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Groupoid cocycles and K-theory
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(Communicated by Siegfried Echterhoff)

Abstract. Let c : G → R be a cocycle on a locally compact Hausdorff groupoid G with Haar
system, and H the subgroupoid ker c ⊂ G. Under some mild conditions (satisfied by e.g.
all integral cocycles on an étale groupoid), c gives rise to an unbounded odd R-equivariant
bimodule (E , D) for the pair of C∗-algebras (C∗(G), C∗(H)). If the cocycle comes from

a continuous quasi-invariant measure on the unit space G(0), the corresponding element
[(E , D)] in KK1(C∗(G), C∗(H)) gives rise to an index map K1(C∗(G)) → C.

Introduction

Groupoid C∗-algebras [23] form a rich class of C∗-algebras, including group
C∗-algebras, crossed products, graph, Cuntz- and Cuntz-Krieger algebras, and
the C∗-algebras considered in foliation theory. The (now classical) Gel’fand-
Naimark theorem tells us that C∗-algebras can be viewed as noncommutative
locally compact Hausdorff topological spaces. Groupoids can be viewed as an
intermediate structure, allowing for a topological description of noncommuta-
tive C∗-algebras.

A generalization of manifolds to the realm of operator algebras, is Connes’
theory of spectral triples [6]. These are the unbounded cycles for K-homology,
and their bivariant version [3] can be used to give a description of Kasparov’s
KK-theory [11]. An unbounded KK-cycle (E , D) for a pair of separable C∗-
algebras consists of a C∗-module E over B, which is also a left module over
A, and an unbounded regular operator D with compact resolvent (in the C∗-
module sense). Moreover, the subalgebra A ⊂ A of elements for which the
commutator [D, a] extends to an endomorphism of E is required to be dense
in A.

In this paper we construct odd equivariant unbounded cycles for groupoid
C∗-algebras, coming from a continuous 1-cocycle c : G → R, satisfying some
mild technical conditions. In case the groupoid is étale, and the image of the
cocycle is a discrete subgroup of R, these conditions are automatically satisfied.
This provides us with a lot of examples, including all Cuntz-Krieger algebras
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and crossed products of a commutative algebra by Z. In particular, we obtain
the noncommutative torus as a “fibration” over the circle (Section 3.23).

Renault [23] has shown that continuous 1-cocycles give rise to a 1-parameter
group of automorphisms of C∗(G). We consider the generator D of this group,
viewed as an operator in the C∗-module completion of Cc(G) overCc(H), where
the closed subgroupoid H = ker c. This gives rise to an odd R-equivariant
unbounded bimodule (E , D) for the pair of C∗-algebras (C∗(G), C∗(H)).

The appearance of the auxiliary C∗-algebra C∗(H) might seem undesirable
at first, when ones purpose is to study C∗(G). In many cases of interest, e.g.
when the cocycle comes from a quasi invariant measure on the unit space G0 ⊂
G, the algebra C∗(H) carries a canonical trace τ , inducing a homomorphism

τ∗ : K0(C
∗(H)) → C.

Composing this with the homomorphism

K1(C
∗(G))

⊗[D]
−−−→ K0(C

∗(H)),

coming from the Kasparov product with the above mentioned cycle, yields and
index map K1(C

∗(G)) → C.
We will also relate our work to a construction of KK-cycles from circle

actions in [4], by showing that the technical condition appearing there is au-
tomatically satisfied when the circle action comes from a cocycle.

In order to make the paper readable for the nonspecialist, the first part of the
paper is devoted to a review of the necessary concepts concerning unbounded
selfadjoint operators on C∗-modules, as well as those from the theory of locally
compact Hausdorff groupoids, their actions, and their C∗-algebras.

1. KK-theory via unbounded operators

Kasparovs KK-theory [11] is a central tool in operator K-theory. It as-
sociates a Z/2-graded group KK∗(A,B) to any pair of separable C∗-algebras
(A,B).

1.1. Equivariant C
∗-modules. The central objects one deals with in KK-

theory are C∗-modules. A basic reference for these objects is [16]. Recall that
the strict topology on the endomorphisms End(V ) of a normed linear space V
is given by pointwise norm convergence, i.e. φn → φ in End(V ) if and only if

‖φn(v)− φ(v)‖ → 0

for all v ∈ V . We will always consider Aut(B), the automorphisms of a C∗-
algebra B, with this topology.

Definition 1.2. Let G be a second countable locally compact group. A C∗-
algebra B is a G-algebra if there is a continuous homomorphism G→ Aut(B).
A right C∗-B-module is a complex vector space E which is also a right B-
module, and a bilinear pairing

E ×E → B

(e1, e2) 7→ 〈e1, e2〉,
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such that

• 〈e1, e2〉 = 〈e2, e1〉
∗,

• 〈e1, e2b〉 = 〈e1, e2〉b,
• 〈e, e〉 ≥ 0 and 〈e, e〉 = 0 ⇔ e = 0,
• E is complete in the norm ‖e‖2 := ‖〈e, e〉‖.

If B is a G-algebra, such E is a G-module if it comes equipped with a strictly
continuous G-action satisfying

• g(eb) = (ge)gb
• 〈ge1, ge2〉 = g〈e1, e2〉.

We use the notation E ⇌ B to indicate this structure.

It turns out that a B-linear endomorphism of a C∗-module E ⇌ B does
not always admit an adjoint. However, requiring the existence of an adjoint is
enough to obtain a number of other desirable properties. Let

End∗B(E) := {T : E → E | ∃ T ∗ : E → E , 〈Te1, e2〉 = 〈e1, T
∗e2〉}.

Elements of End∗B(E) are called adjointable operators.

Proposition 1.3. Let T ∈ End∗B(E). Then T is linear, bounded, and a B-
module morphism. Moreover, End∗B(E) is a C∗-algebra in the operator norm
and the involution T 7→ T ∗.

If E is a G-module, there is a strictly continuous G-action on End∗B(E),
given by g : T 7→ gTg−1. That is, End∗B(E) is a G-algebra. If A is an-
other C∗-algebra, an (A,B)-bimodule is a C∗-B-module E together with a
*-homomorphism A→ End∗B(E). This structure is denoted

A→ E ⇌ B.

Such a bimodule is called equivariant if it is a G-module, A is a G-algebra and
a(ge) = (ga)e. It is called a correspondence if the A representation is essential,
that is, if AE is dense in E .

Note that the involution on B allows for considering E as a left B-module
via be := eb∗. The inner product can be used to turn the algebraic tensor
product E ⊗B E into a ∗-algebra:

e1 ⊗ e2 ◦ f1 ⊗ f2 := e1〈e2, f1〉 ⊗ f2, (e1 ⊗ e2)
∗ := e2 ⊗ e1.

This algebra is denoted by FinB(E). There is an injective *-homomorphism

FinB(E) → End∗B(E),

given by e1 ⊗ e2(e) := e1〈e2, e〉. The closure of FinB(E) in the operator norm
is the C∗-algebra of B-compact operators on E . It is denoted by KB(E). If
E is a G-module, then the G-action that KB(E) inherits from End∗B(E) is
norm continuous. Two C∗ algebras A and B are said to be strongly Morita
equivalent if there exists a C∗-module E ⇌ B such that A ∼= KB(E). The
bimodule A → E ⇌ B is called a Morita equivalence bimodule. A Morita
equivalence bimodule is in particular a correspondence.
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1.4. Unbounded regular operators. Similar to the Hilbert space setting,
there is a notion of unbounded operator on a C∗-module. We refer to [2], [16]
and [26] for detailed expositions of this theory.

Definition 1.5 ([3]). Let E be a C∗-B-module. A densely defined closed
operator D : DomD → E is called regular if

• D∗ is densely defined in E ;
• 1 +D∗D has dense range.

Such an operator is automatically B-linear, and DomD is a B-submodule
of E . There are two operators, r(D), b(D) ∈ End∗B(E) canonically associated
with a regular operator D. They are the resolvent of D

(1) r(D) := (1 +D∗D)−
1
2 ,

and the bounded transform

(2) b(D) := D(1 +D∗D)−
1
2 .

To construct selfadjoint regular operators in practice, we include some remarks
and results on the extension of symmetric regular operators. A densely defined
operator D in a C∗-module E is symmetric if, for e, e′ ∈ DomD we have
〈De, e′〉 = 〈e,De′〉. Symmetric operators are closable, and their closure is
again symmetric. Hence we will tacitly assume all symmetric operators to be
closed.

Lemma 1.6 ([16]). Let D be a densely defined symmetric operator. Then the
operators D + i and D − i are injective and have closed range.

We can now define two isometries

u+(D) := (D + i)r(D), u−(D) := (D − i)r(D),

and the Cayley transform of D is

(3) c(D) := u−(D)u+(D)∗.

In general, c(D) is a partial isometry, with closed range. The operator D can
be recovered from c(D) by the formulas

Dom(D) = Im(1 − c(D))c(D)∗

D(1− c(D))c(D)∗e = i(1 + c(D))c∗(D)e.

Theorem 1.7 ([16]). The Cayley transform c furnishes a bijection between
the set of symmetric regular operators in E and the set of partial isometries
c ∈ End∗B(E) with the property that (1 − c)c∗ has dense range. Moreover, D′

is an extension of D if and and only if c(D′) is an extension of c(D).

For a selfadjoint regular operator D, 1 +D2 has dense range. Therefore by
Lemma 1.6, the operators D + i and D − i are bijective.

Corollary 1.8. A symmetric regular operator D is selfadjoint if and only if
c(D) is unitary if and only if D + i and D − i have dense range.
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1.9. KK-theory. The theory was originally described by Kasparov [11] using
adjointable (and hence bounded) endomorphisms ofC∗-modules. Later Connes
[6] and Baaj-Julg [3] gave a description of the cycles of K-homology and KK-
theory using unbounded endomorphisms. It is this formulation that we will
employ here. The main references for the conventional (i.e. bounded) approach
to KK-theory are Kasparov’s original papers [11, 12]. Given a locally compact
group G, a Z/2-graded bifunctor KKG

∗ is constructed, on pairs (A,B) of G-
algebras. This bifunctor has remarkable properties. Amongst them is the
following deep theorem of Kasparov.

Theorem 1.10 ([11, 12]). For any C∗-G-algebras A,B,C there exists an as-
sociative bilinear pairing

KKG
i (A,B) ⊗Z KK

G
j (B,C)

⊗B−−→ KKG
i+j(A,C).

In particular, the Kasparov product with an element in KKG
i (A,B) yields

homomorphisms

KG
∗ (A) → KG

∗+i(B).

In this paper we will be concerned with odd KK-theory. The cycles for the
group KKG

1 (A,B) are given in the following definition.

Definition 1.11. Let A,B be G-algebras. An odd equivariant unbounded
bimodule (E , D) for (A,B) is given by an equivariant C∗-bimodule A→ E ⇌

B together with an unbounded regular operator D in E such that

• [D, a] ∈ End∗B(E) for all a in some dense subalgebra of A,
• ar(D) ∈ KB(E),
• The map g 7→ D− gDg−1 is a strictly continuous map G→ End∗B(E).

2. Groupoids

We now recall the theory of groupoids, their C∗-algebras and correspon-
dences. Although we will only encounter the particularly simple type of corre-
spondence given by a closed subgroupoid, we will need the general results on
the bimodules and Morita equivalences they induce.

2.1. Haar systems and the convolution algebra. In general, topological
groupoids can be viewed as generalizations of both groups and topological
spaces. Both of these occur as extreme cases of the following definition.

Definition 2.2. A groupoid G is a small category in which every morphism
is invertible. The set of morphisms of G is denoted G(1), and the objects G(0).
We identify G(0) with a subset of G(1) as identity morphisms. The groupoid G
is said to be a locally compact Hausdorff if G(1) carries such a topology, and
the domain and range maps

d, r : G(1) → G(0) ⊂ G(1),

are continuous for this topology. It is said to be étale if r and d are local
homeomorphisms.
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Thus, a group can be regarded as a groupoid with just one object, and a
topological space as a groupoid with only identity morphisms. We will tacitly
assume all groupoids to be locally compact and Hausdorff.

We will consider groupoids with the additional datum of a Haar system.
This is a system of measures supported on the fibers of the range map r.
Inversion in the groupoid yields a system of measures supported on the fibers
of d.

Definition 2.3 ([23]). Let G be a locally compact Hausdorff groupoid. A
Haar system on G is a system of measures {νx | x ∈ G(0)} on G(1) such that

• supp νx = r−1(x)
• ∀f ∈ Cc(G),

∫

G
f(ξ)dνr(η)(ξ) =

∫

G
f(ηξ)dνd(η)(ξ)

• ∀f ∈ Cc(G), g(x) :=
∫

G
f(ξ)dνx(ξ) ∈ C(G(0)).

Étale groupoids always admit a Haar system, consisting of counting mea-
sures on the fibers. There is a natural involution on Cc(G) given by f∗(ξ) :=

f(ξ−1). The Haar system also allows us to define the convolution product in
Cc(G):

f ∗ g(η) :=

∫

G

f(ξ)g(ξ−1η)dνr(η).

This is an associative, distributive product that makes Cc(G) into a topological
*-algebra for the topology given by uniform convergence on compact subsets.

Definition 2.4 ([9]). Let G be a locally compact Hausdorff groupoid with
Haar system. Define

‖f‖ν := sup
u∈G(0)

∫

G

|f(ξ)|dνu, ‖f‖ν−1 := sup
u∈G(0)

∫

G

|f(ξ−1)|dνu,

and
‖f‖I := max{‖f‖ν, ‖f‖ν−1}.

Let H be a Hilbert space. A representation π : Cc(G) → B(H) is called
admissible if it is continuous with respect to the inductive limit topology on
Cc(G) and the weak operator topology on B(H), and ‖π(f)‖ ≤ ‖f‖I .

Definition 2.5 ([23]). The full C∗-norm on Cc(G) is defined by

‖f‖ := sup{‖π(f)‖ | π admissible}.

The full C∗-algebra C∗(G) is the completion of Cc(G) with respect to this norm.

The space Cc(G) is a right module over Cc(G
(0)) if we define

f ∗ g(ξ) := f(ξ)g(d(ξ)), f ∈ Cc(G), g ∈ Cc(G
(0)).

We can associate a canonical C∗-C0(G
(0))-module to a groupoid with Haar

system via the pairing

Cc(G)× Cc(G) → Cc(G
(0))

〈f, h〉(u) :=

∫

G

f(ξ−1)h(ξ−1)dνuξ.
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As usual, Cc(G) gets a norm

‖f‖2 := ‖〈f, f〉‖ := sup
u∈G(0)

∫

G

|f(ξ−1)|2dνuξ.

We denote the completion of Cc(G) in this norm by L2(G, ν). Since Cc(G) acts
on itself by convolution we get an embedding

Cc(G) →֒ End∗C(G(0))(L
2(G, ν)).

Definition 2.6 ([23]). The reduced C∗-algebra C∗
r (G) of G, is the completion

of Cc(G) in the norm ‖.‖r it gets as an algebra of operators on L2(G, ν).

This approach to defining C∗
r (G) is different from that in [23] and was first

considered in [13]. As mentioned before, the C∗-algebras C∗(G) and C∗
r (G) are

not isomorphic in general. A sufficient condition for the algebras to coincide
is that of amenability [1].

2.7. Groupoid actions. If φi : Xi → Y , i = 1, 2, are continuous maps be-
tween topological spaces Xi and Y , we denote the pull back, or fibered product,
of the Xi over Y by

X1 ∗Y X2 := {(x1, x2) | φ1(x1) = φ2(x2)}.

The space X1 ∗Y X2 is the universal solution for commutative diagrams

X
ψ1

- X1

X2

ψ2

? φ2
- Y.

φ1

?

In case one of the Xi is a groupoid G and a map ρ : Z → G(0) is given, it
is convenient to write G ⋉ρ Z for the pull back with respect to d and ρ, and
Z ⋊ρ G for the pull back with respect to r and ρ.

Definition 2.8 (cp. [17],[19]). Let Z be a topological space and G a groupoid.
A left action of G on Z consists of a continuous map ρ : Z → G(0), called the
moment map, and a continuous map

G ⋉ρ Z → Z

(ξ, z) 7→ ξz,

(the pull back is with respect to d : G → G(0)) with following properties:

• ρ(ξz) = r(ξ),
• ρ(z)z = z,
• if (ξ1, ξ2) ∈ G2 and (ξ2, z) ∈ G ⋉ρ Z → Z then (ξ1ξ2)z = ξ1(ξ2z).

The space Z is said to be a left G-bundle.
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The notion of right action is obtained by switching r and d and considering
Z ⋊ρ G. The spaces Z⋊ρ G and G⋉ρZ are groupoids over Z. We will describe
the structure for Z ⋊ρ G. The structure for G ⋉ρ Z is similar. We have

Z ⋊ρ G = {(z, ξ) ∈ Z × G | ρ(z) = r(ξ)},

and define

d(z, ξ) := zξ, r(z, ξ) = z, (z, ξ)−1 = (zξ, ξ−1), (z, ξ)(zξ, η) = (z, ξη).

This is well defined because Z is a G-bundle. If Z carries both a left G- and a
right H-action the actions are said to commute if

• ∀(ξ, z) ∈ G ⋉ρ Z, (z, χ) ∈ Z ⋊σ H, (ξz)χ = ξ(zχ),
• ∀(z, χ) ∈ Z ⋊σ H, ρ(zχ) = ρ(z),
• ∀(ξ, z) ∈ G ⋉ρ Z, σ(ξz) = σ(z).

Such a Z is called a G-H-bibundle. Moreover, the action is said to be left proper
if the map

G ⋉ρ Z → Z × Z

(ξ, z) 7→ (ξz, z),

is proper, that is, inverse images of compact sets are compact. Right properness
is defined similarly. The notions of Morita equivalence and correspondence for
groupoids are defined in terms of bibundles equipped with extra structure.

Definition 2.9 (cp. [17],[19],[25]). Let Z be a G-H bibundle with moment
maps ρ : Z → G(0) and σ : Z → H(0). The G action is said to be left principal
if the map

G ⋉ρ Z → Z ∗H(0) Z

(ξ, z) 7→ (ξz, z),

is a homeomorphism. This is equivalent to saying that the G-action is free, σ
is an open surjection and induces a bijection G\Z → H(0). A bibundle which
is both left principal and right proper is said to be a correspondence, and is
denoted

G → Z ⇌ H.

If the bibundle is both left- and right-principal, it is said to be an equiva-
lence bibundle. Two groupoids G,H are Morita equivalent if there exists an
equivalence G-H-bibundle.

Groupoid correspondences provide one with a well behaved notion of mor-
phism for groupoids, first observed in [10] and later developed in [17, 18] and
[25]. In the definition of correspondence of [25], the moment map ρ, like σ, is
assumed to be surjective. This condition is absent in [17], and is not needed
for the construction of the bimodules in the next section, as noted in [17].
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2.10. C
∗-modules from correspondences. Groupoid correspondences and

equivalences give rise to correspondences and Morita equivalences for the full
and reduced C∗-algebras. In the theorem below, it must be mentioned that the
result concerning the Morita equivalence of the reduced C∗-algebras seems to
be well known, and has been stated without proof many times in the literature.
A proper proof of this result has been written down recently in [24].

Theorem 2.11 ([17],[20],[24],[25]). Let G and H be groupoids with Haar sys-
tem, and G → Z ⇌ H a groupoid correspondence. The space Cc(Z) can be
completed into C∗-correspondences

C∗(G) → EZ
⇌ C∗(H) and C∗

r (G) → E
Z
r ⇌ C∗

r (H).

When the correspondence G → Z ⇌ H is an equivalence bibundle, the above
C∗-correspondences are Morita equivalence bimodules.

On the dense subspaces Cc(G), Cc(H) and Cc(Z), explicit formulae for both
the inner product(s) and module structures can be given. For later reference
and completeness we give them here. For Φ ∈ Cc(Z), the right module action
of h ∈ Cc(H) is given by

(4) Φ · h(z) :=

∫

H

Φ(zχ)h(χ−1)dνσ(z)χ.

Similarly, the left action of g ∈ Cc(G) on Φ is

(5) g · Φ(z) :=

∫

G

g(ξ)Φ(ξ−1z)dνρ(z)ξ.

There is a Cc(H)-valued inner product on Cc(Z):

(6) 〈Φ,Ψ〉H(χ) :=

∫

G

Φ(ξ−1z)Ψ(ξ−1zχ)dvρ(z)ξ.

In this formula, z ∈ Z is chosen such that σ(z) = r(χ), and it is independent
of choice because G \ Z ∼= H(0), and finite because the G-action is proper. We
have 〈Φ,Ψ〉H ∈ Cc(H) by virtue of the properness of the H-action. In case the
H action is transitive, one defines a Cc(G)-valued inner product by

(7) 〈Φ,Ψ〉G(η) :=

∫

H

Φ(η−1zχ)Ψ(zχ)dνσ(z)χ,

where z ∈ Z is chosen in such a way that ρ(z) = r(η). Again, the integral is
independent of this choice by transitivity of the H-action.

3. Cocycles and K-theory

The continuous cohomology of a groupoid generalizes that of a group. In this
section we develop a connection between the cocycles defining the cohomology
group H1(G,R) and K1(C

∗(G)). This is done by constructing for each exact
real-valued 1-cocycle c : G → R an odd unbounded (C∗(G), C∗(H))-bimodule,
where H = ker c. This in turn induces maps K1(C

∗(G)) → K0(C
∗(H)) and

K0(C
∗(G)) → K1(C

∗(H)). According to properties of c, the K-groups of
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C∗(H) can be more accessible than those of C∗(G), thus paving a way to the
calculation of invariants of C∗(G).

3.1. Groupoid cocycles. The cohomology of groupoids can be developed in
complete generality, by adapting the theory for groups, in a similar way as the
notion of action is adapted. A detailed description of groupoid cohomology can
be found in [23]. We will only be interested in continuous 1-cocycles satisfying
some regularity property.

Definition 3.2. Denote by Z1(G,R) the set of continuous homomorphisms
G → R. We will refer to the elements of Z1(G,R) as cocycles on G. Denote by
B1(G,R) the subset of those c ∈ Z1(G,R) such that there exists a continuous
function f : G(0) → R such that c(ξ) = f(r(ξ)) − f(d(ξ)). The elements of
B1(G,R) are referred to as coboundaries.

One defines H1(G,R) := Z1(G,R)/B1(G,R), as usual, but we will not use
this group in the present paper. The kernel

ker c := {ξ ∈ G | c(ξ) = 0}

of a continuous cocycle is a closed subgroupoid of G, which we will denote
by H. It is immediate that H(0) = G(0). H acts on G by both left- and
right multiplication, and these actions are proper. We will always consider the
action by multiplication from the right. The resulting bibundle G → G ⇌ H
is a correspondence.

Any closed subgroupoid with Haar system H ⊂ G is Morita equivalent to
the crossed product G ⋉r G/H, where the moment map G/H → G(0) for the
action of G on G/H is given by [χ] 7→ r(χ), whence the notation. The groupoid
G ⋉r G/H inherits a Haar system from G, since we have

r−1([η]) = {(ξ, [η]) ∈ G ⋉r G/H | d(ξ) = r(η)} ∼= d−1(r(η)).

The equivalence correspondence is given by G itself with moment map

ρ : G → (G ⋉r G/H)(0) = G/H

η 7→ [η]

equal to the quotient map. The left action is given by

(8) (ξ, [η1])η2 = ξη2,

whenever [η1] = [η2], and hence the bundle is left principal. The map σ : G →
H(0) is just equal to d. The bundle is right principal by construction.

Recall that a map φ : X → Y between topological spaces is a quotient map
if a subset U ⊂ Y is open if and only if φ−1(U) is open in X . That is, Y carries
the quotient topology defined by φ.

Definition 3.3. A cocycle c : G → R is regular if H = ker c admits a Haar
system, and exact if it is regular and the map

r × c : G → G(0) × R

ξ 7→ (r(ξ), c(ξ))
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is a quotient map onto its image.

From the above discussion, it follows that for a regular cocycle, the groupoid
correspondence G → G ⇌ H induces a correspondence C∗(G) → EG

⇌ C∗(H),
via Theorem 2.11. For the reduced C∗-algebras, we get a correspondence
C∗

r (G) → E
G
r ⇌ C∗

r (H) from the same theorem. Moreover, the full and reduced
C∗-algebras of G and G⋉rG/H are Morita equivalent. If G is an étale groupoid,
any closed subgroupoid admits a Haar system, as is the case when G is a Lie
groupoid and c is smooth.

Lemma 3.4. Let c : G → R be an exact cocycle, and H = ker c. The map

r × c : G/H → G(0) × R

ξ 7→ (r(ξ), c(ξ)),

is a homeomorphism onto its image.

Proof. First observe that r × c is a continuous injection: If r(ξ) = r(η) and
c(ξ) = c(η), then ξ−1η ∈ H and so [η] = [ξ] in G/H. Moreover, we have
(r × c) ◦ ρ = r × c, which is a quotient map by hypothesis. Since G/H carries
the quotient topology, the result follows. �

Lemma 3.5. For a regular cocycle to be exact, it is sufficient that r × c be
either open or closed.

Proof. Suppose r×c is closed. The proof in the open case translates verbatim.
C ⊂ G/H is closed if and only if ρ−1(C) is closed in G. Thus

(r × c)(C) = (r × c)ρ ◦ ρ−1(C) = (r × c)ρ−1(C),

is closed. Thus r × c is a continuous closed bijection onto its image, and
therefore a homeomorphism. �

Renault [23] showed that a 1-cocycle c ∈ Z1(G,R) defines a one-parameter
group of automorphisms of C∗(G) by

(9) utf(ξ) = eitc(ξ)f(ξ).

Furthermore he showed that if c ∈ B1(G,R), the automorphism group is inner,
i.e. implemented by a strongly continuous family of unitaries in the multiplier
algebra of C∗(G). In general, the one-parameter groups of C∗(G) and C∗

r (G)
defined by a regular cocycle c can be described conveniently in the bimodules
EG and EG

r .

Proposition 3.6. Let c : G → R be a regular cocycle. The operators

Ut : Cc(G) → Cc(G)

Utf(ξ) = eitc(ξ)f(ξ)

extend to a one parameter group of unitaries in End∗C∗(H)(E
G), implementing

the one parameter group of automorphisms ut of C∗(G). A similar statement
holds for resp. End∗C∗

r
(H)(E

G
r ) and C

∗
r (G).
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Proof. The identity 〈Utf, Utg〉H = 〈f, g〉H is proved by a straightforward com-
putation. Since utf = f for f ∈ Cc(H), EG is an R-module. To see that Ut

implements ut, just compute:

Ut(f ∗ U∗
t g)(η) = eitc(η)

∫

G

f(ξ)e−itc(ξ−1η)g(ξ−1η)dνr(η)

=

∫

G

f(ξ)eitc(ξ)g(ξ−1η)dνr(η)

= (utf) ∗ g(η).

�

3.7. An equivariant odd bimodule. The generator of the one parameter
group described in Proposition 3.6 is closely related to the cocycle c. On the
level of Cc(G), pointwise multiplication by c induces a derivation [23], which
we will further investigate in this section.

Proposition 3.8. Let G be a locally compact Hausdorff groupoid with Haar
system, c : G → R a regular cocyle, and H = ker c. The operator

D : Cc(G) → Cc(G)

f(ξ) 7→ c(ξ)f(ξ),

is a Cc(H)-linear derivation of Cc(G) considered as a bimodule over itself.
Moreover, it extends to a selfadjoint regular operator in the C∗-modules EG

⇌

C∗(H) and EG
r ⇌ C∗

r (H).

Proof. It is clear that D is Cc(H)-linear and the following computation

f ∗Dg(η) =

∫

G

f(ξ)Dg(ξ−1η)dνr(η)

=

∫

G

f(ξ)c(ξ−1η)g(ξ−1η)dνr(η)

= c(η)

∫

G

f(ξ)g(ξ−1η)dνr(η) −

∫

G

c(ξ)f(ξ)g(ξ−1η)dνr(η)

= D(f ∗ g)(η)− (Df) ∗ g(η),

shows it is a derivation. Furthermore, it is straightforward to check that

〈Df, g〉H = 〈f,Dg〉H,

using formula (6). Thus, D is closable, and we will denote its closure by D as
well. It is regular because on Cc(G) we have

(1 +D∗D)f(ξ) = (1 + c2(ξ))f(ξ),

and this clearly has dense range. The same goes for D+ i and D− i, restricted
to Cc(G). Therefore, by Lemma 1.6, these operators are bijective, and hence
the Cayley transform c(D), (3), is unitary. Then, by Corollary 1.8, it follows
that D is selfadjoint. �
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The operator D is of course the generator of the one-parameter group of
Proposition 3.6.

From Lemma 3.4 we have the identification

(10) G/H
∼
−→ {(r(ξ), c(ξ)) | ξ ∈ G},

and for convenience of notation we identify G/H with its image in G(0) × R.
Using this identification, we see that if K ⊂ G(0) is compact, the induced map
c : (K × R) ∩ G/H → R is proper. It is a key fact in the subsequent proof.

Theorem 3.9. Let G be a locally compact Hausdorff groupoid and c : G → R an
exact cocycle. The operator D from Proposition 3.8, makes the correspondences

C∗(G) → EG
⇌ C∗(H), C∗

r (G) → E
G
r ⇌ C∗

r (H),

into odd R-equivariant unbounded bimodules.

Proof. The derivation property implies that the commutators [D, f ] are bound-
ed for f ∈ Cc(G). They are given by convolution by Df. So it remains to show
that D has C∗(H)-compact resolvent. To this end, let f,Φ ∈ Cc(G). The
operator f ◦ (1 +D2)−1 acts as

f ◦ (1 +D2)−1Φ(η) =

∫

G

f(ξ)(1 + c2(ξ−1η))−1Φ(ξ−1η)dνr(η)ξ.

From (5) and (8), we see that the action of

g ∈ Cc(G ⋉r G/H) ⊂ C∗(G ⋉r G/H) = KC∗(H)(E
G),

is given by

gΨ(η) =

∫

G⋉rG/H

g(ξ1, [ξ2])Ψ(ξ−1
1 η)dν[η](ξ1, [ξ2])

=

∫

G

g(ξ, [ξ−1η])Ψ(ξ−1η)dνr(η)ξ.(11)

Thus, if we show that for each f ∈ Cc(G) the function

kf (ξ, [η]) := (1 + c2(η))−1f(ξ)

is a norm limit of elements in Cc(G ⋉r G/H), then we are done.
Define

Kn := (r(supp f)× R) ∩ c−1([−n, n]) ⊂ G/H,

such that c(Kn) ⊂ [−n, n]. Here we identify G/H with its image in G(0) × R

(cp. (10)), and we view c as a map G/H → R. Then

· · · ⊂ · · · ⊂ Kn ⊂ Kn+1 ⊂ · · · ⊂ G/H,

is a filtration of (r(supp f)×R)∩G/H by compact sets, cp. Lemma 3.4. More-
over, we may assume that the image of c is not a bounded set in R, and that
Kn 6= Kn+1 (if not, just rescale). Thus, there exist cutoff functions

en : G/H → [0, 1],

with
en = 1 on Kn, en = 0 on G/H \Kn+1.
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Define

knf (ξ, [η]) := en([η])kf (ξ, [η]).

Recall from Definitions 2.4 and 2.6 that ‖ · ‖r ≤ ‖ · ‖ ≤ ‖ · ‖I , so it suffices
to show that ‖knf − kmf ‖I → 0 as n > m→ ∞. For n > m we can estimate:

‖knf − kmf ‖ν = sup
[η]∈G/H

∫

G⋉rG/H

|knf (ξ, [η]) − kmf (ξ, [η])|dν[η]

= sup
[η]∈G/H

∫

G

|knf (ξ, [η])− kmf (ξ, [η])|dνr(η)

= sup
[η]∈G/H

∫

G

|(en − em)(η)(1 + c2(η))−1f(ξ)|dνr(η)

≤
1

1 +m2
sup

[η]∈G/H

∫

G

|f(ξ)|dνr(η)

=
1

1 +m2
‖f‖ν.

For ‖knf − kmf ‖ν−1 a similar computation yields the estimate

‖knf − kmf ‖I ≤
1

1 +m2
‖f‖I,

proving that the sequence knf is Cauchy for ‖ · ‖I and hence for ‖ · ‖ and ‖ · ‖r.

Furthermore, it converges to f(1 + D2)−1. Since D is the generator of the
R-action on EG , they commute, and thus the KK-cycle is equivariant. �

A very simple application of Theorem 3.9 recovers the canonical spectral
triple on the real line. Consider R as a groupoid, and take c = id : R → R.
The kernel of c is a point, so C∗(H) = C. The spectral triple so obtained is
the Fourier transform of the canonical Dirac triple (C0(R), L

2(R), i ∂
∂x) on the

line. The canonical triple on the circle (the one point compactification of the
line), is obtained directly from the embedding Z → R.

3.10. Continuous quasi-invariant measures. An interesting class of co-
cyles c : G → R comes from certain well-behaved measures on the unit
space G(0). For this class of cocycles, the kernel algebra C∗(H) carries a
canonical trace τ : C∗(H) → C. Note that, for an arbitrary R-algebra A,
KKR

∗ (C, A)
∼= K∗(A), in view of the Baum-Connes conjecture for R, and

Connes’ Thom isomorphism [5]. Composition of the induced homomorphism
τ∗ : K0(C

∗(H)) → C with the homomorphism K1(C
∗(G)) → K0(C

∗(H)) in-
duced by the bimodule coming from c, yields an index map K1(C

∗(G)) → C.

Definition 3.11. Let G be a groupoid with Haar system {νx} and µ be a
positive Radon measure on G(0). νµ denotes a measure on G, the measure
induced by µ, and is defined by

∫

G

f(ξ)dνµ(ξ) :=

∫

G(0)

∫

G

f(ξ)dνx(ξ)dµ(x).
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The measure µ is said to be quasi-invariant if νµ is equivalent to its inverse
νµ, induced by the corresponding right Haar system on G. The function

∆ :=
dνµ

dνµ
: G → R

×
+,

is called the modular function of µ. If this function is continuous, then µ is
said to be continuous.

The modular function is an almost everywhere homomorphism [23]. That
is, it is a measurable cocycle on G. We will only be interested in continuous
measures, and in that case Renault’s result is rephrased as follows.

Proposition 3.12. Let G be a groupoid with Haar system and µ a continuous
quasi-invariant measure on G(0). Then the modular function ∆ : G → R

×
+ is a

continuous cocycle.

The measure µ defines a positive functional τ on the algebra Cc(G).

τ : Cc(G) → C

f 7→

∫

G(0)

fdµ.

It extends to both C∗(G) and C∗
r (G), but in general does not yield a trace. If

µ is quasi-invariant, ∆(ξ) 6= 0 for all ξ in G. Hence we can compose it with the

logarithm ln : R+
∼
−→ R, to obtain a real valued cocycle cµ ∈ Z1(G,R). We will

refer to this element as the Radon-Nikodym cocycle on G. If the measure µ is
continuous, the Radon-Nikodym cocycle cµ induces a one-parameter group ut
of automorphisms of C∗(G), as mentioned before Proposition 3.6. Given a one-
parameter group ut of automorphisms of a C∗-algebra A, the set of analytic
elements for ut consists of those a ∈ A for which the map t 7→ ut(a) extends
to an entire function C → C. It is a dense *-subalgebra of A (see, for example
[21, Sec. 8.12.]).

Definition 3.13. Let A be a C∗-algebra and ut a strongly continuous one
parameter group of automorphisms of A. A KMS-β-state on A, relative to
ut, is a state σ : A → C, such that the for all analytic elements a, b of A the
function

F : t 7→ σ(autb)

admits a continuous bounded continuation to the strip {z ∈ C | 0 ≤ Imz ≤ β}
that is holomorphic on the interior, such that

F (t+ iβ) = σ(ut(b)a).

We refer to [21] for a detailed discussion of KMS-states.

Theorem 3.14 ([23]). Let µ be a continuous quasi-invariant measure on G.
The functional τ is a KMS−1-state for the one parameter group of automor-
phisms associated to the Radon-Nikodym cocycle on G.
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Recent work by Exel [8] and Kumjian and Renault [15] considers the con-
struction of KMS-states for one parameter groups coming from cocycles. In
[15] it is shown that in case H = ker c is principal, every KMS-state for the ut
defined by c comes from a quasi-invariant probability measure on G(0).

A measured groupoid is called unimodular if ∆ = 1 νµ-almost everywhere.
For continuous measures, the following proposition is a corollary of Theo-
rem 3.14, but it holds for general measures.

Proposition 3.15. Let G be a unimodular measured groupoid. Then the func-
tional τ : Cc(G) → C is a trace.

Proof. Compute

τ(f ∗ g) =

∫

G(0)

∫

G

f(ξ)g(ξ−1x)dνxξdµ(x)

=

∫

G(0)

∫

G

f(ξ)g(ξ−1)dνxξdµ(x)

=

∫

G(0)

∫

G

f(ξ−1)g(ξ)dνxξdµ(x)

= τ(g ∗ f),

where we used unimodularity of G in the third line. �

Corollary 3.16. Let G be a groupoid with Haar system, µ a continuous quasi-
invariant measure such that the cocycle ∆ is regular. Then τ : C∗(H) → C is
a trace, for H = ker∆.

Corollary 3.17. Let G be a groupoid with Haar system, µ a continuous quasi-
invariant measure such that the cocycle ∆ is exact. Then µ induces an index
homomorphism Indµ : K1(C

∗(G)) → C.

Proof. By Theorem 3.9, the Radon-Nikodym cocycle cµ defines an element
[D] ∈ KKR

1 (C
∗(G), C∗(H)) and the Kasparov product with [D] gives a group

homomorphism ⊗[D] : K1(C
∗(G)) → K0(C

∗(H)). The trace τ induces a ho-
momorphism τ∗ : K0(C

∗(H)) → C. Hence we can define Indµ := τ∗ ◦ ⊗[D] :
K1(C

∗(G)) → C. �

Note that, in fact, we get an index map K1(C
∗(G)) → C for any exact cocy-

cle whose kernel is unimodular with respect to some quasi invariant measure.

3.18. Integral cocycles on étale groupoids. In this section we focus on
cocycles c : G → Z and relate Theorem 3.9 to the construction of equivariant
KK-cycles coming from circle actions given in [4]. First observe that the 1-
parameter group (9) gives rise not just to an R-action, but to an action of the
circle T. Moreover, we have the following convenient lemma.

Lemma 3.19. Let G be an étale groupoid and c : G → Z a continuous cocycle.
Then c is exact.
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Proof. By [23, Prop. I.3.16], ker c is a locally compact groupoid with Haar
system, so c is regular. Since r× c is continuous, we have that (r× c)−1(U) is
open whenever U is open in G(0) ×R. To show that c is exact (Definition 3.3)
let

U ⊂ (r × c)(G) ⊂ G(0) × R,

be such that (r× c)−1(U) is open in G. Any U ⊂ (r× c)(G) is a disjoint union
of sets Un, n ∈ Z, with

Un := U ∩ (G(0) × {n}),

because Z is discrete. Moreover c−1(n) is open, so

(r × c)−1(Un) = (r × c)−1(U) ∩ (r × c)−1(G(0) × {n}),

is open if and only if (r × c)−1(U) is open. So it suffices to show that Un is
open (in the relative topology) whenever (r × c)−1(Un) is open. We have

(r × c)−1(Un) = {ξ ∈ G | (r(ξ), c(ξ)) = (r(ξ), n) ∈ Un},

and r : G → G(0) is an open map, so we are done. �

This lemma provides us with a myriad of examples, e.g. the class of algebras
studied by Renault in [22]. These algebras are constructed from semidirect
product groupoids X ⋊ σ, associated to a local homeomorphism σ, defined on
an open subset Domσ of a topological space X , onto an open subset of X . The
semidirect product groupoid X ⋊ σ is defined as

{(x, n, y) ∈ X × Z×X | ∃ k :

x ∈ Domσk+n(x), y ∈ Domσk(y), σk+n(x) = σk(y)},

with groupoid operations coming from the principal groupoid X ×X and ad-
dition in Z. It can be equipped with a topology that makes it étale, in such
a way that the map c : (x, n, y) 7→ n is a continuous cocycle X ⋊ σ → Z. See
[22] for more details on this construction. These groupoids hence fit into our
framework by Lemma 3.19, and the KK-cycle constructed in Theorem 3.9 is
defined for these algebras. This class properly includes all graph C∗-algebras,
and hence all Cuntz- and Cuntz-Krieger algebras ([7, 22, 23]). The latter ones
were the main source of examples in [4], and we will now link our construction
to the results in that paper.

In [4], a circle action ut (i.e. a periodic R-action) on a C∗-algebra A is
the starting point for the construction of an equivariant KK-cycle, which is
basically given by the generator of this action. Let

F := {a ∈ A | ut(a) = a},

be the fixed point algebra, and let

Ak := {a ∈ A | ∀t ∈ R : ut(a) = eikta},

denote the eigenspaces of the action. In order for the generator to have compact
resolvent, the action has to satisfy the following property:
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Definition 3.20 ([4]). A strongly continuous action of S1 on a C∗-algebra A
satisfies the spectral subspace assumption (SSA) if the subspaces Fk = AkA∗

k

are complemented ideals in the fixed point algebra F .

One defines a faithful conditional expectation ρ : A→ F by

ρ(a) :=
1

2π

∫ 2π

0

ut(a)dt,

and uses this to define an F -valued inner product on by setting 〈a, b〉 := ρ(a∗b).
The completion of A with respect to this inner product is denoted Eρ. It
carries an obvious left A action by adjointable operators. Subsequently define
projection operators ρk : Eρ → Eρ,

e 7→
1

2π

∫ 2π

0

e−iktut(e)dt.

The following equivalence holds:

Lemma 3.21 ([4]). The circle action on A satisfies the SSA if and only if for
all a ∈ A the operator aρk is compact.

From this it is easily proved that the generator D of the one parameter
group ut has compact resolvent in EF . We now show that integral cocycles
give rise to one parameter groups satisfying the SSA.

Proposition 3.22. Let G be a locally compact étale groupoid and c : G → Z be
a cocycle. Then the one parameter group (9) generated by c satisfies the SSA.

Proof. Since G is étale, the fixed point algebra F = C∗(H) with H = ker c.
The projection operators ρn correspond to the restrictions Cc(G) → Cc(c

−1(n))
induced by the inclusions of the closed subspaces c−1(n) → G. Moreover G is
a disjoint union

G =
⋃

n∈Z

c−1(n).

Fix f ∈ Cc(G). The space r(supp f)×Z∩ G/H (again using (10)) is a disjoint
union of the subsets

Kn := r(supp f)× Z ∩ [c−1(n)].

Since c is exact (Lemma 3.19), Lemma 3.4 implies each Kn is a compact set.
Let f ∈ Cc(G) and en ∈ Cc(G/H) be the function that is 1 on Kn and 0
elsewhere. Define fn ∈ Cc(G ⋊ G/H) by fn(ξ1, [ξ2]) := f(ξ1)en([ξ2]). From
equation (11) it follows that the function fk acts as

fnΨ(η) =

∫

G

f(ξ)en([ξ
−1η])Ψ(ξ−1η)dνr(η)ξ

=

∫

G

f(ξ)ρnΨ(ξ−1η)dνr(η).

Thus, fρn is a compact operator, and by Lemma 3.21, the SSA is satisfied. �
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So, in this setting we are dealing with an T-action, and the T-equivariant
unbounded bimodule induces and index map

KT

1 (C
∗(G)) → KT

0 (C
∗(H)).

In case a KMS-state for the action is given, e.g. if the cocycle comes from a
continuous quasi-invariant measure, the restriction of this KMS-state to the
fixed point algebra C∗(H) gives a trace τ : C∗(H) → C, which induces a map

τ∗ : KT

0 (C
∗(H)) = K0(C

∗(H))[z, z−1] → C[z, z−1].

The resulting index map KT
1 (C

∗(G)) → C[z, z−1] is studied extensively in [4].
This is done by considering the mapping cone M of the inclusion F → A,

M := {f ∈ C0([0,∞), A) | f(0) ∈ F}.

It comes with an inclusion ι : C0(R, A) → M as a C∗-subalgebra by identi-

fying R with (0,∞). An explicit unbounded bimodule (Ê , D̂) for (M,F ) is
constructed, giving a commutative diagram

KT

1 (A)
IndD

- KT

0 (F )

KT

0 (M)

ι∗

?
In
d D̂

-

The map

KT

0 (M)
IndD−−−→ KT

0 (F )
τ∗−→ C[z, z−1]

is identified as a kind of equivariant spectral flow ([4, Thm. 1.1]). Via ι∗ this
corresponds to the index map defined above.

3.23. The noncommutative torus. Recall that the noncommutative 2-torus,
topologically is the C∗-algebra of an irrational rotation action on the circle S1.
More precisely, for θ ∈ (0, 1) consider the action of Z on S1, given by rotation
over an angle 2πθ:

e2πit · n := e2πi(t+nθ).

We denote the corresponding crossed product groupoid by S1 ⋊θ Z. Lebesgue
measure λ is quasi-invariant for this action, and we get a representation of
C∗(S1⋊θZ) as bounded operators on the Hilbert space H := L2(S1⋊θ Z, ν

λ),
where the Haar system ν is given by counting measures on the fiber. The
subalgebra C∞

c (S1 ×θ Z) comes equipped with two canonical derivations:

∂1f(x, n) := inf(x, n), ∂2f(x, n) := ∂f(x, n).

Here ∂f(x, n) is the function ∂
∂xf(x, n), the differentiation operator on S1.

The operator

D :=

(

0 −i∂1 − ∂2
−i∂1 + ∂2 0

)

,

Münster Journal of Mathematics Vol. 4 (2011), 227–250



246 Bram Mesland

is an odd, unbounded operator on Hθ := H ⊕ H , with compact resolvent.
Moreover, C∗(S1 ⋊θ Z) acts on this graded Hilbert space by the diagonal
representation. The commutators [D, f ] are bounded, for f ∈ C∞

c (S1 ×θ Z),
which is dense in C∗(S1

⋊θ Z). The above described structure is the canonical
spectral triple on C∗(S1 ⋊θ Z).

The trivial cocycle c : S1 ⋊θ Z → Z, given by projection on the first factor,
gives us an unbounded bimodule (Eθ, Dc) via Theorem 3.9. As a linear space
this is just ℓ2(Z)⊗̃C(S1), with right C(S1) action defined by

(en ⊗ f)g := en ⊗ f(g · n),

and the operator Dc acts as en 7→ nen, where en are the canonical basis
vectors for ℓ2(Z). Now consider the canonical spectral triple (L2(S1), i∂) on
the circle algebra C(S1). This triple is odd and its operator is given by ordinary
differentiation. In the proof of the following proposition we will use

Theorem 3.24 ([14]). Let (E⊗̃BF , D) ∈ Ψ0(A,C). Suppose that (E , D1) ∈
Ψ0(A,B) and (F , D2) ∈ Ψ0(B,C) are such that

(1) For x in some dense subset of AE , the operator
[(

D 0
0 D2

)

,

(

0 Tx
T ∗
x 0

)]

is bounded on Dom(D ⊕D2);
(2) DomD ⊂ DomD1⊗̃1 ;
(3) 〈D1x,Dx〉 + 〈Dx,D1x〉 ≥ κ〈x, x〉 for all x in the domain of D.

Then (E⊗̃BF , D) ∈ Ψ0(A,C) represents the Kasparov product of (E , D1) ∈
Ψ0(A,B) and (F , D2) ∈ Ψ0(B,C).

In order to be able to do so, we have to turn the given odd modules into
equivalent even ones. The standard procedure to do so is to associate to

(E , D) the graded module E ⊕ E with the operator

(

0 D
D 0

)

. This mod-

ule comes with a right C1-action, implemented by the matrix

(

0 i
i 0

)

. In

our case this yields bimodules for the pairs (C∗(S1 ⋊ Z), C(S1) ⊗ C1) and
(C(S1),C1). Tensoring the last bimodule once again by C1, we get a bimodule
for (C(S1) ⊗ C1,C2). The Kasparov product of these modules is an element
of KK0(C

∗(S2 ⋊ Z,C2), which by formal Bott periodicity is isomorphic to
KK0(C

∗(S2 ⋊ Z,C) = K0(C∗(S2 ⋊ Z)).

Proposition 3.25. The class [(Hθ, D)] ∈ K0(C∗(S1 ⋊θ Z)) is the Kasparov
product of [(Eθ, Dc)] ∈ KK1(C

∗(S1 ⋊θ Z), C(S
1)) with

[(L2(S1), i∂)] ∈ K1(C(S1)).

Proof. It is immediate that Eθ⊗̃C(S1)L
2(S1) ∼= H . Thus, the graded C∗-

module tensor product

(Eθ ⊕Eθ)⊗ C1⊗̃C(S1)⊗C1
(L2(S1)⊕ L2(S1))⊗ C2) ∼= Hθ ⊕H

op
θ ,
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with the standard odd grading, and C2-action implemented by the operators
(

0 i
i 0

)

and

(

0 1
−1 0

)

. We show that D ⊕ Dop (which we will abusively

denote by D from now on) satisfies the conditions of Kucerovsky’s theorem,
with respect to

D1 =

(

0 Dc

Dc 0

)

, and D2 =

(

0 i∂
i∂ 0

)

⊗ 1.

To prove (1), let x ∈ C∞
c (S1 ⋊ Z) ⊕ C∞

c (S1 ⋊ Z), which is dense in Eθ ⊕ Eθ.
It suffices to consider homogeneous elements x with support in S1 × {n} for
n ∈ Z. A tedious but straightforward computation yields that
[(

D 0
0 T

)

,

(

0 Tx
T ∗
x 0

)](

e⊗ f
g

)

=

(

D1x⊗ g + (−1)∂xi∂(x · (−n))g
〈i∂(x · (−n)), e〉f − (−1)∂x〈D1x, e〉f

)

.

We tacitly identify x with the function on S1 × {n}, an object we can differ-
entiate, and therefore this expression is bounded, and extends to finite sums,
i.e. to C∞

c (S1 × Z). Condition (2) is obvious, while D1 ⊗ 1 only acts on the
Z part of functions, whereas D is essentially D1 ⊗ 1 plus differentiation in the
S1 direction. Another tedious calculation (using that the derivations ∂1 and
∂2 commute on a common core) shows that

〈D1x,Dx〉 + 〈Dx,D1x〉 ≥ 〈D1x,D1x〉+ 〈D1x,D1x〉 ≥ 0,

for all x in
⊕4

i=1 C
∞
c (S1 ⋊ Z), which is a common core for D and D1. �
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