
COARSE GEOMETRY AND P. A. SMITH THEORY

IAN HAMBLETON AND LUCIAN SAVIN

Abstract. We define a generalization of the fixed point set, called the bounded fixed
set, for a group acting by isometries on a metric space. An analogue of the P. A. Smith
theorem is proved for metric spaces of finite asymptotic dimension, which relates the
coarse homology of the bounded fixed set to the coarse homology of the total space.

1. Introduction

One of the most important tools in transformation groups is P. A. Smith theory [18],
[3, Chap. III], which gives constraints on the homology of the fixed point set for actions
of finite p-groups. For topological actions the fixed point sets may not be manifolds,
but “generalized manifolds” with complicated local topology (in the sense of Wilder [2,
Chap. I.3]). This means that an appropriate homology theory must be used to capture
the essential features.

Smith theory in the generalized manifold setting, as developed in the 1960 classic “Sem-
inar on Transformation Groups” [2], was used recently by Bridson and Vogtmann [5] to
study the actions of Aut(Fn), the automorphism group of a free group, on acyclic homol-
ogy manifolds and generalized homology m-spheres.

In this paper we provide a “coarse homology” version of P. A. Smith theory suitable for
further applications in geometric group theory. We study discrete groups of isometries of
metric spaces, from the perspective of “large-scale” geometry introduced by M. Gromov in
[10]. This subject is now known as coarse geometry. We introduce a coarse generalization
of the usual fixed set, called the bounded fixed set (see Definition 4.1). It is defined when
the coarse type of a certain sequence of approximate fixed sets stabilizes, even when the
actual fixed set is empty. A group action is called tame if the bounded fixed set exists
with respect to any subgroup.

We say that a metric space is a (mod p) coarse homology m-sphere if it has the same
(mod p) coarse homology as the Euclidean space Rm. The main application is:

Theorem A. Let X be a proper geodesic metric space with finite asymptotic dimension,
which is a (mod p) coarse homology m-sphere, for some prime p. Let G be a finite p-group
with a tame action on X by isometries. Then XG

bd is a (mod p) coarse homology r-sphere,
for some 0 ≤ r ≤ m. If p is odd, then m− r is even.

The coarse geometry of group actions extends to quasi-actions on proper metric spaces
(see Section 3). In particular, the bounded fixed set is a quasi-isometry invariant (see
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Proposition 4.5). The coarse analogues of the usual Smith theory inequalities are estab-
lished in Theorem 11.9, and used to derive Theorem A in Section 12.

Another well-known application of the classical P. A. Smith theory is that a rank two
group G = Z/p × Z/p, for p a prime, can not act freely on a finitistic mod p homology
m-sphere (see Bredon [3, III.8.1]). In Theorem 12.4, we give a coarse version of this result.

Theorem B. The group G = Z/p×Z/p, for p a prime, can not act tamely and semifreely
at the large scale on a (mod p) coarse homology m-sphere X, whenever X is a proper
geodesic metric space with finite asymptotic dimension, and XG

bd is a (mod p) coarse
homology r-sphere, for some 0 ≤ r < m.

We do not yet know complete necessary and sufficient conditions for tameness of actions
on a given metric space. Example 4.6 shows that the sequence of approximate fixed sets
does not always stabilize. On the other hand, in Section 5 we show that the action of
any finite subgroup of isometries of hyperbolic n-space, or more generally any proper
CAT(0) space, is tame. In Theorem 4.7, we show that a finite group action on a coarsely
homogeneous metric space X is tame (e.g. if X admits a compatible proper and cocompact
discrete group of isometries).

2. Coarse geometry

Coarse geometry studies the properties of coarse spaces and coarse maps. We will
consider only the metric examples of coarse spaces. For the general definition of a coarse
space see Roe [16] or Mitchener [13], [14].

Definition 2.1. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y a map, not
necessarily continuous.

(a) The map f is (metrically) proper if the inverse image under f of any bounded
subset of Y is a bounded subset of X.

(b) The map f is bornologous if for every R > 0 there is SR > 0 such that

dX(x1, x2) ≤ R⇒ dY
(
f(x1), f(x2)

)
≤ SR,

for all x1, x2 ∈ X.
(c) The map f is coarse if it is proper and bornologous.

Two maps f , f ′ from a set X to a metric space Y are said to be close if dY
(
f(x), f ′(x)

)
is bounded, uniformly in X.

Definition 2.2. Two metric spaces X and Y are coarsely equivalent if there exist coarse
maps f : X → Y and f ′ : Y → X such that f ◦ f ′ and f ′ ◦ f are close to the identity maps
on Y and on X respectively. The maps f and f ′ are called coarse equivalences.

We remark that if f : X → Y and g : Y → Z are coarse equivalences, then the composite
g ◦ f : X → Z is also a coarse equivalence.

Definition 2.3. Let X, Y be metric spaces and f : X → Y .

(a) f is called eventually Lipschitz (or large-scale Lipschitz ) if there are positive
constants L and C such that

dY
(
f(x1), f(x2)

)
≤ L · dX(x1, x2) + C,
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for any x1, x2 ∈ X.
(b) f is called effectively proper if for every R > 0, there is S > 0 such that the

inverse image under f of each ball of radius R in Y is contained in a ball of radius
S in X.

Lemma 2.4. Let f : X → Y be a coarse equivalence and A ⊆ X. Then A and f(A) (with
the induced metrics) are coarsely equivalent.

Proof. The restriction of f to A is a coarse map. For any y ∈ f(A) we choose x ∈ f−1(y)
and define f̄(y) = x. We obtain a map f̄ : f(A) → A such that f ◦ f̄ = idf(A) and f̄ ◦ f
is close to idA. One can easily check that f̄ is a coarse map. �

Definition 2.5. Let X and Y be two metric spaces. A map f : X → Y is an (L,C)-
quasi-isometric embedding for the positive constants L and C, if for any x1, x2 ∈ X we
have:

(2.6)
1

L
· dX(x1, x2)− C ≤ dY

(
f(x1), f(x2)

)
≤ L · dX(x1, x2) + C.

If f(X) is also coarsely dense in Y (that is, if any point in Y lies in the C-neighbourhood
NC(f(X)) of im f), then f is called an (L,C)-quasi-isometry, or just a quasi-isometry for
short.

Remark 2.7. If f : X → Y and g : Y → Z are quasi-isometries, then the composite
g ◦ f : X → Z is also a quasi-isometry.

Any quasi-isometric embedding is a coarse map: the first part of the above inequality
shows that f is proper and the second part shows that f is eventually Lipschitz, thus
bornologous. The next result shows that any quasi-isometry is a coarse equivalence.

Proposition 2.8 ([4, p. 138]). If f : X → Y is a quasi-isometry, then there exists a
quasi-isometry f ′ : Y → X such that f ◦ f ′ is close to the identity map on Y and f ′ ◦ f is
close to the identity map on X.

Proof. Let y ∈ Y . If y ∈ f(X), then choose x ∈ X such that f(x) = y. If y /∈ f(X),
choose x ∈ X such that dY

(
f(x), y

)
≤ C. Define f ′ : Y → X by:

f ′(y) =

{
x if y ∈ f(X),

x if y /∈ f(X).

For any x1, x2 ∈ f−1(y) we have that dX(x1, x2) ≤ L·C (from 2.6), so dX
(
f ′(f(x)), x

)
≤

L · C for any x ∈ X. Also, from the definition of f ′ we get that dY
(
f(f ′(y)), y

)
≤ C for

any y ∈ Y . Therefore f ◦ f ′ and f ′ ◦ f are close to the identity maps on Y and on X
respectively.

The image f ′(Y ) is coarsely dense in X: for any x ∈ X, let y = f(x) ∈ Y . Then
dX
(
x, f ′(y)

)
= dX

(
x, f ′(f(x))

)
≤ L · C.

Using (2.6) and the triangle inequality, one can prove that f ′ is a quasi-isometric em-
bedding. �

For certain metric spaces the converse also holds.
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Proposition 2.9 ([16, 1.10]). If X and Y are length spaces, then any coarse equivalence
f : X → Y is a quasi-isometry.

3. Quasi-actions

Let (X, d) be a metric space and G be a discrete group. We say that G acts coarsely
on X (or X is a coarse G-space) if there are positive constants L and C, and a map
ϕ : G×X → X such that

(i) For each g ∈ G, the map x 7→ ϕ(g, x) := g · x is an (L,C)-quasi-isometry of X
(with NC(g ·X) = X).

(ii) The identity e ∈ G acts as the identity on X, so e · x = x for all x ∈ X.
(iii) For each x ∈ X and each g, h ∈ G, d(g(hx), (gh)x) ≤ C.

Remark 3.1. Sometimes the condition (ii) is omitted in the definition of coarse actions.
Notice that any coarse action on X in this more general sense is coarsely G-equivalent
(via the identity map on X) to a coarse action on X in which e · x = x, for all x ∈ X.

A coarse G-action is also called a quasi-action of G on X (see [12]). Sometimes we say
that G has an (L,C)-quasi-action on X to specify the constants.

(i) A coarse action of G on X is cobounded if there exists R > 0 such that for each
x ∈ X, we have NR(G · x) = X.

(ii) A coarse action is proper if for each R > 0, there exists M > 0 such that for all
x, y ∈ X, we have ]{g ∈ G | g ·NR(x) ∩NR(y) 6= ∅} ≤M .

Definition 3.2. Let X and Y be coarse G-spaces. A map f : X → Y is called coarsely
G-equivariant if there is a constant N such that dY

(
gf(x), f(gx)

)
≤ N for any g ∈ G and

x ∈ X. We say that the actions are coarsely G-equivalent if there exists a quasi-isometry
f : X → Y which is a coarsely G-equivariant map.

Coarsely G-equivalent G-actions are also called quasi-conjugate in the literature. We
also remark that the properties cobounded or proper for coarse actions are preserved by
coarse G-equivalence.

Lemma 3.3 (Milnor-S̆varc). Let (X, d) be a proper geodesic metric space. If Γ is a
discrete group with a proper, cobounded coarse action on X, then Γ is finitely-generated,
and X is quasi-isometric to the group Γ with word metric.

Proof. See Ghys and de la Harpe [9, Proposition 10.9]. �

If f : X → Y is a coarse G-equivalence, then the inverse quasi-isometry f ′ : Y → X (as
in Definition 2.2) is also coarsely G-equivariant: for any y ∈ Y , we have dY

(
y, f(x)

)
≤M ,

for x = f ′(y) ∈ X, by definition of f ′. Then if G has an (L′, C ′)-quasi-action on Y , we
have

dX
(
f ′(gy), gf ′(y)

)
≤ dX

(
f ′(gy), f ′(gf(x))

)
+ dX

(
f ′(gf(x)), f ′(f(gx))

)
+dX

(
f ′(f(gx)), gx

)
+ dX

(
gx, gf ′(f(x))

)
+ dX

(
gf ′(f(x)), gf ′(y)

)
≤ (L+ 1)M + 2C + LS ′M + S ′L′M+C′ + S ′N .

Here we have assumed that dX(f ′(f(x)), x) ≤M for all x ∈ X, and denoted the constants
for f ′ from Definition 2.1 by S ′N , etc.
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Lemma 3.4. Let f : X → Y be a quasi-isometry, and suppose that Y has a coarse action
of a discrete group G. Then X admits a coarse action of G so that f is a coarse G-
equivalence.

Proof. The given coarse action of G on (Y, d) induces a map G×X → X, via the formula
g · x := f ′(g · f(x)), where f ′ denotes a quasi-inverse for f . Since f is a quasi-isometry,
it follows that this formula defines a coarse action of G on (X, d). The induced coarse
action on X is coarsely G-equivalent (by f) to the original coarse action on Y . �

A recent result of Kleiner and Leeb [12] shows that a coarse action is always coarsely
equivalent to an isometric action.

Theorem 3.5 (Kleiner-Leeb [12, Corollary 1.1]). If a discrete group G has an (L,C)-
quasi-action ϕ : G×X → X on a metric space (X, d), then ϕ is (L, 3C)-quasi-conjugate
to a canonically defined isometric G-action on a metric space (Y, d).

Remark 3.6. The proof of Kleiner and Leeb [12, p. 1566] shows that if G is a finite group
and (X, d) is a proper metric space, then so is (Y, d).

4. Bounded fixed sets

Let (X, d) be a metric space with an (L,C)-quasi-action of a discrete group G. For any
k ≥ 0, let

XG
k = {x ∈ X | d(x, gx) ≤ k, ∀g ∈ G}.

The sets {XG
k } form an increasing family of subsets of X and one can ask if their coarse

geometry type stabilizes. The following definition was given in [17].

Definition 4.1. We say that the bounded fixed set of a coarse action (X,G) exists, pro-
vided that there exists a subspace Y ⊆ X such that

(i) Y ⊂ XG
k0

for some k0 > 0, and

(ii) the inclusion map i : Y → XG
k is a coarse equivalence for all k ≥ k0.

In this case we write Y = XG
bd. If the coarse type of the subspaces {XG

k } does not stabilize,
we say that XG

bd does not exist.

In general, XG
k can be empty for all k (and in this case we have XG

bd = ∅). For example,
take G = Z acting on X = R by translations. However, if G is finite, then the sets XG

k

are always nonempty for large k. In fact, we have that

X =
⋃
k≥0

XG
k .

Remark 4.2. The inclusion i : XG
k → XG

r (r ≥ k) preserves the metric, so it is a quasi-
isometric embedding. If XG

k is coarsely dense in XG
r , then i is a quasi-isometry, therefore

a coarse equivalence. Note that the subspaces are coarsely G-invariant, in the sense that
G ·XG

k ⊆ XG
r , where r = Lk + 4C.

The orbit space X/G of an isometric action has a natural (pseudo)-metric d∗ induced
by the standard projection p : X → X/G from the metric on X:
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d∗
(
p(x), p(y)

)
= inf

g∈G
d(x, gy).

If (X,G) is a quasi-action, we can define X/G := X ′/G, where (X ′, G) is any isometric
action coarsely equivalent to (X,G), as provided by Theorem 3.5. This construction and
the induced metric d∗ are both well-defined up to quasi-isometry.

Definition 4.3. A coarse G-action is called coarsely ineffective if the map p : X → X/G
is a coarse equivalence.

If G acts coarsely ineffectively on X, there is a coarse equivalence h : X/G → X. For
any x ∈ X and g ∈ G, we have that p(x) = p(gx), so h

(
p(x)

)
= h

(
p(gx)

)
. Also, from

the definition of a coarse equivalence, there is a constant C so that d
(
h
(
p(x)

)
, x
)
≤ C for

any x ∈ X.Then

d(gx, x) ≤ d
(
gx, h

(
p(gx)

))
+ d
(
h
(
p(x)

)
, x
)
≤ 2C,

so XG
bd exists and is coarsely equivalent to X.

The converse also holds: if XG
bd exists and is coarsely equivalent to X, then the action

is coarsely ineffective. Choose k > 0 so that XG
k is coarsely dense in X. For any x ∈ X,

there is x′ ∈ XG
k such that d(x, x′) ≤ C. Then

d(gx, x) ≤ d(gx, gx′) + d(gx′, x′) + d(x′, x) ≤ 2C + k

It follows that

d(x, y) ≤ d(x, gy) + d(gy, y) ≤ d∗
(
p(x), p(y)

)
+ 2C + k

since given ε > 0, we can pick g ∈ G such that d(x, gy) ≤ d∗
(
p(x), p(y)

)
+ ε. Also,

from the definition of d∗, we have that d∗
(
p(x), p(y)

)
≤ d(x, y). The map p is, obviously,

surjective. Therefore, p is a quasi-isometry, so it is a coarse equivalence.

Definition 4.4. Let (X, d) be a metric space with a coarse G-action. The coarse action
of G is called tame if XH

bd exists for all subgroups H in G.

It would be interesting to find a geometrical condition on X which would guarantee
that the action of any finite subgroup of quasi-isometries of X is tame. We first point out
that tameness of the action is a coarse invariant.

Proposition 4.5. Suppose that (X, d) and (Y, d) are coarse G-spaces. If f : X → Y is a
coarse G-equivalence and XG

bd exists, then Y G
bd exists and it is coarsely equivalent to XG

bd.

Proof. The existence of XG
bd implies that there is some k0 such that the inclusion i : XG

k1
→

XG
k2

is a coarse equivalence, for any k2 ≥ k1 ≥ k0. For any x ∈ XG
k we have

dY
(
f(x), gf(x)

)
≤ dY

(
f(x), f(gx)

)
+ dY

(
f(gx), gf(x)

)
≤ Sk +N,

thus f(XG
k ) ⊆ Y G

l for l ≥ Sk + N . Similarly, f ′(Y G
l ) ⊆ XG

r , for some r > 0. Then, we
have

f ′
(
f(XG

k )
)
⊆ f ′(Y G

l ) ⊆ XG
r ,
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for r > k ≥ k0. XG
k is coarsely dense in XG

r , so for any x ∈ XG
r , there is x′ ∈ XG

k such
that dX(x, x′) ≤ C, for some constant C. Then f ′

(
f(XG

k )
)

is also coarsely dense in XG
r :

for any x ∈ XG
r we have:

dX
(
x, f ′(f(x′))

)
≤ dX(x, x′) + dX

(
x′, f ′(f(x′))

)
≤ C +M.

It follows that f ′(Y G
l ) is also coarsely dense in XG

r , thus they are coarsely equivalent.
Lemma 2.4 implies that Y G

l is coarsely equivalent to XG
bd for any l greater than some

value l0.
To finish the proof, we need to show that the inclusion Y G

l1
→ Y G

l2
is a coarse equivalence,

for any l2 ≥ l1 ≥ l0. We have that f ′(Y G
l1

) ⊆ f ′(Y G
l2

) ⊆ XG
r for some r > 0 and that

f ′(Y G
l1

) is coarsely dense in XG
r . This means that f ′(Y G

l1
) is coarsely dense in f ′(Y G

l2
). So,

for any y ∈ Y G
l2

there is a y′ ∈ Y G
l1

such that dX
(
f ′(y), f ′(y′)

)
≤ C. Then

dY (y, y′) ≤ dY
(
y, f(f ′(y))

)
+ dY

(
f(f ′(y)), f(f ′(y′))

)
+dY

(
y′, f(f ′(y′))

)
≤ 2M + SC ,

which completes the proof. �

After this result, and Theorem 3.5, to study the tameness of a coarse G-action we can
assume that G is acting by isometries on (X, d). In the rest of the paper we will also
assume that G is a finite group, and that (X, d) is a proper metric space.

The next example shows that assuming finite asymptotic dimension (see Section 6, or
Roe [16, §9]) is not sufficient to ensure that XG

bd exists.

Example 4.6 (Non-existence). Let G = Z/2. We will construct a space X ⊂ R3,
consisting of infinitely many “goalposts”, on which G acts freely and the coarse type of
XG
k does not stabilize.

A’ B’

R R’

A B

Figure 1. A generic set Yn

Start with two parallel lines, Y0 = {x = 1
2
, z = 0} ∪ {x = −1

2
, z = 0}. Let Yn be the set

shown in Figure 1 below, where the distances AA′, BB′ and AB are equal to 1 and the
vertical rays R and R′ are at distance n from each other.
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For any n ≥ 1, consider the points (1
2
, n, 0) and (−1

2
, n, 0) in Y0 and identify these

points to the points A and B of a copy of Yn such that Yn makes an angle of nπ
2n+2

with
the xy-plane (see Figure 2 below).

3

1

2

Figure 2. The set X

We obtain a space X =
⋃
Yn on which Z/2 acts freely, by interchanging the two

branches. The asymptotic dimension of X (with the induced metric) is at most 3, because
it is a subset of R3 (see [16, 9.10]).

One can see that the coarse type of the sets XG
k does not stabilize: for any integer n,

we have that Yn ⊂ XG
n , but Yn contains points arbitrarily far away from XG

r , for any
r < n. So the coarse type of XG

k changes when k takes integer values, therefore it does
not stabilize.

Here is a condition which ensures that that the bounded fixed set exists.

Theorem 4.7. Let (X, d) be a proper geodesic metric space. If (X, d) admits a proper
and cobounded coarse action by a discrete group Γ, then the bounded fixed set XG

bd exists
for any finite subgroup G ⊂ Γ.

Proof. By the Milnor-S̆varc Theorem 3.3, we may assume that (X, d) = (|Γ|, d) is just the
group Γ with the (left invariant) word metric. The identity element e ∈ Γ will be taken
as a base-point, and the action of an element g ∈ G on X will be denoted γ 7→ g · γ, for
γ ∈ Γ.

Let H = CΓ(G) = {z ∈ Γ | gz = zg, ∀g ∈ G} denote the centralizer subgroup for G in
Γ, and let Y = |CΓ(G)| ⊂ X denote the subspace of X consisting of the group elements
in the centralizer. Since d(z, g · z) = d(e, z−1(g · z)) = d(e, g · e), for all z ∈ H and all
g ∈ G, we see that Y ⊂ XG

k as soon as k > max{d(e, g · e) | g ∈ G}. We also observe that
H acts on XG

k , for any k > 0, defined by the formula x 7→ zx, for x ∈ XG
k and z ∈ H,

and H ·XG
k ⊆ XG

k .
Now suppose that k > 0 is large enough so that Y ⊂ XG

k 6= ∅. Let S := {y1, y2, . . . , yt}
denote the distinct elements in the ball B(e, k) ⊂ Γ of radius k around the identity element
e ∈ Γ. Since d(x, g · x) = d(e, x−1(g · x)) < k for any x ∈ XG

k and any g ∈ G, we see that
each such element x−1(g · x) must equal one of the yi. We fix an ordering of the elements
of G and obtain a map

ϕ : XG
k → P(S)
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defined by x 7→ {x−1(g · x) | g ∈ G} from XG
k to the finite subsets P(S) of S. Since

ϕ(zx) = ϕ(x), for all z ∈ H and all x ∈ XG
k it follows that XG

k is contained in the union
of finitely many H-orbits. Pick elements {x1, x2, . . . , xm} in XG

k representing the distinct
H-orbits. Then any x ∈ XG

k can be expressed as x = zxi, for some z ∈ H and 1 ≤ i ≤ m.
But then d(z, x) = d(z, zxi) = d(e, xi). Therefore the inclusion Y ⊂ XG

k is coarsely dense
(with maximum distance N = max ‖xi‖, 1 ≤ i ≤ m). �

Remark 4.8. We have actually shown that XG
bd is quasi-isometric to the subspace Y =

|CΓ(G)| defined in the proof.

Here are some examples of tame actions:

Example 4.9 (Euclidean space). Let X = Rn with the Euclidean metric and G be a
finite group which acts on Rn by isometries. Then XG

bd = XG is the linear subspace of Rn
fixed by G.

Example 4.10. (Semi-direct products) The example which inspired the definition of
the bounded fixed set was a semi-direct product Γ = Zn oα G, given by an integral
representation α : G → GLn(Z). In this case, X = (|Γ|, d) is just the group Γ equipped
with the word metric, and G acts by left multiplication. Then XG

bd is coarsely equivalent
to the fixed sub-representation of Rn induced by the conjugation action α of G on the
normal subgroup Zn.

5. Hyperbolic space

In this section we will show that the action of any finite subgroup of Isom(Hn) on Hn

is tame, where Hn is the hyperbolic n-space and Isom(Hn) is its group of isometries. We
will use the Poincaré model, in which the points of hyperbolic n-space are represented by
the points of the open unit ball Bn in Rn. The geodesic lines are the intersection of Bn

with those Euclidean lines and circles which are orthogonal to the boundary of Bn. An
advantage of this model is that the angle between two geodesics issuing from the same
point is the Euclidean angle between them.

Definition 5.1. Let X be a metric space and consider two geodesic rays c, c′ : [0,∞)→ X.
We say that c and c′ are asymptotic if there is a constant K such that d

(
c(t), c′(t)

)
≤ K

for any t ≥ 0.

One can easily check that this is an equivalence relation. The set of equivalence classes
is called the boundary of X and is denoted by ∂X. The points of ∂X are called points at
infinity. The equivalence class of a geodesic ray c will be denoted c(∞).

Notice that the images of two asymptotic geodesic rays under any isometry of X are
again asymptotic geodesic rays. So, if G is a group which acts on X by isometries, there
is an induced G-action on ∂X.

Proposition 5.2 ([4]). Let c : [0,∞)→ Hn be a geodesic ray issuing from x (i.e. c(0) =
x). Then, for any x′ ∈ Hn, there is a unique geodesic ray which issues from x′ and is
asymptotic to c.

Proof. See Bridson-Haefliger [4], Chapter II.8, Proposition 8.2. �
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Let X be a complete CAT(0) space (see [4], Chapter II.1, Definition 1.1). There is a
topology on X = X ∪∂X, called the cone topology, such that the subspace topology of X
is the original metric topology. A neighbourhood basis for the points at infinity has the
following form: given a geodesic ray c and positive constants ε > 0 and r > 0, then

U(c, r, ε) = {x ∈ X | d
(
x, c(0)

)
> r, d

(
pr(x), c(r)

)
< ε}

∪{ξ ∈ ∂X | d
(
pr(ξ), c(r)

)
< ε}

where pr : X → B
(
c(0), r

)
is the projection of X onto the closed ball B

(
c(0), r

)
defined

by:

pr(x) =

{
x if x ∈ B

(
c(0), r

)
,

c′(r) if x ∈ X\B
(
c(0), r

)
,

where c′ is the geodesic ray issuing from c(0) and passing through x (if x ∈ X) or
representing x (if x ∈ ∂X).

If X is the Poincaré model of the hyperbolic n-space, it is known that ∂X is homeo-
morphic to the (n− 1)-sphere in Rn.

Let G be a finite subgroup of Isom(Hn). Then the fixed point set HG is nonempty (see
[4], Chapter II.2, Corollary 2.8 (1)). One can show that if HG is bounded, then the action
on the boundary is free: if some point at infinity is fixed by G, let c be the geodesic ray
issuing from a fixed point x ∈ HG, so that c(∞) is fixed. Then c and gc are asymptotic
geodesic rays issuing from the same point, thus c(t) = gc(t), for all t > 0, therefore HG

contains a geodesic ray, which contradicts our assumption.
The converse also holds: if the action on ∂Hn is free, then HG is bounded. We will prove

this claim by contradiction. Suppose that HG is unbounded. Then fix a point x0 ∈ HG

and, for any m > 0, there is xm ∈ HG so that d(x0, xm) ≥ m. Consider the geodesic rays
cm issuing from x0 and passing through xm. Then cm(∞) is a sequence in ∂Hn, thus it
has a convergent subsequence. Since cm passes through the fixed points x0 and xm, it
follows that gcm = cm for all g and m.

To simplify the notations, we assume that {cm(∞)} converges to a point ξ ∈ ∂Hn.
Since G acts freely on the boundary, gξ 6= ξ if g is not the identity in G. Choose c the
geodesic ray issuing from x0 so that c(∞) = ξ. Then, for any ε > 0, there is Tε > 0 such
that d

(
c(t), gc(t)

)
> ε for all t ≥ Tε.

Choose ε = 1, so d
(
c(t), gc(t)

)
> 1 for all t bigger or equal to some T1. Fix τ > T1 and

choose m so that cm(∞) ∈ U(c, τ, 1
3
). Then

d
(
c(τ), gc(τ)

)
≤ d
(
c(τ), cm(τ)

)
+ d
(
cm(τ), gcm(τ)

)
+d
(
gcm(τ), gc(τ)

)
≤ 1

3
+

1

3
< 1,

which is the desired contradiction. One can slightly adjust this argument to prove the
following:

Proposition 5.3. HG is coarsely dense in HG
k , for any k > 0.

Proof. Suppose that, for some k, HG is not coarsely dense in HG
k . Thus, for any m ≥ 1,

there is xm ∈ HG
k so that d(xm,HG) ≥ m. Fix x0 ∈ HG and let cm be the geodesic ray
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issuing from x0 and passing through xm. Then cm(∞) is a sequence in ∂Hn, thus it has
a convergent subsequence.

Without loss of generality, we can assume that {cm(∞)} converges to a point ξ ∈ ∂Hn

which is not fixed by G (if it were, it would be represented by a geodesic ray contained in
HG, which is clearly false). Let c be the geodesic ray issuing from x0 so that c(∞) = ξ.
Then, for any ε > 0, there is Tε > 0 such that d

(
c(t), gc(t)

)
> ε for all t ≥ Tε.

Choose ε = k + 1, so d
(
c(t), gc(t)

)
> k + 1 for all t bigger or equal to some T1. Fix

τ > T1 and choose m so that xm = cm
(
d(x0, xm)

)
∈ U(c, τ, 1

3
). Then d

(
cm(τ), gcm(τ)

)
≤

d(xm, gxm) ≤ k and

d
(
c(τ), gc(τ)

)
≤ d
(
c(τ), cm(τ)

)
+ d
(
cm(τ), gcm(τ)

)
+d
(
gcm(τ), gc(τ)

)
≤ 1

3
+ k +

1

3
< k + 1,

which is a contradiction. �

It follows that the G-action on Hn is tame and the G-action on ∂Hn is free iff HG is
bounded and a point at infinity is fixed iff it is a limit point of HG.

Remark 5.4. The above argument works for any proper CAT(0) space X because it has
compact boundary (see [4, p. 264]). We conclude that the action of any finite subgroup
G of Isom(X) is tame.

6. Asymptotic dimension

The notion of asymptotic dimension was introduced by Gromov in [10, p. 29] and is a
coarse geometry analogue to the topological covering dimension of a compact metric space.
This section describes the basic properties of spaces with finite asymptotic dimension (for
more information, see Dranishnikov [6, §4], Roe [16, Chap. 3], or Bell-Dranishnikov [1]).

Definition 6.1. We say that X has asymptotic dimension ≤ l if for each r > 0 the space
X can be decomposed into a union of l + 1 subsets

X =
l⋃

k=0

Xk,

where each Xk is r-disconnected : each Xk is a disjoint union of sets of uniformly bounded
diameter, and these sets are at least r apart from each other

(
where dist(A1, A2) =

inf{d(x1, x2) | ∀x1 ∈ A1, x2 ∈ A2}
)
.

If Y ⊆ X, then asdimY ≤ asdimX. Using the definition, one can check that asdimR ≤
1 and asdimR2 ≤ 2. In fact, one can show that asdimRn = n (that means asdimRn ≤ n
but asdimRn 6≤ n− 1).

Before stating the main result of this section, we need to review some facts about
simplicial complexes (see Bredon [3], Chapter III, Section 1).

An abstract simplicial complex is a set K, whose elements are called vertices, together
with a collection of finite nonempty subsets of K, called simplices such that:

(a) every vertex is contained in some simplex,
(b) every nonempty subset of a simplex is a simplex.
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The dimension of a simplicial complex K is n if K contains an n-simplex, but no (n+ 1)-
simplices or ∞ if K contains n-simplices for any n ≥ 0.

A simplicial map f : K1 → K2 is a function from the vertices of K1 to the vertices of
K2 such that the image of any simplex of K1 is a simplex of K2. Two simplicial maps
f, f ′ : K1 → K2 are contiguous if, for any simplex s ∈ K1, f(s) and f ′(s) belong to a
common simplex of K2. Two contiguous maps induce the same map in homology.

Let H be the Hilbert space `2(K). Define a map K → H by sending any vertex v ∈ K
to the corresponding unit vector ev ∈ H. For any simplex s = (v0, . . . , vn) of K, its
geometric realization (or the closed simplex ) |s| is the subset of H consisting of all convex
combinations of ev0 , . . . , evn (all linear combinations Σλvev with positive coefficients such
that Σλv = 1). The geometric realization (or the polyhedron) |K| of K is the union of the
geometric realizations of its simplices. The induced metric dB on |K| is called the metric
of barycentric coordinates. The length metric (see [4, p. 33]) associated to the metric of
barycentric coordinates is called the intrinsic metric on K.

A simplicial complex is locally finite if any vertex belongs to finitely many simplices.
The barycentric subdivision of a simplicial complex K is the simplicial complex K ′ whose
vertices are the simplices of K and whose simplices are the sets (s0, . . . , sn) of vertices of
K ′ (simplices of K), such that, after reordering,

s0 ⊂ s1 ⊂ · · · ⊂ sn

(each si is a face of si+1). There is a canonical homeomorphism |K ′| ≈ |K|, (see [7],
Chapter II, Lemma 6.2).

Let G be a finite group which acts on K such that each transformation is a simplicial
map. Such an action is called a simplicial action and K with a simplicial action is called
a simplicial G-complex.

Definition 6.2. A simplicial G-complex K is called regular if it satisfies the following
condition:

(A) for any subgroupH ⊆ G, if h0, . . . , hn are inH and (v0, . . . , vn) and (h0v0, . . . , hnvn)
are simplices of K, then there is an element h ∈ H such that hvi = hivi, for all i.

The condition (A) implies the following equivalent conditions:

(B ) for v ∈ K and g ∈ G, if v and gv belong to the same simplex, then v = gv;
(B′) for any simplex s of K and g ∈ G, g fixes every vertex in s ∩ g(s).

Proposition 6.3 ([3]). If K is a simplicial G-complex, then the induced action on the
barycentric subdivision K ′ satisfies (B). If the action on K satisfies (B), then the action
on K ′ is regular.

Proof. See Bredon [3], Section III, Proposition 1.1. �

Let f : X → |K| be a map from X to the polyhedron of a simplicial complex K. We
say that f is uniformly cobounded if there is a uniform finite bound for the diameter of
the inverse image under f of the star of any vertex of K.

The degree of a covering U is the maximum number of members of U with nonempty
intersection.
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The following result gives different characterizations for spaces with finite asymptotic
dimension. The definition of a “coarsening system” is given in the next section (see
Definition 7.2).

Theorem 6.4 ([16]). Let X be a proper metric space. Then the following are equivalent:

(a) X has asymptotic dimension ≤ l;
(b) X admits a coarsening system consisting of coverings of degree ≤ l + 1;
(c) For any ε > 0 there is an ε-Lipschitz and uniformly cobounded map from X to

an l-dimensional polyhedron equipped with the metric of barycentric coordinates.

If X is a geodesic space, these conditions are also equivalent to

(d) For any ε > 0 there is an ε-Lipschitz and effectively proper map from X to an
l-dimensional polyhedron equipped with the intrinsic metric.

Proof. See Roe [16, Theorem 9.9]. �

7. Coarsening systems and Coarse homology

In this section we will recall the definition of coarse homology [15], [16], [11]. All metric
spaces considered are proper.

Definition 7.1. A covering U of X with the property that any U ∈ U is relatively
compact and any bounded subset of X intersects only finitely many sets in U is called a
uniform covering of X.

It follows that any uniform covering is locally finite. Let U be a uniform covering of
X and let {ϕU |U ∈ U } be a partition of unity subordinate to U (which exists because,
by Stone’s theorem, any metric space is paracompact). Let K(U ) be the nerve of U and
regard its geometrical realization |K(U )| as a subspace of the Hilbert space H = `2(U ).
Define a map Φ: X → |K(U )| by

Φ(x) =
∑
U

ϕU(x)eU ,

where eU is the unit vector of H associated to U ∈ U . The maps {ϕU} are continuous,
so the map Φ is also continuous: if xn → x in X, then ϕU(xn)→ ϕU(x), for any U , thus
Φ(xn)→ Φ(x).

Definition 7.2 (Roe [15, 3.13]). A coarsening system of X (or an anti-Čech system of
X) is a sequence of uniform coverings {Un} of X for which there exists an increasing
sequence of real numbers Rn →∞ such that for all n,

(a) each set U ∈ Un has diameter less than or equal to Rn,
(b) the covering Un+1 has a Lebesgue number greater than or equal to Rn.

Any proper metric space admits a coarsening system {Un} (see Roe [15, Lemma 3.15]).
It follows that the covering Un is a refinement of Un+1, so there exist refinement projec-
tions βn : Un → Un+1, for any n. These maps are called coarsening maps. From now on,
we will include a choice of such maps as part of a coarsening system.

If U is a covering of X, one can define a simplicial complex called the nerve of U
and denoted by K(U ). The vertices are the sets U of the covering and the simplices are
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finite non-empty subsets {U0, . . . , Un} of U with non-empty intersection. If the nerve of
a covering is locally finite, then the covering is locally finite, but the converse is not true.
However, if the covering is uniform, then its nerve is a locally finite simplicial complex.

The coarsening maps βn induce proper simplicial maps K(Un)→ K(Un+1). A different
choice of the coarsening maps induces contiguous maps.

The locally finite homology of a simplicial complex K is defined using chains that
are infinite, locally finite formal linear combinations of oriented simplices of K. For
example, consider the 1-dimensional simplicial complex K whose set of vertices is Z and
the simplices are of the form {n, n + 1} for any n ∈ Z (it follows that |K| = R). The
0-dimensional locally finite homology group is trivial (each vertex is the boundary of an
infinite 1-chain consisting of all the simplices to the left of it), whereas the 1-dimensional
locally finite homology group is non-trivial (the sum of all the 1-simplices is a generator).
In fact, for any field F , it is true that

(7.3) H lf
q (Rn;F ) =

{
F if q = n,

0 otherwise.

Definition 7.4 (Roe [16, §5.5]). Let {Un} be a coarsening system of X and let H lf
∗ be

the locally finite homology theory. Then the coarse homology of X is given by:

HC∗(X) = lim−→H lf
∗
(
K(Un)

)
.

Let A ⊂ X and denote by K(Un|A) the subcomplex of K(Un) consisting of those
simplices (U0, . . . , Uq) such that

U0 ∩ · · · ∩ Uq ∩ A 6= ∅.

One can check that the complex K(Un|A) is isomorphic to the nerve of A ∩ Un =
{A∩U |U ∈ Un and A∩U 6= ∅}. The coverings {A∩Un} form a coarsening system of A
(they have increasing Lebesgue number and sets with uniformly bounded diameter), thus

HC∗(A) = lim−→H lf
∗
(
K(Un|A)

)
.

Definition 7.5. If A ⊂ X and {Un} is a coarsening system of X, then the relative coarse
homology is defined by

HC∗(X,A) = lim−→H lf
∗
(
K(Un), K(Un|A)

)
.

Two different coarsening systems of X will give rise to canonically isomorphic coarse
homology groups, therefore the coarse homology is independent of the coarsening system
(see [11, p. 229]).

Proposition 7.6 ([11]). Two close maps f, f ′ : X → Y induce the same map on HC∗.

Proof. See Higson-Roe [11, Proposition 2.2]. �

Remark 7.7. An easy consequence of this proposition is that each coarse equivalence
induces an isomorphism in the coarse homology.
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8. Regular G-coarsening systems

In this section, we will define the appropriate equivariant version of a coarsening system,
for (X, d) a coarse G-space (see Section 3) and G a finite group. A regular G-coarsening
system is the anti-Čech analogue of the systems of regular G-coverings constructed in
Bredon [3, III.6]. Theorem 8.8 shows the existence of such systems of coverings under
certain assumptions.

Definition 8.1. Let X be a coarse G-space, for G a finite group. We say that a covering
U of X is is G-invariant or that U is a G-covering, provided that

(i) gU = {g U |U ∈ U } = U , for all g ∈ G.
(ii) g1(g2U) = (g1g2)U , for all g1, g2 ∈ G and all U ∈ U .

If G acts by isometries on X, then gU is also a covering of X and the second condition
is automatic. In that case, U is a G-covering if and only if gU = U for all g ∈ G.

If X is a coarse G-space, there is a natural induced G-action on the nerve of a G-
invariant covering,

g(U0, . . . , Un) = (gU0, . . . , gUn),

making K(U ) a simplicial G-complex. We will always be working with uniform coverings
(see Definition 7.1), so that the nerves K(U ) will also be locally-finite.

Definition 8.2. Let U be a uniform G-invariant covering of X. Then U is a regular
G-covering if its nerve K(U ) is a regular G-complex. A regular G-coarsening system for
X is coarsening system {Un}, such that Un is a regular G-covering, for any n ∈ N.

We observe that the existence of a regular G-coarsening system is a coarse invariant.

Lemma 8.3. Suppose that (X, d) and (Y, d) are coarse G-spaces. If f : X → Y is a coarse
G-equivalence and Y admits a regular G-coarsening system, then so does X.

Proof. If {Un} is a regular G-coarsening system for Y , then for each of the coverings Un

we let Vn = {f−1(U) |U ∈ Un}. From the metric properties of f it is clear that each
covering Vn is a uniform G-covering, and that its nerve K(Vn) is a regular G-complex. By
passing to a subsequence of the coverings {Vn}, if necessary, we can obtain an anti-Čech
system, and therefore a regular G-coarsening system for X. �

We will now show that any proper geodesic metric space X with finite asymptotic
dimension admits a regular coarsening system, whose G-invariant coverings have nerves
with uniformly bounded dimension. In the rest of this section, we assume that G acts by
isometries on X.

Lemma 8.4. Let U be a uniform covering of X, and G a finite group of isomtries of X.
Then the collection

Ũ =
⊔
g∈G

gU = {g U | g ∈ G, U ∈ U }

is a G-invariant uniform covering of X.
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Proof. It is clear that the sets in Ũ form a G-invariant covering by construction. Since

G acts by isometries, diam gU = diamU . Thus the sets in Ũ are bounded subsets of a
proper metric space, and therefore relatively compact.

Let A ⊂ X be a bounded set. Suppose that A intersects infinitely many sets from Ũ .
Then, since G is finite, there exists g ∈ G such that A ∩ gUk 6= ∅ for infinitely many sets
Uk ∈ U . Therefore the bounded set g−1(A) intersects infinitely many sets from U , which
contradicts that U is uniform. �

If {Un} is a coarsening system of X, then {Ũn} is a sequence of uniform G-coverings

of X. We will show that the coverings {Ũn} also form a coarsening system for X. If
asdimX ≤ l, we may assume that dimK(Un) ≤ l for any n (see Theorem 6.4).

Lemma 8.5. If {Un} is a coarsening system of X, the sequence {Ũn} is a coarsening

system for X. Moreover, if dimK(Un) ≤ l, then the covering {Ũn} has degree ≤ p(l+1),
where p = |G|.

Proof. We check the properties from the definition of a coarsening system. For any n ∈ N,

g ∈ G and U ∈ Un, we have that diam gU = diamU ≤ Rn, so the sets in Ũn have

uniformly bounded diameter. The covering Un is a refinement of Ũn, so the Lebesgue

number of Ũn is at least Rn−1. Therefore {Ũn} is a coarsening system.
Assume that dimK(Un) ≤ l, and suppose that there are at least p(l + 1) + 1 sets

from Ũn with nonempty intersection. Then, for some g ∈ G, there are at least l + 2 sets
{U1, . . . , Uq} of Un such that

⋂
gUk 6= ∅. Therefore

⋂
Uk 6= ∅, so the nerve K(Un) has

dimension at least l + 1, which is impossible. �

So far, we have constructed a coarsening system consisting of G-invariant coverings
whose nerves have uniformly bounded dimension. To obtain a regular G-coarsening sys-
tem, we need to introduce some new notions (see [3, p. 133]).

Let U be a locally finite G-invariant covering of X and let φ = {ϕU |U ∈ U } be a
partition of unity subordinate to U . Then φ is called a G-partition of unity if ϕgU(gx) =
ϕU(x), for all g, x and U . If f = {fU |U ∈ U } is any partition of unity subordinate to
the G-invariant covering U , we define a G-partition φ by putting

ϕU(x) =
1

|G|
∑
g

fgU(gx).

If each fU is ε-Lipschitz, then ϕU is also ε-Lipschitz:

(8.6)
∣∣ϕU(x)− ϕU(y)

∣∣ ≤ 1

|G|
∑
g

∣∣fgU(gx)− fgU(gy)
∣∣ ≤ εd(x, y).

Recall that the map Φ: X → |K(U )| defined by:

Φ(x) =
∑
U

ϕU(x) eU



COARSE GEOMETRY AND P. A. SMITH THEORY 17

is continuous. If U is a G-invariant open covering of X and {ϕU | U ∈ U } is a G-partition
of unity subordinate to U , then Φ is also equivariant:

Φ(gx) =
∑
U

ϕU(gx) eU =
∑
U

ϕgU(gx) egU

=
∑
U

ϕU(x) egU = g
∑
U

ϕU(x) eU = gΦ(x).

The following observation will be used in the proof of the main result of this section.

Remark 8.7. If f : X → Y is a ε-Lipschitz map between two metric spaces X and Y
and if V = {Vα} is an open covering of Y with Lebesgue number r, then U = f−1V =
{f−1(V ) |V ∈ V } is an open covering of X with Lebesgue number at least r/ε.

Theorem 8.8. For any proper geodesic metric space X with asymptotic dimension ≤ l,
and for any finite group G which acts on X by isometries, there is a regular G-coarsening
system of X consisting of G-invariant coverings of degree at most p(l+1), where p = |G|.

Proof. Let {Ũn} be a G-invariant coarsening system of X, given by Lemma 8.5. For any

ε > 0 there exists n ∈ N such that Φ: X → |K(Ũn)| is ε-Lipschitz and effectively proper

map, where |K(Ũn)| is equipped with the intrinsic metric (from Theorem 6.4). Moreover,
we can assume that Φ is G-equivariant (see equation 8.6).

Let Ln be the second barycentric subdivision of K(Ũn) and regard the polyhedra |Ln| =
|K(Ũn)| as equal. Then Ln is a locally finite regular G-complex. Denote by Φ−1Ln
the covering of X by inverse images of open vertex stars of |Ln|. We will show that a
subsequence of {Φ−1Ln} form a coarsening system with the desired properties.

Since Φ is continuous, Φ−1Ln is an open covering whose sets are uniformly bounded
(because Φ is effectively proper). Its nerve is isomorphic to Ln (since Φ is G-equivariant)
which is a regular G-complex, thus Φ−1Ln is a regular G-covering.

Let A be a bounded subset of X. Then Φ(A) is a bounded subset of the proper metric

space |K(Ũn)|. Then the set

P = {x ∈ |K(Ũn)| such that d
(
x,Φ(A)

)
≤
√

2}

is also bounded. For any vertex v ∈ K(Ũn), its open star st(v) intersects Φ(A) if and only
if v ∈ P . Since cl(P ) is compact, P contains finitely many vertices, so Φ(A) intersects
only finitely many open vertex stars of Ln. Thus, Φ−1Ln is a uniform covering of X.

The covering of |Ln| by open vertex stars has a positive Lebesgue number r (depending
only on the dimension of Ln), then Φ−1Ln has a Lebesgue number at least r/ε. Since
we can choose ε arbitrarily small, we can construct regular, uniform coverings of X with
arbitrarily large Lebesgue number. �

9. The coarse homology of a bounded fixed set

We assume that (X, d) is a proper metric space, equipped with a coarse G-action of a
finite group G. In this section, we show how a regular G-coarsening system for X (see
Definition 8.1) can be used to compute the coarse homology of the bounded fixed set,
whenever the bounded fixed set exists. The answer is given in Corollary 9.6.
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Let {Un} be a regular G-coarsening system for X. By Lemma 8.3, the existence of a
regular G-coarsening system is a coarse invariant. Hence by Theorem 3.5, we will assume
that G acts by isometries on X. Recall that

XG
r = {x ∈ X | d(x, gx) ≤ r, ∀g ∈ G}

and suppose that XG
bd exists (see Definition 4.1).

Consider the nerve K(Un) and recall that K(Un|XG
r ) denotes the subcomplex of K(Un)

consisting of those simplices (U0, . . . , Uq) such that

U0 ∩ · · · ∩ Uq ∩XG
r 6= ∅.

K(Un|XG
r ) is isomorphic to the nerve of XG

r ∩Un = {XG
r ∩U |U ∈ Un}. These coverings

form a coarsening system of XG
r , so we have that

HC∗(X
G
r ) = lim

n→∞
H lf
∗
(
K(Un|XG

r )
)
.

We define the coarse homology of XG
bd to be

HC∗(X
G
bd) = lim

r→∞
HC∗(X

G
r ) = lim

r→∞
lim
n→∞

H lf
∗
(
K(Un|XG

r )
)
.

We would like to compare H lf
∗
(
K(Un|XG

r )
)

to H lf
∗
(
K(Un)G

)
, where K(Un)G denotes

the subcomplex of K(Un) spanned by those vertices U ∈ Un invariant under the action of
G. In order to achieve this, we will use their intersection K(Un)Gr = K(Un|XG

r )∩K(Un)G.
Explicitly:

K(Un)Gr = {(U0, . . . , Uq) ∈ K(Un)G | U0 ∩ · · · ∩ Uq ∩XG
r 6= ∅}.

We will need the following algebraic lemma from Bredon [3].

Lemma 9.1. Let D be a directed set and let {Ai, fij} and {Bi, gij} be direct systems of
abelian groups based on D. Let {θi : Ai → Bi} be a homomorphism of directed systems.
Assume that for each index i there is an index j > i and a homomorphism hij : Bi → Aj
such that the diagram

Ai
θi //

fij
��

Bi

gij
��

hij
}}}

~~}}}

Aj
θj

// Bj

commutes. Then the induced map θ : limAi → limBi is an isomorphism.

Proof. See Bredon [3], Chapter III, Lemma 6.4. �

Proposition 9.2. With the above notations, we have that

lim
n→∞

H lf
∗
(
K(Un)Gr

) ∼= lim
n→∞

H lf
∗
(
K(Un|XG

r )
)
.

Proof. Take (U0, . . . , Uq) ∈ K(Un|XG
r ) and pick x ∈ U0 ∩ · · · ∩ Uq ∩XG

r . Then diam(Ui ∪
Gx) ≤ Rn + r for any i from 0 to q. Choose m > n such that Rm ≥ Rn + r, then
Ui ∪Gx ⊂ Vi, for some Vi ∈ K(Um|XG

r ). Since gVi ∩ Vi 6= ∅ and K(Um|XG
r ) is G-regular,
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it follows that Vi is G-invariant, which means that (V0, . . . , Vq) ∈ K(Um)Gr . In this way
we defined a map K(Un|XG

r )→ K(Um)Gr which makes the following diagram commute:

K(Un)Gr
//

��

K(Un|XG
r )

wwp p p p p p

��
K(Um)Gr

// K(Um|XG
r )

where the horizontal maps are inclusions and the vertical ones are the coarsening maps
associated to a coarsening system. The proof follows from Lemma 9.1. �

Remark 9.3. The proof just given shows that for any r > 0, and any n > 0, there exists
an m > n so that U G

m is a covering of XG
r . To see this, note that XG

r ∩Un is a covering
and each U ∈ Un with U ∩ XG

r 6= ∅ is shown to be contained in U G
m , where m > n is

chosen so that Rm ≥ Rn + r.

Corollary 9.4. HC∗(X
G
bd)
∼= limr→∞ limn→∞H

lf
∗
(
K(Un)Gr

)
.

We have that for any r > 0, K(Un)Gr is a subcomplex of K(Un)G and, for any r′ > r,
K(Un)Gr is a subcomplex of K(Un)Gr′ , so we have a commutative diagram:

lim
n→∞

H lf
∗
(
K(Un)Gr

)
//

��

lim
n→∞

H lf
∗
(
K(Un)G

)

lim
n→∞

H lf
∗
(
K(Un)Gr′

)
55llllllllllllll

From the definition of the direct limit we get a map

ρ : lim
r→∞

lim
n→∞

H lf
∗
(
K(Un)Gr

)
→ lim

n→∞
H lf
∗
(
K(Un)G

)
.

Theorem 9.5. The map ρ is an isomorphism.

Proof. We will show first that ρ is surjective. Let w = (wp, wp+1, . . . ) be an element in
lim
n→∞

H lf
∗
(
K(Un)G

)
, then wp is a cycle in C∗

(
K(Up)

G
)

of the form:

wp =
∑
i

λiσi

where σi = (U0, . . . , Uq) is a simplex in K(Up)
G. Then U0 ∩ · · · ∩ Uq is an invariant set

with diameter less than Rp, so the diameter of the orbit of any point in this set is bounded
by Rp. Thus σi ∈ K(Un)Gr for any r > Rp.

Since r is independent of σi, the same one will work for all σi in wp which means that wp
is a cycle in C lf

∗
(
K(Up)

G
r

)
which defines an element in the group lim

r→∞
lim
n→∞

H lf
∗
(
K(Un)Gr

)
.

By construction, ρ maps this element to w, so ρ is surjective.
To show that ρ is injective, let z = (zl)l>0 ∈ ker(ρ). There exists some r such that zr

is mapped to the zero element in lim
n→∞

H lf
∗
(
K(Un)G

)
. Let zr = (zrp, z

r
p+1, . . . ) and suppose

that zrp is a boundary in C∗
(
K(Up)

G
)
, so zrp = ∂wp where wp is a chain in C∗+1

(
K(Up)

G
)
.
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An argument similar to the one used above shows that wp ∈ C∗+1

(
K(Up)

G
s

)
for some

s ≥ r. Since the map

H lf
∗
(
K(Up)

G
r

)
→ H lf

∗
(
K(Up)

G
s

)
is induced by the inclusion K(Up)

G
r → K(Up)

G
s , it follows that zsp = 0 in H lf

∗
(
K(Up)

G
s

)
,

which implies that z = 0 in lim
r→∞

lim
n→∞

H lf
∗
(
K(Un)Gr

)
. �

Therefore, we obtain a characterization of the coarse homology of the bounded fixed
set.

Corollary 9.6. Let X be a coarse G-space, for G a finite group. Assume that X admits
a regular G-coarsening system {Un}. Then

HC∗(X
G
bd) = lim−→H lf

∗
(
K(Un)G

)
provided that the bounded fixed set exists.

10. The coarse homology of the orbit space

Let (X, d) be a proper metric space and let G a finite group which acts on X by
isometries. Define a map d> : X/G×X/G→ R by

d>(x̄, ȳ) = min
g∈G

d(x, gy),

with p(x) = x̄ and p(y) = ȳ, where p : X → X/G is the canonical projection. This is
independent of the choice of x ∈ p−1(x̄) and y ∈ p−1(ȳ) because each map g is an isometry.

Lemma 10.1. The map d> is a metric and (X/G, d>) is a proper metric space.

Proof. It is obvious that d> is symmetric and takes nonnegative values. Suppose that
d>(x̄, ȳ) = 0. Then x = gy, for some g ∈ G and we have that x̄ = p(x) = p(gy) = ȳ.

Let x̄, ȳ, z̄ ∈ X/G. Then d>(x̄, z̄) ≤ d(x, gz) ≤ d(x, hy) + d(hy, gz), for any g, h ∈ G.
Since G is finite, d>(x̄, ȳ) = d(x, ky) for some k ∈ G. It follows that d>(x̄, z̄) ≤ d>(x̄, ȳ) +
d(ky, gz), for any g ∈ G. If we choose g so that d(ky, gz) = d(y, k−1gz) = d>(ȳ, z̄), we
obtain the triangle inequality:

d>(x̄, z̄) ≤ d>(x̄, ȳ) + d>(ȳ, z̄).

For the second part, notice that p is continuous with respect to the metric topologies
on X and X/G (if d(xn, x)→ 0, then d>

(
p(xn), p(x)

)
→ 0 as well, since d>

(
p(x), p(y)

)
≤

d(x, y), for any x, y ∈ X). We will denote by B(?, r) an open r-ball in either metric space
and by B(?, r) its closure. We want to show that p

(
B(x, r)

)
= B

(
p(x), r

)
for any r > 0.

For later reference, we will show first that p
(
B(x, r)

)
= B

(
p(x), r

)
, which implies that p

is an open map: if U ⊂ X is open, then

U =
⋃
x∈U

B(x, εx),

so p(U) =
⋃
B
(
p(x), εx

)
is open in X/G.

Choose ȳ ∈ p
(
B(x, r)

)
, so there is y ∈ B(x, r) with p(y) = ȳ. Since d(x, y) < r, then

d>(x̄, ȳ) < r, where x̄ = p(x), so ȳ ∈ B(x̄, r).
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Start with ȳ ∈ B(x̄, r), so d>(x̄, ȳ) < r, which means that, for some g ∈ G, d(x, gy) =
d>(x̄, ȳ) < r or gy ∈ B(x, r), thus ȳ = p(gy) ∈ p

(
B(x, r)

)
.

Now let ȳ ∈ p
(
B(x, r)

)
, so there exists y ∈ B(x, r) with p(y) = ȳ. Then, for any

ε > 0, we have that B(y, ε) ∩ B(x, r) 6= ∅. This implies that B(ȳ, ε) ∩ B(x̄, r) 6= ∅, thus
ȳ ∈ B(x̄, r).

If ȳ ∈ B(x̄, r), then for any ε > 0, we have B(ȳ, ε) ∩ B(x̄, r) 6= ∅. For any ε = 1
n
,

there is z̄n ∈ B(ȳ, 1
n
) ∩ B(x̄, r), so there exist gn, hn ∈ G such that d(x, gnzn) < r and

d(gnzn, hny) < 1/n. Since G is finite, there is some h ∈ G such that h = hn for infinitely
many n.

For any δ > 0, there is such an index n with δ ≥ 1
n
, therefore B(hy, δ) ∩ B(x, r) 6= ∅

which implies that hy ∈ B(x, r), thus ȳ = p(hy) ∈ p
(
B(x, r)

)
.

Let A ⊂ X/G be closed and bounded, so A ⊂ B(x̄, r), for some x̄ ∈ X/G and some
finite r > 0. If A = p−1(A) ∩ B(x, r) (for some x ∈ p−1(x̄)), then A is closed (since p is
continuous) and bounded in X. Thus A is compact, so p(A) = A is also compact, which
completes the proof. �

Remark 10.2. In general, B(x, r)  {y ∈ X | d(x, y) ≤ r}, for example, if d is the
discrete metric.

Let U be a regular G-covering of X, and for each U ∈ U let

G(U) =
⋃
{gU | g ∈ G}

denote the union of the orbit of U in X. Let U > denote the covering of X/G by the sets
U> = G(U)/G and indexed by U /G. If G(U) = G(V ) but U 6= gV for any g, then U>

and V > are regarded as different elements of the covering.

Lemma 10.3 ([3]). If U is a regular G-covering of X, then the assignment {gU | g ∈
G} 7→ U> gives an isomorphism of the simplicial complexes

K(U )/G→ K(U >).

Proof. See Bredon [3], Chapter III, Proposition 6.2. �

Suppose that U and V are regular G-coverings of X such that V is a refinement of U .
Then there is a refinement projection π : V → U that is equivariant ; that is, V ⊂ π(V )
and π(gV ) = gπ(V ). When π is equivariant, the simplicial map π̄ : K(V ) → K(U ) is
also equivariant.

As an immediate consequence, given a regular G-coarsening system {Un}, we can as-
sume that all the coarsening maps βn : Un → Un+1 are equivariant.

Proposition 10.4. Let {Un} be a regular G-coarsening system for X. Then {U >
n } is a

coarsening system of X/G.

Proof. Let p : X → X/G be the canonical projection and notice that U> = G(U)/G =
p(U). It follows that any U> ∈ U >

n is open (since p is an open map) and diamU> ≤
diamU (see the definition of the metric d> on X/G at the beginning of this section).

Let Ā ⊂ X/G with diam Ā ≤ k. There exists some point x̄ ∈ X/G such that Ā ⊆
B(x̄, k), the open ball of radius k around x̄. Let x ∈ X such that p(x) = x̄. Then
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p
(
B(x, r)

)
= B(x̄, r), so there exists A ⊆ B(x, r) with p(A) = Ā. It follows that Ā

cannot intersect infinitely many sets from U >
n because that would imply that one of the

translates of A intersects infinitely many sets from Un (since G is finite and Un is regular),
which contradicts that Un is uniform. Thus U >

n is a uniform covering.
One can also see that the Lebesgue number of U >

n is at least half of the Lebesgue

number of Un: if Ā ⊂ X/G with diam Ā ≤ Rn−1/2, then Ā ⊆ B(x̄, Rn−1

2
), for some

x̄ ∈ X/G. As above, there is a set A ⊆ B(x, Rn−1

2
) with p(A) = Ā and p(x) = x̄. Then

diam A ≤ Rn−1, so A ⊂ U for some U ∈ Un, thus Ā ⊂ U>. �

From the last two results we have the formula:

Corollary 10.5. HC∗(X/G) = lim−→H lf
∗
(
K(Un)/G

)
.

Remark 10.6. If the bounded fixed set XG
bd exists, then there exists k0 > 0 such that

its quasi-isometry type is represented by any subspace XG
k , for k ≥ k0. In particular,

the G-action on XG
k is coarsely ineffective (see Section 4), hence the projection map

π : X → X/G induces a coarse equivalence XG
k
∼= π(XG

k ). We will use this observation to
consider XG

bd also as a subspace of X/G.

For completeness, we will describe the transfer map for coarse homology. Let {Un}
be a regular G-coarsening system of X and K(Un) the nerve of Un. Then we have the
transfer map for locally finite homology (compare [3, III.2]):

µ∗ : H
lf
∗
(
K(Un)/G

)
→ H lf

∗
(
K(Un)

)
and, for m ≥ n we have the induced commutative diagram

H lf
(
K(Un)/G

) µ∗ //

��

H lf
(
K(Un)

)
��

H lf
(
K(Um)/G

) µ∗ // H lf
(
K(Um)

)
by naturality of the transfer.

Passing to the direct limit, and applying Corollary 10.5, we obtain the transfer for
coarse homology

µ∗ : HC∗(X/G)→ HC∗(X)

which satisfies

π∗µ∗ = |G| : HC∗(X/G)→ HC∗(X/G)

µ∗π∗ = σ∗ =
∑
g∈G

g∗ : HC∗(X)→ HC∗(X)(10.7)

where π : X → X/G is the canonical projection.
We can define coarse homology for other coefficient groups Λ, just by tensoring the

simplicial chain complexes of the K(Un) with Λ (over Z), and passing to the direct limit
of the locally-finite homology. The formulas above continue to hold, and we have the
usual consequence:
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Proposition 10.8 ([3, III. 2.4]). If Λ is a field of characteristic 0 or prime to |G|, then

π∗ : HC∗(X; Λ)G → HC∗(X/G; Λ)

is an isomorphism, as is

µ∗ : HC∗(X/G; Λ)→ HC∗(X; Λ)G.

In the statement, the coefficients Λ have trivial G-action, and HC∗(X; Λ)G denotes the
fixed set of the induced G-action on the coarse homology (see Bredon [3, III.2] for the
usual transfer and its properties). The formulas (10.7) can be used to prove a coarse
version of a result of Floyd [3, III.5.4].

11. P. A. Smith Theory

The goal of P. A. Smith theory [18] is to relate the mod p homology of a regular
simplicial G-complex K and its fixed set KG, in the case when G is a finite p-group and
p is a prime (see the Borel Seminar [2]). We will follow the procedure from Bredon [3,
Chap. III] to pass from a simplicial complex to a coarse space, and establish the analogue
of the P. A. Smith theory for coarse homology.

We first review the classical P. A. Smith theory. Let p be a prime, and let G = Z/p,
denote the cyclic group of order p. Fix a generator g ∈ G, and define elements

σ = 1 + g + g2 + · · ·+ gp−1 and τ = 1− g
in the group ring ZpG. If % = τ j, for 1 ≤ j ≤ p−1, then we define %̄ = τ p−j. Since gp = 1,
we have στ = τσ = 0 and σ = τ p−1.

The elements σ and τ , as well as % and %̄, are considered as operators on the mod p
homology H∗(K;Zp) of a regular simplicial G-complex. In the rest of the section, all
homology groups will be understood with Zp-coefficients.

Let K denote a regular simplicial G-complex, and L ⊆ K a G-invariant subcomplex.
The simplicial chain complex of the pair (K,L) is denoted C(K,L). The Smith special
homology groups

H%
∗ (K,L;Zp) = H∗(%C(K,L);Zp)

are defined for each % = τ j, 1 ≤ j ≤ p− 1, as the mod p homology of the chain complex
%C(K,L) ⊂ C(K,L). The main results of the classical P. A. Smith theory are based on
the exact sequences of chain complexes:

0→ %̄C(K,L)⊕ C(KG, LG)
i−→ C(K,L)

%−→ %C(K,L)→ 0

0→ σC(K,L)→ τ jC(K,L)
τ j+1

−−→ C(K,L)→ 0
(11.1)

valid for ρ = τ j and 1 ≤ j ≤ p − 1. To generalize Smith theory to our setting, we first
apply locally finite homology to these chain complexes.

Definition 11.2. Let K denote a regular simplicial G-complex, and L ⊂ K a G-invariant
subcomplex. Then the locally finite Smith special homology groups

H lf,%
∗ (K,L) := H lf

∗ (%C(K,L);Zp)
are defined, for ρ = τ j and 1 ≤ j ≤ p− 1.
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The Smith special homology group for σ = τ p−1 is related to the orbit spaces (denoted
K> = K/G and L> = L/G), via the formula

(11.3) H lf,σ
∗ (K,L;Zp) ∼= H lf

∗ (K>, KG ∪ L>)

We have the following exact triangle (locally finite homology with Zp coefficients).

Theorem 11.4. For % = τ j, 1 ≤ j ≤ p− 1, there is an exact triangle

H lf
∗ (K,L)

%∗

wwppppppppppp

H lf,%
∗ (K,L)

δ∗ // H lf,%̄
∗ (K,L)⊕H lf

∗ (KG, LG)

i∗
iiTTTTTTTTTTTTTTT

where the horizontal map δ∗ has degree −1 and the other maps i∗, %∗ have degree 0.

Proof. See Bredon [3, III.3.3]. The map i∗ is induced from the direct sum of the inclusions
of the subcomplexes %̄C(K,L) and C∗(K

G, LG) in C(K,L) in (11.1). �

The first application of this exact triangle is to establish the“Smith inequalities” for
locally finite homology.

Theorem 11.5. Let K be a finite-dimensional regular G-complex, and L ⊆ K a G-
invariant subcomplex. Then, for any n ≥ 0 and for any % = τ j with 1 ≤ j ≤ p− 1,

rankH lf,%
n (K,L) +

∑
i≥n

rankH lf
i (KG, LG) ≤

∑
i≥n

rankH lf
i (K,L).

If the right-hand side is finite, then the left-hand side is also finite, and in particular
rankH lf

i (K>, KG ∪ L>) is finite, for all i ≥ n.

Proof. See Bredon [3, III.4.1] or Floyd [8]. By “rank” we mean the rank (or dimension) of
the indicated homology groups as Zp-vector spaces. The last part follows from (11.3). �

We now pass from locally finite homology to coarse homology when G = Z/p acts by
isometries on a proper metric space. Our results will apply equally to coarse G-spaces:
we again use Theorem 3.5 to justify replacing a coarse G-action by a coarsely equivalent
isometric G-action.

Definition 11.6. Let X be a proper metric space with a coarse action of a finite group
G. We say that X is G-finitistic if the action admits a regular G-coarsening system {Un}
whose nerves K(Un) have uniformly bounded dimension, for all n.

For the remainder of this section, X is a proper metric space and G = Z/p acts by
isometries on X. We will also assume that X is G-finitistic and that the bounded fixed
set XG

bd exists, or the G-action is tame (see Definition 4.1).
For any regular G-coarsening system {Un} associated to the G-action on X, we have

seen that any two equivariant coarsening maps induce contiguous equivariant simplicial
maps and the induced chain maps are equivariantly chain homotopic. Thus we can define
the Smith special homology groups for coarse homology

HC%
∗ (X) = lim−→H lf,%

∗
(
K(Un)

)
,
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for % = τ j and 1 ≤ j ≤ p − 1. The Smith homology groups are natural with respect to
equivariant coarse maps.

Passing to the limit in the Smith triangle (see Theorem 11.4) associated toH lf,%
∗
(
K(Un)

)
,

and by using Corollary 9.6, we obtain the Smith exact triangle for coarse homology:

(11.7)

HC∗(X)
%∗

xxrrrrrrrrrr

HC%
∗ (X)

δ∗ // HC %̄
∗ (X)⊕HC∗(XG

bd)

i∗
iiRRRRRRRRRRRRR

where the horizontal map has degree −1 and the other maps have degree 0. This triangle
is exact because the direct limit functor is exact. Note that the isomorphism from (11.3)

H lf,σ
∗
(
K(Un)

) ∼= H lf
∗
(
K(Un)/G,K(Un)G

)
is natural, and thus

(11.8) HCσ
∗ (X) ∼= HC∗(X/G,X

G
bd),

where XG
bd is considered via the projection map as a subspace of X/G (see Remark 10.6).

We now establish the coarse version of the Smith inequalities.

Theorem 11.9. Let X be a proper metric space and G a cyclic group of prime order p,
with a coarse action on X. Assume that X is G-finitistic and that XG

bd exists. Then, for
any n ≥ 0 and for any % = τ j with 1 ≤ j ≤ p− 1,

rankHC%
m(X) +

∑
i≥m

rankHCi(X
G
bd) ≤

∑
i≥m

rankHCi(X).

If the right-hand side is finite, then the left-hand side is also finite, and in particular
rankHCi(X/G,X

G
bd) is finite, for all i ≥ m.

Proof. Since X is G-finitistic, there is a regular G-coarsening system {Un} for X and an
integer q, such that dimK(Un) ≤ q for all n. Thus HCj(X) = 0 for j > q and, similarly
HC%

j (X) = 0 since the nerves K(Un) do not contain any q + 1 simplices, for any n. Let

ani = rankH lf
i

(
K(Un)G

)
bni = rankH lf

i

(
K(Un)

)
cni = rankH lf,%

i

(
K(Un)

)
c̄i = rankH lf,%̄

i

(
K(Un)

)
.

From Theorem 11.5 it follows that, for any n,

cnm +
∑
i≥m

ani ≤
∑
i≥m

bni .

The above discussion shows that bni = 0 for i > q and for any n. Passing to the limit over
n we obtain

rankHC%
m(X) +

∑
i≥m

rankHCi(X
G
bd) ≤

∑
i≥m

rankHCi(X).

The last part follows from equation (11.8). �
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In the next statement, the notation χ(X), χ(XG
bd), and χ(X/G) means the Euler char-

acteristic with respect to their coarse homology, and rankHC(X) denotes its “total rank”
(the sum of the ranks over Zp of all the coarse homology groups of X).

Theorem 11.10. Let X and G be as before with rankHC∗(X) <∞. Then

χ(X) + (p− 1)χ(XG
bd) = pχ(X/G),

therefore χ(XG
bd) ≡ χ(X) (mod p).

Proof. Compare Bredon [3, III.4.3] or Floyd [8]. The exact sequence of the inclusion
XG
bd ⊆ X/G and Theorem 11.9 shows that rankHC(X/G) < ∞, and hence all three

Euler characteristics are defined. We have the relation

χ(X/G) = χ(X/G,XG
bd) + χ(XG

bd)

by considering the long exact sequence of the pair (X/G,XG
bd) are a chain complex with

zero homology. Let χ(%) := χ(HC%(X)), and note that

χ(X) = χ(σ) + χ(τ) + χ(XG
bd)

from the Smith exact triangle (11.7) for % = σ. Now from the second exact sequence of
Smith chain complexes in (11.1) one obtains the equations χ(τ j) = χ(τ j+1) + χ(σ), for
1 ≤ j ≤ p− 2. By adding all these equations, and using χ(τ p−1) = χ(σ), we get

χ(X) = pχ(σ) + χ(XG
bd).

But χ(σ) = χ(X/G,XG
bd) by (11.8), hence

χ(X) = p(χ(X/G)− χ(XG
bd)) + χ(XG

bd)

which gives the required formula. �

12. The Proof of Theorem A

The most often used result of the classical P. A. Smith theory is the application to
actions on mod p homology spheres. For our coarse version of this result, we observe
that Euclidean space Rm is a coarse m-sphere. We use this terminology because the
coarse homology of Rm is equal to the reduced ordinary homology of an m-sphere, by
(7.3). More generally, a (mod p) coarse m-sphere is a metric space with the same (mod p)
coarse homology as Rm. We have the following application of coarse P. A. Smith theory.

Theorem 12.1. Let X be a proper metric space, which is a (mod p) coarse homology m-
sphere, for some prime p. Let G be a finite p-group with a coarse action on X. Assume
that X is G-finitistic and that the G-action is tame. Then XG

bd is a (mod p) coarse
homology r-sphere, for some 0 ≤ r ≤ m. If p is odd, then m− r is even.

Proof. By Theorem 3.5 we may assume that G acts by isometries on X. Since X is G-
finitistic, there is a regular G-coarsening system {Un} for X and an integer q, such that
dimK(Un) ≤ q for all n. Let G0 / G be a normal subgroup of index p in G, so that
G/G0

∼= Z/p. By induction on the order of G, we may assume that XG0
bd is a (mod p)

coarse homology t-sphere, for some 0 ≤ t ≤ m, and m− t ≡ 0 (mod 2) if p is odd. Since
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the G-action on X is tame, there exists an k0 > 0 such that XG
k is coarsely equivalent to

XG
bd, and XG0

k is coarsely equivalent to XG0
bd , for any k > k0 (see Definition 4.1).

Fix k > k0, and let Y := XG0
k . Since Y ⊂ X is a G-invariant subspace, and the G0-

action on Y is coarsely ineffective, this subspace Y inherits a coarse G/G0-action from
the G-action on X. The inductive step will be completed by applying Theorem 11.9, to
Y , after we check that the hypotheses are satisfied.

(i) The space Y = XG0
k is G/G0-finitistic. In Remark 9.3, we noted that there is a cofinal

subsequence {Umi
} of the regular G-coarsening system such that {U G0

mi
} is a regular G-

coarsening system for the subspace XG0
k . Since G0 acts trivially on the nerves K(U G0

mi
),

we have a regular G/G0-coarsening system for XG0
k .

(ii) The coarse G/G0-action on Y = XG0
k is tame. Since

XG
k = (XG0

k )Gk ⊆ (XG0
k )Gl ⊆ (XG0

l )Gl = XG
l

for any l ≥ k > k0, and the inclusion XG
k ⊂ XG

l is coarsely dense, the inclusion

Y
G/G0

k = (XG0
k )Gk ⊆ (XG0

k )Gl = Y
G/G0

l

is also coarsely dense. Hence the coarse G/G0-action on Y is tame, and Y
G/G0

k = Y
G/G0

bd .

We now apply Theorem 11.9 to the (mod p) coarse homology t-sphere Y = XG0
k ,

with respect to the induced coarse action of G/G0
∼= Z/p. We have rankHC∗(Y ) = 1,

which implies rankHC∗(Y
G/G0

bd ) ≤ 1. But rankHC∗(Y
G/G0

bd ) = 0 is not possible, since

χ(Y
G/G0

bd ) ≡ χ(Y ) (mod p), by Theorem 11.10. Therefore

rankHC∗(Y
G/G0

bd ) = 1,

so that Y
G/G0

bd is a coarse homology r-sphere, for some 0 ≤ r ≤ t. If p is odd, then

χ(Y
G/G0

bd ) ≡ χ(Y ) (mod p) implies that t and r are either both odd or both even, thus
t− r is even. Since

Y
G/G0

bd = (XG0
k )

G/G0

k = (XG0
k )Gk = XG

k = XG
bd

for k > k0, and 0 ≤ r ≤ t ≤ m with m− r ≡ 0 (mod 2) if p odd, we are done. �

The proof of Theorem A. Here X is a proper geodesic metric space, with finite asymptotic
dimension, and G is a finite p-group acting by isometries. We can apply Theorem 8.8 to
conclude that X is G-finitistic. Now Theorem A follows from Theorem 12.1. �

We conclude by giving a coarse version of another well-known application of classical
Smith theory: the group G = Z/p× Z/p, for p a prime, can not act freely on a finitistic
mod p homology m-sphere (see Bredon [3, III.8.1]).

The bounded fixed set of a coarse finite group action is never empty (unlike the actual
fixed set), so we need to define a coarse version of the term “free action”.

Definition 12.2. A tame G-action on a proper metric space X is called semifree at the
large scale if XH

bd = XG
bd for all non-trivial subgroups {e} 6= H ≤ G. A coarsely effective

action is called free at the large scale if there exists a compact subset Y ⊂ X, such that
XH
bd = Y , for all non-trivial subgroups {e} 6= H ≤ G.
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Example 12.3. Let X = R2 with G = Z/p, for p prime, acting by rotations. We call this
a “free” action in the coarse sense because the fixed set, although non-empty, is compact.
The action is free at the large scale and XG

bd = {0}.

Theorem 12.4. The group G = Z/p × Z/p, for p a prime, can not act tamely and
semifreely at the large scale on a (mod p) coarse homology m-sphere X, whenever X is
G-finitistic, and XG

bd is a (mod p) coarse homology r-sphere, for some 0 ≤ r < m.

In particular, under the above assumptions, G = Z/p×Z/p, for p a prime, can not act
freely at the large scale on a (mod p) coarse homology m-sphere, if m > 0.

The proof of Theorem B. We again apply Theorem 8.8 to conclude that X is G-finitistic.
Then Theorem B follows from Theorem 12.4. �

The proof of Theorem 12.4. We write G = G1×G2, where G1 and G2 are cyclic subgroups
of order p. Suppose, if possible, that G acts semifreely on X under the assumptions given
in the statement. Then XG1

bd = XG
bd is a (mod p) coarse homology r-sphere, for some

0 ≤ r < m. It will be convenient to replace X by a coarsely equivalent space Z = X ×E,
where E = Sk × Sk for some k > 2m, k odd. In this space, we have a product action of
G, where G = G1 × G2 acts freely on E = Sk × Sk via free isometric actions of G1, G2

on each sphere factor. The projection map Z = X × E → X is a G-equivariant coarse
equivalence, so ZG

bd = XG
bd.

We first observe that rankHCm+1(Z/G,ZG) > 0. To compute this coarse homology
group we use a regular G-coarsening system {Un} for X, and form the coarsening system
{Vn} for Z, with Vn = {U × E |U ∈ Un} for each n. Then

HC∗(Z/G,Z
G) = lim−→H lf

∗ (K(Vn)/G,K(Vn)G).

To compute the right-hand side, we use the direct limit of the spectral sequences of the
fibrations K(Vn)→ K(Vn)/G→ BG in locally finite homology with Zp-coefficients, with
E2
s,q = Hs(BG;H lf

q (K(Vn), K(Vn)G)). We obtain a spectral sequence with

E2
s,q = Hs(BG;HCq(Z.Z

G
bd))⇒ HC∗(Z/G,Z

G
bd)

converging to HC∗(Z/G,Z
G
bd). Since r < m, the only possible differential

dm−r : Hm−r+s(BG;HCr+1(Z,ZG
bd))→ Hs(BG;HCm(Z,ZG

bd))

can not be injective, since for example, HCr+1(Z,ZG
bd)) = Zp = HCm(Z,ZG

bd), and
rankHm−r(BG;Zp) ≥ 2.

We can consider Z/G as the quotient of Z/G1 by the remaining G2-action. By Theorem
11.9 and formula (11.8) applied to Z with the G1-action, we have HCm+1(Z/G1, Z

G
bd)) = 0.

By the same results applied to the G2-action on Z/G1, we have the inequality

rankHCm+1(Z/G,ZG
bd)) = rankHCσ

m+1(Z/G1, Z
G
bd) ≤ rankHCm+1(Z/G1, Z

G
bd)),

which contradicts the calculation above. �
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