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1. Preliminaries and Notation. Let Γ be a connected graph of size N , P be an N×N probability
transition matrix corresponding to a feasible policy on Γ, which means that pij = 0 whenever (i, j) is not
an edge on Γ, and J be an N ×N matrix where every element is unity. Consider the following singular
perturbation of P

P(ε) := (1− ε)P +
ε

N
J, (1.1)

which we call the linear symmetric perturbation of P and denote P(ε) as Pε.

An important recent application of symmetric linear perturbation matrices is ranking in complex
networks. Specifically, this sort of matrix is used in the Google PageRank algorithm that determines
popularity of Web pages. The PageRank is defined as the stationary distribution of a Markov chain on
the set of Web pages. This Markov chain serves as the following elementary model of a surfing process.
At each step, with probability (1−ε), a surfer follows a randomly chosen out-going hyperlink of a current
page, and with probability ε, the surfer is bored and picks a new page on the Web at random. A jump to
a random page with probability ε corresponds to the symmetric linear perturbation of a random walk on
the Web graph, and the PageRank vector r is the stationary probability vector of Pε, that is, rPε = r,
where all components of r are non-negative and sum up to unity. The parameter ε, originally set equal to
0.15, is commonly called a ‘damping factor’. Choosing ε > 0 ensures that there exists a unique PageRank
vector r. Furthermore, this parameter is responsible for the fast convergence of the power iteration
procedure [11], for the robustness of the algorithm [1, 3], and for fair distribution of the PageRank mass
among Web components [2]. After the introduction of the PageRank by Brin and Page [4], a great deal of
work has been done on the PageRank computation and analysis. We refer to [11] for an excellent survey of
this research. Throughout the paper we will explain the relation of our results to the analysis of PageRank.

Let P∗(P, ε) be the stationary distribution matrix of Pε, namely,

P∗(P, ε) := lim
t→∞

(Pε)t.

Let G(P, ε) be the fundamental matrix of the Markov chain with transition matrix Pε, which is defined
as G(P, ε) := (I−Pε + P∗(P, ε))−1. Write I−Pε + P∗(P, ε) as A∗(P, ε), and I−Pε + 1

N J as A(P, ε).

For the sake of completeness, we are listing a few recent results on G(P, ε), A(P, ε) and the Hamiltonicity
of Γ.
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Theorem 1.1. ([5], [6]) For ε ∈ [0, 1) and any stochastic policy P feasible on a given Hamiltonian graph,

max
Pε

detA(P, ε) = detA(PHC, ε).

In particular,

detA(PHC, ε) =

 N, for ε = 0,
1− (1− ε)N

ε
, for ε ∈ (0, 1),

for any PHC corresponding to a Hamiltonian Cycle.

In [12], it was proved that for ε ∈ [0, 1) the minimizers of Tr[G(P, ε)] over the set of all doubly stochastic
policies correspond to Hamiltonian Cycles. It was also shown that this result holds over the set of all
stochastic policies for ε = 0, that is, without any perturbation, namely

Theorem 1.2. ([12]) For ε = 0 and for any stochastic policy P feasible on a given Hamiltonian graph,

min
P

Tr[G(P, ε)] = Tr[G (PHC, ε)],

for any PHC corresponding to a Hamiltonian Cycle.

The paper [12] also includes a conjecture that the result holds for ε ∈ [0, 1), as follows

Conjecture 1.1. ([12]) For any ε ∈ [0, 1) and any stochastic policy P feasible on a given Hamiltonian
graph,

min
P

Tr[G(P, ε)] = Tr[G (PHC, ε)],

for any PHC corresponding to a Hamiltonian Cycle.

In this paper, we present a proof of the above statement, which we call the Hamiltonicity-Trace conjecture.

2. Main Result.

Theorem 2.1. For any ε ∈ (0, 1) and for any stochastic policy P feasible on a given Hamiltonian graph,

min
P

Tr[G(P, ε)] = Tr[G (PHC, ε)] = 1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
,

for any PHC corresponding to a Hamiltonian Cycle.

The structure for the proof of Theorem 2.1 is as follows: In Lemma 3.1, we derive relationships between
eigenvalues and eigenvectors of various relevant matrices, which lead to the derivation of alternative
formulae for the trace function in Lemma 3.2. In Lemma 4.1, we prove that the value of the trace of
G(P, ε) when ε ∈ (0, 1) for any randomized policy is bounded above by that of some deterministic policy,
and bounded below by that of some other deterministic policy. This enables us to reduce our proof from
the set of all stochastic policies to the set of all deterministic policies only. We derive the exact formulae
for four exhaustive, mutually exclusive types of deterministic policies in Lemmata 4.2-4.5. Finally, we
show that among these, Hamiltonian cycles are minimizers for the objective function.

3. Properties of the trace of the fundamental matrix for perturbed Markov chains. Let
ηi be the eigenvalues of Pε, for i = 1, . . . , N .

Lemma 3.1. For any ε ∈ (0, 1) and any stochastic matrix P, the following properties hold:
(i) Any right eigenvector of Pε corresponding to an eigenvalue ηi < 1 is a right eigenvector of

P∗(P, ε) corresponding to eigenvalue 0 and hence is a right eigenvector of A∗(P, ε) corresponding
to the eigenvalue 1− ηi. The right eigenvector e = (1, . . . , 1)T of Pε corresponding to the unique
eigenvalue ηN = 1 is a right eigenvector of P∗(P, ε) corresponding to eigenvalue 1 and hence it
is a right eigenvector of A∗(P, ε) corresponding to eigenvalue 1.
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(ii) A∗(P, ε) and A(P, ε) share the set of eigenvalues {µi = 1− ηi, for i = 1, . . . , N − 1, µN = 1}.

(iii) detA∗(P, ε) = detA(P, ε) =
N−1∏
i=1

(1− ηi) .

Proof.
(i) Let u1, . . . ,uN be the left eigenvectors of Pε with uN corresponding to the eigenvalue one, which
makes it the stationary distribution of the Markov chain with transition matrix Pε. As Pε is irreducible
and aperiodic, any right eigenvector yi of Pε corresponding an eigenvalue ηi < 1 is orthogonal to uN , so
P∗(P, ε)yi = vNuNyi = 0. This gives us A∗(P, ε)y = (1− ηi)yi.

(ii) For A∗(P, ε): We observe that e is an eigenvector of both Pε and A∗(P, ε) with eigenvalue 1. As
u1, . . . ,uN−1 span ker(P∗(P, ε)), then the remaining eigenvalues of A∗(P, ε) are 1−ηi, for i = 1, . . . , N−1.

For A(P, ε): It is straightforward to see that e is also an eigenvector of A(P, ε) with eigenvalue 1.
Let w 6= e be an eigenvector of Pε − 1

N J, with eigenvalue γ 6= 0, then w = t + αe for some α and some
t ∈ ker(J). Now we will show that there exists a corresponding vector s = t + βe such that Pεs = γs.
Indeed, taking β = −αγ/(γ − 1), we see that

Pεs = Pε(t + βe)

=
(
Pε − 1

N
J +

1
N

J
)

(t + αe− αe + βe) =
(
Pε − 1

N
J +

1
N

J
)

(t + αe− αe) + βe

= γw +
(

1
N

0 + αe
)
− αe + βe = γ(t + αe) + βe = γt + αγe− αγ

γ − 1
e = γt + γβe = γs.

Thus, the set of eigenvalues γi of Pε − 1
N J, i = 1, . . . , N − 1, γi 6= 0 is also the set of eigenvalues ηi of

Pε, i = 1, . . . , N − 1, ηi 6= 1, and vice versa. Consequently, with one eigenvalue of A∗(P, ε) being unity,
the remaining eigenvalues of A∗(P, ε) are 1− ηi, for i = 1, . . . , N − 1.

(iii) This result follows immediately from part (ii) above. 2

Lemma 3.2. For any ε ∈ (0, 1) and any stochastic matrix P,

(i) The set of eigenvalues of G(P, ε) is {1, 1
1−ηi

, i = 1, . . . , N − 1}.

(ii) Tr[G(P, ε)] = 1 +
N−1∑
i=1

1
1− ηi

,

(iii) Tr[G(P, ε)] = Tr[A−1(P, ε))].

Proof. Part (i) follows directly from the fact that for any ε ∈ (0, 1) and for any stochastic P, the
matrix A(P, ε) is invertible, as the minimum value of detA(P, ε) is strictly greater than zero (see [6]);
consequently, A∗(P, ε) is also invertible. Part (ii) follows from part (i), and part (iii) follows directly
from part (ii) and Lemma 3.1. 2

The result of Lemma 3.2 is quite puzzling. It turns out that if we replace P∗(P, ε) by ( 1
N )J in the

fundamental matrix G(P, ε) = A−1
∗ (P, ε), then the trace remains invariant. This interesting observation

can also be explained using a probabilistic argument. To this end, we first need to perform some simple
calculations.

Let W be a rank-one stochastic matrix. Such matrix consists of identical rows, each row representing
a probability distribution on 1, . . . , N . Formally, W = eTw, where w is a vector of length N and the
ith coordinate of w stands for the probability of value i. It is easy to verify that PW = W for any
stochastic matrix P. Now, assume that P is irreducible, and consider the matrix AW(P) = I−P + W.
The inverse A−1

W (P) exists and can be viewed as a generalization of a fundamental matrix. Moreover,
using the argument as in the proof Lemma 3.1(ii), one can show that if η1, . . . , ηN−1, ηN = 1 are the
eigenvalues of P then η1, . . . , ηN−1, 0 are the eigenvalues of P−W. Hence, the spectral radius of P−W
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is smaller than 1, and expending A−1
W (P) in a power series, we get

A−1
W (P) = I +

∞∑
n=1

[P−W]n = I + [P−W] +
∞∑

n=1

[P−W]n+1. (3.1)

Since for n ≥ 1

[P−W]n+1 = [P−W]nP− [P−W]nW

= [P−W]nP− [P−W]n−1[W −W]
= [P−W]nP = · · · = [P−W]Pn, (3.2)

equation (3.1) reduces to

A−1
W (P) = I +

∞∑
n=0

[P−W]Pn = lim
t→∞

{
t∑

n=0

Pn −
t−1∑
n=0

WPn

}
, (3.3)

where the second equality is obtained by expanding A−1
W (P) in (3.1) up to [P −W]t and then letting

t → ∞. Now consider a Markov chain governed by P. Then the element (i, j) of the matrix inside the
curly braces in the last expression of (3.3) equals to the difference between two values: (i) the average
number of visits to j on [0, t] of the chain started at i, and (ii) the average number of visits to j on
[0, t− 1] of the chain started from the distribution given by w, the row of W. Thus, indicating the initial
distribution as a lower index of the expectation, from (3.3) we derive

Tr[A−1
W (P)] =

∑
i

[
A−1

W (P)
]
ii

= lim
t→∞

∑
i

{Ei[# visits to i on [0, t]]− Ew[# visits to i on [0, t− 1]]}

= lim
t→∞

{∑
i

Ei[# visits to i on [0, t]]− (t− 1)

}
,

which is finite and, surprisingly, does not depend on W. Coming back to Lemma 3.2, we see that for all
ε ∈ (0, 1) the matrix Pε is an irreducible stochastic matrix. Thus, the trace of [I − Pε + W]−1 is the
same for any rank-one stochastic matrix W. This generalizes Part (ii) of Lemma 3.2, which can be now
obtained by setting W = P∗(P, ε) or W = 1

N J.

We can now derive a convenient expression for our quantity of interest, Tr[G(P, ε)]. Let Q be another
rank-one stochastic matrix, and consider generalized versions of Pε and AW(P, ε) defined as

P(Q, ε) = (1− ε)P + εQ, AW(P,Q, ε) = I−P(Q, ε) + W.

Then we have

AW(P,Q, ε) = I− (1− ε)P + [W − εQ] = I− (1− ε)P + (1− ε)W′,

where W′ = [W − εQ]/(1 − ε) is a matrix with identical rows w′ such that each row sums up to unity
but some elements might be negative. Nevertheless, the spectral radius of [P−W′] is still smaller than 1,
and the expression PW′ = W′ still holds in this case. Hence, we can apply the argument from (3.2) to
deduce that for n ≥ 1,

[P−W′]n+1 = [P−W′]Pn,

and expanding GW(P,Q, ε) = A−1
W (P,Q, ε) in a power series, we obtain

GW(P,Q, ε) =
∞∑

n=0

(1− ε)n[P−W′]n

=
∞∑

n=0

(1− ε)nPn −
∞∑

n=1

(1− ε)nW′Pn−1

= [I− (1− ε)P]−1 − (1− ε)W′[1− (1− ε)P]−1. (3.4)
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The first matrix in the last equation has a simple probabilistic meaning. Consider a random walk similar
to the one in the PageRank definition but with a stop instead of a random jump. With probability (1−ε),
such Markov random walk makes a step according to the transition matrix P, and with probability ε
the random walk terminates. In other words, we have a Markov chain with transition matrix P and a
stopping time T (ε), which is distributed geometrically with parameter ε. Then the element (i, i) of

[I− (1− ε)P]−1 =
∞∑

n=0

(1− ε)nPn (3.5)

is nothing else but the average number of visits to node i on the interval [0, T (ε)], provided that the
random walk started at i. Furthermore, the element (i, i) of W′[1− (1− ε)P]−1 equals∑

j

W′
ijEj [# visits to i on [0, T (ε)]].

Note that for all i, the element W′
ij is simply the jth coordinate of w′. Thus, summing over i, and using

the fact that the stopping time T (ε) is independent of the random walk, we obtain

Tr[W′[1− (1− ε)P]−1] =
∑

j

[jth coordinate of w′]
∑

i

Ej [# visits to i on [0, T (ε)]]

=
∑

j

[jth coordinate of w′]Ej [T (ε)]

=
∑

j

[jth coordinate of w′](1/ε) = 1/ε. (3.6)

Substituting (3.6) in the trace of (3.4) we get

Tr[GW(P,Q, ε)] = Tr[[I− (1− ε)P]−1]− 1− ε

ε
, (3.7)

for any rank-one stochastic perturbation Q and any rank-one stochastic matrix W. This result generalizes
Part (iii) of Lemma 3.2, which can be obtained from (3.7) when Q = 1

N J and W = P∗(P, ε).

We would like to remark that in the recent literature, the matrix P(Q, ε) is often used instead of Pε in
the PageRank definition. This modified model is commonly referred to as a personalized or topic-sensitive
PageRank [9]. In this model, after a random jump, a surfer picks a page according to some probability
distribution q, which is not necessarily uniform. The probability vector q may reflect personal or thematic
preferences. Also, this model is used for spam detection by giving higher preference to trusted pages [8].
In [10], partial results on eigenvalues and eigenvectors of P(Q, ε) were obtained, using the arguments of
a similar kind as in the proof of Lemma 3.1.

Let r(Q, ε) be the personalized PageRank vector with perturbation matrix Q, which consists of identical
rows q. By definition, r(Q, ε) is a stationary vector of P(Q, ε):

r(Q, ε) = r(Q, ε)[(1− ε)P + εQ].

Then since r(Q, ε)Q = q, we immediately obtain

r(Q, ε) = q[I− (1− ε)P]−1.

This formula highlights the role of the matrix [I− (1− ε)P]−1 in the PageRank analysis. Although the
matrix inversion is not practical from computational point of view, the formula can be used to derive
many interesting properties of the PageRank. For instance, the PageRank of page i can be written as a
product of three terms, where one of the terms is the element (i, i) of [I− (1− ε)P]−1, and it is the only
component that depends on outgoing links of i and thus can be influenced by this page itself [1].
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4. Optimality of the Hamiltonian cycle. The following lemma shows that the trace of the
fundamental matrix can be maximized or minimized only on deterministic policies.

Lemma 4.1. For any ε ∈ (0, 1) and for every randomized policy P, there exist some deterministic policies
D1 and D2 such that

Tr[G(D1, ε)] ≤ Tr[G(P, ε)] ≤ Tr[G(D2, ε)]. (4.1)

Proof. Let P be a randomized policy. We consider the randomization at each row i of P separately.
Suppose a particular row i is of the following structure:

[ . . . a . . . b . . . c . . . ], a, b ∈ (0, 1).

Consider a policy Pλ that coincides with P in all rows except row i, where it is replaced by

[ . . . λ . . .
(1− λ)
1− a

b . . .
(1− λ)
1− a

c . . . ], λ ∈ [0, 1].

Note that for λ = a, Pλ reduces to P. By Lemma 3.2 part (iii) and writing the inverse in terms of the
adjoint,

Tr [G(Pλ, ε)] = Tr
[
A−1(Pλ, ε)

]
=

N∑
i=1

|Aii(Pλ, ε)|
|A(Pλ, ε)|

,

where A(Pλ, ε) = I−Pε
λ + 1

N J and Aii(Pλ, ε) is A(Pλ, ε) with the i-th row and the i-th column removed.
Both |A(Pλ, ε)| and |Aii(Pλ, ε)| are linear functions of λ for all i = 1, . . . , N . Therefore,

Tr [G(Pλ, ε)] =
C1|A(Pλ, ε)|+ C2

|A(Pλ, ε)|
= C1 +

C2

|A(Pλ, ε)|
,

for some C1, C2 constant, C1 6= 0. Differentiating the objective function with respect to λ gives us

d

dλ
Tr [G(Pλ, ε)] = − C2

|A(Pλ, ε)|2
,

which is either zero for all λ ∈ (0, 1), if C2 = 0, or never zero for all λ ∈ (0, 1), if C2 6= 0. In both cases,
this implies that Tr[G(Pλ, ε)] is a monotone function over λ ∈ [0, 1], and is maximized or minimized at
either extreme of the interval. As the i-th row in Pλ=0 or Pλ=1 has at least one more row than the i-th
row in P, Pλ=0 or Pλ=1 has at least one more zero than P, and:

(1) either Tr[G(Pλ=0, ε)] or Tr[G(Pλ=1, ε)] ≥ Tr[G(P, ε)], and
(2) either Tr[G(Pλ=1, ε)] or Tr[G(Pλ=0, ε)] ≤ Tr[G(P, ε)], respectively.

Applying this process of increasing the number of zeros (and consequently reducing the number of
randomizations), we can find D1 and D2 that satisfy the inequalities in (4.1). 2

Lemma 4.2. For any ε ∈ (0, 1) and any PHC that corresponds to a Hamiltonian Cycle, that is, a policy
with a single ergodic class and no transient states,

Tr[G(PHC, ε)] = 1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
.

Proof. As Pε
HC is doubly stochastic and irreducible, P∗(P, ε) reduces to 1

N J and consequently the
fundamental matrix G(PHC, ε) reduces to (I−Pε

HC + 1
N J)−1 = A−1(PHC, ε).

From [6], for i = 1, . . . , N − 1, the eigenvalues λi of PHC are the N -th roots of unity, and λN = 1;
for i = 1, . . . , N − 1, the eigenvalues µi of A(PHC, ε) are 1− (1− ε)λi, and µN = 1. By Lemma 3.2 part
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(ii),

Tr[G(PHC, ε)] = 1 +
N−1∑
i=1

1
1− (1− ε)λi

= 1 +
d

N−1∏
i=1

(1− (1− ε)λi)

= 1 +
d

1− (1− ε)N

ε

, (4.2)

where

d = (N − 1)− (1− ε)(N − 2)
N−1∑
i=1

λi + (1− ε)2(N − 3)
N−1∑
i>j

i,j=1

λiλj

− · · ·+ (−1)N−2(1− ε)N−2(N − (N − 1))
N−1∑

i1>i2>...>iN−2
i1,i2,...,iN−2=1

λi1λi2 . . . λiN−2

= (N − 1)− (1− ε)(N − 2)q1(λ) + (1− ε)2(N − 3)q2(λ)− · · ·+ (−1)N−2(1− ε)N−2(N − (N − 1))qN−2(λ),

and the last equality in (4.2) follows from Lemma 3.3 in [6]. From the proof of Proposition 1 in [5],
the values of the elementary symmetric polynomials qi(λi) are: q1(λi) = −1, q2(λi) = 1, . . . , qN−2(λi) =
(−1)N−2. Hence, d simplifies to

d = (N − 1) + (1− ε)(N − 2) + (1− ε)2(N − 3) + · · ·+ (1− ε)N−2(N − (N − 1)).

Let r := 1− ε,

d = (N − 1)r0 + (N − 2)r1 + (N − 3)r2 + · · ·+ (N − (N − 1))rN−2

= N

N−2∑
i=0

ri −
N−2∑
i=0

(i + 1)ri = N

N−2∑
i=0

ri −
N−1∑
i=1

iri−1 = N

N−2∑
i=0

ri −
N−1∑
i=0

iri−1

= N
1− rN−1

1− r
−
(

1− rN

(1− r)2
− NrN−1

1− r

)
=

N(1− r)− (1− rN )
(1− r)2

. (4.3)

Substituting the right-hand side of (4.3) into (4.2):

Tr[G(PHC, ε)] = 1+
N(1− r)− (1− rN )

(1− r)2
1− r

1− rN
= 1+

N(1− r)− (1− rN )
(1− r)(1− rN )

= 1+
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
.

2

Alternative proof. It follows from (3.7) that it is sufficient to compute the element (i, i) of [I−(1−ε)P]−1

for each i = 1, . . . , N . Consider a Markov walk that starts at i and is governed by P. Then the required
diagonal element equals to the expected number of visits to i on [0, T (ε)], where T (ε) is a random variable
that has a geometric distribution with parameter ε (see also formula (3.5) and its explanation). In other
words, the Markov chain may terminate at each step with probability ε, and we are interested in the
number of visits to i before termination. Now assume that P = PHC. Then the random walk proceeds
in cycles of length N , and thus, starting from i, the probability that it returns to i is (1− ε)N , implying
that the expected number of returns is (1 − (1 − ε)N )−1. Furthermore, this holds for any i = 1, . . . , N .
Hence, from (3.7) we obtain

Tr[G(PHC, ε)] =
N

1− (1− ε)N
− 1− ε

ε
= 1 +

εN − (1− (1− ε)N )
ε(1− (1− ε)N )

.

2
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Lemma 4.3. For ε ∈ (0, 1) and for any P that corresponds to a policy with l > 1 ergodic classes and no
transient states,

Tr[G(P, ε)] = 1 +
l − 1

ε
+

l∑
i=1

[
miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)

]
,

where mi is the size of the i-th ergodic class in P.

Proof. The proof follows the same reasoning as that of Lemma 4.2. The matrix Pε
HC is doubly stochastic

and irreducible, so P∗(P, ε) reduces to 1
N J and consequently the fundamental matrix G(PHC, ε) reduces

to (I−Pε
HC + 1

N J)−1 = A−1(PHC, ε).

Without loss of generality, let l = 2, and m1,m2 > 0 be the size of the two ergodic classes in P,
m1 +m2 = N . Let PHC,k denote a Hamiltonian Cycle for a graph of size k. From the proof of Lemma 3.5
in [6], for i = 1, . . . ,m1 − 1, the eigenvalues λi of P coincide with the eigenvalues of PHC,m1 , excluding
λm1 = 1, and for i = m1+1, . . . ,m1+m2−1, eigenvalues λi of P coincide with the eigenvalues of PHC,m2 ,
excluding λm1+m2 = λN = 1.

In other words, for i = 1, . . . ,m1 − 1, λi are the m1-th roots of unity, excluding one eigenvalue of
unity, and for i = m1 + 1, . . . ,m1 + m2 − 1, λi are the m2-th roots of unity, excluding one eigenvalue of
unity. From the proof of Lemma 4.2,

m1−1∑
i=1

1
1− (1− ε)λi

+
m1+m2−1∑
i=m1+1

1
1− (1− ε)λi

=
[
m1(1− r)− (1− rm1)

(1− r)(1− rm1)

]
+
[
m2(1− r)− (1− rm2)

(1− r)(1− rm2)

]
.

For i = m1, the eigenvalue λm1 = 1 of P corresponds to an eigenvector vm1 . It is straightforward
that vm1 is also an eigenvector of A(P, ε), corresponding to µm1 = 1. For i = m1 + m2 = N , the
eigenvalue λN = 1 corresponds to another eigenvector vN = e, which is also an eigenvector of A(P, ε),
this time corresponding to µN = ε. It is worth reminding the reader that this difference is caused by
P∗(P, ε) = 1

N J having one eigenvalue of unity of multiplicity 1, and one eigenvalue of zero of multiplicity
N − 1. Therefore,

Tr[G(P, ε)] = 1 +
1
ε

+
2∑

i=1

[
mi(1− r)− (1− rmi)

(1− r)(1− rmi)

]
.

It is a straightforward to generalize to the case of arbitrary 1 < l ≤ N
2 and

∑l
i=1 ml = N . 2

Alternative proof. Consider again a diagonal element of [I− (1− ε)P]−1. If there are l ergodic classes
then the Markov chain given by P splits in separate cycles of lengths m1, . . . ,ml. For each of the cycles,
we can apply the argument from the alternative proof of Lemma 4.2. Then a diagonal element that
corresponds to a state in ergodic class i, equals 1/(1 − (1 − ε)mi). Summing over all diagonal elements
and using (3.7) we derive

Tr[G(PHC, ε)] =
l∑

i=1

mi

1− (1− ε)mi
− 1− ε

ε
= 1 +

l − 1
ε

+
l∑

i=1

[
miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)

]
.

To get the last equation, it is sufficient to subtract and add (l− 1)(1− ε)/ε in the second expression and
then use the result of Lemma 4.2. 2

Lemma 4.4. For any ε ∈ (0, 1) and any P that corresponds to a policy with a single ergodic class and
one or more transient states,

Tr[G(P, ε)] = (N −m + 1) +
mε− (1− (1− ε)m)

ε(1− (1− ε)m)
,

where m < N is the size of the single ergodic class.
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Proof. From the proof of Lemma 3.4, for i = 1, . . . ,m − 1, λi coincide with the eigenvalues of PHC,m,
λm = 1 and for i = m + 1, . . . , N , λi = 0. Correspondingly, we can determine the eigenvalues of
Pε = (1− ε)P + ε

N J as follows:

ηi =

 (1− ε)λi + 0 = (1− ε)λ + i, i = 1, . . . ,m− 1,
(1− ε)λi + ε = 1, i = m,
(1− ε)λi + 0 = 0, i = m + 1, . . . , N.

Consequently, the eigenvalues of A(P, ε) = I−Pε + P∗(P, ε) are

µi =

 1− (1− ε)λi + 0 = 1− (1− ε)λi, i = 1, . . . ,m− 1,
1− 1 + 1 = 1, i = m,
1− 0 + 0 = 1, i = m + 1, . . . , N.

Hence,

Tr[G(P, ε)] = (N −m + 1) +
m−1∑
i=1

1
1− (1− ε)λi

= (N −m + 1) +
mε− (1− (1− ε)m)

ε(1− (1− ε)m)
,

the first equality follows from Lemma 3.2 part (ii) and the second from the proof of Lemma 4.2. 2

Alternative proof. Consider a diagonal element (i, i) of [I − (1 − ε)P]−1 where i is a transient state.
Since P is deterministic, a Markov random walk with transition matrix P started in i can never return
to i. Recalling that the diagonal element of [I− (1− ε)P]−1 is the average number of visits to i starting
from i, we conclude that each transient state contributes one to Tr

[
[I− (1− ε)P]−1

]
. On the other hand,

ergodic states form a cycle of length m, and we can compute the contribution of these states by applying
the argument as in the alternative proof of Lemma 4.2 with N = m. Summing the contributions of
transient and ergodic states and applying (3.7) we get the result of the lemma. 2

Lemma 4.5. For any ε ∈ (0, 1) and for any P corresponds to a policy with multiple ergodic classes and
one or more transient states,

Tr[G(P, ε)] =

(
N −

l∑
i=1

mi + 1

)
+

l − 1
ε

+
l∑

i=1

[
miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)

]
,

where mi is the size of the i-th ergodic class in P.

Proof. Let m1, . . . ,ml be the size of l ergodic classes,
∑l

i=1 mi < N . Using analogous arguments
to the proofs of Lemmata 4.3 and 4.4, we can show that:

µi =



1− (1− ε)λi , for i = 1, . . . ,m1 − 1, (λi : m1-th roots of unity, excl. 1)
1− (1− ε)λi , for i = m1 + 1, . . . ,m1 + m2 − 1, (λi : m2-th roots of unity, excl. 1)
...
1 , for i = m1,
ε , for i = m2,m3, . . . ,ml,

1 , for i = 1 +
∑l

i=1 mi, . . . , N.

Consequently,

Tr[G(P, ε)] =

(
N −

l∑
i=1

mi + 1

)
+

l − 1
ε

+
l∑

i=1

[
miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)

]
.

2

Alternative proof. The proof follows by combining the arguments in alternative proofs of Lemmata 4.3
and 4.4. 2
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Proof of Theorem 2.1. We need to show that for any ε ∈ (0, 1) and for any stochastic policy P feasible
on a given Hamiltonian graph, Hamiltonian cycles are indeed the minimizers.

As the result of Lemma 4.1 enables us to reduce the proof for the set of stochastic policies to the
proof for the set of deterministic policies, by Lemmata 4.2, 4.3, 4.4, and 4.5, all we need to show now is
that, for l > 1 and m,mi < N ,

1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
≤ 1 +

l − 1
ε

+
l∑

i=1

[
miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)

]
, (4.4)

1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
≤ (N −m + 1) +

mε− (1− (1− ε)m)
ε(1− (1− ε)m)

, (4.5)

1 +
εN − (1− (1− ε)N )

ε(1− (1− ε)N )
≤

(
N −

l∑
i=1

mi + 1

)
+

l − 1
ε

+
l∑

i=1

[
miε− (1− (1− ε)mi)

ε(1− (1− ε)mi)

]
. (4.6)

From Lemmata 4.2–4.5 we know that in the above inequalities, the left-hand side is equal to Tr[G(PHC, ε)],
and the right-hand side is equal to Tr[G(P, ε)], where P is some other deterministic policy. Thus, the
proof follows from (3.7) by comparing the contribution of each state into Tr

[
[I− (1− ε)P]−1

]
.

Let us start with (4.4). In the right-hand side, we have Tr[G(P, ε)], where P consists of l ergodic classes
as in Lemma 4.3. From the alternative proofs of Lemmata 4.2 and 4.3 we see that the contribution of
each state into Tr

[
[I− (1− ε)P]−1

]
in the left-hand side of (4.4) is 1/(1 − (1 − ε)N ). This is clearly

smaller than 1/(1 − (1 − ε)mi), the contribution of a state from ergodic class i on the right-hand side.
Since this holds for every state in {1, . . . , N}, the inequality (4.4) follows immediately from (3.7).

Now consider (4.5). In the right-hand side, we have Tr[G(P, ε)], where P consists of one ergodic class
of m states and N −m transient states, as in Lemma 4.4. From the alternative proof of Lemma 4.4 we
know that each transient state contributes a unity into Tr

[
[I− (1− ε)P]−1

]
, while each ergodic state

contributes 1/(1− (1− ε)m). Thus, we have to compare

N

1− (1− ε)N
= N +

N(1− ε)N

1− (1− ε)N
and N −m +

m

1− (1− ε)m
= N +

m(1− ε)m

1− (1− ε)m
.

Consider the function

g(x) =
xax

1− ax
, x ≥ 0, 0 < a < 1.

Differentiation gives

g′(x) =
ax(1− ax + x ln(x))

(1− ax)2
.

Clearly, the denominator is positive for all x > 0. Considering the numerator, denote h(x) =
1 − ax + x ln(a) and observe that h(0) = 0 and h′(x) = −ax ln(a) + ln(a) = ln(a)(1 − ax) < 0 for
x > 0. Thus, we have h(x) < 0 for x > 0, which implies that g′(x) < 0 and thus g(x) is decreasing with
x. Setting a = 1− ε we obtain the desired result.

Finally, in the right-hand side of (4.6), we have Tr[G(P, ε)], where P consists of l ergodic classes and
transient states. The proof is a straightforward combination of the proofs of (4.4) and (4.5). 2
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discussion.

REFERENCES

[1] K. Avrachenkov and N. Litvak, “The effect of new links on Google PageRank”, Stoch. Models, 22(2):319–331, 2006.

10



[2] K. Avrachenkov, N. Litvak, and K. S. Pham, “Distribution of PageRank mass among principle components of the web”,
In A. Bonato and F. R. K. Chung, editors, Proceedings 5th International Workshop, WAW 2007, San Diego, USA,
volume 4863 of Lecture Notes in Computer Science, Springer Verlag, London, 16–28, 2007.

[3] M. Bianchini, M. Gori, and F. Scarselli, “Inside PageRank”, ACM Trans. Inter. Tech., 5(1):92–128, 2005.
[4] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine”, Computer Networks and ISDN

Systems, 33:107–117, 1998.
[5] V. Ejov, J. A. Filar, W. Murray and G. T. Nguyen, “Determinants and longest cycles of graphs”, SIAM J. Disc. Math.,

22(3):1215–1225, 2008.
[6] V. Ejov and G. T. Nguyen, “Asymptotic behavior of certain perturbed determinants induced by graphs ”, submitted

2007.
[7] J. A. Filar and K. Vrieze, “Competitive Markov decision processes”, Springer, 1996.
[8] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating Web spam with trustrank”, In 30th International

Conference on Very Large Data Bases, 576–587, 2004.
[9] T.H. Haveliwala, “Topic-sensitive PageRank: A context-sensitive ranking algorithm for Web search”, IEEE Transactions

on Knowledge and Data Engineering, 15(4):784–796, 2003.
[10] T. H. Haveliwala and S. D. Kamvar, “The second eigenvalue of the Google matrix”, Stanford University Technical

Report, 2003.
[11] A. N. Langville and C. D. Meyer, “Deeper inside PageRank”, Internet Math., 1:335–380, 2003.
[12] N. Litvak and V. Ejov, “Markov chains and optimality of The Hamiltonian cycle”, to appear in Math. Op. Res., 2008.

11


