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ISOMORPHIC PROPERTIES OF INTERSECTION BODIES

A. KOLDOBSKY, G. PAOURIS, AND M. ZYMONOPOULOU

Abstract. We study isomorphic properties of two generalizations of
intersection bodies - the class In

k of k-intersection bodies in R
n and the

class BPn
k of generalized k-intersection bodies in R

n. In particular, we
show that all convex bodies can be in a certain sense approximated by
intersection bodies, namely, if K is any symmetric convex body in R

n

and 1 6 k 6 n− 1 then the outer volume ratio distance from K to the
class BPn

k can be estimated by

o.v.r.(K,BPn
k ) := inf{

(

|C|

|K|

) 1

n

: C ∈ BPn
k , K ⊆ C} 6 c

√

n

k
log

en

k
,

where c > 0 is an absolute constant.
Next we prove that if K is a symmetric convex body in R

n, 1 6 k 6

n− 1 and its k-intersection body Ik(K) exists and is convex, then

dBM (Ik(K), Bn
2 ) 6 c(k),

where c(k) is a constant depending only on k, dBM is the Banach-Mazur
distance, and Bn

2 is the unit Euclidean ball in R
n. This generalizes a

well-known result of Hensley and Borell. We conclude the paper with
volumetric estimates for k-intersection bodies.

1. Introduction

Let K be an symmetric star body in R
n. Following Lutwak ([35]), we say that

a body I(K) is the intersection body of K if the radius of I(K) in every direction
is equal to the volume of the central hyperplane section of K perpendicular to this
direction, i.e. for every ξ ∈ Sn−1,

ρI(K)(ξ) = |K ∩ ξ⊥|,
where ξ⊥ is the central hyperplane perpendicular to ξ and | · | stands for the volume.
A more general class of intersection bodies can be defined as the closure in the radial
metric of the class of intersection bodies of star bodies.

Intersection bodies play an important role in the solution of the Busemann-Petty
problem posed in [9] in 1956: suppose that K and L are origin symmetric convex
bodies in R

n so that, for every ξ ∈ Sn−1,

|K ∩ ξ⊥| ≤ |L ∩ ξ⊥|.
Does it follow that |K| ≤ |L|? The problem was completely solved in the end of
the 90’s, and the answer is affirmative if n ≤ 4 and negative if n ≥ 5. The solution
has appeared as a result of work of many mathematicians (see [12, Ch.8] or [25,
Ch.5] for details). A connection between intersection bodies and the Busemann-
Petty problem was established by Lutwak ([35]): the answer to the Busemann-Petty
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problem in R
n is affirmative if and only if every symmetric convex body in R

n is
an intersection body.

A more general concept of a k-intersection body was introduced in [28], [29].
For an integer k, 1 ≤ k < n and star bodies K,D in R

n, we say that D is the
k-intersection body of K if for every (n− k)-dimensional subspace H of Rn,

|D ∩H⊥| = |K ∩H |.
The k-intersection body of K is unique, but for k > 1 it does not always exist.
If the k-intersection body of K exists, we denote it by Ik(K). Taking the closure
in the radial metric of the class of all D’s that appear as k-intersection bodies of
star bodies, we define the class of k-intersection bodies. The class of k-intersection
bodies is related to a certain generalization of the Busemann-Petty problem in the
same way as intersection bodies are related to the original problem (see [28] for
details; this generalization offers a condition on the volume of sections that allows
to compare the volumes of two bodies in arbitrary dimensions). We denote the
class of k-intersection bodies in R

n by In
k . In [29] the first named author also gave

a Fourier characterization of In
k : K ∈ In

k if and only if ‖ · ‖−k
K is a positive definite

distribution in R
n.

Another generalization of intersection bodies was introduced by Zhang ([50]).
Let 1 6 k 6 n−1. The spherical Radon transform Rn−k is an operator acting from
C(Sn−1) to the space C(Gn,n−k) of continuous functions on the Grassmanian:

Rn−kf(H) =

∫

Sn−1∩H

f(x)dx, ∀f ∈ C(Sn−1), H ∈ Grn,n−k.

We say that a star body K is a generalized k-intersection body if there exists a
linear positive functional µ on Rn−k(C(Sn−1)) such that for every f ∈ C(Sn−1),

∫

Sn−1

‖x‖−k
K f(x)dx = µ(Rn−k(f)).

Following the notation of [38] we denote the class of all generalized k-intersection
bodies in R

n by BPn
k . A characterization of the class BPn

k was obtained by Grin-
berg and Zhang ([17]) as a generalization of the corresponding result of Goodey
and Weil for the original intersection bodies ([18]): a star body K belongs to the
class BPn

k if and only if it is the limit (in the radial metric) of k-radial sums of ellip-
soids. The class of generalized intersection bodies is related to the so-called lower
dimensional Busemann-Petty problem (LDBP-problem). Suppose that 1 ≤ k < n

and symmetric convex bodies K,L in R
n satisfy

|K ∩H | ≤ |L ∩H |,
for every (n − k)-dimensional subspace H of Rn. Does it follow that |K| ≤ |L|?
It was proved in [50] that the answer to this question is affirmative if and only if
every symmetric convex body in R

n is a generalized k-intersection body. Using
this, Bourgain and Zhang ([6]) (see also [46]) proved that for the dimensions of
sections n− k > 3 the answer to the LDBP-problem is negative. Another proof of
this result was given later in [29]. The problem is still open in the cases where the
dimension of sections n− k = 2, 3.

In the case k = 1 the classes In
1 = BPn

1 coincide with the class of original
intersection bodies. Also in the case k = n − 1 the two classes contain all star
bodies in R

n. It was proved in [31] (see also [25, Corollary 4.9]) that the class In
n−3

contains all symmetric convex bodies in R
n, and this is no longer true for the classes
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In
k with k < n − 3 ([28] or [25, Theorem 4.13]). It is known that BPn

k ⊆ In
k ([29];

see also [38] or [25, p.92] for simpler proofs). The latter two results immediately
imply the negative answer to the LDBP-problem with the dimension of sections
greater than 3. The answer to the problem with two- or three-dimensional sections
would be positive, if the classes BPn

k and In
k with k = n − 2 or k = n − 3 were

equal. However, Milman ([39]) proved that BPn
k is a proper subclass of In

k for
2 6 k 6 n − 2. The example of Milman is not convex, so LDBP-problem is still
open for two- and three-dimensional sections. Another open problem is whether
the classes In

k increase with k. It was proved by Yaskin ([49]) that for k1 < k2 there
exists a symmetric convex body that belongs to In

k2
but not to In

k1
. However, the

inclusion In
k1

⊂ In
k2

is known only in the case where k1 divides k2 (see [38]). For
more results on these classes of bodies see [32] and references there.

In spite of all these results, the isomorphic properties of intersection bodies
are not very well understood. The first result of this kind was established by
Hensley and Borell (see [20], [4]): if K is symmetric and convex, then the Banach-
Mazur distance dBM (I(K), Bn

2 ) 6 c, where c > 0 is an absolute constant, which
means that intersection bodies of convex bodies are isomorphic to ellipsoids (note
that if K is a symmetric convex body, then the classical result of Busemann ([7])
guaranties that I(K) is also symmetric and convex). Busemann ([8]) also showed
an “isoperimetric” type inequality: if K is symmetric convex and |K| = 1, then
|I(K)| 6 |I(Dn)|, where Dn is the Euclidean ball with volume 1. This result can
be extended to a class more general than convex bodies (even for Borel measurable
sets) (see [16], [13]). However, intersection bodies of convex bodies form only a
small part of the class of convex intersection bodies.

As it was proved by the first named author ([30])(using the Fourier characteri-
zation of the intersection bodies), the unit ball of any finite dimensional subspace
of Lp, p ∈ (0, 2] is a k-intersection body for every k, and in particular all polar pro-
jection bodies (unit balls of subspaces of L1) are intersection bodies. The class of
intersection bodies is strictly larger than the class of polar of projection bodies; see
[26] for examples. A long standing question is if the two classes are “isomorphic”,
i.e. whether for every intersection body I there exists a projection body Π, such
that dBM (I,Π◦) 6 c, where c > 0 is an absolute constant (this question is related
to the 1970 problem of Kwapien ([33]) from the Banach space theory through the
connection between intersection bodies and Lp-spaces; see [22]). A closely related
result was proved in [22]: for any q ∈ (0, 1) and any k < n, there exists a constant
c(q, k) such that for any convex k-intersection body K in R

n there exists a sub-
space of Lq whose unit ball D satisfies dBM (K,D) < c(q, k). Note that the constant
c(q, k) goes to infinity when q tends to 1, and, if not for that, the case q = 1 would
imply the desired result for polar projection bodies.

In this article we prove several isomorphic results for intersection bodies and their
generalizations. We have already mentioned the fact that the class In

n−3 contains
all symmetric convex bodies, but this is no longer the case for the classes In

k with
k < n− 3. We start with a result showing that k-intersection bodies with k < n− 3
are still in some sense dense in the class of all convex bodies.

Let K be a symmetric convex body in R
n and let A be a class of star bodies.

We define the outer volume ratio distance by

o.v.r(K,A) := inf{o.v.r.(K,C), C ∈ A},
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where

o.v.r.(K,C) := inf{
( |TC|

|K|

)
1

n

: K ⊆ TC, T ∈ GLn}.

Theorem 1.1. Let K be a symmetric convex body in R
n and 1 6 k 6 n− 1. Then

(1.1) o.v.r.(K,BPn
k ) 6 c

√

n log en
k

k
,

where c > 0 is an absolute constant.

Recall that BPn
k ⊆ In

k , so the result also applies to k-intersection bodies.

Our second result extends to the class of k-intersection bodies the classical result
of Hensley and Borell that an intersection body of a convex body is isomorphic to
an ellipsoid. Here one faces two additional difficulties. First the k-intersection body
of a convex body does not necessarily exist and, secondly, even if it exists it may not
be convex. So any result must take into account these two conditions as additional
assumptions. We prove

Theorem 1.2. Let K be a symmetric convex body in R
n, 1 6 k 6 n−1 and assume

that Ik(K) exists and it is convex. Then

(1.2) dBM (Ik(K), Bn
2 ) 6 c(k),

where c(k) depends only on k.

Finally, we get some estimates for the volume radius of k-intersection bodies:

Theorem 1.3. Let K be a symmetric star-shaped body in R
n with |K| = |Bn

2 |.
Assume that the k-intersection body of K exists. Then

(1.3)

( |Ik(K)|
|Ik(Bn

2 )|

)
1

n

>
LBn

2

LK
,

with equality if and only if K is a symmetric ellipsoid. Here LK stands for the

isotropic constant of K.

Moreover, if Ik(K) is a convex body, we have that

(1.4)

( |Ik(K)|
|Ik(Bn

2 )|

)
1

n

6 c log (1 + dBM (Ik(K), Bn
2 )) 6 cmin{logn, k log k},

where c > 0 is a universal constant.

The paper is organized as follows: In section 2 we introduce basic definitions and
notation. In sections 3, 4 and 5 we give the proof of Theorems 1.1, 1.2 and 1.3
respectively. We provide some final remarks in section 6.

2. Notation and Definitions

We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We denote

by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the Euclidean unit

ball, and Sn−1 for the unit sphere. Volume is denoted by | · |. We write ωn for the
volume of Bn

2 and σ for the rotationally invariant probability measure on Sn−1.

We will write Dn for the euclidean ball of volume 1. (Dn := |Bn
2 |−

1

nBn
2 ). The

Grassmannian manifold Gn,k of k-dimensional subspaces of Rn is equipped with
the Haar probability measure µn,k. We denote GLn the set of linear invertible
transformations and SLn for the measure preserving linear transformations.
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A compact set K in R
n is called a star body if the origin is an interior point

of K, every straight line passing through the origin crosses the boundary of K at
exactly two points and the Minkowski functional of K defined by

‖x‖K = min{a ≥ 0 : x ∈ aK}, ∀x ∈ R
n

is a continuous function on R
n. The radial function of K is given by

ρK(x) = max{a > 0 : ax ∈ K.

Throughout this article we say that K is symmetric if K = −K. The radial metric
on the class of star bodies is defined by

dr(K,L) = max
ξ∈Sn−1

|ρK(ξ)− ρL(ξ)|.

If K,L are star bodies and k ∈ N, then the k-radial sum of K and L is a star body
D whose radial function is equal to

ρD =
(

ρkK + ρkL
)1/k

.

If K is a convex body, we write hK for the support function of K:

hK(x) = max
ξ∈K

〈x, ξ〉 ∀x ∈ R
n.

We define the geometric distance between two bodies K1 and K2, dG(K1,K2) as
the infimum of positive numbers r such that there exists some a > 0 so that

K1 ⊆ aK2 ⊆ raK1.

The Banach-Mazur distance is defined as

dBM (K1,K2) := inf
T∈GLn

dG(K1, TK2).

Let K be a star body in R
n of volume 1. We define the isotropic constant of K,

LK as

L2
K :=

1

n
inf{

∫

TK

‖x‖22dx : T ∈ SLn}.

For two convex bodies K and L in R
n, the covering number of K by L, denoted by

N(K,L), is defined as the minimal number of translates of L with their centers in
K, needed to cover K.

The notation a ≃ b means that there exist universal constants c1, c2 > 0 such that
c1a 6 b 6 c2b. We refer to the books [12], [25], [41], [45], [47] for basic facts from
the Brunn-Minkowski theory, the asymptotic theory of finite dimensional normed
spaces and intersection bodies.

3. On the outer volume ratio of convex bodies with respect to the

class BPn
k

The main idea of the proof of Theorem 1.1. is to first cover a given convex body
with Euclidean balls and then show that, if the number of balls is not too big, one
can approximate the union of the balls by a body in BPn

k , where k will be related
to the covering number of K.
We will use the following theorem for covering numbers of Pisier (see [45]).

Theorem 3.1. Let K a symmetric convex body in R
n and α ∈ (0, 2). Then there

exist an T ∈ SLn such that if K1 = TK then

(1) |K1| = |Bn
2 |,
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(2) logN(K1, tB
n
2 ) 6

cn
ta(2−α) , ∀t > 1, where c > 0 is a universal constant.

It is known that the position of the body K, constructed in the previous theo-
rem, satisfies the reverse Brunn-Minkowski inequality of V. Milman ([40]). For
completeness we provide a proof.

Corollary 3.2. Let K be a symmetric convex body with the properties of the body

K1 from the previous theorem. Then, for t > 1

(3.1) |K + tBn
2 |

1

n 6 ct|K| 1n ,
where c > 0 is an absolute constant.

Proof. Choose α = 1. Then using Theorem 3.1, we have

|K + tBn
2 |

1

n

t|K| 1n
=

|K + tBn
2 |

1

n

t|Bn
2 |

1

n

6 N (K + tBn
2 , 2tB

n
2 )

1

n 6

N (K, tBn
2 )

1

n 6 c.

✷

We will need the following elementary

Lemma 3.3. Let z ∈ R
n and t > 0. Then there exists a centered ellipsoid E such

that

(3.2) z + tBn
2 ⊆ E ⊆ co{2z + 2

√
2tBn

2 ,−2z + 2
√
2tBn

2 }.

Proof. We may assume that z := z1e1. Let C be the “cylinder” defined as

C := {(s, y) ∈ R
n : |s| 6 z1 + t, ‖y‖2 6 t}.

Then one can check that

(3.3) z + tBn
2 ⊆ C ⊆ co{z +

√
2tBn

2 ,−z +
√
2tBn

2 } =: K

Let Q := {(s, y) ∈ R
n : |s| 6 1, ‖y‖2 6 1}. Then C := TQ, where T ∈ GLn.

Define E1 := TBn
2 . Then

(3.4) Bn
2 ⊆ Q ⊆

√
2Bn

2 , or E1 ⊆ C ⊆
√
2E1.

Then, by (3.3) we get that

z + tBn
2 ⊆ C ⊆

√
2E1 ⊆ 2C ⊆ 2K.

We set E :=
√
2E1 and the proof is complete. ✷

Note that the class BPn
k is closed under k-radial sums and that ellipsoids belogn to

this class for all 1 6 k 6 n− 1.
Let V1, V2 two star bodies in R

n. We define the distance between V1 and V2 as

(3.5) d(V1, V2) := sup
x∈Rn,x 6=0

{ρV1
(x)

ρV2
(x)

,
ρV2

(x)

ρV1
(x)

}

.

Observe that the definition implies that

(3.6)
1

d
V1 ⊆ V2 ⊆ dV1,

where d := d(V1, V2).
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Lemma 3.4. Let 1 6 k 6 n− 1 and logN 6 k. Let Vi, i 6 N, be symmetric star

bodies in BPn
k and let V = ∪N

i=1Vi. Then there exists C ∈ BPn
k such that

(3.7) d(V,C) 6 e.

Proof. Let ρVi
be the corresponding radial functions of Vi. Then

(3.8) ρV := max
i6N

ρVi
(x), x ∈ R

n \ {0}.

For any a ∈ R
N we have that

(3.9) ‖a‖∞ 6 ‖a‖p 6 N
1

k ‖a‖∞ 6 e‖a‖∞.

Let C be the star body defined by

(3.10) ρkC(x) :=

N
∑

i=1

ρkVi
(x), 0 6= x ∈ R

n.

Note that C ∈ BPn
k and by (3.9) we also have that d(V,C) 6 e. ✷

We can now give a proof of Theorem 1.1:
Let α := 2− 1

log en
k

. Note that o.v.r.(TK,BPn
k ) = o.v.r.(K,BPn

k ) for any T ∈ GLn.

So we may assume that K is in the position described in Theorem 3.1. We have
that for every t > 1, there exists N , such that logN 6

cn
ta(2−a) , and z1, . . . , zN ∈ K

such that

K ⊆ ∪N
i=1zi + tBn

2 .

Given any zi, let Ei as in Lemma 3.3. Then we have that

K ⊆ ∪N
i=1Ei ⊆ 2

(

co{z1, . . . , zn}+
√
2tBn

2

)

⊆ 2(K +
√
2tBn

2 ).

Choose t such that k = cn
ta(2−a) . Then logN 6 k. So, by Lemma 3.4, there exist a

C ∈ BPn
k such that d(C, V ) 6 e, where V = ∪N

i=1Ei. So,

(3.11)
1

e
K ⊆ 1

e
V ⊆ C ⊆ eV ⊆ 2e

(

K +
√
2tBn

2

)

Recall that t :=
(

n
k(2−a)

)
1

a ≃
√

n
k

√

log en
k . Then (3.11) becomes

(3.12)
1

e
K ⊆ C ⊆ 2e

(

K + c

√

n

k

√

log e
n

k
Bn

2

)

Moreover, by Corollary 3.2, we have that

|C| 1

n 6 2e|K + tBn
2 |

1

n 6 ct|K| 1

n .

Let C1 := eC. We have that C1 ∈ BPn
k , K ⊆ C1 and

(3.13)
|C1|

1

n

|K| 1n
6 c′t 6 c′′

√

n

k

√

log e
n

k
.

This finishes the proof. ✷



8 A. KOLDOBSKY, G. PAOURIS, AND M. ZYMONOPOULOU

4. Distances for k-intersection bodies

Let K a star body in R
n. Recall that the k-intersection body of K (if it exists) is

a star body that satisfies

(4.1) |Ik(K) ∩ F | = |K ∩ F⊥|, ∀F ∈ Gn,k.

Note that Ik(K) (if it exists) is unique. Also if t > 0 and T ∈ GLn, one has that

(4.2) Ik(tK) = t
n−k
k Ik(K) and Ik(TK) = |detT |T−∗(Ik(K)).

The last equality follows from the Fourier characterization of the k-intersection
bodies (see [29]).
Let K be a symmetric convex body of volume 1 and p > 1. We define the Lp-
centroid body of K ([36],[37],[43]), as the symmetric convex body that has support
function

(4.3) hZp(K)(θ) :=

(
∫

K

|〈x, θ〉|pdx
)

1

p

.

We will use the following Lq-version of Rogers-Shephard inequality ([43],[44]):

Proposition 4.1. Let K be a symmetric convex body of volume 1 in R
n and 1 6

k 6 n− 1. Then for every F ∈ Gn,k,

(4.4) |K ∩ F⊥| 1k |PFZk(K)| 1k ≃ 1.

We will also use the Santaló and reverse Santaló inequality ([5]): IfK is a symmetric
convex body in R

n, then

(4.5) (|K||K◦|)
1

n ≃ 1

n
.

Proposition 4.2. Let K be a symmetric convex body in R
n of volume 1 and 1 6

k 6 n− 1. Assume that Ik(K) exists. Then for F ∈ Gn,k,

(4.6) |Ik(K) ∩ F | 1k ≃ |
(

Zk(K)

k

)◦
∩ F | 1k .

Proof. Using the definition (4.1) and equations (4.4), (4.5), we get that

|Ik(K) ∩ F | 1k = |K ∩ F⊥| 1k ≃ |PFZk(K)|− 1

k ≃

k|Z◦
k(K) ∩ F | 1k = |

(

Zk(K)

k

)◦
∩ F | 1k .

✷

The following lemma is a well known application of the Brunn-Minkowski inequal-
ity:

Lemma 4.3. Let K be a symmetric convex body of volume 1 in R
n and let k > 2.

Then

(4.7) Z2(K) ⊆ Zk(K) ⊆ ckZ2(K),

where c > 0 is an absolute constant.

Note that Z2(K) is an ellipsoid. Moreover, since Zp(TK) = TZp(K) for T ∈ SLn,
there exists T ∈ SLn such that Z2(TK) := LKBn

2 . In this case we say that K is
isotropic (see [42], [14] for more information on isotropicity). Note that in the case
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where K is convex the definition of the isotropic constant LK that we give here is
equivalent to the definition given in §2. (see e.g. [14]).
We have the following

Corollary 4.4. Let K be an isotropic convex body in R
n, 1 6 k 6 n−1 and assume

that Ik(K) exists. Then for all F1, F2 ∈ Gn,k,

(4.8)
1

(c1k)k
6

|Ik(K) ∩ F1|
|Ik(K) ∩ F2|

6 (c1k)
k,

where c1 > 1 is an absolute constant.

Proof. Using equations (4.6) and (4.7) we have that

|Ik(K) ∩ F1|
|Ik(K) ∩ F2|

6 ck
|
(

Zk(K)
k

)◦
∩ F1|

|
(

Zk(K)
k

)◦
∩ F2|

6 ck
|
(

Z2(K)
k

)◦
∩ F1|

ck0 |Z◦
2 (K) ∩ F2|

6
kkck

ck0

|Z◦
2 (K) ∩ F1|

|Z◦
2 (K) ∩ F2|

6 (c1k)
k,

since K is isotropic. We work similary for the left hand side inequality. ✷

We will also need the following

Lemma 4.5. Let K be a symmetric convex body in R
m+1. Let r := rK(em+1) and

R := hK(em+1). Then

(4.9)
2r

m+ 1
|K ∩ R

m| 6 |K| 6 2R|K ∩ R
m|.

Proof. To estimate the left-hand side observe that rem+1 ∈ K, so

|K| > |co{K ∩R
m, rem+1,−rem+1}| = 2

r

m+ 1
|K ∩R

m|.

For the right-hand side, observe that the function f(s) := |K ∩ (sem+1 + e⊥m+1)|
is even and log-concave by the Brunn-Minkowski inequality, therefore attains its
maximum at 0. Then by Fubini’s theorem,

|K| = 2

∫ R

0

f(s)ds 6 2Rf(0) = 2R|K ∩ R
m|.

This finishes the proof. ✷

Proposition 4.6. Let K be a symmetric convex body in R
n, n > 3 and 2 6 k 6

n− 1. Assume that there exists δ > 1 such that for every F1, F2 ∈ Gn,k,

|K ∩ F1|
|K ∩ F2|

6 δk.

Then

(4.10) dG(K,Bn
2 ) 6 kδk.

Proof. Let θ1 ∈ Sn−1 be such that R(K) := hK(θ1) = ρK(θ1). Let θ2 ∈ Sn−1 be
such that r(K) := hK(θ2) = ρK(θ2). It is enough to show that R

r 6 kδk.
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We may assume that θ1 6= θ2, or else we have nothing to prove. Let F0 :=
span{θ1, θ2}. Let F ∈ Gn,k−1, F ⊥ F0, F1 := span{θ1, F} and F2 := span{θ2, F}.
Let S := |K ∩ F |. Then by Lemma 4.5 we have that

2RS

k
6 |K ∩ F1| 6 2RS and

2rS

k
6 |K ∩ F2| 6 2rS or

(4.11)
R

kr
6

|K ∩ F1|
|K ∩ F2|

6
kR

r

Then R
kr 6 δk. ✷

Proof of Theorem 1.2: The case k = 1 is covered by the result of Hensley as noted in
the Introduction. So we assume that n > 3 and 2 6 k 6 n− 1. Using (4.2) we may
assume that K is isotropic. Then we want to show that dG(Ik(K), Bn

2 ) 6 k(ck)k,
where c > 0 absolute constant. This follows from Corollary 4.4 and Proposition
4.6. ✷

The dependence on k in Theorem 1.2 is very bad, c(k) 6 k(ck)k. This becomes

meaningless for k >
logn

log logn . We can give a (slightly) better bound (but still expo-

nential) using certain tools that were developed in order to attack the Hyperplane
conjecture. For a proof of the following lemma see [42].

Lemma 4.7. Let K be an isotropic convex body in R
n and let 1 6 k 6 n − 1.

Then for any F ∈ Gn,k there exists a symmetric convex body B in F such that,

B := B(F ) is also isotropic and

(4.12) |K ∩ F⊥| 1k ≃ LB

LK
.

Second proof of Theorem 1.2: Again we may assume that K is isotropic. We will
use the best known bound for the isotropic constant due to B. Klartag [23] (see
also [24]): for every B in R

k,

(4.13) LB 6 ck
1

4 ,

where c > 0 is a universal constant. Moreover, it is known (e.g.([42]) that LK >

LBn
2
≃ 1. So using (1.12) we get that for every F1, F2 ∈ Gn,k,

(4.14)
|Ik(K) ∩ F1|
|Ik(K) ∩ F2|

=
|K ∩ F⊥

1 |
|K ∩ F⊥

2 | 6
(

c
LB(F1)

LB(F2)

)k

6 (c′k)
k
4 .

So, using Proposition 4.6 again we get that dG(K,Bn
2 ) 6 k(ck)

k
4 . This finishes the

proof. ✷

5. Volumetric estimates for k-intersection bodies

Let p 6= 0 and C be a symmetric star body in R
n. We define

(5.1) Mp(C) :=

(
∫

Sn−1

‖θ‖pCdσ(θ)
)

1

p

.

Moreover, if C is convex we write

(5.2) Wp(C) :=

(
∫

Sn−1

h
p
C(θ)dσ(θ)

)
1

p

.
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Let K be a compact set in R
n with |K| = 1. Let p > −n, p 6= 0. We define

(5.3) Ep(K) :=

(
∫

K

‖x‖p2dx
)

1

p

.

We have the following identity (see [44] for a generalization to the case of measures):

Lemma 5.1. Let K be a symmetric star body in R
n of volume 1 and 1 6 k 6 n−1.

Then

(5.4)

E−k(K)

(

∫

Gn,k

|K ∩ F⊥|dµ(F )

)
1

k

= E−k(Dn)

(

∫

Gn,k

|Dn ∩ F⊥|dµ(F )

)
1

k

.

Proof. Indeed, writing in polar coordinates, we get that

E−k
−k (K) =

nωn

n− k

∫

Gn,n−k

∫

SE

dσ(θ)

‖θ‖n−k
K

dµ(E) =

nωn

(n− k)ωn−k

∫

Gn,n−k

ωn−k

∫

SE

dσ(θ)

‖θ‖n−k
K

dµ(E) =
nωn

(n− k)ωn−k

∫

Gn,n−k

|K∩E|dµ(E) =

nωn

(n− k)ωn−k

∫

Gn,k

|K ∩ F⊥|dµ(F ).

Since the same holds also for Dn, equation (5.4) follows. ✷

We have the following application of the previous lemma and a definition of k-
intersection bodies.

Lemma 5.2. Let K be a symmetric star body in R
n of volume 1 and 1 6 k 6 n−1.

Assume that Ik(K) exists. Then

(5.5) M−k(Ik(K))

(

∫

Gn,k

|K ∩ F⊥|dµ(F )

)
1

k

= ω
1

k

k .

Moreover,

(5.6)
M−k(Ik(K))

M−k(Ik(Dn))
=

E−k(K)

E−k(Dn)
.

Proof. Integrating (4.1) over Gn,k we have that

(5.7)

∫

Gn,k

|Ik(K) ∩ F |dµ(F ) =

∫

Gn,k

|K ∩ F⊥|dµ(F ).

Moreover,
∫

Gn,k

|Ik(K) ∩ F |dµ(F ) =

∫

Gn,k

ωk

∫

SF

dσF (θ)

‖θ‖kIk(K)

dµ(F )

= ωk

∫

Sn−1

dσ(θ)

‖θ‖kIk(K)

= ωkM
−k
−k (Ik(K)).

So, by (5.7) we get (5.5). (5.6) follows from (5.5) and (5.4). ✷

The following two propositions deal with the behavior of the ratio
Ep(K)
Ep(Dn)

.

It is not difficult to obtain a lower bound for the quantity
Ep(K)
Ep(Dn)

. The main tool

is an argument of Milman and Pajor (see [42]).
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Proposition 5.3. Let K a compact set in R
n of volume 1 and let p > −n, p 6= 0.

Then

(5.8) Ep(K) > Ep(Dn),

with equality if and only if |K ∩Dn| = 1.
In particular, if K is a star body, then we have equality if and only if K = Dn.

Proof. Note that |K \Dn| = |Dn \K|. Also if x ∈ K \Dn then ‖x‖2 > |Bn
2 |−

1

n

while if x ∈ Dn \K, ‖x‖2 6 |Bn
2 |−

1

n . So, if p > 0,

Ep
p (K) =

∫

K

‖x‖p2dx =

∫

K\Dn

‖x‖p2dx+

∫

K∩Dn

‖x‖p2dx >

∫

Dn\K
‖x‖p2dx+

∫

K∩Dn

‖x‖p2dx = E
p
2 (Dn).

It is clear that we have equality if and only if |K ∩Dn| = 1. We work similarly if
p < 0. ✷

Proposition 5.4. Let K a star body in R
n of volume 1, −n < p < q 6 ∞, p, q 6= 0.

Then

(5.9)
Ep(K)

Eq(K)
6

Ep(Dn)

Eq(Dn)
,

with equality if and only if K = Dn.

Proof. We follow an argument from [3]. A simple computation shows that

(5.10)
Eq(Dn)

Ep(Dn)
=

( n
n+q )

1/q

( n
n+p )

1/p
.

For every q > −n, q 6= 0, by integration in polar coordinates we have

(5.11) Eq
q (K) = ωn

∫ ∞

0

rn+q−1σ

(

1

r
K

)

dr :=

∫ ∞

0

rn+q−1g(r), dr.

The function g(r) := ωnσ
(

1
rK
)

is non-increasing on (0,∞) and it is supported in
some [r(K), R(K)]. If we assume thatK is not the Euclidean ball, then [r(K), R(K)]
is an interval and g(r) can be assumed absolutely continuous. In this case we can
write

(5.12) g(r) = n

∫ ∞

r

ρ(s)

sn
ds, (r > 0)

for some non-negative function ρ on (0,∞). Then, again by integration in polar
coordinates,

1 = |K| =
∫ ∞

0

rn−1g(r) dr = n

∫ ∞

0

∫

0<r<s

rn−1 ρ(s)

sn
dr ds =

∫ ∞

0

ρ(s) ds.

Hence, ρ represents a probability density of a positive random variable, say, ξ. Then
(5.11) becomes

Eq
q (K) =

∫ ∞

0

rq+n−1g(r) dr =
n

n+ q

∫ ∞

0

sqρ(s) ds =
n

n+ q
E(ξq).

Applying Hölder’s inequality for −n < p < q 6 ∞, we see that

(5.13) (E(ξq))
1/q

> (E(ξp))
1/p

.
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Note that, since ξ is a non-zero random variable with an absolute continuous density,
there is no equality case in (5.13) (see [19, Th.188]). So,

Eq(K)

Ep(K)
=

(

n
n+qE(ξ

q)
)1/q

(

n
n+pE(ξ

p)
)1/p

>

(

n
n+q

)1/q

(

n
n+p

)1/p
=

Eq(Dn)

Ep(Dn)
,

as claimed. ✷

We will use the following immediate application of Hölder’s inequality.

Lemma 5.5. Let C be a star symmetric body in R
n and p 6 q, p, q 6= 0. Then

(5.14) Mp(C) 6 Mq(C),

with equality if and only if C = aBn
2 for some a > 0.

Moreover writing the volume of C in polar coordinates we get that

(5.15) M−n(C) =

( |Bn
2 |

|C|

)
1

n

.

Results of Lewis [34], Figiel and Tomczak-Jaegermann [11], Pisier [45] establish the
following “reverse Uryson” inequality:

Proposition 5.6. Let C be a symmetric convex body in R
n. Then there exists

T ∈ SLn such that

(5.16) W (C1) 6 c
√
n|C1|

1

n log (1 + dBM (C,Bn
2 )),

where c > 0 is an absolute constant and C1 = TC.

Proof of Theorem 1.3: Using Lemma 5.5 and (5.15) we have that

(5.17)
M−k(Ik(K))

M−k(Ik(Dn))
>

( |Ik(Dn)|
|Ik(K)|

)
1

n

.

Using (4.2), we may assume that K is isotropic. Then E2(K) =
√
nLK . Then, by

(5.6), and Proposition 5.4,

(5.18)
M−k(Ik(K))

M−k(Ik(Dn))
=

E−k(K)

E−k(Dn)
6

E2(K)

E2(Dn)
=

LK

LDn

.

So, (5.17) and (5.18) imply equation (1.3).

We now assume that Ik(K) is convex. We consider I◦k (K) to be in the position
described in Proposition 5.6. (Again by using (4.2).) Then by Lemmas 5.5 and 5.6,

M−k(Ik(K)) 6 M1(Ik(K)) = W (I◦k (K)) 6

c
√
n||I◦k (K)| 1

n log (1 + dBM (Ik(K), Bn
2 )) 6

c′ log (1 + dBM (Ik(K), Bn
2 ))√

n|Ik(K)| 1

n

,

using also Santaló inequality. This implies that

(5.19)
M−k(Ik(K))

M−k(Ik(Dn))
6 c

( |Ik(Dn)|
|Ik(K)|

)
1

n

log (1 + dBM (Ik(K), Bn
2 )).

So again by (5.6) and Proposition 5.3, we have that

(5.20)
M−k(Ik(K))

M−k(Ik(Dn))
=

E−k(K)

E−k(Dn)
> 1.
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So, equations (5.19) and (5.20) imply (1.4). To conclude we use the fact that
dBM (K,Bn

2 ) 6
√
n and Theorem 1.2. ✷

6. Concluding remarks

Theorem 1.1 indicates that the classes BPn
k increase in a “canonical” way. It is not

clear to us if the reverse inequality (up to the logarithmic term) holds true even for
the Banach-Mazur distance. We pose this as a

Question 1: Is it true that for every n and every k, 1 6 k 6 n− 1, there exists a
convex symmetric body K in R

n such that

dBM (K,BPn
k ) > c

√

n

k
,

where c > 0 is a universal constant?

We can show that this is true in the case k = 1:

Proposition 6.1. There exists c > 0 such that for every n > 1,

dBM (Bn
∞, In

1 ) > c
√
n.

The proof of the latter Proposition depends on the following fact: all convex inter-
section bodies have bounded volume ratio. Let VRn(a) be the class of symmetric

convex bodies in R
n with v.r.(K) := inf{

(

|TK|
Bn

2

)
1

n

: T ∈ GLn} 6 a. In this notation

we have the following

Proposition 6.2. There exists c > 0 such that for every n > 1 every convex

intersection body in R
n belongs to the class VRn(c).

Proof. The proof is simply a combination of certain known results. Let K ∈ In
1

and convex, and let X the n-dimensional Banach space with norm ‖ · ‖ := ‖ · ‖K .
Then it has been shown in [22] that X embeds isomorphically to L1/2. It is known
(e.g. [21]) that every Banach subspace of L1/2 has (Rademacher) cotype 2. Next,
by a result of Bourgain and Milman ([5]), every finite dimensional subspace with
bounded cotype 2 constant, has the property that its unit ball has bounded volume
ratio. This finishes the proof. ✷

Proof of Proposition 6.1: We will show that dBM (Bn
∞,VRn(a)) > c(a)

√
n. Then

by Proposition 6.2 the proof would be complete. For simplicity we assume that
n = 4k for some k ∈ N. The general case follows easily. Let C ∈ VRn(a) such that
dBM (Bn

∞,VRn(a)) = dG(B
n
∞, C) =: d. Then we have that C ⊆ Bn

∞ ⊆ dC. By
a well known generalization of Kashin’s theorem ([48]) there exists F ∈ Gn,n

2
and

an ellipsoid E such that c1(a)E ⊆ C ∩ F ⊆ c2(a)E . Moreover it is known (see e.g.
[51]) that for any ellipsoid in R

m there exists E ∈ Gm,m
2
and some r > 0 such that

E ∩ E = rBE , where BE is the Euclidean ball of E. So we get that there exists
E ∈ Gn,n

4
and r1 := r1(a) > 0, r2 := r2(a), such that

r1BE ⊆ Bn
∞ ∩ E ⊆ dr2BE .

Hence, it is enough to show that dG(B
n
∞ ∩ E,BE) > c

√
n, for every E ∈ Gn,n

4
.

Considering the polar body of Bn
∞∩E it is enough to show that the convex hull of at

most 8n points in R
n has geometric distance from the Euclidean ball at least c

√
n.

LetN > n+1, v1, · · · , vN ∈ Bn
2 and ‖v1‖2 = 1. LetK := co{v1, · · · , vN}. Note that
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R(K) = 1. Now it is enough to show that if N = 8n then rK := minθ
Sn−1

ρK(θ) 6

c√
n
. But (see e.g. [1], [2], [10], [15]) one has that |K| 1

n 6 c′
√

log eN
n

n . Writing the

volume of K in polar coordinates we get that there exists at least one θ ∈ Sn−1

such that ρK(θ) 6 c′′
√

log eN
n

n . We complete the proof by choosing N = 8n . ✷

The estimate in Theorem 1.2 is exponential with respect to k. Even if we assume
that the Hyperplane conjecture has a positive answer the existing proof would still
give an estimate exponential with respect to k. We believe that a better estimate
(polynomial) must be true. Having in mind equation (4.6), we pose the following
question:

Question 2: Is it true that if K is symmetric and convex in R
n, 1 6 k 6 n and

Ik(K) exists and it is convex then Ik(K) is isomorphic to Z◦
k(K)?

Note that a positive answer to the previous question would easily imply a linear in
k estimate in Theorem 1.2.

The second conclusion of Theorem 1.3. can be viewed as a generalization of the
classical Busemann inequality (see Introduction). We don’t know if the assumption
that Ik(K) is convex is necessary in Theorem 1.3 and whether the estimate can be
replaced by 1:

Question 3: Is it true that ifK is a symmetric star body of volume 1, 1 6 k 6 n−1
and if Ik(K) exists, then

|Ik(K)| 6 |Ik(Dn)| ?
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