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LOCAL INDEX THEOREM FOR PROJECTIVE FAMILIES

MOULAY-TAHAR BENAMEUR AND ALEXANDER GOROKHOVSKY

Abstract. We give a superconnection proof of the Mathai-Melrose-Singer index theorem
for the family of twisted Dirac operators [28, 29].
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1. Introduction

Let π : M → B be a smooth fibration. Given a class δ ∈ H3(B,Z) Mathai, Melrose
and Singer defined an algebra of twisted by this class (also called projective) families of
pseudodifferential operators. In order to give this definition in [28] it is assumed that δ is
a torsion class. In [29] the corresponding assumption is that δ = α ∪ β, α ∈ H1(B,Z),
β ∈ H2(B,Z) and π∗β = 0.

There is a notion of ellipticity for such a twisted pseudodifferential family and for such an
elliptic family one can then define its index as an element of the K-theory of the algebra of
smoothing operators. Mathai, Melrose and Singer than prove in [28, 29] an index theorem for
such elliptic families thus giving an extension of the Atiyah-Singer family index theorem [1]
to the twisted case. general theory of connections In this paper we give a superconnection
proof of the cohomological version of this index theorem for a projective family of Dirac
operators. We assume that we are given a gerbe L on B with a class δ = [L] ∈ H3(B,Z).
Our conditions on this class are somewhat weaker than in [28, 29]; namely we assume that π∗δ
is a torsion element in H3(M,Z). Assume that we are given a Z2-graded L -twisted Clifford
module E on M as defined in the Section 4.1. We note that such Clifford modules always
exist under our assumptions on the class of the gerbe L. We define the algebra ΨL(M |B; E)
of projective families of pseudodifferential operators on E . One can then define the index
of (the positive part of) the twisted Dirac operator indD+ ∈ K0(Ψ

−∞
L (M |B; E)). Here by

Ψ−∞
L (M |B; E) we denote the algebra of smoothing L-twisted pseudodifferential operators on

E .
In order to define the Chern character of the index we use cyclic homology and the map

constructed in [30]. This Chern character takes values in the twisted cohomology of B defined
as follows. Let Ω ∈ Ω3(B) be a form representing the class [L] and let u be a formal variable
of degree −2. Twisted cohomologyH•

L(B) is then the homology of the complex Ω∗(B)[u] with
the differential dΩ = ud+u2Ω∧·. Note that the form Ω and thus the complex depend on the
choice of connection on L. Nevertheless the homologies of all the complexes thus obtained
are canonically isomorphic. Following Mathai and Stevenson [30] one defines a morphism
of complexes Φ∇H : CC−

• (Ψ
−∞
L (M |B; E)) → (Ω∗(B)[u], dΩ). Here CC

−
• denotes the negative

cyclic complex. By composing Φ∇H with the Chern character ch : K0(Ψ
−∞
L (M |B; E)) →

HC−
0 (Ψ

−∞
L (M |B; E)) we obtain the class [Φ∇H(ch(indD+)) ∈ H•

L(B)]. The main result of
the paper is the proof of the following theorem expressing the Chern character of the index
in terms of characteristic classes:

Theorem 1.1. Let D be a projective family of Dirac operators on a horizontally L-twisted
Clifford module E on a fibration π :M → B. Then the following equality holds in H•

L(B):

[
Φ∇H(ch(indD+))

]
=

[
u−

k
2

∫

M |B

Â
( u

2πi
RM |B

)
ChL(E/S)

]
,

where k = dimM − dimB is the dimension of the fibers.

Here, as usual, Â is the power series defined by Â(x) = det1/2
(

x/2
sinhx/2

)
and ChL(E/S) is

the twisted relative Chern character form of E , see Proposition 2.13 and equation (4.1.1).
The characteristic classes appearing in the right hand side are defined in the Section 4.1.
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Our proof uses the Bismut superconnection formalism [5]. We extend the notion of super-
connection to the twisted context and show in the Theorem 4.6 that the Chern character
of superconnection adapted to D computes the Chern character of indD+. Then in the
Theorem 4.8 using the results of [5] and [6] we compute the limit of the Chern character
of the rescaled superconnection obtaining the expression in the right hand side of the index
formula. Together these results imply the Theorem 1.1.

The paper is organized as follows. In the Section 2 we give a brief review of cyclic homology,
gerbes and connections on them. We also discuss twisted bundles and their characteristic
forms. In the Section 3 we give the definitions of the algebra of twisted families of pseudodif-
ferential operators. Finally in the section 4 we define the projective family of Dirac operators
on a twisted Clifford module and give the proofs of the main theorems of the paper.

Some work in related direction recently appeared in [13, 12, 14]. Related questions of
deformation theory are considered in [9, 10]. This paper is a byproduct of a joint project
with E. Leichtnam. The authors would like to thank him and C. Blanchet, M. Karoubi,
M. Lesch, V. Mathai, R. Nest and B. Wang for helpful discussions. The authors worked
on this paper while visiting CIRM, Luminy as well as Hausdorff institute and Max Planck
Institute for Mathematics in Bonn. Part of this work was done while the second author was
visiting the Laboratoire de Mathématiques et Applications of Metz and he is grateful for the
hospitality.

2. Preliminaries

2.1. Cyclic homology. The general reference for this material is the book [27].
Let A be a complex unital algebra. Set Ck(A) = A⊗(A/C1)⊗k. Let u be a formal variable

of degree −2. The space of negative cyclic chains of degree l ∈ Z is defined by

CC−
l (A) = (C•(A)[[u]])l =

∏

−2n+k=l, n≥0

unCk(A).

The boundary is given by b+uB where b and B are the Hochschild and Connes boundaries of
the cyclic complex. The homology of this complex is denoted HC−

• (A). When the algebra A
is Z2 graded they incorporate the relevant signs. If A is not necessarily unital denote by A+

its unitalisation and set CC−
l (A) = CC−

l (A
+)/CC−

l (C). If I is an ideal in a unital algebra A
the relative cyclic complex is defined by CC−

• (A, I) = Ker (CC−
• (A) → CC−

• (A/I)). One has
a natural morphism of complexes ι : CC−

• (I) → CC−
• (A, I) induced by the homomorphism

I+ → A.
Recall that for an algebra A we have Chern character in cyclic homology ch : K0(A) →

HC−
0 (A). It is defined by the following formula. Let P,Q ∈Mn(A

+) be two idempotents in
n× n matrices of the algebra A+, representing a class [P −Q] ∈ K0(A). Then

(2.1.1)

Ch ([P −Q]) = tr(P −Q) +

∞∑

n=1

(−u)n
(2n)!

n!
tr

((
P −

1

2

)
⊗ P⊗(2n) −

(
Q−

1

2

)
⊗Q⊗(2n)

)

We will use the notation Ch ([P −Q]) for the cyclic cycle defined above and ch ([P −Q]) for
its class in cyclic homology HC−

0 (A).



4 M.-T. BENAMEUR AND A. GOROKHOVSKY

We will also need to use the entire cyclic complex. For our purpose the algebraic version
from [17], IV.7.α Remark 7 b. will be sufficient. First recall that one has the periodic
cyclic complex (CCper

• (A), b+ uB) where CCper
• (A) = C•(A)[u

−1, u]]. Assume we are given
a periodic chain α =

∑
k≥0 αku

k ∈ CCper
m (A), αk ∈ C2k+m(A). Then α is called entire if

there exist a finite dimensional subspace V ⊂ A, 1 ∈ V and C > 0 (depending on α) such
that αk ∈ V ⊗ (V/C1)⊗k and ‖αk‖ ≤ Ckk!. Here the norms on V ⊗ (V/C1)⊗k are induced
by an arbitrary norm on V . We denote the entire cyclic complex of A by CCentire

• (A).
Note that the chain Ch ([P −Q]) defined in (2.1.1) is an element in CCentire

0 (A).

2.2. Notion of a gerbe. We give here only the general overview, refering the reader to
[11] and [24] for the details. The differential geometry of not necessarily abelian gerbes is
described in [8]. We will describe the gerbes in terms of their descent data.

Let M be a smooth manifold. Given an open cover (Uα)α∈Λ of M , we set as usual

Uα1···αk
=
⋂

1≤j≤k

Uαj
.

Definition 2.1. A descent datum for a gerbe L on M is the collection (Uα,Lαβ, µαβγ)
where (Uα)α∈Λ is an open cover of M , (Lαβ → Uαβ)α,β∈Λ is a collection of line bundles and
µαβγ : Lαβ⊗Lβγ → Lαγ are line bundle isomorphisms over each triple intersection Uαβγ such
that over each quadruple intersection Uαβγδ, the following diagram commutes

Lαβ ⊗Lβγ ⊗Lγδ
µαβγ⊗id
−−−−−→ Lαγ ⊗ Lγδ

id⊗µβγδ

y
yµαγδ

Lαβ ⊗ Lβδ
µαβδ

−−−−−→ Lαδ

Notice that we don’t assume in this definition that the open sets (Uα)α∈Λ are contractible.
Given two descent data (Uα,Lαβ, µαβγ) and (Uα,L

′
αβ, µ

′
αβγ) on the same open cover {Uα}

an isomorphism between them is given by line bundles Sα on Uα and isomorphisms of line
bundles λαβ : S

−1
α ⊗ Lαβ ⊗ Sβ → L′

αβ over Uαβ so that the diagram

S−1
α ⊗ Lαβ ⊗ Sβ ⊗ S−1

β ⊗ Lβγ ⊗ Sγ
id⊗µαβγ⊗id
−−−−−−−→ S−1

α ⊗Lαγ ⊗ Sγ

λαβ⊗λβγ

y
yλαγ

L′
αβ ⊗ L′

βγ

µ′αβγ
−−−−−−→ L′

αγ

commutes.
Given two isomorphisms (Sα, λαβ) and (S ′

α, λ
′
αβ) between (Uα,Lαβ, µαβγ) and (Uα,L

′
αβ, µ

′
αβγ),

a two-morphism between them is a collection of line bundle isomorphisms να : Sα → S ′
α such

that

λ′αβ ◦ (ν
−1
α ⊗ id⊗νβ) = λαβ

where we denote by ν−1
α the isomorphism S−1

α → (S ′
α)

−1 induced by να.
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Let (Vi, ̺)i∈I be a refinement of the open cover of (Uα)α∈Λ of M . So (Vi)i∈I is an open
cover of M and

̺ : I → Λ such that Vi ⊂ U̺(i).

Then restriction to the refinement of (Uα,Lαβ, µαβγ) is the descent datum L′ = (Vi,L
′
ij, µ

′
ijk)

given by:
L′
ij := L̺(i)̺(j)|Vij and µ′

ijk := µ̺(i)̺(j)̺(k)|Vijk .

Similarly one defines restriction of the isomorphisms and 2-morphisms to a refinement. We
do not distinguish between a descent datum, isomorphisms of descent data, etc., and their
restrictions to a refinement. Thus for instance, the isomorphism between two descent data
(Uα,Lαβ, µαβγ) and (U ′

α,L
′
αβ, µ

′
αβγ) is an isomorphism between their restrictions to some

common refinement of {Uα} and {U ′
α}.

An equivalence class of Dixmier-Douady gerbes onM is an equivalence class of the descent
data onM . More precisely a gerbe is a maximal collection of descent data Di, i ∈ A together
with the isomorphisms sij : Dj → Di for each i, j ∈ A and 2-morphisms νijk : sijsjk → sik
satisfying the natural associativity condition. We refer the reader to the book [11] for the
details.

If the cover Uα is good [7] all the bundles Lαβ are trivializable. After choice of such trivial-
ization the collection (µαβγ) can be viewed as a Čech 2-cochain with coefficents in the sheaf
C∗ of smooth functions with values in the nonzero complex numbers C∗. The compatibility
condition over Uαβγδ tells us that µ is a 2-cocycle and hence defines a cohomology class
[µ] ∈ H2(M ;C∗) ∼= H3(M,Z). This class is a well defined invariant of the gerbe called the
Dixmier-Douady class. We denote this class by [L]. Every class in H3(M,Z) is a class of a
gerbe defined by this class uniquely up to an isomorphism (see [11]).

Given a smooth map f :M ′ →M between smooth manifoldsM ′ andM , we can pull-back
any decent datum for a gerbe onM to a descent datum onM ′. The pull backs of isomorphic
descent data are isomorphic and thus we obtain a well-defined pull-back of a gerbe. Clearly
the Dixmier-Douady class of the pull-back is the pull-back of the Dixmier-Douady class.

An unitary descent datum is (Uα,Lαβ, µαβγ) together with a choice of metric on each
Lαβ such that each µαβγ is an isometry. A notion of unitary equivalence of two unitary
descent data on the same open cover Uα is obtained from the notion of equivalence above by
requiring that each line bundle Sα is Hermitian and each λαβ is an isometry. The definition
of 2-morphisms is modified by requiring each να to be an isometry. It is clear that the
restriction of a unitary descent datum to a refinement is again unitary. Then a unitary
gerbe is an equivalence class of unitary descent data in the sense described above.

2.3. Connections on gerbes.

Lemma 2.2. Let (Uα,Lαβ, µαβγ) be a descent datum on M . There exists a collection (∇αβ)
of connections on (Lαβ) such that for any (α, β, γ) ∈ Λ3 with Uαβγ 6= ∅:

µ∗
αβγ∇αγ = ∇αβ ⊗ id+ id⊗∇βγ .

If the descent datum is unitary each ∇αβ can be chosen Hermitian.

Proof. Fix for any α, β with Uαβ 6= ∅ a connection ∇′
αβ on Lαβ. We set for Uαβγ 6= ∅,

Aαβγ := µ∗
αβγ∇αγ −∇αβ ⊗ id− id⊗∇βγ .
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Then using the identification

End(Lαβ ⊗Lβγ) ≃ Uαβγ × C;

we see that Aαβγ is identified with a differential 1-form on the open set Uαβγ . We also have
for Uαβγδ 6= ∅

Aβγδ + Aαβδ = Aαγδ + Aαβγ .

Therefore, there exists A′ = (A′
αβ) such that

Aαβγ = A′
βγ − A′

αγ + A′
αβ.

The collection of connections (∇αβ = ∇′
αβ + A′

αβ) is then a connection on the gerbe L. �

Lemma 2.3. Let (∇αβ) be as above, and denote by ωαβ = ∇2
αβ the curvatures of the con-

nections ∇αβ. Then there exists a collection of differential 2-forms ωα ∈ Ω2(Uα) such that

ωαβ = ωα − ωβ, for Uαβ 6= ∅.

Proof. The collection ωαβ satisfies

ωαγ = ωαβ + ωβγ.

This shows that (ωαβ) is a Čech cocycle and hence by the acyclicity of the Čech complex
of forms, there exist (ωα) such that

ωαβ = ωα − ωβ.

�

We will say that the collection (∇αβ , ωα) is a connection on the descent datum (Uα,Lαβ, µαβ).
Connection on descent datum yields a connection on its restriction to a refinement in an

obvious manner; we will identify connection with its restriction. An isomorphism between
descent datum (Uα,Lαβ, µαβ) with connection (∇αβ, ωα) and descent datum (Uα,L

′
αβ, µ

′
αβ)

with connection (∇′
αβ , ω

′
α) is given by (Sα, λαβ,∇α) where (Sα, λαβ) is an isomorphsm be-

tweeween the descent data (without connections) and each ∇α is a connection on Sα satsfying
the following conditions. Let πα = ∇2

α be the curvatures of these connections and let ∇−1
α be

the dual connection on S−1
α . Then we require the following dentities (using the isomorphism

Lαβ = Sα ⊗ (S−1
α ⊗Lαβ ⊗ Sβ)⊗ S−1

β ):

(2.3.1) ∇αβ = (λαβ)
∗(∇α ⊗ id⊗ id+ id⊗∇′

αβ ⊗ id+ id⊗ id⊗∇−1
β )

and

(2.3.2) ωα = ω′
α + πα.

If s = (Sα, λαβ,∇α) and s′ = (S ′
α, λ

′
αβ ,∇

′
α) are two isomorphisms between the descent

data with connections as above, the 2-morphisms between s and s′ are the same as the 2
morphisms between (Sα, λαβ) and (S ′

α, λ
′
αβ).

Assume L is a gerbe given by a collection of descent data Di, i ∈ A, isomorphisms
sij : Dj → Di for each i, j ∈ A and 2-morphisms νijk : sijsjk → sik. A connection on a gerbe

L is a lift of each Di to a descent datum with connection D̃i and each sij to an isomorphsm

s̃ij : D̃j → D̃i. An easy argument using the Lemma 2.2 shows that on a given gerbe always
exists a connection.



LOCAL INDEX THEOREM FOR PROJECTIVE FAMILIES 7

Lemma 2.4. Let L be a gerbe represented by a descent datum (Uα,Lαβ, µαβγ). Choose a
connection on L represented by a connection (∇αβ , ωα) on the descent datum.

(1) There exists a well-defined closed form Ω ∈ Ω3(M) – curvature 3-form of the con-
nection – such that Ω|Uα = dωα

2πi
.

(2) Let (∇′
αβ, ω

′
α) be another connection on L and let Ω′ be the corresponding curvature

3-form. Then there exists a canonical η ∈ Ω2(M)/dΩ1(M) such that Ω′ = Ω + dη.
(3) Let (∇αβ , ωα) (∇

′
αβ, ω

′
α), (∇

′′
αβ , ω

′′
α) be 3 connections on L with the corresponding cur-

vature 3-forms Ω, Ω′, Ω′′. Let η, η′, η′′ ∈ Ω2(M)/dΩ1(M) be the canonical elements
constructed above such that Ω′ − Ω = dη, Ω′′ − Ω′ = dη′, Ω′′ − Ω = dη′′. Then
η′′ = η + η′.

The 3-form Ω is a de Rham representative of the Dixmier-Douady class of the gerbe.

Proof. We use notations of the previous Lemma. For the first part notice that since dωαβ = 0
for any α, β we see that

dωα|Uαβ
= dωβ|Uαβ

which shows the existence of Ω; it is clearly closed. Ω does not change if one restricts the
descent datum to a refinement. The equation (2.3.2) implies that if one uses a different
descent datum for the same gerbe one obtains the same 3-curvature form.

We proceed to the proof of the second part. Let (∇αβ , ωα) and (∇′
αβ, ω

′
α) be two con-

nections on the descent datum (Uα,Lαβ, µαβγ). Set δαβ = ∇′
αβ − ∇αβ ∈ Ω1(Uαβ). Choose

δα ∈ Ω1(Uα) such that δαβ = δα − δβ on Uαβ . Then ω′
αβ − ωαβ = dδαβ = dδα − dδβ . Hence

ω′
α − ωα − dδα = ω′

β − ωβ − dδβ on Uαβ . Therefore there exists η ∈ Ω2(M) such that

η|Uα = 1
2πi

(ω′
α−ωα−dδα). Then Ω

′−Ω = dη. The formula for η given above depends on the

choice of δα. If δ̄α is a different such choice, then δ̄α − δα = ǫ|Uα for some ǫ ∈ Ω1(M). Then
η̄ = η − dǫ. Hence the class of η ∈ Ω2(M)/dΩ1(M) does not depend on the choice made. It
is easy to see that η does not depend on the choice of the particular descent datum used.

The verification of the third statement is straightforward and is left to the reader.
�

2.4. Twisted cohomology. For a smooth manifold M let Ω ∈ Ω3(M) be a closed 3-form.
Denote by u a formal variable of degree −2. The twisted de Rham complex is defined as
the complex Ω∗(M)[u] with the differential dΩ = ud+ u2Ω ∧ ·. Note that if Ω′ = Ω + dη is
cohomologous to Ω then the complexes (Ω∗(M)[u], dΩ) and (Ω∗(M)[u], dΩ′) are isomorphic
via the isomorphism

(2.4.1) Iη : ξ 7→ e−uη ∧ ξ

Lemma 2.5. The map induced by Iη on cohomology depends only on the class of η in
Ω2(M)/ (dΩ1(M)).

Proof. Indeed, for ǫ ∈ Ω1(M) define hǫ : (Ω∗(M)[u])• → (Ω∗(M)[u])•−1 by

hǫ = uǫ

(
∑

k

(uη)k

(k + 1)!

)
∧ ·.
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Then
Iη+dǫ − Iη = hǫ ◦ dΩ + dΩ′ ◦ hǫ

and therefore the maps Iη and Iη+dǫ are chain homotopic. �

The identity dΩ+Ω′(ξ ∧ η) = dΩξ ∧ η + (−1)|ξ|ξ ∧ dΩ′η implies that the product of forms
induces the product H•

Ω(M)⊗H•
Ω′(M) → H•

Ω+Ω′(M) and in particular endows H•
Ω(M) with

the structure of H•(M)[u]-module.
We will also need to consider the following situation. Let π : M → B be an oriented fibra-

tion with compact fibers. Then we have an integration along the fibers map
∫
M |B

: Ω∗(M) →

Ω∗−k(B), k = dimM − dimB. Let Ω ∈ Ω3(B) be a closed form. Then
∫
M |B

dη = d
∫
M |B

η,∫
M |B

π∗Ω ∧ η = Ω ∧
∫
M |B

η and therefore
∫

M |B

dπ∗Ωη = dΩ

∫

M |B

η.

Hence we obtain a chain map
∫
M |B

: (Ω∗(M), dπ∗Ω)• → (Ω∗(B), dΩ)•−k.

Let L be a gerbe. The choice of connection defines a closed 3-form Ω. We can therefore
consider the complex (Ω∗(M)[u], dΩ). Different choice of connection leads to a different
complex (Ω∗(M)[u], dΩ′). Lemma 2.4 however implies that there exists however a canonical
isomorphism I of the homologies of these complexes. We denote this homology H•

L(B)

2.5. Twisted bundles.

Definition 2.6. A descent datum for a twisted vector bundle E consists of a descent datum
(Uα,Lαβ, µαβγ) for a gerbe L together with a collection (Eα → Uα)α∈Λ of vector bundles and
a collection of vector bundle isomorphisms ϕαβ : Eα ⊗ Lαβ ∼= Eβ such that for every α, β, γ
the following diagram commutes

Eα ⊗Lαβ ⊗Lβγ
id⊗µαβγ
−−−−−→ Eα ⊗ Lαγ

ϕαβ⊗id

y
yϕαγ

Eβ ⊗ Lβγ
ϕβγ

−−−−→ Eγ

Restriction of the descent datum for E to a refinement is given by the restriction of the
descent datum for L together with restriction of the vector bundles Eα.

Definition 2.7. An (iso)morphism between two descent data (Uα,Lαβ, µαβγ , Eα, ϕαβ) and
(U ′

α,L
′
αβ, µ

′
αβγ, E

′
α, ϕ

′
αβ) is given by the collection (ρα, Sα, λαβ) where (Sα, λαβ) is an isomor-

phism between (Uα,Lαβ, µαβγ) and (U ′
α,L

′
αβ, µ

′
αβγ) and ρα : Eα ⊗ Sα → E ′

α is a collection of
(iso)morphisms such that the diagram

Eα ⊗ Sα ⊗ S−1
α ⊗Lαβ ⊗ Sβ

ϕαβ⊗id
−−−−→ Eβ ⊗ Sβ

ρα⊗λαβ

y
yρβ

E ′
α ⊗L′

αβ

ϕ′
αβγ

−−−−→ E ′
β

commutes.
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An isomorphism between two descent data on two different covers is defined as an iso-
morphism between their restriction on a common refinement. A 2-morphism between two
isomorphisms is the 2-morphisms between the corresponding isomorphisms of the gerbe de-
scent data.

A twisted bundle is then defined as an equivalence class of descent data of twisted vector
bundles. “Forgetting” the bundle data we obtain from the descent datum for a twisted vector
bundle a descent datum for a gerbe, and the same applies to morphisms and 2-morphisms.
We say that E is an L-twisted vector bundle if “forgetting” the bundle data one obtains the
equivalence class of the gerbe descent data defining L.

Assume now that the gerbe L is unitary. An Hermitian descent datum for E consists of a
unitary descent datum (Uα,Lαβ, µαβγ) for L and a collection hα of metrics on Eα such that
the maps ϕαβ are isometries. One obtains a notion of isomorphism of Hermitian descent
data by requiring ρα to be isometries. An Hermitian twisted bundle is then an equivalence
class of Hermitian descent data.

Given a gerbe (Uα,Lαβ, µαβγ) on M , it is well known that (finite dimensional) twisted
vector bundles exist if and only if the gerbe is torsion (see e.g. [19, 25] and references
therein).

Lemma 2.8. Let L be a gerbe on M and E an L-twisted bundle. Let (Uα,Lαβ, µαβγ) be a
descent datum for L. Then there exists a descent datum for E isomorphic to the one of the
form (Uα,Lαβ, µαβγ, Eα, ϕαβ).

Proof. Let (Vi, Lij, mijk, Ei, rij), i, j, k ∈ I be a descent datum for E . Without a loss of
generality we may assume that {Vi} is refinement of {Uα} given by the map ̺ : I →
Λ and that there exists an isomorphism (Si, λij) between (Vi, Lij, mijk) and restriction of
(Uα,Lαβ, µαβγ) to {Vi}.

We define the vector bundle Eα as follows. On every non empty open set Uα ∩ Vi, we set

E (i)
α := Ei ⊗ Si ⊗L̺(i)α.

Notice that Vi∩Uα ⊂ U̺(i)α so that this definition makes sense as a vector bundle over Vi∩Uα.
Moreover, if (i, j) ∈ I2 is such that Vij ∩ Uα 6= ∅, then we have a bundle isomorphism

ψ(ij)
α : E (j)

α |Vij∩Uα −→ E (i)
α |Vij∩Uα .

defined by the composition

Ej ⊗ Sj ⊗ L̺(j)α
ϕ−1
ij ⊗id
−→ Ei ⊗ Lij ⊗ Sj ⊗ L̺(j)α −→ Ei ⊗ Si ⊗ S−1

i ⊗ Lij ⊗ Sj ⊗L̺(j)α
id⊗λij⊗id
−→ Ei ⊗ Si ⊗L̺(i)̺(j) ⊗L̺(j)α

id⊗µ̺(i)̺(j)α
−→ Ei ⊗ Si ⊗ L̺(i)α

It is easy to see that

ψ(ik)
α = ψ(ij)

α ◦ ψ(jk)
α .

So, we can glue the bundles (E
(i)
α )i for Vi∩Uα 6= ∅ together and form a vector bundle Eα over

Uα. More precisely

Eα :=
(
∐Vi∩Uα 6=∅E

(i)
α

)
/{ψ(ij)

α }.
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Next we introduce for i ∈ I with Vi ∩ Uαβ 6= ∅,

ϕ
(i)
αβ := id⊗µ̺(i)αβ : E

(i)
α ⊗ Lαβ → E

(i)
β .

When Vij ∩ Uαβ 6= ∅, a straightforward inspection shows again that the following diagram
commutes

E
(i)
α ⊗Lαβ

ϕ
(i)
αβ

−−−−→ E
(i)
β

ψ
(ji)
α ⊗id

y
yψ(ji)

β

E
(j)
α ⊗Lαβ

ϕ
(j)
αβ

−−−−→ E
(j)
β

Therefore, the isomorphisms ϕ
(i)
αβ induce an isomorphism

ϕαβ : Eα ⊗ Lαβ → Eβ.

We leave it to the reader to show that (Uα,Lαβ, µαβγ, Eα, ϕαβ) is a descent datum for a
twisted vector bundle isomorphic to (Vi, Lij, mijk, Ei, rij).

�

We now fix a gerbe L with a descent datum (Uα,Lαβ, µαβγ) on the smooth manifold M
together with a twisted vector bundle E represented by (Eα, ϕαβ). We denote by Aα the
collection of bundles of algebras

Aα := End(Eα), α ∈ Λ.

For any Uαβ 6= ∅, we have a canonical vector bundle isomorphism over Uαβ

ραβ : End(Eα ⊗Lαβ) −→ Aα,

extending the canonical isomorphism End(Lαβ) ≃ Uαβ × C. Therefore, the bundle isomor-
phism ϕαβ together with the identification ραβ induce the isomorphism of algebra bundles
over Uαβ given by

Aβ

ϕ∗
αβ

−→ End(Eα ⊗ Lαβ)
ρ∗αβ
−→ Aα.

We denote this isomorphism by ϕ∗
αβ . It is then easy to check that

ϕ∗
αβ ◦ ϕ

∗
βγ = ϕ∗

αγ , over Uαβγ .

Therefore, the collection (Aα) defines a bundle A of algebras over M , which we denote
End(E). We leave to the reader an easy check that the isomorphism class of End(E) depends
only on the isomorphism class of E .

Note that for every α we have the trace trα : End(Eα) → C∞(Uα). For a ∈ Γ(Uαβ ;Aβ)
trα(ϕ

∗
αβ(a)) = trβ(a). Therefore we obtain the trace tr : End(E) → C∞(M) defined by

tr(a)|Uα = trα(a|Uα) for a ∈ End(E)

If the bundle E is Z2-graded then End(E) is a bundle of Z2-graded algebras with a supertrace
str : End(E) → C∞(M).

Definition 2.9. The bundle A = End(E) is called the Azumaya bundle associated with the
L-twisted bundle E .
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If E is an Hermitian twisted bundle, each of the bundles End(Eα) is a bundle of *-algebras,
with the *-operation given by taking the adjoint endomorphism. This induces a structure of
a bundle of *-algebras on End(E).

Notice that, more generally, if E and E ′ are L-twisted bundles, we have a well defined
bundle Hom(E , E ′), defined similarly by Hom(E , E ′)|Uα

= Hom(E|Uα, E
′|Uα).

Let L be a gerbe on M and E an L-twisted bundle on M . Let (Uα,Lαβ, µαβγ, Eα, ϕαβ) be
a descent datum for E .

Definition 2.10. A connection on (Uα,Lαβ, µαβγ, Eα, ϕαβ) is a collection (∇α,∇αβ, ωα)
where (∇αβ, ωα) is a connection on (Uα,Lαβ, µαβγ) and each ∇α is a connection on Eα such
that the identities

(2.5.1) ϕ∗
αβ∇β = ∇α ⊗ id+ id⊗∇αβ

hold for Uαβ 6= ∅.

Lemma 2.11. Let (Uα,Lαβ, µαβγ, Eα, ϕαβ) be a descent datum for an L-twisted bundle E .
Then every connection (∇αβ, ωα) on the descent datum (Uα,Lαβ, µαβγ) for L can be extended
to a connection for the descent datum for E .

Proof. We start with a collection (∇′
α) of connections on (Eα). Then we set for Uαβ 6= ∅:

Aαβ = ϕ∗
αβ∇

′
β −∇′

α ⊗ id− id⊗∇αβ

So, Aαβ is differential 1-form on Uαβ with coefficients in the bundle End(Eα ⊗ Lαβ). This
latter being canonically isomorphic to End(Eα), we see that

Aαβ ∈ Ω1(Uαβ,End(Eα)).

Using the functoriality conditions on the isomorphisms (ϕαβ), it is then easy to check that

Aαγ = Aαβ + ϕ∗
αβAβγ ,

where ϕαβ is viewed here as the isomorphism over Uαβ between End(Eβ) and End(Eα).
Since the sheaf of sections of the bundle End(E) is soft, there exists a collection Aα ∈
Ω1(Uα; End(Eα)) such that

Aαβ = Aα − ϕ∗
αβAβ.

The collection ∇α = ∇′
α + Aα is then a connection on the L-twisted vector bundle E com-

patible with the curving ∇αβ. �

An isomorphism between two descent data (Uα,Lαβ, µαβγ, Eα, ϕαβ) and (U ′
α,L

′
αβ, µ

′
αβγ, E

′
α, ϕ

′
αβ)

for E with connections (∇α,∇αβ , ωα) and (∇′
α,∇

′
αβ, ω

′
α) respectively is given by the collec-

tions s = (ρα, Sα, λαβ, ) where (ρα, Sα, λαβ) is a morphism between the descent data without
connections, ∇S

α are connections on Sα such that
(
Sα, λαβ ,∇

S
α

)
is a morphism of the cor-

responding gerbe descent data with connectictions (i.e. the equatons (2.3.1), (2.3.2) are
satisfied) and the equality

ρ∗α∇
′
α = ∇α ⊗ id+ id⊗∇S

α

holds (in the notations of (2.3.1) and (2.3.2)).
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A connection on a twisted bundle is then a choice of connections on each descent datum
of this twisted bundle and lifting of isomorphisms of descent data to isomorphism of descent
data with connections. Every connection on a gerbe L can be extended to a connection on
any L-twisted bundle.

Proposition 2.12. Let E be an L-twisted bundle with connection. Choose a descent datum
(Uα,Lαβ, µαβγ, Eα, ϕαβ) with a connection (∇α,∇αβ, ωα) representing E . Then the collection
(θα + ωα), where θα = ∇2

α is the curvature of ∇α, defines a global differential 2-form θ on
M with coefficients in the Azumaya bundle A = End(E). This form is independent of the
choice of the representing descent datum.

Proof. We have for any α ∈ Λ, θα ∈ Ω2(Uα,Aα) where Aα = End(Eα)) is the Azumaya
bundle associated with the twisted bundle E . The equation (2.5.1) implies that

ϕ∗
αβθβ = θα + ωαβ ∈ Ω2(Uαβ,End(Eα)).

Therefore, the collection (θα + ωα) of elements of Ω2(Uα,Aα) satisfies the relations

ϕ∗
αβ(θβ + ωβ) = θα + ωα.

It is easy to see that the form θ is independent of the equivalence class of the connection
and is functorial with respect to the isomorphism of descent data. �

In the notations above let ∇ : A → Ω1(M,A) be connection defined for a fixed descent
datum by

(2.5.2) (∇ξ)|Uα = [∇α, ξ].

It is easy to see that ∇ is well defined and by derivation with respect to the product on
A.

Note that

(2.5.3) ∇2 = [θ, ·] and ∇θ = 2πiΩ

where Ω is the 3-curvature form of the connection on L, see Lemma 2.4.

Proposition 2.13. (1) Let E be an L-twisted bundle and ∇ a connection on E . Set

ChL(∇) = tr e−
uθ
2πi ∈ Ω∗(M)[u]. Then dΩ ChL(∇) = 0

(2) The class of ChL(∇) in HΩ(M) is independent of choice of connection. Namely
assume we are given a different connection ∇′ on E (and therefore on L) and let
Ω′ be the associated 3-curvature form. Then I([ChL(∇)]) = [ChL(∇

′)], where I
is the canonical isomorphism of cohomology of (Ω∗(M)[u], dΩ) with cohomology of
(Ω∗(M)[u], dΩ′).

We denote the class of ChL(∇) by ChL(E).

Proof. Since Ω is central, ∇(e−
uθ
2πi ) = −uΩe−

uθ
2πi . Hence

d tr e−
uθ
2πi = tr∇(e−

uθ
2πi ) = −uΩ ∧ ChL(∇)

and dΩ ChL(∇) = 0, which proves the first statement.
Fix now a descent datum (Uα,Lαβ, µαβγ, Eα, ϕαβ) for E together with a connection ∇ =

(∇α,∇αβ , ωα) and let ∇′ = (∇′
α,∇

′
αβ, ω

′
α) be another connection on E . Set δαβ = ∇′

αβ−∇αβ
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and let δα be such that δα− δβ = δαβ . Recall that the isomorphism I is induced by the map
of complexes

ξ 7−→ e−uη ∧ ξ

where η ∈ Ω2(M) is defined by η|Uα = 1
2πi

(ω′
α − ωα − dδα).

Consider now the manifold M̃ = R ×M . Denote by π : M̃ → M the projection on the

second factor and by t : M̃ → R the projection on the first factor. Consider on M̃ the gerbe

L̃ = π∗L given by the descent datum (π−1Uα, π
∗Lαβ, π

∗µαβγ). Then π∗E , π∗φαβ describe a

L̃ twisted bundle Ẽ . Moreover,

∇̃αβ := (1− t)π∗∇αβ + tπ∗∇′
αβ and ω̃α = (1− t)π∗ωα + tπ∗ω′

α + dt ∧ δα

define respectively, connective structure and curving of L̃. Similarly, ∇̃α = (1 − t)π∗∇α +

tπ∗∇′
α defines a compatible connection on Ẽ . The corresponding 3-form is given by

Ω̃ = (1− t)π∗Ω + tπ∗Ω′ +
1

2πi
dt ∧ (ω′

α − ωα − dδα) = (1− t)π∗Ω + tπ∗Ω′ + dt ∧ π∗η.

Now, the map ξ 7→ eutη∧ξ is an isomorphism of complexes
(
Ω∗(M̃)[u], dΩ̃

)
and

(
Ω∗(M̃)[u], dπ∗Ω

)
.

Set Ã = π∗A and let θ̃ ∈ Ω2(M̃, Ã) be the form defined by π∗θα + ω̃α. By the result of

the first part of the proposition the differential form tr e−
uθ̃
2πi is a cocycle in the complex(

Ω∗(M̃)[u], dΩ̃

)
. Hence tr eutη ∧ e−

uθ̃
2πi is a cocycle in the complex

(
Ω∗(M̃)[u], dπ∗Ω

)
. This

implies the relation

tr euη ∧ e−
uθ′

2πi − tr e−
uθ
2πi = dΩ

∫ 1

0

ι ∂
∂t
tr eutη ∧ e−

uθ̃
2πidt.

Therefore, we finally deduce that the differential forms tr euη ∧ e−
uθ′

2πi and tr e−
uθ
2πi are coho-

mologous in (Ω∗(M)[u], dΩ), and hence that the differential forms tr e−
uθ′

2πi and tr e−uη ∧ e−
uθ
2πi

are cohomologous in (Ω∗(M)[u], dΩ′), which finishes the proof. �

We will need also a notion of superconnection on the twisted bundle. We now briefly
indicate the modifications which need to be made to the notion of connection to obtain that
of superconnection. Assume that we are given a gerbe L and a Z2-graded L-twisted vector
bundle E = E+ ⊕ E−. Let (Uα,Lαβ, µαβγ, Eα, ϕαβ) be a descent datum for E .

Definition 2.14. A superconnection A on the descent datum is A = (Aα,∇αβ , ωα) where
(∇αβ, ωα) is a connection on the descent datum for L and each Aα is a superconnection on
Eα satisfying the relations

ϕ∗
αβAβ = Aα ⊗ id+ id⊗∇αβ , for Uαβ 6= ∅.

Each superconnection Aα can be written asAα =
∑

k≥0A
[k]
α where A

[k]
α ∈ Ωk(Uα; End(Eα)

−)

for k-even, A
[k]
α ∈ Ωk(Uα; End(Eα)

+) for k-odd, k 6= 1, and A
[1]
α is a grading preserving con-

nection on Eα. It is easy to see that for each k 6= 1 there exists a form A[k] ∈ Ωk(M ; End(E))

such that A[k]|Uα = A
[k]
α . For k = 1 (A

[1]
α ,∇αβ, ωα) defines a connection on the (descent

datum of) E .
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Let now u1/2 be a formal variable of degree −1 such that (u1/2)2 = u. Define the rescaled
superconnection

Au−1 :=
∑

u(k−1)/2
A

[k].

Let Ω be as before the curvature 3-form of the connection on L. Define the curvature of the
rescaled superconnection θAu−1 by

θAu−1 |Uα = (Aα)
2
u−1 + ωα.

Then uθAu−1 ∈ Ωeven(M,End(E)+)[u] +u1/2Ωodd(M,End(E)−)[u]. We therefore have the dif-

ferential form exp
(
−uθ

A
u−1

2πi

)
which belongs to Ωeven(M,End(E)+)[u]+u1/2Ωodd(M,End(E)−)[u]

and the differential form str exp
(
−uθ

A
u−1

2πi

)
which belongs to Ωeven(M)[u]. The following is

an analogue of the Proposition 2.13 for the superconnections with the essentially identical
proof.

Proposition 2.15.

(1) Set ChL(A) = str exp
(
−uθ

A
u−1

2πi

)
. Then dΩ ChL(A) = 0

(2) The class of ChL(A) in HΩ(M) is independent of choice of superconnection. Specif-
ically, assume we are given a different superconnection A′ on E (and therefore a
different connection on L) and let Ω′ be the associated 3-curvature form. Then
I([ChL(A)]) = [ChL(A

′)], where I is the canonical isomorphism of cohomology of
(Ω∗(M)[u], dΩ) with cohomology of (Ω∗(M)[u], dΩ′).

2.6. Horizontally twisted bundles. Let π : M → B be a smooth fibration. Let L be a
gerbe on B.

Definition 2.16. A descent datum for a horizontally L-twisted bundle E on M consists
of the descent datum (Uα,Lαβ, µαβγ) for L together with a collection (Eα → π−1Uα)α∈Λ of
vector bundles and a collection of vector bundle isomorphisms ϕαβ : Eα⊗π

∗Lαβ ∼= Eβ so that

(π−1Uα, π
∗Lαβ, π

∗µαβγ , Eα, ϕαβ)

is a descent datum for a twisted vector bundle on M .

An (iso)morphism between two such descent data

(Uα,Lαβ, µαβγ, Eα, ϕαβ) and (U ′
α,L

′
αβ, µ

′
αβγ, E

′
α, ϕ

′
αβ)

is given by the collection (ρα, Sα, λαβ) where (Sα, λαβ) is an isomorphism between (Uα,Lαβ, µαβγ)
and (U ′

α,L
′
αβ, µ

′
αβγ) and ρα : Eα⊗π

∗Sα → E ′
α is such that (ρα, π

∗Sα, π
∗λαβ) is an (iso)morphism

between (π−1Uα, π
∗Lαβ, π

∗µαβγ, Eα, ϕαβ) and (π−1U ′
α, π

∗L′
αβ, π

∗µ′
αβγ , E

′
α, ϕ

′
αβ).

With these definitions one can now define a horizontally twisted bundle as an equivalence
class of descent data. Let Tw(π∗L) denote the set of isomorphism classes of all π∗L-twisted
bundles onM and Twh(L) denote the set of isomorphism classes of all horizontally L-twisted
bundles. Then we have an obvious map Twh(L) → Tw(π∗L). According to Lemma 2.8 this
map is surjective. In particular Twh(L) 6= ∅ if and only if π∗[L] is torsion in H3(M,Z). It is
however not injective. Indeed, if (Uα,Lαβ, µαβγ, Eα, ϕαβ) is a descent datum for a horizontally
twisted bundle and S is a line bundle on M then (Uα,Lαβ, µαβγ, Eα ⊗ S|π−1Uα, ϕαβ ⊗ id) is
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another such descent datum. These data define the same element of Tw(π∗L) but, unless S
is a pull-back of a line bundle from B, different elements of Twh(L).

A connection on the descent datum (Uα,Lαβ, µαβγ, Eα, ϕαβ) is a collection (∇α,∇αβ, ωα)
where (∇αβ , ωα) is a connection on the descent datum for L and∇α is a connection on Eα such
that (∇α, π

∗∇αβ , π
∗ωα) is a connection on the descent datum (π−1Uα, π

∗Lαβ, π
∗µαβγ, Eα, ϕαβ).

With these definitions one can now define a notion of connection on the horizontally L-twisted
bundle in complete analogy with the defnitions for the twisted bundles. If ∇ is such a con-
nection and Ω is the curvature 3-form of the gerbe L, one defines ChL(∇) – a closed form in
(Ω∗(M), dπ∗Ω)•. The analogues of Propositions 2.12 and 2.13 hold in this context with the
same proofs.

3. Projective families and the analytic index

3.1. Families of pseudodifferential operators. Here we collect several facts about the
(untwisted) families of pseudodifferential operators.

Let π : X → Y be a smooth fibration and E a vector bundle on X .
We denote by Ψm

L (X|Y ;E) the space of classical fiberwise pseudodifferential operators of
order ≤ m on π, acting on the sections of the vector bundle E. As usual, we set

Ψ(X|Y ;E) :=
⋃

m∈Z

Ψm(X|Y ;E)

and

Ψ−∞(X|Y ;E) :=
⋂

m∈Z

Ψm(X|Y ;E).

Recall that composition endows each Ψ(X|Y ;E) with the structure of a filtered algebra
and that Ψ−∞(X|Y ;E) is an ideal in this algebra. Ψ(X|Y ;E) is also a module over C∞(Y )
and the composition is C∞(Y )-linear.

We have the following elementary general result:

Lemma 3.1. Assume π : X → Y is a smooth fibration, E a vector bundle on X, L a line
bundle on Y . Define a map χL : Ψ(X|Y ;E) → Ψ(X|Y ;E ⊗ π∗L) by

χL(D)(e⊗ π∗(l)) = D(e)⊗ π∗l

for D ∈ ΨL(X|Y ; E), e ∈ Γc(E), l ∈ Γ(L). Then χL is a well-defined isomorphism of
algebras and C∞(Y )-modules.

χL1⊗L2 = χL2 ◦ χL1

If we have two vector bundles E, E ′ on X we denote by Ψ(X|Y ;E,E ′) the set of fiberwise
pseudodifferential operators Γc(E) → Γ(E ′). For L – line bundle on Y we again have the
isomorphism of C∞(Y )-modules χL : Ψ(X|Y ;E,E ′) → Ψ(X|Y ;E ⊗ π∗L,E ′ ⊗ π∗L) defined
by the same formula.

We have the vertical cotangent bundle T ∗(X|Y ) = T ∗X/(Kerπ∗)
⊥. T̊ ∗(X|Y ) denotes

(the total space of) this bundle with the zero section removed, and p : T̊ ∗(X|Y ) → X is
the natural projection. Recall that for P ∈ Ψm(X|Y ;E,E ′) the principal symbol σm(P )

is an m-homogeneous smooth section over T̊ ∗(X|Y ) of vector bundle p∗Hom(E,E ′). Then
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identifying canonically isomorphic bundles Hom(E,E ′) and Hom(E⊗π∗L,E ′⊗π∗L) we have
σm(P ) = σm(χL(P )).

3.2. Projective families. Let π : M → B be a smooth fibration with compact fibers. Let
L be a gerbe on B such that π∗[L] is a torsion class in H3(M,Z). Let E be a horizontally
L-twisted bundle on M , cf. Section 2.6. We fix a descent datum (Uα,Lαβ, µαβγ, Eα, ϕαβ) for
E . For any (α, β) ∈ Λ2 with Uαβ 6= ∅ we have an isomorphism of filtered algebras, respecting
the C∞(Uαβ)-module structure:

(3.2.1) φαβ : Ψ(π−1Uαβ |Uαβ; Eβ) → Ψ(π−1Uαβ|Uαβ ; Eα),

It is defined as the composition

Ψ(π−1Uαβ |Uαβ; Eβ)
ψαβ
→ Ψ(π−1Uαβ|Uαβ ; Eβ ⊗ π∗Lαβ)

ϕαβ
→ Ψ(π−1Uαβ |Uαβ; Eα)

where ψαβ = χ−1
Lαβ

= χLβα
.

Recall (cf. [4]) that for every α ∈ Λ we have an infinite dimensional bundle π∗Eα
on Uα defined by Γ(V, π∗Eα) = Γ(π−1V, Eα), V ⊂ Uα. Over Uαβ we have isomorphisms
π∗ϕαβ : π∗Eα ⊗Lαβ → π∗Eβ defined by

π∗ϕαβ(ξ ⊗ l) = ϕ(ξ ⊗ π∗(l)).

Here ξ ∈ Γ(Uαβ , π∗Eα) = Γ(π−1Uαβ , Eα), l ∈ Γ(Uαβ ,Lαβ).
Note that the isomorphisms π∗ϕαβ : π∗Eα ⊗Lαβ → π∗Eβ induce the isomorphisms

(π∗ϕαβ)
∗ : End(π∗Eβ) → End(π∗Eα ⊗Lαβ) ∼= End(π∗Eα)

over Uαβ . The restriction of this isomorphism to Ψ(π−1Uαβ |Uαβ, Eβ) ⊂ End(π∗Eβ) coincides
with the isomorphism φαβ : Ψ(π−1Uαβ |Uαβ, Eβ) → Ψ(π−1Uαβ|Uαβ , Eα). Since the isomor-
phisms (π∗ϕαβ)

∗ satisfy the natural cocycle identity we have the following:

Lemma 3.2. The isomorphisms φαβ satisfy

φαβ ◦ φβγ = φαγ

whenever Uαβγ 6= ∅.

Recall that the isomorphisms ϕαβ induce the natural isomorphisms ϕ∗
αβ : End(Eβ) →

End(Eα). Then

(3.2.2) σm ◦ φαβ = p∗
(
ϕ∗
αβ

)
◦ σm

Definition 3.3. A fiberwise pseudodifferential operator P of order ≤ m with coefficients in
the horizontally L-twisted vector bundle E is a collection {Pα}α∈Λ, Pα ∈ Ψm(π−1Uα|Uα; Eα)
such that

Pα = φαβ(Pβ).

where φαβ is defined in Equation 3.2.1. The space of fiberwise pseudodifferential operators of
order ≤ m, with coefficients in the π∗L-twisted vector bundle E , is denoted by Ψm

L (M |B; E).

Note that the equation (3.2.2) implies that if P = {Pα} ∈ Ψm
L (M |B; E) then the collection

σm(Pα) defines a section of the (untwisted) bundle p∗ End(E). We will call this section the
principal symbol of P = {Pα}
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Remark 3.4. We define in the same way the space Ψm
L (M |B; E , E ′) of fiberwise pseudodif-

ferential operators of order ≤ m, from the horizontally L-twisted vector bundle E to the
horizontally L-twisted vector bundle E ′. In particular Ψm

L (M |B; E , E) = Ψm
L (M |B; E). We

also have a principal symbol map σm : Ψm
L (M |B; E , E) → p∗Hom(E , E ′).

We set

ΨL(M |B; E) :=
⋃

m∈Z

Ψm
L (M |B; E) and Ψ−∞

L (M |B; E) :=
⋂

m∈Z

Ψm
L (M |B; E).

Introduce now a composition in ΨL(M |B; E) by

{Pα} ◦ {Qα} = {PαQα}

Since φαβ are algebra isomorphisms the right hand side of this equality defines an element
in ΨL(M |B; E).

Proposition 3.5. The composition of operators is C∞(B)-linear and endows ΨL(M |B; E)
with the structure of associative algebra; Ψ−∞

L (M |B; E) is an ideal in ΨL(M |B; E).

We can now define the algebra of forms on B with values in ΨL(M |B; E) by

Ω∗ (B,ΨL(M |B; E)) = Ω∗(B)⊗C∞(B) ΨL(M |B; E).

Recall that for every α and V ⊂ Uα we have a fiberwise trace Trα : Ψ
−∞(π−1V |V ; Eα) →

C∞(V ). It is easy to see that for P ∈ Ψ−∞(π−1Uαβ |Uαβ; Eβ)

Trα φαβ(P ) = Trβ(P ).

We therefore obtain a well defined map Tr : Ψ−∞
L (M |B, E) → C∞(B) by setting Tr{Pα}|Uα

=
Trα(Pα). This trace is a C∞(B)-module map satisfying Tr[A,B] = 0. It extends naturally
to define a map Tr: Ω∗

(
B,Ψ−∞

L (M |B; E)
)
→ Ω∗ (B).

If the bundle E is Z2 graded we have a similarly defined supertrace

Str : Ω∗
(
B,Ψ−∞

L (M |B; E)
)
→ Ω∗ (B) .

Note that the definition of the ΨL(M |B; E) depends on the descent datum for E . It is
straightforward however to see that an isomorphism of descent data defines canonically an
isomorphism of the corresponding bundles of algebras.

3.3. Analytic index.

Definition 3.6. Letm ≥ 0 be fixed. A fiberwise pseudodifferential operator P ∈ Ψm
L (M |B; E , E ′)

is fiberwise elliptic if the principal symbol σm(P ) ∈ Γ(p∗Hom(E , E ′))is an isomorphism.

We say that Q ∈ Ψ−m
L (M |B; E ′, E) is a parametrix of P ∈ Ψm

L (M |B; E , E ′) if PQ − 1 ∈
Ψ−∞

L (M |B; E ′, E ′) and QP − 1 ∈ Ψ−∞
L (M |B; E , E).

Lemma 3.7. Every elliptic P ∈ Ψm
L (M |B; E , E ′) has a parametrix.

Proof. Construct first a parametrix Rα for Pα. Let ρα be a partition of unity subordinate
to {Uα}. Then define R′

α =
∑

β ρβφαβ(Rβ). Then each R′
α is a parametrix for Pα and

φαβ(R
′
β) = R′

α. �
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Let D ∈ Ψm
L (M |B; E , E ′) be elliptic. Let F ∈ Ψ0

L(M |B; E , E ′) be such that σ0(F )|S∗(M |B) =
σm(D)|S∗(M |B). Choose a parametrix R for F . Let UD ∈ Ψ0

L(M |B; E ⊕ E ′) be an invertible

operator such that UD −

[
0 −R
F 0

]
∈ Ψ−∞

L (M |B; E ⊕ E ′). An explicit construction of an

example of such an operator is as follows. Let S0 = 1 − RF , S1 = 1 − FR. Then set

UD =

[
S0 −(1 + S0)R
F S1

]
. With such a choice the inverse is given by an explicit formula

U−1
D =

[
S0 (1 + S0)R
−F S1

]
.

Definition 3.8. The index of D is the K-theory class of the algebra Ψ−∞
L (M |B; E ⊕ E ′)

defined by

ind(D) = [PD −Q] ∈ K0(Ψ
0
L(M |B, E ⊕ E ′),Ψ−∞

L (M |B, E ⊕ E ′)) ∼= K0(Ψ
−∞
L (M |B, E ⊕ E ′)),

where PD and Q are the idempotents given by PD = UD

[
1 0
0 0

]
U−1
D and Q =

[
0 0
0 1

]
.

We leave to the reader the standard K-theoretic proof that the index is well defined and
is stable under the homotopies of D in the class of elliptic operators in Ψm

L (M |B; E , E ′).
Assume that the horizontally L-twisted bundles E and E ′ are hermitian (and in particular L
is unitary) and that fibers of π are equipped with smoothly varying volume forms. In this
situation for a projective family D we can define an formally adjoint projective family D∗

by forming the formal adjoints for each family Dα.

Lemma 3.9. Then, identifying K0(Ψ
−∞
L (M |B, E⊕E ′)) with K0(Ψ

−∞
L (M |B, E ′⊕E)) we have

indD∗ = − indD.

Proof. We have

indD∗ =

[
UD∗

[
0 0
0 1

]
U−1
D∗ −

[
1 0
0 0

]]
∈ K0(Ψ

−∞
L (M |B, E ⊕ E ′)).

By deforming D we may assume that σm(D)|S∗(M |B) is an isometry. In this case we may
choose UD∗ = U−1

D , and the statement follows. �

3.4. Chern character of the index. We continue in the notations of the previous section.
We assume that we are given a horizontally L-twisted bundle E with a connection represented
by a descent datum (Uα,Lαβ, µαβγ, Eα, ϕαβ) with connection (∇α,∇αβ , ωα) see the Section
2.6. Following Mathai and Stevenson [30], we describe in this paragraph a morphism of
complexes CC−

• (Ψ
−∞
L (M |B; E)) → (Ω∗(M)[u], dΩ)• .

Recall the bundles π∗Eα and isomorphisms π∗ϕαβ defined in the Section 3.2. It is easy to
see that (Uα,Lαβ, µαβγ, π∗Eα, π∗ϕαβ) is a descent datum for an infinite dimensional twisted
bundle. We now proceed to define a connection on this descent datum.

Choose horizontal distribution i.e. a subbundle H ⊂ TM such that TM = H⊕ T (M |B).
This choice together with connections ∇E

α defines for each α a connection ∇H
α as follows:

(∇H
α )Xξ = (∇E

α)XHξ

where XH is the horizontal lift of X ∈ Γ(B, TB).
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Lemma 3.10. (π∗ϕαβ)
∗∇H

β = ∇H
α ⊗ id+ id⊗∇αβ

The curvature of the connection ∇H
α is a 2-form θHα on Uα with values in fiberwise differ-

ential operators given by

θHα (X, Y ) = θEα(X
H, Y H) + (∇E

α)T (X,Y ).

where

(3.4.1) TH(X, Y ) = [XH, Y H]− [X, Y ]H, X, Y ∈ Γ(B, TB).

Each ∇H
α defines a filtration-preserving derivation ∂Hα of the algebra of fiberwise pseudodif-

ferential operators

∂Hα : Ψ(π−1Uα|Uα, Eα) → Ω1(Uα,Ψ(π−1Uα|Uα, Eα)) defined by ∂Hα (D) = [∇H
α , D].

If D ∈ Ψ(π−1Uαβ |Uαβ, Eβ) then the result of Lemma 3.10 implies that

∂Hα (φαβ(D)) = φαβ(∂
H
β (D)).

Therefore if {Dα},Dα ∈ ΨL(π
−1Uα|Uα, Eα), defines an element in Ψm

L (M |B, E) then {∂Hα (Dα)} ∈
Ω1(B,Ψm

L (M |B, E)). We therefore obtain a derivation

∂H : ΨL(M |B, E) → Ω1(B,ΨL(M |B, E)),

which extends to a derivation of the algebra Ω∗(B,ΨL(M |B, E)).

Lemma 3.11. There exists θH ∈ Ω2(B,Ψ1
L(M |B, E)) such that

θH|Uα = θHα + π∗ωα

Proof. By Lemma 3.10, φ∗
αβθ

H
β = θHα+π

∗(ωα−ωβ), and the statement follows as in Proposition
2.12. �

We have
(∂H)2(D) = [θH, D] and ∂H(θH) = 2πi(π∗Ω).

where Ω is the 3-curvature form of the connection on L.
Following Mathai and Stevenson [30] one can construct the morphism of complexes

Φ∇H : CC−
• (Ψ

−∞
L (M |B; E ⊕ E ′)) → (Ω∗(B)[u], dΩ)•

as follows. (Note that in the nontwisted case similar morphism was constructed in [21, 33,
34].) Denote by

∆k := {(t0, · · · , tk) ∈ R
k | 0 ≤ ti,

k∑

i=0

ti = 1}.

the standard k-simplex.
Define the maps Φk∇H : Ck

(
ΨL

−∞(M |B; E ⊕ E ′)
)
→ Ω∗(M)[u] by

Φk∇H(A0, · · · , Ak) :=

∫

∆k

Tr
(
A0e

−ut0
θH

2πi∂H(A1)e
−ut1

θH

2πi · · · e−utk−1
θH

2πi∂H(Ak)e
−utk

θH

2πi

)
dt1 . . . dtk,

for A0 ⊗ . . .⊗ Ak ∈ Ck
(
Ψ−∞

L (M |B; E ⊕ E ′)
)
. Then let Φ∇H =

∑∞
k=0Φ

k
∇H .

Theorem 3.12. [30] The map Φ∇H : (CC−
• (Ψ

−∞
L (M |B; E)), b+ uB) → (Ω∗(B)[u], dΩ)• is a

morphism of complexes.
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This morphism depends on the choice of horizontal distribution H. However the results
of [30] show that a different choice of H leads to a chain homotopic morphism.

Assume now that D ∈ ΨL(M |B; E , E ′) is an twisted elliptic family. In the Definition
3.8 we defined ind(D) = [PD −Q] ∈ K0(Ψ

−∞
L (M |B; E , E ′)). Here the idempotents PD

and Q belong to the algebra Ψ−∞
L (M |B; E ⊕ E ′)) – the unitalization of Ψ−∞

L (M |B; E ⊕ E ′)
with the multiplier Q ∈ Ψ0

L(M |B; E ⊕ E ′) adjoined. It follows that if we directly ap-
ply the formula (2.1.1) to [PD −Q] we obtain a 0-chain Ch [PD −Q] in the relative cyclic

complex CC−
•

(
Ψ−∞

L (M |B; E ⊕ E ′)),Ψ−∞
L (M |B; E ⊕ E ′))

)
. We have the natural morphism

ι : CC−
•

(
Ψ−∞

L (M |B; E ⊕ E ′))
)
→ CC−

•

(
Ψ−∞

L (M |B; E ⊕ E ′)),Ψ−∞
L (M |B; E ⊕ E ′))

)
, and the

following equality of homology classes: ι(ch(indD)) = [Ch [PD −Q]]. It is straightforward
to see that the map Φ∇H extends to a morphism

Φ∇H : CC−
•

(
Ψ−∞

L (M |B; E ⊕ E ′)),Ψ−∞
L (M |B; E ⊕ E ′))

)
→ (Ω∗(B)[u], dΩ)•

defined by the same formula, and that we have an equality Φ∇H ◦ ι = Φ∇H . It follows that

Φ∇H(ch(indD)) = [Φ∇H(Ch [PD −Q])] .

4. Dirac operators and superconnections

4.1. Dirac operators. The goal of this section is to give a superconnection proof of the
family index theorem for projective families of Dirac operators. We assume that the fibers
of the smooth fibration π :M → B are even dimensional compact Riemannian manifolds.

We begin with the definition of a horizontally twisted Clifford module. Denote by C(M |B)
the Clifford algebra of the fiberwise cotangent bundle T ∗(M |B) = T ∗M/(ker π∗)

⊥. Let L be
a unitary gerbe on B.

Definition 4.1.

• A twisted Clifford module is a horizontally L-twisted Hermitian Z2-graded vector
bundle E = E+ ⊕ E− on M together with the homomorphism c : C(M |B) → End(E)
of bundles of unital Z2-graded ∗-algebras.

• A Clifford connection ∇E on E is an Hermitian connection such that ∇E(c(a)) =
c(∇M |B(a)).

Clifford connections on Clifford modules always exist; the proof is analogous to the proof
of existence of twisted connections in Lemma 2.11.

Choose horizontal distribution i.e. a subbundle H ⊂ TM such that TM = H⊕ T (M |B).
This choice together with the Riemannian metric on the fibers of π allows one to define a
connection ∇M |B on the fiberwise tangent bundle T (M |B), see [4] Section 10.1. We denote
by RM |B the curvature of this connection.

Set EndC(M |B)(E) = {A ∈ End(E) | [A, c(a)] = 0 for every a ∈ C(M |B)}. Let Γ ∈
C(M |B) be the chirality operator defined locally by Γ = ik/2e1 . . . ek where k = dimM −
dimB and e1, . . . , ek is the local orthonormal basis of T ∗(M |B). Define then the relative
supertrace

strE/S : EndC(M |B)(E) → C∞(M) by strE/S(A) = 2−k/2 str c(Γ)A.
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We fix from now on a Clifford connection∇E on E and a descent datum (Uα,Lαβ, µαβγ, Eα, ϕαβ)
for the horizontally L-twisted Clifford module E . The connection ∇E defines a connection
(∇E

α,∇αβ , ωα) (defined up to equivalence) on this descent datum. Each Eα is then a Clifford
module on the fibration π−1Uα → Uα, and each connection ∇E

α is a Clifford connection.
Recall (see Proposition 2.12) that one defines θE ∈ Ω2(M,End(E)) by setting θE |π−1Uα =

θEα + π∗ωα. Denote by c(RM |B) the action of the 2 -form with values in the Clifford alge-
bra obtained from RM |B via the Lie algebra isomorphism so(T (M |B)) → C2(M |B). Here
C2(M |B) ⊂ C(M |B) is a subspace consisting of elements

∑
uivi, ui, vi ∈ T ∗(M |B) with∑

〈ui, vi〉 = 0. Define θE/S = θE − c(RM |B).
The argument in [4], Proposition 3.43, shows that θE/S ∈ Ω2(M,EndC(M |B)(E)). Over an

open set π−1Uα we have θE/S |Uα = θ
E/S
α + π∗ωα where θ

E/S
α ∈ EndC(M |B)(Eα) is defined via

the equality θEα = θ
E/S
α + c(RM |B). We can then define a differential form ChL(E/S) by

(4.1.1) ChL(E/S) = strE/S e
−uθE/S

2πi ∈ Ω∗(M)[u].

The proof of the following result is standard and analogous to the proof of Proposition 2.13.

Lemma 4.2. We have dπ∗Ω ChL(E/S) = 0 and the corresponding class is H∗
π∗Ω(M) is

independent of the choice of Clifford connection ∇E .

We also introduce the fiberwise Â-genus by Â(TM |B) = Â
(
u
2πi
RM |B

)
∈ Ω∗(M)[u], where

Â(x) is the power series defined by

Â(x) = det1/2
(

x/2

sinh x/2

)
.

Using the above data, we can define on each fibration π−1Uα → Uα a family of Dirac
operators Dα acting on the sections of the bundle Eα. Locally Dα =

∑
i c(e

i)
(
∇E
α

)
ei
where

{ei}, {e
i} are dual bases of T (M |B) and T ∗(M |B) respectively. We leave it to the reader to

check the following.

Lemma 4.3. The collection D = {Dα} defines an element in Ψ1
L(M |B; E).

With respect to the decomposition E = E+⊕E− we have the decomposition ΨL(M |B; E) =
ΨL(M |B; E+, E+)⊕ΨL(M |B; E+, E−)⊕ΨL(M |B; E−, E+)⊕ΨL(M |B; E−, E−). The Dirac op-
erator then decomposes asD = D+⊕D− whereD+ ∈ Ψ1

L(M |B; E+, E−),D− ∈ Ψ1
L(M |B; E−, E+)

Classical arguments show that D+ is fiberwise elliptic and hence the analytical index
ind(D+) of D+ is well defined in K(Ψ−∞

L (M |B; E)).
We then have the following result

Theorem 4.4. The following formula holds in H•
L(B):

Φ∇H(ch(indD+))] = u−
dimM−dimB

2

[∫

M/B

Â
( u

2πi
RM |B

)
∧ ChL(E/S)

]
.

This index theorem is established in [28, 29] for general projective families however with
the more restrictive conditions on the class [L] of the gerbe L. The superconnection proof
of this result occupies the rest of the paper.
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4.2. Superconnections and index. We continue in the notations of the previous section.
A twisted superconnection A on the descent datum (Uα,Lαβ, µαβγ, Eα, ϕαβ) is a collection

(Aα)α∈Λ of superconnections on the vector bundles π∗Eα over the open sets Uα such that
when Uαβ 6= ∅,

(4.2.1) (π∗ϕαβ)
∗
Aβ = Aα ⊗ id+ id⊗∇αβ .

We say that A is a Bismut superconnection if each Aα is. Specifically we have

Aα = Dα +∇H
α −

1

4
c(TH)

where TH is defined in (3.4.1).
The fact that ∇H is a connection on the descent datum, and D ∈ Ψ1(M |B, E), c(TH) ∈

Ω2(B,Ψ0(M |B, E)) implies that the conditions (4.2.1) are satisfied. From now on A will
denote the Bismut superconnection.

We will also consider the rescaled Bismut superconnection As defined by

(As)α = Aα,s := s1/2Dα +∇H
α −

1

4
s−1/2c(TH)

where s is either a positive number or a multiple of the formal variable u. Denote by θAs
α

the curvature of the rescaled superconnection (As)
2
α. In particular we have forms uθAα,u−1 ∈

Ω∗(Uα,Ψ(π−1Uα|Uα, Eα))[u
1/2].

Proposition 4.5. There exists a form uθAu−1 ∈ Ω∗(B,Ψ(M |B; E))[u1/2] such that

uθAu−1
∣∣
Uα

= u(θAα,u−1 + π∗ωα).

Proof. Recall that the curvature of ∇αβ is equal to ωα − ωβ. Therefore from the equation
(4.2.1) we obtain

φαβ
(
uθAβ,u−1

)
= u(θAα,u−1 + π∗ωα − π∗ωβ).

The statement of the Proposition follows. �

Notice that uθAu−1 = D2+ forms of degree > 0. Therefore we can define e−
uθ

A
u−1

2πi ∈
Ω∗(B,Ψ−∞(M |B; E))[u1/2] by the usual Duhamel’s formula.

Note that the parity considerations as in finite dimensional case show that the coefficients
for the nonintegral powers of u are odd with respect to the grading and hence have a vanishing
supertrace.

Given a superconnection A = (Aα)α∈Λ on the Z2-graded horizontally L-twisted Clifford
module E by the infinite-dimensional version of the Proposition 2.15 the the differential form

Str(e−
uθ

A
u−1

2πi ) ∈ Ω∗(B)[u],

is closed with respect to the twisted de Rham differential dΩ. The proof is identical to the
proof of the first part of the Proposition 2.13. The proof of the following Theorem is adapted
from [22] and it uses ideas from [23]. The use of cyclic theory is inspired by [35].

Theorem 4.6. The following equality holds in the H•
L(B):

Φ∇H(ch(indD+)) =

[
Str(e−

uθ
A
u−1

2πi )

]
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Proof. Consider the twisted bundle Ẽ = E ⊕ E with the grading given by Γ =

[
γ 0
0 −γ

]
.

The algebra ΨL(M |B; Ẽ) of operators on Ẽ is naturally Z2 graded. When discussing cyclic
complexes of this algebra and its subalgebras we always consider it as Z2-graded algebra.

For an operator or (super) connection K on E set K̃ = K ⊕K; so for example Ã = A⊕ A,

∇̃H = ∇H ⊕∇H, etc.
Let F = D(1+D2)−1/2. Then it is immediate that F ∈ Ψ0

L(M |B; E) is odd with respect to

the grading Γ and fiberwise elliptic. Construct the invertible operator UD ∈ Ψ−∞
L (M |B; Ẽ)

by the same formula as before. Namely, choose a parametrix R for F . Let S0 = 1 − RF ,

S1 = 1−FR. Then set UD =

[
S0 −(1 + S0)R
F S1

]
. With such a choice the inverse is given by

an explicit formula U−1
D =

[
S0 (1 + S0)R
−F S1

]
. Set PD = U−1

D

[
1E 0
0 0

]
UD.

The choices in the constructions can be made so that we have (PD)
± = PD±, see Defini-

tion 3.8.
Define the map Φ∇̃H : CC−

•

(
Ψ−∞

L (M |B; Ẽ)
)
→ (Ω∗(M)[u], dΩ) by

Φk
∇̃H

(A0, · · · , Ak) :=

∫

∆k

Str
(
A0e

−ut0
θ̃H

2πi ∂̃H(A1)e
−ut1

θ̃H

2πi · · · e−utk−1
θ̃H

2πi ∂̃H(Ak)e
−utk

θ̃H

2πi

)
dt1 . . . dtk

for A0 ⊗ . . .⊗ Ak ∈ Ck

(
Ψ−∞

L (M |B; Ẽ)
)
and set again Φ∇̃H =

∑∞
k=0Φ

k
∇̃H

. Notice that

(4.2.2)

[
Φ∇̃H

(
Ch

(
PD −

[
0 0
0 1E

]))]
=

Φ∇H

(
ch
(
indD+

))
− Φ∇H

(
ch
(
indD−

))
= 2Φ∇H

(
ch
(
indD+

))

Replacing in the formulas above θ̃H by θ̃Au−1 and ∂̃H by [Ãu−1, ·] we obtain the definition

of the morphism Φ
Ã
: CCentire

•

(
Ψ−∞

L (M |B; Ẽ)
)
→ (Ω∗(M)[u], dΩ)•.

Lemma 4.7. The morphisms Φ
Ã
, Φ∇̃H : CCentire

•

(
Ψ−∞

L (M |B; Ẽ)
)

→ (Ω∗(B)[u], dΩ)• are

chain homotopic.

Proof. This follows from the explicit formula for the chain homotopy, see Proposition 5.6 of
[30]. This formula can be described as follows. Let Au−1(s) = sAu−1 + (1− s)∇H. Then we
can write

Au−1(s) = su−1/2D +∇H −
su1/2

4
c(TH),

θAu−1 (s) = θH + s[∇H, u−1/2D −
u1/2

4
c(TH)] + s2(u−1/2D −

u1/2

4
c(TH))2

and
d

ds
Au−1(s) = u−1/2D −

u1/2

4
c(TH).
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Define Hk : Ck(Ψ
−∞
L (M |B, E ⊕ E)) → Ω∗(B)[u] by

(4.2.3) Hk(A0, . . . , Ak) =

1∫

0

ds

(
k∑

m=0

(−1)m
∫

∆k+1

dt1 . . . dtk+1 Str

(
A0e

−ut0
θ̃
A
u−1 (s)

2πi

[Ãu−1(s), A1]e
−ut1

θ̃
A
u−1(s)

2πi . . . [Ãu−1(s), Am]e
−utm

θ̃
A
u−1 (s)

2πi
d̃

ds
A
u−1

e−utm+1
θ̃
A
u−1 (s)

2πi . . .

e−utk−1
θ̃
A
u−1 (s)

2πi [Ãu−1(s), Ak]e
−utk+1

θ̃
A
u−1(s)

2πi

))

and set H =
∑
Hk : CC

entire
•

(
Ψ−∞

L (M |B; Ẽ)
)
→ Ω∗(B)[u]. Then

Φ
Ã
− Φ∇H = dΩ ◦H +H ◦ (b+ uB).

�

Let F be the algebra defined by

F = {F ∈ Ψ0
L(M |B; Ẽ)even | [D,F ] ∈ Ψ0

L(M |B; E)}.

A simple modification of the argument in [20] as done in [2], cf. also [22] shows that Φ
Ã

extends to a morphism, also denoted Φ
Ã
: CCentire

• (F) → (Ω∗(M)[u], dΩ) defined by the same

formula. Note that UD ∈ F , PD ∈ F and

[
1E 0
0 0

]
∈ F .

Recall now that inner automorphisms act by identity on the entire cyclic homology, see

e.g. [27] 4.1.3 or [26]. It follows that the chains Ch(PD) and Ch

([
1E 0
0 0

])
are homologous

in CCentire
• (F).

We therefore obtain

Φ
(
ch
(
indD+

))
=

1

2

[
Φ∇̃H

(
Ch

(
PD −

[
0 0
0 1E

]))]

=
1

2

[
Φ

Ã

(
Ch

(
PD −

[
0 0
0 1E

]))]

=
1

2

[
Φ

Ã
(Ch (PD))− Φ

Ã

(
Ch

([
0 0
0 1E

]))]

=
1

2

[
Φ

Ã

(
Ch

([
1E 0
0 0

]))]
−

1

2

[
Φ

Ã

(
Ch

([
0 0
0 1E

]))]

=

[
Str(e−

uθ
A
u−1

2πi )

]
.

�
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4.3. The local index theorem.

Theorem 4.8. Let D be a projective family of Dirac operators on a horizontally L-twisted
Clifford module E . We have the following equality of classes in H•

L(B):
[
Str(e−

u
2πi

θ
A
u−1

)
]
=

[
u−

k
2

∫

M |B

Â
( u

2πi
RM |B

)
ChL(E/S)

]
.

Proof. Over each open set Uα we have θAu−1 = A2
α,u−1 + π∗ωα. Since A2

α,u−1 and π∗ωα
commute, we have

Str e−
u

2πi
θ
A
u−1

= e−
u

2πi
π∗ωα Str e

− u
2πi

A2
α,u−1 .

According to Bismut’s local index theorem for families [5]

lim
t→0

Str e−
1

2πi
A2
α,t =

∫

π−1Uα|Uα

Â

(
1

2πi
RM |B

)
strE/S e

− 1
2πi

θ
E/S
α .

Moreover, by the result of Bismut and Fried [6]

(4.3.1) Str e−
1

2πi
A2
α −

∫

π−1Uα|Uα

Â

(
1

2πi
RM |B

)
strE/S e

− 1
2πi

θ
E/S
α = d

∫ 1

0

ξα(t)dt

where

(4.3.2) ξα(t) = −
1

2πi
Str

dAα,t

dt
e−

1
2πi

A2
α,t

is integrable at 0.
Let s > 0 and let δBs be the operator on Ω∗(B) which multiplies the forms of degree k by

sk/2. Then δBs ◦ (Aα,t) ◦ δ
B
s−1 = s1/2Aα,t/s. We therefore obtain

lim
t→0

Str e−
s

2πi
A2
α,t/s = δBs

(
lim
t→0

Str e−
1

2πi
A2
α,t

)

= δBs

∫

π−1Uα|Uα

Â

(
1

2πi
RM |B

)
strE/S e

− 1
2πi

θ
E/S
α

= s−
k
2

∫

π−1Uα|Uα

Â
( s

2πi
RM |B

)
strE/S e

− s
2πi

θ
E/S
α

where, as before, k = dimM − dimB. Since both sides are polynomials in s we deduce that

lim
t→0

Str e
− u

2πi
A2
α,u−1t = u−

k
2

∫

π−1Uα|Uα

Â
( u

2πi
RM |B

)
strE/S e

− u
2πi

θ
E/S
α

Multiplying both sides by e−
u

2πi
π∗ωα we obtain

lim
t→0

Str exp
(
−

u

2πi
θAu−1t

)∣∣∣
Uα

= u−
k
2

∫

π−1Uα|Uα

Â
( u

2πi
RM |B

)
ChL(E/S)

and therefore

lim
t→0

Str exp
(
−

u

2πi
θAu−1t

)
= u−

k
2

∫

M |B

Â
( u

2πi
RM |B

)
ChL(E/S).
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Moreover by (4.3.1), we have

(4.3.3) Str e
− u

2πi
A2
α,u−1 − u−

k
2

∫

π−1Uα|Uα

Â
( u

2πi
RM |B

)
strE/S e

− u
2πi

θ
E/S
α = ud

∫ 1

0

u−
1
2 δBu ξα(t)dt

Here the right hand side is defined as follows. Write ξ
[l]
α ∈ Ωl(B) for the component of degree

l of ξα from the equation (4.3.2). Then we have

u−
1
2 δBu ξα(t) =

∑
u

l−1
2 ξ[l]α (t) =

1

2πi
Str

dAα,u−1t

dt
exp

(
−

u

2πi
A

2
α,u−1t

)
∈ Ω∗(B)[u].

Multiplying the identity (4.3.3) by e−
u

2πi
π∗ωα and using the equality

e−
u

2πi
π∗ωαud(·) = (ud+ u2Ω)(e−

u
2πi

π∗ωα·)

we obtain

Str exp
(
−

u

2πi
θAu−1

)∣∣∣
Uα

− u−
k
2

∫

π−1Uα|Uα

Â
( u

2πi
RM |B

)
ChL(E/S) = (ud+ u2Ω)Ξα

where Ξα =
∫ 1

0
1
2πi

Str
dAα,u−1t

dt
exp

(
− u

2πi
θAu−1t

∣∣
Uα

)
dt.

From the equations (4.2.1) it follows that over Uαβ we have
dAα,u−1t

dt
= φαβ

(
dAβ,u−1t

dt

)
.

Hence there exists a form Ȧt ∈ u−1/2Ω∗(B; ΨL(M |B, E))[u] such that Ȧt

∣∣∣
Uα

=
dAα,u−1t

dt
.

Therefore setting Ξ =
∫ 1

0
1
2πi

Str Ȧt exp
(
− u

2πi
θAu−1t

)
dt ∈ Ω∗(B)[u] we can write

Str exp
(
−

u

2πi
θAu−1

)
− u−

k
2

∫

M |B

Â
( u

2πi
RM |B

)
ChL(E/S) = dΩΞ

and the statement of the Theorem follows. �

Combining results of the Theorems 4.6 and 4.8 we obtain the main theorem of this paper

Theorem 1.1. Let D be a projective family of Dirac operators on a horizontally L-twisted
Clifford module E on a fibration π :M → B. Then the following equality holds in H•

L(B):

[
Φ∇H(ch(indD+))

]
=

[
u−

k
2

∫

M |B

Â
( u

2πi
RM |B

)
ChL(E/S)

]
,

where k = dimM − dimB is the dimension of the fibers.
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