

n!3
,

(C) An =
(4n)!

n!2(2n)!
, (D) An =

(6n)!

n!(2n)!(3n)!
.

These four hypergeometric instances (A)–(D) are particular examples of the 2nd
order differential operators having the form (6); they correspond to the choice c = 0.
Besides the above hypergeometric cases, D. Zagier found in [22] four Legendrian and
six sporadic equations.

The Legendrian examples are obtained from the hypergeometric ones by a simple
rational transformation that interchanges 1/Cα and ∞):

(25)
1

1− Cαz
· 2F1

(
α, 1− α

1

∣∣∣∣ −Cαz

1− Cαz

)
∈ 1 + zZ[[z]],
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where

(26) (e) α = 1
2
, (h) α = 1

3
, (i) α = 1

4
, (j) α = 1

6
;

the corresponding differential operators

(27) θ2 − Cαz
(
θ2 + (θ + 1)2 − α(1− α)

)
+ C2

αz2(θ + 1)2

have the form (6) with c = a2/4.
These four hypergeometric operators and their Legendrian companions have a nice

geometric origin: they are Picard–Fuchs operators of the extremal rational elliptic
surfaces with three singular fibres [17], [12].

The sporadic examples of (6) (when c 6= 0 and c 6= a2/4 as in the hypergeomet-
ric and Legendrian cases, respectively) with the corresponding analytic solutions∑∞

n=0 Anz
n ∈ 1 + zZ[[z]] are as follows:

(28)

(a) a = 7, b = 2, c = −8, An =
∑

k

(
n

k

)3

;

(b) a = 11, b = 3, c = −1, An =
∑

k

(
n

k

)2(
n + k

n

)
;

(c) a = 10, b = 3, c = 9, An =
∑

k

(
n

k

)2(
2k

k

)
;

(d) a = 12, b = 4, c = 32, An =
∑

k

(
n

k

)(
2k

k

)(
2n− 2k

n− k

)
;

(f) a = 9, b = 3, c = 27, An =
∑

k

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3
;

(g) a = 17, b = 6, c = 72, An =
∑
k,l

(−1)k8n−k

(
n

k

)(
k

l

)3

.

These six sporadic operators also have a geometric origin; they arise as Picard–
Fuchs equations of the six families of elliptic curves with four reduced singular fibres
[6], [17], although the connection between the operators and rational elliptic surfaces
is not one-to-one (cf. [22]).

The story for the 3rd order differential operators of the form (7) looks very similar
to the one for order 2. We also have four hypergeometric examples

3F2

(
1
2
, α, 1− α

1, 1

∣∣∣∣ 4Cαz

)
∈ 1 + zZ[[z]],

four operators of Legendre type and six sporadic operators.
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The ‘Legendrian’ 3rd order examples originate from the series

∞∑
n=0

Anz
n =

∞∑
n=0

(Cαz)n

n∑
k=0

(
(α)k(1− α)n−k

k! (n− k)!

)2

(29)

=
1

1− Cαz
3F2

(
1
2
, α, 1− α
1, 1

∣∣∣∣ −4Cαz

(1− Cαz)2

)
=

1

1− Cαz
2F1

(
α, 1− α

1

∣∣∣∣ −Cαz

1− Cαz

)2

(we use [14, Section 2.5, Theorem IX] and the Euler transformation [14, p. 31,
Eq. (1.7.1.3)]), where

(30) (β) α = 1
2
, (ι) α = 1

3
, (ϑ) α = 1

4
, (κ) α = 1

6
;

the corresponding differential operators are

(31) θ3 − Cαz(2θ + 1)
(
θ(θ + 1) + α2 + (1− α)2

)
+ C2

αz2(θ + 1)3.

The sporadic 3rd order examples of (7) with analytic solutions
∑∞

n=0 Anz
n ∈

1 + zZ[[z]] are given in the following list:
(32)

(δ) â = 7, b̂ = 3, ĉ = 81, An =
∑

k

(−1)k3n−3k

(
n

3k

)(
n + k

n

)
(3k)!

k!3
;

(η) â = 11, b̂ = 5, ĉ = 125, An =
∑

k

(−1)k

(
n

k

)3((
4n− 5k − 1

3n

)
+

(
4n− 5k

3n

))
;

(α) â = 10, b̂ = 4, ĉ = 64, An =
∑

k

(
n

k

)2(
2k

k

)(
2n− 2k

n− k

)
;

(ε) â = 12, b̂ = 4, ĉ = 16, An =
∑

k

(
n

k

)2(
2k

n

)2

;

(ζ) â = 9, b̂ = 3, ĉ = −27, An =
∑
k,l

(
n

k

)2(
n

l

)(
k

l

)(
k + l

n

)
;

(γ) â = 17, b̂ = 5, ĉ = 1, An =
∑

k

(
n

k

)2(
n + k

n

)2

.

The following theorem gives a natural bijection between the differential operators
(6) and (7), in particular, between the above 14 pairs of arithmetic operators.

Theorem 1. Let the triplets (a, b, c) and (â, b̂, ĉ) be related by the formulas

(33) â = a, b̂ = a− 2b and ĉ = a2 − 4c.

For the differential operators D and D̂ given in (6) and (7), denote by f(z) and f̂(z)

the analytic solutions of Dy = 0 and D̂y = 0, respectively, with f(0) = f̂(0) = 1.
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Then

(34) f(z)2 =
1

1− az + cz2
f̂

(
−z

1− az + cz2

)
.

Proof. Writing down the general 3rd order differential equations for the functions
on the left- and right-hand sides of (34), respectively, is a routine exercise in Maple

to show that the transformation is the right one. �

In fact, there is a natural geometric construction that explains this bijection,
which we will sketch now. The 2nd order operators are Picard–Fuchs operators for
special families of elliptic curves Et, where t ∈ Y = P1. In each of the cases the
rational curve Y covers the modular curve X0(N) for some N , so that each elliptic
curve Et comes with a cyclic subgroup of order N . The quotient of Et by this cyclic
subgroup turns out to be Eι(t), where ι : Y → Y is an involution corresponding
to the Atkin–Lehner involution that acts as τ 7→ −1/(Nτ) on the elliptic modular
parameter. The product of the elliptic curves At := Et×Eι(t) can now be considered
as parametrized by the rational curve Z := Y/ι. The Picard–Fuchs equation for the
holomorphic 2-form for this family is of order 3 and thus can be seen as a ‘twisted’
square of the corresponding 2nd order operators. We refer to [19], [18] and [11] for
details about this construction.

The specific form of the transformation can be understood by noting that the
quotient map Y → Z is described by a degree 2 rational map f : P1 → P1. If
the pre-image of 0 consists of the points 0 and ∞, and the pre-image of ∞ of
the two other singular points of the 2nd order operator (6) (that is, of the roots of
1−az+cz2), then one is led to a map of the form z 7→ ez/(1−az+cz2). The singular
points of the 3rd order operator (7) consist of 0, ∞ and the roots of the equation
1 − 2âz + ĉz2 = 0, and these have to coincide with the image of the two critical
points of the map, which one computes to be the roots of e2 + 2aez + z2(a2 − 4c).

Hence one can take e = −1, â = a, and ĉ = a2− 4c. The factor in front of f̂ in (34)

is needed to get the local exponents agreed, but the value of b̂ remains undetermined
by these considerations.

4. Hadamard products and algebraic transformations

Recall that the YY-pullback of the differential equation (18) is (20). The latter
4th order equation has the unique analytic solution of the form

(35) F̃ (z) ∈ 1 + zC[[z]]

at the origin, since all exponents at z = 0 are zero (in other words, equation (20)

has MUM at the origin). Roughly speaking, we may call the function F̃ (z) an
antisymmetric square root of (19). The following theorem may be viewed as a
generalization of Clausen’s formula (11) in the special case a + b = 1

2
.

Theorem 2. Let

(36) fα(z) =
1

1− z
2F1

(
α, 1− α

1

∣∣∣∣ −z

1− z

)
=

∞∑
n=0

anz
n
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and

(37) fβ(z) =
1

1− z
2F1

(
β, 1− β

1

∣∣∣∣ −z

1− z

)
=

∞∑
n=0

bnz
n,

and let F (z) be the Hadamard product of the series fα(z) and fβ(z),

(38) F (z) =
∞∑

n=0

anbnz
n.

Then for the analytic solution (35) of the YY-pullback (20) of (18) we have

(39) F (z) =
1 + z/4

(1− z/4)2
F̃

(
−z/4

(1− z/4)2

)
,

equivalently,

(40) F̃ (z) =
2

1− z +
√

1− z
F

(
−z/2

1− z/2 +
√

1− z

)
.

Remark 1. The coefficients an in the expansion (36) may be given by the formulas

(41) an =
n∑

k=0

(−1)k

(
n

k

)
(α)k(1− α)k

k!2
=

n∑
k=0

(α)k

k!

(1− α)2
n−k

(n− k)!2
;

similar formulas, but with the replacement α by β are available for the coefficients
bn. The statement of Theorem 2 is a version of the experimental observation in [1,
Section 3.2]. Recalling the relationship between solutions of (18) and (20) we can
write our final formula (40) as follows (reminding a little of Clausen’s original for-
mula (11)):

∞∑
n=0

zn

n∑
k=0

(1
2
)k(

1
2
)n−k(α)k(α)n−k(1− α)k(1− α)n−k(β)k(β)n−k(1− β)k(1− β)n−k

k!5(n− k)!5

×
(

1 + (2k − n)
k−1∑
j=0

(
1

1
2

+ j
+

1

α + j
+

1

1− α + j
+

1

β + j
+

1

1− β + j

))

=
4(1− z)

(1− z +
√

1− z)2

( ∞∑
n=0

(
−z/2

1− z/2 +
√

1− z

)n

×
n∑

j=0

(−1)j

(
n

j

)
(α)j(1− α)j

j!2
·

n∑
k=0

(−1)k

(
n

k

)
(β)k(1− β)k

k!2

)2

.

Proof of Theorem 2. The sequence (41) satisfies the recursion

(42) (n + 1)2an+1 −
(
n2 + (n + 1)2 − α(1− α)

)
an + n2an−1 = 0,

and a similar formula is valid for the sequence bn. Taking the Hadamard product
anbn in (38) as described in [2, Section 7] gives a 4th order recursion (which is too
plain to be stated here). The corresponding differential operator L annihilating
the series (38) is of order 6 and is factorable, L = L1L2, where L1 is of order 2.
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Computing L1 and performing leftdivision (L , L1, [d/dz, z]) in Maple, we find
L2 which can be written in the form

L2 = θ4 − z(2θ4 + 8θ3 − 2(s− 4)θ2 − 2(s− 2)θ + p− s + 1)

− z2(θ4 − 12θ3 − 26θ2 + 4(s− 5)θ + 4p− s2 + 4s− 7)

+ z3(4θ4 + 8θ3 − 4(s + 3)θ2 − 4(s + 4)θ − 6p + 2s2 + 2s− 8)

− z4(θ4 + 16θ3 + 16θ2 − 4(s− 2)θ + 4p− s2)

− z5(2θ4 − 2(s + 2)θ2 − 2(s + 2)θ + p− s− 1) + z6(θ + 1)4,

where s = α(1− α) + β(1− β) and p = α(1− α)β(1− β). Then we finish the proof
by performing the transformation

z =
−4Z

(1− Z)2
, y(z) =

(1− Z)2

2(1 + Z)
Y (Z),

which transforms the equation for F̃ (z) to L2Y = 0. (Some precaution is neces-
sary, since Maple does not cancel common factors in the coefficients of the resulting
differential equation.) This equation has the unique analytic solution at the origin
and both expansions in (40) lie in 1 + zC[[z]]. �

In the cases α, β ∈ {1
2
, 1

3
, 1

4
, 1

6
}, Theorem 2 provides the equivalences for the YY-

pullbacks of 5th order Calabi–Yau hypergeometric differential equations and the 4th
order Hadamard products of Legendrian cases (25)–(27).

Our next family of transformations concerns with the series

gα(z) = 2F1

(
α, α

1

∣∣∣∣ z

)
· 2F1

(
1− α, 1− α

1

∣∣∣∣ z

)
(43)

=
1

1− z
3F2

(
1
2
, α, 1− α
1, 1

∣∣∣∣ −4z

(1− z)2

)
;

the particular cases correspond to the Legendrian 3rd order examples from Section 3.
Writing gα(z) =

∑∞
n=0 anz

n and using the first representation in (43) one finds that

(44) an =
n∑

k=0

(
(α)k(1− α)n−k

k! (n− k)!

)2

,

and this sequence satisfies the recursion

(45) (n + 1)3an+1 − (2n + 1)
(
n(n + 1) + α2 + (1− α)2

)
an + n3an−1 = 0.

Applying twice the Euler transformation [14, p. 31, Eq. (1.7.1.3)] to the first expres-
sion in (43) gives one a way to express gα(z) as the square:

(46) gα(z) =
1

1− z
2F1

(
α, 1− α

1

∣∣∣∣ −z

1− z

)2

.
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Theorem 3. Let F (z) be the Hadamard product of 2F1

(
α, 1− α

1

∣∣∣∣ z

)
and fβ(z)

in (37), and let G(z) be the Hadamard product of 2F1

(
β, 1− β

1

∣∣∣∣ z

)
and gα(z)

in (43), (46). Let G̃(z) ∈ 1 + zC[[z]] be the analytic solution of the YY-pullback(
θ4 − z

(
4(θ + 1

2
)4 + (4− 2α(1− α) + β(1− β)(θ + 1

2
)2 + 1

8
(47)

+ (α(1− α)− 1
4
)(β(1− β)− 1

2
)
)

+ z2
(
6(θ + 1)4 +

(
15
2
− 4α(1− α) + 3β(1− β)

)
(θ + 1)2 + 3

4

+ α(1− α)β(1− β) + α2(1− α)2 − α(1− α)
)

− z3(θ + 3
2
)2

(
4(θ + 3

2
)2 + 3− 2α(1− α)− 3β(1− β)

)
+ z4(θ + 3

2
)(θ + 5

2
)(θ + β + 3

2
)(θ − β + 5

2
)
)
y = 0

of the 5th order linear differential equation satisfied by G(z). Then

(48) F (z) = G̃

(
−z

1− z

)
and G̃(z) = F

(
−z

1− z

)
.

Proof. A routine in the spirit of the proof of Theorem 2. �

In [23] we consider a quadratic transformation of a 5F4-series with a particular
instance

(49) 5F4

(
1
2
, 1

2
, 1

2
, 1

2
, 1

2
1, 1, 1, 1

∣∣∣∣ z

)
=

1

(1− z)1/2

∞∑
n=0

(
−4z

(1− z)2

)n (1
4
)n(3

4
)n

n!2
an,

where

(50) an =
n∑

k=0

(1
2
)3
k

k!3
(1

2
)n−k

(n− k)!
=

n∑
k=0

(
(1

4
)k(

3
4
)n−k

k!(n− k)!

)2

are coefficients in the power expansion of g1/4(z) in (43).
The series on the left-hand side in (49) is the special case α = β = 1/2 of (19),

and Theorem 2 gives an example of quadratic transformation of the corresponding
YY-pullback (20). Our next theorem gives another quadratic transformation for the
series F (z) from (38) in this case.

Theorem 4. Let f(z) = f1/2(z) and f̂(z) = f1/4(z), where fα(z) is defined in (36),
and let F (z) be the Hadamard square of the series f(z),

(51) F (z) =
∞∑

n=0

zn

( n∑
k=0

(−1)k

(
n

k

)
(1

2
)2
k

k!2

)2

,

and F̂ (z) the Hadamard product of 2F1

(
1
4
, 3

4
1

∣∣∣∣ z

)
and f̂(z),

(52) F̂ (z) =
∞∑

n=0

zn (1
4
)n(3

4
)n

n!2

n∑
k=0

(−1)k

(
n

k

)
(1

4
)k(

3
4
)k

k!2
.



GENERALIZATIONS OF CLAUSEN’S FORMULA 13

Then

(53) F (z) =
1√

1− 6z + z2
F̂

(
−16z(1− z)2

(1− 6z + z2)2

)
.

Proof. A routine; cf. Section 6 below. �

Our next result refers to a generic set of the (complex) parameters α, a, b, and c,

while the three additional parameters â, b̂ and ĉ are defined in accordance with (33).
The Hadamard product of the differential operators θ2− z(θ + α)(θ + 1−α) (which
is the un-normalized version of (23)) and (7) is

θ5 − z(2θ + 1)(θ + α)(θ + 1− α)(âθ2 + âθ + b̂)(54)

+ ĉz2(θ + 1)(θ + α)(θ + 1− α)(θ + 1 + α)(θ + 2− α);

its 4th order YY-pullback reads

D = θ4 − z
(
4â

(
θ + 1

2

)4
+

(
(p + 4)â− 2b̂

)(
θ + 1

2

)2
+ 1

4
(1− p)â− 1

2
(1− 2p)b̂

)
(55)

+ z2
(
(6â2 − 8ĉ)(θ + 1)4 +

(
3
2
(5 + 2p)â2 − 4âb̂− 2(13 + 2p)ĉ

)
(θ + 1)2

+ 3
4
â2 − (1− p)âb̂ + b̂2 − (2 + 2p− p2)ĉ

)
− (â2 − 4ĉ)z3

(
θ + 3

2

)2(
4â

(
θ + 3

2

)2
+ 3(1 + p)â− 2b̂

)
+ (â2 − 4ĉ)2z4

(
θ + 3

2

)(
θ + 5

2

)(
θ + 3

2
+ α

)(
θ + 5

2
− α

)
,

where p = α(1− α).

Theorem 5. Let F̂ (z) ∈ 1 + zC[[z]] be the analytic solution of the differential
equation Dy = 0 with D defined in (55), and let F (z) ∈ 1+zC[[z]] be the Hadamard
product of

fα(z) =
1

1− z
· 2F1

(
α, 1− α

1

∣∣∣∣ −z

1− z

)
and the analytic solution of the differential equation with differential operator (6).
Then

(56) F (z) =
1− cz2

(1− az + cz2)3/2
F̂

(
−z

1− az + cz2

)
.

Proof. As before, the proof is just an extensive check using Maple; already the
differential equation for the Hadamard product F (z) is too spacious to be given
here. �

We remark that Theorem 1 in Section 3 may be regarded as a limiting case α → 0
of Theorem 5.

Note that Theorems 2 and 3 are special cases of Theorem 5, but in the former
cases we can explicitly write down the Hadamard products involved, through hy-
pergeometric series. Theorem 5 provides us with equivalences relating the sporadic
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cases (28) and (32), namely, it gives us the following table of 24 equivalences:

(A) (B) (C) (D)
(δ) (e)∗(a) (h)∗(a) (i)∗(a) (j)∗(a)
(η) (e)∗(b) (h)∗(b) (i)∗(b) (j)∗(b)
(α) (e)∗(c) (h)∗(c) (i)∗(c) (j)∗(c)
(ε) (e)∗(d) (h)∗(d) (i)∗(d) (j)∗(d)
(ζ) (e)∗(f) (h)∗(f) (i)∗(f) (j)∗(f)
(γ) (e)∗(g) (h)∗(g) (i)∗(g) (j)∗(g)

Theorem 2 gives in a nice way the equivalence of the YY-pullbacks of the 5th
order hypergeometric on the one side and Hadamard products of two 2nd order
Legendrian cases on the other side, while Theorem 3 provides the equivalence of
(X)∗(x) and the YY-pullback of (X)∗(ξ), where (X) is one of the hypergeometric
cases (21), (22), (x) is one of the 2nd order Legendrian equations (25), (26) and
(ξ) is the corresponding 3rd order Legendrian equation (30), (31).

We already established the algebraic connection for the YY-pullback of the left-
hand side in (49) and between (e)∗(e) (Theorem 2); in (49) we have the equivalence
implying, in particular, the equivalence of the YY-pullback of (C)∗(ϑ) and of (e)∗(e).
Finally, the equivalence of the YY-pullback of (C)∗(ϑ) and of (C)∗(i) follows from
Theorem 3; this implies the equivalence of (e)∗(e) and (C)∗(i) which is also the
subject of Theorem 4.

We now illustrate Theorem 5 by an explicit example of an algebraic transformation
relating two Calabi–Yau equations.

Example 1. Let us write the algebraic transformation for the equivalence of (the
YY-pullback of) (C)∗(γ) and (i)∗(g).

We have the following solutions of the 5th order equation for (C)∗(γ):

w0(z) =
∞∑

n=0

zn (4n)!

n!2(2n)!

n∑
k=0

(
n

k

)2(
n + k

n

)2

,

w1(z) = w0(z) log z +
∞∑

n=1

zn (4n)!

n!2(2n)!

n∑
k=0

(
n

k

)2(
n + k

n

)2

× (4H4n − 2H2n − 2Hn − 2Hn−k + 2Hn+k),

with the YY-pullback

(57) F̂ (z) = (1− 2176z + 4096z2)−1/2
(
w0(z) · θw1(z)− θw0(z) · w1(z)

)1/2
,

where we used the data Cα = 64 and â = 17, ĉ = 1 for cases (C) and (γ).
For (i) and (g) we have Cα = 64 and a = 17, c = 72, and the analytic solution is

(58) F (z) =
∞∑

n=0

zn
∑

0≤j≤i≤n

(−1)i8n−i

(
n

i

)(
i

j

)3 n∑
k=0

(−1)k

(
n

k

)
(4k)!

k!2(2k)!
.

Then Theorem 5 gives us the transformation

(59) F (z) =
1− 294912z2

(1− 1088z + 294912z2)3/2
· F̂

(
−z

1− 1088z + 294912z2

)
,
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which we can write in a way looking like Clausen’s formula:

( ∞∑
n=0

zn
∑

0≤j≤i≤n

(−1)i8n−i

(
n

i

)(
i

j

)3 n∑
k=0

(−1)k

(
n

k

)
(4k)!

k!2(2k)!

)2

(60)

=
1

1− 1088z + 294912z2

∞∑
n=0

(
−z

1− 1088z + 294912z2

)n

×
n∑

k=0

(4k)!

k!2(2k)!

(4n− 4k)!

(n− k)!2(2n− 2k)!

n−k∑
j=0

(
n− k

j

)2(
n− k + j

n− k

)2

×
k∑

l=0

(
k

l

)2(
k + l

k

)2(
1 + (2k − n)(4H4k − 2H2k − 2Hk − 2Hk−l + 2Hk+l)

)
.

Theorem 6. Let F (z) be the Hadamard square of the series fα(z) given in (36),

while F̃ (z) the Hadamard product of (1− 4z)−1/2 =
∑∞

n=0

(
2n
n

)
zn and gα(z) in (43),

(46). Then

(61) F (z) =
1

1 + z
F̃

(
z

(1 + z)2

)
.

As before, Calabi–Yau applications of Theorem 6 correspond to the choices α ∈
{1

2
, 1

3
, 1

4
, 1

6
}.

Finally, we present more algebraic transformations of 4th order Calabi–Yau dif-
ferential equations which are not covered by the above theorems but look quite nice
(to our taste).

Theorem 7. The following identities are valid:

∞∑
n=0

(
2n

n

) ∑
k,l

(−1)k+l

(
n

k

)(
n

l

)(
k + l

k

)3

zn

(62)

=
1√

1− 4z

∞∑
n=0

(
2n

n

) n∑
k=0

(
n

k

)2(
n + k

n

)(
3k

n

)(
z

1− 4z

)n

,

∞∑
n=0

(
2n

n

) n∑
k=0

(
n

k

)2(
2k

k

)(
2n− 2k

n− k

)
zn

(63)

=
1√

1− 32z

∞∑
n=0

(
2n

n

) ∑
k,l

(−1)n−k23(n−k)

(
n

k

)(
k

l

)2(
2l

l

)(
2k − 2l

k − l

)(
z

1− 32z

)n

,



16 GERT ALMKVIST, DUCO VAN STRATEN, AND WADIM ZUDILIN

∞∑
n=0

(
2n

n

) ∑
k,l

(
n

k

)(
n

l

)(
k

l

)(
k + l

k

)(
2l

l

)(
2k

k − l

)
zn

(64)

=
1√

1− 4z

∞∑
n=0

(
2n

n

)2 n∑
k=0

(
n

k

)2(
2k

k

)(
z

1− 4z

)n

,

∞∑
n=0

( n∑
k=0

(
n

k

)2(
n + k

n

))2

zn

(65)

=
1

1 + z

∞∑
n=0

(
2n

n

) ∑
k,l

(
n

k

)(
n

l

)(
k + l

k

)(
2l

l

)(
l

k − l

)(
z

(1 + z)2

)n

,

∞∑
n=0

( n∑
k=0

(
n

k

)(
2k

k

)(
2n− 2k

n− k

))2

zn

(66)

=
1

1− 32z

∞∑
n=0

(
2n

n

) [n/2]∑
k=0

2n−2k

(
n

k

)(
n− k

k

)(
2k

k

)(
2n− 2k

n− k

)(
z

(1− 32z)2

)n

,

∞∑
n=0

([n/3]∑
k=0

(−1)k3n−3k

(
n

3k

)
(3k)!

k!3

)2

zn

(67)

=
1

1− 27z

∞∑
n=0

[n/3]∑
k=0

(−1)n−k

((
2n− 3k − 1

n

)
+

(
2n− 3k

n

))
× (3k)!

k!3
(3n− 3k)!

(n− k)!3

(
z

(1− 27z)2

)n

.

5. The invariance of Yukawa couplings

As we have already seen, algebraic transformations transform Calabi–Yau equa-
tions into similar ones, but looking sometimes quite different. Such transformations,
however preserve (in a certain precise sense, which we describe below) the Yukawa
coupling of the corresponding differential equations. Recall that the Yukawa cou-
pling K can be defined, up to a normalization constant factor, through the quotient
t(z) = y1(z)/y0(z) ∈ log z + zQ[[z]] of the two solutions y0(z) ∈ 1+ zZ[[z]] and y1(z)
of a Calabi–Yau equation (12) (see Section 1) as

(68) K =
1

y2
0 · (dt/dz)3

exp

(
−1

2

∫ z

P (z) dz

)
,

and this function is often viewed as a function of q = et, since its q-expansion in the
case of a degenerating family of Calabi–Yau threefolds is supposed to encode the
counting of rational curves of various degrees on a mirror manifold.
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On the other hand, we did find several examples of Calabi–Yau equations whose
Yukawa couplings coincide, although it is not obvious to see that the equations
themselves are indeed equivalent in the sense that they are related by an algebraic
transformation. At this moment of writing, we have discovered and proved algebraic
transformations for all pairs of Calabi–Yau equations with equal Yukawa couplings
tabulated in [3] (see also the diploma thesis of M. Bogner [10]). Most of these
transformations (at least those that follow a general pattern) were given in Section 4
and some of them are immediate consequences of already proved Theorems 2–7,
while Section 6 describes some of our strategies for finding the transformations.

It is a routine to write down the 4th order linear differential equation

(69)
d4Y

dx4
+ P̂

d3Y

dx3
+ Q̂

d2Y

dx2
+ R̂

dY

dx
+ ŜY = 0

for the function Y (x) = v(x) · y
(
z(x)

)
. For example, we have

(70) P̂ = −6
z′′

z′
+ z′P + 4

v′

v
,

where the prime stands for the x-derivative.
Clearly, the new equation (69) does not necessarily have rational coefficients but

it does after posing certain conditions on v(x) and z(x) (for instance, assuming their
rationality). Continuing the computation in (70) we obtain

Proposition 2 (cf. [13]). Denote

(71) Uz(P, Q) = Q− 3

2

dP

dz
− 3

8
P 2.

Then

(72) Ux(P̂ , Q̂)− (z′)2Uz(P, Q) = 5{z, x},

where

(73) {z, x} =
z′′′

z′
− 3

2

(
z′′

z′

)2

is the Schwarzian derivative.

Our next statement shows the invariance of the Yukawa coupling.

Proposition 3. Let Y (x) = v(x) · y
(
z(x)

)
, where z(x) = x + O(x2) and v(x) =

1 + O(x). Then the Yukawa couplings defined in accordance with (68) coincide:

(74) KY (x) = Ky(z).

Proof. Clearly, it is enough to treat the case v(x) = 1. We have the formula (68)
implying

K =
y4

0

det

(
y0 y1

dy0/dz dy1/dz

)3 exp

(
−1

2

∫ z

P (z) dz

)
.
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Furthermore,

dY0

dx
= z′

dy0

dz
,

dY1

dx
= z′

dy1

dz
, and P̃ = −6

z′′

z′
+ z′P,

hence

KY (x) =
Y 4

0

det

(
Y0 Y1

dY0/dx dY1/dx

)3 exp

(
−1

2

∫ x

P̃ (x) dx

)

=
y0(z)4

det

(
y0(z) y1(z)

z′dy0/dz z′dy1/dz

)3 exp

(
−1

2

∫ x(
−6

z′′

z′
+ z′P

(
z(x)

))
dx

)

=
y0(z)4

det

(
y0(z) y1(z)

dy0/dz dy1/dz

)3 exp

(
−1

2

∫ z

P (z) dz

)

= Ky(z).

Here we used z′(0) = 1 when we integrated

3

∫ x

0

z′′

z′
dx = 3 log z′(x)− 3 log z′(0).

�

From the transformation formulas for passing from (12) to (69) through the map
Y (x) = v(x) · y

(
z(x)

)
, we find that the Calabi–Yau condition (13) is preserved.

This is very hard to see by direct computation, since one gets an enormous 4th
order non-linear differential equation for z(x).

Conjecture. If Yukawa couplings coincide, then there exists an algebraic transfor-
mation between corresponding Calabi–Yau differential equations.

In fact, Proposition 3 states that the Yukawa coupling defined by (68) is preserved
by any formal coordinate transformation z(x) = x + · · · . However, the requirement
for the transformed equation to be of Calabi–Yau type (in particular, to have rational
functions as coefficients) should lead to the algebraicity of such a transformation.

6. Proof of Theorem 4: Guessing algebraic transformations

This section does not only provide a proof of Theorem 4,— we illustrate as well our
strategies to guess algebraic transformations for Calabi–Yau differential equations on
the example of Theorem 4; more precisely, we show how to ‘discover’ the equivalence
of (e)∗(e) and (C)∗(i). We distinguish three methods, two analytic and one algebraic.
They also provide proofs of the discovered algebraic transformation as soon as the
fact of its existence is established.

First of all we indicate a way to recognize in Maple whether a function R(z), given
by its Taylor expansion at the origin, is rational or algebraic and, if it is, to find a

closed expression. For this, one applies seriestodiffeq(R, R̂(z)) (with gfun) and

then dsolve to R̂(z).
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6.1. Analytic guessing. Compute the z-expansions (30 terms, say) of the mirror
maps q̃ and q, then write

q̃(z) = ±q(±z + a2z
2 + · · ·+ a30z

30 + · · · )
(the signs belong together); expand the latter equality up to z31 to get a system
of linear equations for unknowns a2, . . . , a30. It takes Maple a few minutes to solve
the system; this finds the inner transformation. Then compute the power series
expansion of the outer transformation multiple and use gfun.

6.2. Schwarzian relation. In passing from (e)∗(e) to (C)∗(i), we can use the
‘magic Schwarzian relation’ (Proposition 2) for z(x) in the form z(x) = −x + · · · .
Then we find recursively the expansion for z̃(x) = −256z(x/256):

z̃(x) = x + 10x2 + 83x3 + 628x4 + 4501x5 + 31134x6 + 210023x7 + · · · ,

which Maple easily recognizes as expansion of a rational function:

z̃(x) =
x(1− x)2

(1− 6x + x2)2
.

Furthermore, denoting by Y (z), Ŷ (z) ∈ 1 + zZ[[z]] the analytic solutions of (e)∗(e)
and (C)∗(i), respectively, it remains to let Maple identify the quotient of

Y (z) and Ŷ

(
−z(1− 256z)2

(1− 6 · 256z + 2562z2)2

)
with the algebraic function (1− 6 · 256z + 2562z2)−1/2.

6.3. Local monodromy considerations. The operator for the Hadamard product
(e)∗(e) is

D = θ4 − 16z(16θ4 + 128θ3 + 112θ2 + 48θ + 9) + · · · − 240z5(θ + 1)4

The discriminant is (1+256z)2(1−256z)3 but the point z = −1/256 turns out to be
an apparent singularity. The point z = 1/256 is also a MUM point and a calculation
shows that

K(q)z=1/256 = K(q2)z=0 = K(q2)z=∞.

Thus, the operator D has three MUM points and no other singularities.
The operator corresponding to the Hadamard product (C)∗(i) is

θ4 − 16z(4θ + 1)(4θ + 3)(32θ2 + 32θ + 13) + 216z2(4θ + 1)(4θ + 3)(4θ + 5)(4θ + 7),

an operator with discriminant (1 − 4096z)2. The exponents at z = 1/4096 are
0, 1/4, 3/4, 1; at z = ∞ they are 1/4, 3/4, 5/4, 7/4, hence these points have local
monodromy of order 4. All these facts are easily checked with Maple using formal

sol (within DEtools). If we try to think of (e)∗(e) as a pullback of (C)∗(i) via
a rational map R(z) = P (z)/Q(z), we see that it requires to have the following
properties: R−1(0) = {0, 1/256,∞} and the ramification over z = 1/256 is of order 2.
Therefore, the degree of R(z) is four. We also require R−1(1/4096) = {−1/256} as
we want the ramification index at z = 1/256 to be 4. But then we cannot require
the same ramification index over z = ∞, hence we assume that R−1(∞) consists of
two points, each with ramification index 2. The pullback then has exponents 1/2 at
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these points, and we have to divide by the square root of the polynomial defining
these points. Combining the information we see that

R(z) = c
z(1− 256z)2

q(z)2
, q(z) = 1 + az + bz2,

where a, b and c are certain constants. We now determine the constants by requiring
that R(−1/256) = 1/4096 and

R

(
x− 1

256

)
=

1

4096
+ 0 · x + 0 · x2 + 0 · x3 + · · · .

We find

a = −1536, b = 65536, c = −1.

If Ŷ (z) is the solution of (C)∗(i), then the function Ŷ (R(z)) has the square-root
behavior at the pre-image of z = ∞, that is, at the roots of q(z) = 1 − 1536z +
65536z2, hence

Y (z) =
1√
q(z)

Ŷ

(
−z(1− 256z)2

q(z)2

)
has the same local properties as the solution of (e)∗(e) and, in fact, coincides with
it.

The same method can be used to find the transformation in the other cases. For
example, from the fact that the Hadamard product multiplies the singular points
of the operators, it follows without further calculation that the operators (54) and
(55) have 0, ∞ and the roots of 1 − 2âz + ĉz2 as singularities. The Hadamard
product of fα(z) and operator (6) has its singularities at 0, ∞ and the roots of
1 − az + cz2. A possible transformation of degree two will have to map these
singular points in exactly the same way as in Theorem 1, hence we are again led to
consider z 7→ −z/(1− az + cz2). In this case, the prefactor can also be determined
by looking at the local exponents.

7. Concluding remarks

It is definitely not our goal here to stress on consequences of our theorems, since
we feel that the transformations, and even their existence, are beautiful by them-
selves. Our results provide (albeit rather indirect) geometric interpretations of sev-
eral (YY-)pullbacks from the table in [3]; before, such pullbacks were of geometric
origin only conjecturally, and no relation to Calabi–Yau geometry was known. An-
other application of our transformation theorems, having a more arithmetic flavor, is
the integrality of the analytic solutions of the pullbacks (condition (ii) of Section 1),
as well as the integrality of the corresponding mirror maps (condition (iii)) when
the results in [16] are applicable. There are many aspects that can be discussed
elsewhere.

Acknowledgments. We thank Fernando Rodŕıguez Villegas and Don Zagier for
pointing out the way to make our Theorem 5 as general as it is now.
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