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Abstract

Any locally nilpotent derivation of an affine domain is equivalent

to a restriction of a Jacobian type derivation of a polynomial ring.

Introduction.

Let us recall that a locally nilpotent derivation is a generalization of a

partial derivative of a polynomial ring. It is a derivation of a ring which

when applied sufficiently many times to a given element of a ring sends it to

the zero.
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Locally nilpotent derivations (let us call them lnd) are useful though

rather elusive objects. Though on “majority” of rings we do not have them

at all, when we have them it is rather hard to find them and even harder to

find all of them or to give some qualitative statements. Even for polynomial

rings we do not know much. Of course it is rather easy to understand the

situation for a polynomial ring with one variable. For two variable case it

is not easy and requires a considerable effort (see [Re] or [ML2]). For three

variables the kernel of a non-zero lnd is a polynomial ring in two variables

([Mi]) and there is a description of all weighted homogeneous derivations, i. e.

derivations which send forms which are homogeneous relative to a given set of

variables supplied with given positive weights to homogeneous forms ([Fr1],

[Da2], [DR]). There are examples of lnd on polynomial rings with more than

four variables with non-finitely generated kernels ([Ro], [Fr2], [DF1]) and

though it is not known whether such derivations exist in the case of four

generators, it is know that here there is no uniform bound on the number of

generators of the kernel of an lnd ([DF2]). There are also several classes of

surfaces for which we know everything as far as lnds are concerned ([ML2],

[ML3], [ML4], [Da3], [Wi]) and a class of threefolds for which we know a lot

([ML1], [KML]), and that is all.

The purpose of this paper is to give a standard form for an lnd on the

affine domains. This form is somewhat analogous to a matrix representation

of a linear operator. Hopefully this representation of lnds will be helpful in

the future research.

Definitions and claim.
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Let C be the field of complex numbers and let A be a domain over C. A

C-linear mapping ∂ : A → A is called a derivation if it distributes a product

of elements of A according to the Leibnitz law: ∂(ab) = ∂(a)b + a∂(b).

Constants A∂ = {a ∈ A|∂(a) = 0} of ∂ form a subalgebra of A.

A derivation is locally nilpotent if for any a ∈ A there exists a natural

n = n(a) for which ∂n(a) = 0. Let us denote by LND(A) the set of all lnd of

A.

Let Cn = C[x1, . . . , xn] be the polynomial ring with n generators. A

class of derivations on Cn can be obtained as follows. Take f1, . . . , fn−1 ∈

Cn. Define ∂(g) = J(f1, . . . , fn−1, g) where J stands for the Jacobian of its

arguments, that is for the determinant of the corresponding Jacobi matrix.

Sometimes these derivations are called Jacobian derivations. A Jacobian

derivation is also a derivation in every parameter fi, which helps to make

computations.

Now we are ready to formulate the main result.

Theorem. Let I be a prime ideal of Cn, R be the factor ring Cn/I, and

π : Cn → R be the corresponding projection. Let ∂ ∈ LND(R). Then there

exist elements f1, . . . , fn−1 ∈ Cn and non-zero elements a, b ∈ R∂ for which

a∂(π(f)) = bπ(J(f1, . . . , fn−1, f)) for any f ∈ Cn.

The proof consists of eight lemmas. To make it less boring for the reader,

here is an outline of what is going to happen.

Let us assume that the transcendence degree of R is n − k.
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In the first five Lemmas we will see that it is possible to find k elements

i1, . . . , ik ∈ I so that J(i1, . . . , ik, fk+1, . . . , fn) ∈ I if and only if the elements

fk+1, . . . , fn are algebraically dependent over I (this is probably obvious to

a geometer). Only in the last three Lemmas the derivation ∂ appears.

Exposition is made as elementary as possible to make this technique as

popular as possible, possibly a misguided approach!

First five Lemmas.

Let I be an ideal of Cn. Choose a non-zero element p ∈ I of the minimal

possible total degree. We are not concerned, of course, with the case p ∈ C.

Up to renumbering of generators x1, . . . , xn we may assume that p contains

x1. If we consider p as a polynomial in x1 with coefficients in C[x2, . . . , xn]

then the coefficients of p with positive degrees of x1 do not belong to I since

their degrees are too small. By looking at all elements of I as polynomials

of x1 we can find an element p1 ∈ I satisfying the following two conditions:

The coefficient q1 of the highest degree of x1 of p1 is not in I.

The degree d of p1 relative to x1 is the smallest degree possible provided

the first condition is satisfied.

The degree d is positive because otherwise p1 ∈ I is the coefficient of x0
1

and the first condition is not satisfied.

Let I1 = I ∩ C[x2, . . . , xn]. Find now p2 ∈ I1 with the same property

relative to x2 (again up to a possible renumbering) and so on until we reach

k for which Ik = 0. In the process we will obtain polynomials p1, p2, . . . , pk.
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Lemma 1. Any elements fk, . . . , fn ∈ Cn are algebraically dependent

over I.

Proof. We may assume that fk, . . . , fn are algebraically independent

since otherwise the statement is clear. Let us consider the linear subspace

VN of Cn of all polynomials of fk, . . . , fn with total degree relative to fk, . . . , fn

not exceeding N . The linear dimension of VN over C is at least (N
n
)n−k+1.

Denote by deg the total degree of elements of Cn relative to x1, . . . , xn

and by degj the degree relative to xj. If D = max(deg(fk), . . . , deg(fn)) then

deg(f) ≤ DN for any f ∈ VN . Also let ei = deg(pi).

Take p = axm
1 + . . . with deg(p) ≤ DN . Recall p1 = q1x

d
1 + . . .. (Here . . .

are the terms of the smaller degree in x1.)

Let r1,1 = q1p − axm−d
1 p1 if m ≥ d. Then deg1(r1,1) < deg1(p). If m < d

take r1,1 = q1p. Since deg(axm−d
1 ) ≤ deg(p) and deg(q1) < deg(p1) in both

cases deg(r1,1) ≤ DN + e1. Since DN ≥ deg1(p) after DN steps like this we

obtain r1 with deg1(r1) < deg1(p1) and deg(r1) ≤ DN(1 + e1).

Now apply the same procedure to r1 and p2. After DN(1 + e1) steps we

obtain r2 with deg2(r2) < deg2(p2) and deg(r2) ≤ DN(1 + e1)(1 + e2). Also

deg1(r2) ≤ deg1(r1) since deg1(q2) = deg1(p2) = 0 .

Considering further on the pairs r2, p3, etc., we will get rk with deg(rk) ≤

DN(1 + e1) . . . (1 + ek) and degi(rk) < degi(pi).

Take m = q1q
(1+e1)
2 . . . q

(1+e1)...(1+ek−1)
k . We observed that mDNp =

∑
αipi+

rk where degj(rk) < degj(pj) for j = 1, . . . , k and deg(rk) ≤ DN(1 +

e1) . . . (1 + ek) if deg(p) ≤ DN . Denote rk by rk(p). It is clear that when N

is fixed the restriction of p → rk(p) on VN is a linear mapping of VN into Cn.
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Since the degrees of rk(p) relative to x1, . . . , xk are bounded and deg(rk(p)) ≤

DN(1 + e1) . . . (1 + ek), all remainders belong to a subspace RN of Cn with

dimension not exceeding cNn−k where c is a constant which does not depend

on N . So dim(VN) > dim(RN) for a sufficiently large N and a linear map-

ping from VN to RN should have a kernel. It implies that there is a non-zero

f ∈ VN with rk(f) = 0. So mDNf =
∑

αipi ∈ I and since I is prime and all

qi /∈ I we conclude that f ∈ I.

Remark. If f ∈ I then rk(f) = 0 for any N . Indeed, in this case

r = rk(f) ∈ I. Since deg1(r) < deg1(p1), from the definition of p1 all coeffi-

cients of r as a monomial in x1 must be in I1. Looking at these coefficients

as monomials in x2 and using deg2(r) < deg2(p2) and definition of p2 we see

that they in turn have all coefficients in I2, etc.. Since Ik = 0 we see that

r = 0.

Lemma 2. J(p1, p2, . . . , pk, xk+1, . . . , xn) /∈ I.

Proof. Indeed, J(p1, p2, . . . , pk, xk+1, . . . , xn) = ∂p1

∂x1

∂p2

∂x2
. . . ∂pk

∂xk
since only

p1 depends on x1, only p2 depends on x2, etc.. But ∂pi

∂xi
/∈ I for all i by

definition of pi, so ∂p1

∂x1

∂p2

∂x2
. . . ∂pk

∂xk
/∈ I.

Lemma 3. J(f1, . . . , fk+1, . . . , fn) ∈ I if f1, . . . , fk+1 ∈ I.

Proof. By Lemma 1 and Remark to Lemma 1 we can find a monomial M

such that Mfi =
∑

αi,jpj for i ≤ k+1. Therefore J(Mf1, . . . ,Mfk+1, fk+2, . . . , fn) =
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Mk+1J(f1, . . . , fk+1, . . . , fn) + ∆ =
∑

J(α1,j1pj1, . . . , αk+1,jk+1
pjk+1

, . . . , fn).

Each summand J(α1,j1pj1, . . . , αk+1,jk+1
pjk+1

, . . . , fn) ∈ I since there is only

k different pi’s. Also ∆ ∈ I because it is a linear combination of Jacobians

with coefficients containing fi’s where i ≤ k + 1.

So Mk+1J(f1, . . . , fk+1, . . . , fn) =
∑

J(α1,j1pj1 , . . . , αk+1,jk+1
pjk+1

, . . . , fn)−

∆ ∈ I. Since I is prime we see that J(f1, . . . , fk+1, . . . , fn) ∈ I.

Lemma 4. J(f1, f2, . . . , fk, fk+1, . . . , fn) ∈ I if f1, f2, . . . , fk ∈ I and

fk+1, . . . , fn are dependent over I.

Proof. Let P be a non-zero polynomial of fk+1, . . . , fn with value in I

of minimal total degree possible. We may assume (up to renumbering) that

P depends on fn. So J(f1, f2, . . . , fk, fk+1, . . . , fn−1, P ) ∈ I by Lemma 3. On

the other hand J(f1, f2, . . . , fk, fk+1, . . . , fn−1, P ) = ∂P
∂fn

J(f1, f2, . . . , fk, fk+1, . . . , fn).

Since ∂P
∂fn

/∈ I it implies that J(f1, f2, . . . , fk, fk+1, . . . , fn) ∈ I.

Lemma 5. J(p1, p2, . . . , pk, fk+1, . . . , fn) /∈ I if fk+1, . . . , fn are indepen-

dent over I.

Proof. Assume that J(p1, p2, . . . , pk, xk+1, . . . , xk+i, fk+i+1, . . . , fn) /∈ I

and that i is minimal possible. From Lemma 2 we know that i ≤ n − k.

Elements xk+1, . . . , xk+i, fk+i+1, . . . , fn are algebraically independent over I

by Lemma 4. Let us consider now xk+1, . . . , xk+i, fk+i, fk+i+1, . . . , fn. By

Lemma 1 they are algebraically dependent over I. So let us take a non-

zero polynomial P of xk+1, . . . , xk+i, fk+i, fk+i+1, . . . , fn with value in I of
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minimal total degree possible. Its degree relative to fk+i is positive as we

noticed above. Since by assumption of the Lemma fk+i, fk+i+1, . . . , fn are

algebraically independent over I, polynomial P (up to renumbering) depends

on xk+i.

From Lemma 3 follows that I 3 J(p1, p2, . . . , pk, xk+1, . . . , xk+i−1, P, fk+1+i,

. . . , fn) = ∂P
∂xk+i

J(p1, p2, . . . , pk, xk+1, . . . , xk+i, fk+i+1, . . . , fn) + ∂P
∂fk+i

J(p1, p2,

. . . , pk, xk+1, . . . , xk+i−1, fk+i, . . . , fn).

Since ∂P
∂xk+i

/∈ I, ∂P
∂fk+i

/∈ I, and J(p1, p2, . . . , pk, xk+1, . . . , xk+i, fk+i+1, . . . , fn) /∈

I, we see that J(p1, p2, . . . , pk, xk+1, . . . , xk+i−1, fk+i, . . . , fn) /∈ I.

To avoid a contradiction we must assume that J(p1, p2, . . . , pk, xk+1, . . . , xk+i,

fk+i+1, . . . , fn) does not contain xj’s at all which proves the Lemma.

Additional definitions and facts about lnd.

Let A be a domain of characteristic zero, F = Frac(A), and ∂ ∈ LND(A).

Derivation ∂ can be extended on F by ∂(ab−1) = ∂(a)b−1 − a∂(b)b−2.

Denote this extension also by ∂.

Field F contains an element s for which ∂(s) = 1, s is transcendental

over F ∂, A ⊂ F ∂[s], and F = F ∂(s). So every element of A can be looked

at as a polynomial in s and we can define deg∂(a) for a ∈ A as the degree of

this polynomial. As usual, deg∂(0) = −∞.

Element s = t
∂(t)

for some t ∈ A with ∂(t) ∈ A∂. Also F ∂ = Frac(A∂)

and since the transcendence degree of F over F ∂ is one we have trdeg(A∂) =

trdeg(A) − 1 if trdeg(A) < ∞.

All these facts can be found in [Es].
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Two lnds of A are equivalent if they determine the same degree function

on A.

Remaining Lemmas.

Recall that R = Cn/I, π is the projection of Cn on R, and ∂ ∈ LND(R).

So all of the above is applicable to our setting.

We will be looking at elements of R also as polynomials from F ∂[s] where

F is the field of fractions of R, s ∈ F , and ∂(s) = 1 and denote by deg the

corresponding degree.

Let i1, . . . , ik ∈ I and fk+1, . . . , fn−1 ∈ Cn. From Lemma 3 it follows that

ε(π(f)) = π(J(i1, . . . , ik, fk+1, . . . , fn−1, f) is a well-defined derivation on R

since replacement of f by f + i in the right side does not change the left side

if i ∈ I.

Let us chose now some algebraically independent rk+1, . . . , rn−1 ∈ R∂. It

is possible since trdeg(R∂) = n − k − 1. Let pk+1, . . . , pn−1 ∈ Cn be any ele-

ments for which π(pi) = ri. Denote the derivation π(J(i1, . . . , ik, pk+1, . . . , pn−1, f))

of R by ε(i, r)(g) where g = π(f). Again from Lemma 3 it is clear that

ε(i, r)(g) does not depend on a particular choice of pk+1, . . . , pn−1. As always

we will think about these derivations as derivations of F .

From Lemma 5 we know that for some choices of i these derivations are

non-zero.

Lemma 6. Non-zero derivations ε(i, r) and ε(i, s) are linearly dependent

over F ∂.
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Proof. The claim is obvious if r and s are the same. Let us assume

that ε(i, r) and ε(i, s) do not satisfy the claim and that the number of com-

mon elements of r and s is maximal possible under this condition. Up

to renumbering we may assume that sn−1 /∈ {rk+1, . . . , rn−1}. Elements

rk+1, . . . , rn−1, sn−1 are algebraically dependent. Let us take a non-zero poly-

nomial P of rk+1, . . . , rn−1, sn−1 with value zero of minimal total degree pos-

sible. Its degree relative to sn−1 is positive. P also must depend on at least

one rj /∈ {sk+1, . . . , sn−1} since the elements {sk+1, . . . , sn−1} are algebraically

independent. Again up to renumbering we may assume that it is rn−1.

Let pk+1, . . . , pn−1 ∈ Cn be co-images of rk+1, . . . , rn−1 and let q be a co-

image of sn−1. So P (pk+1, . . . , pn−1, q) ∈ I and I 3 J(i1, . . . , ik, pk+1, . . . , pn−2, P, f) =

∂P
∂pn−1

J(i1, . . . , ik, pk+1, . . . , pn−1, f)+∂P
∂q

J(i1, . . . , ik, pk+1, . . . , pn−2, q, f) for any

f ∈ Cn by Lemma 3. Therefore π( ∂P
∂pn−1

J(i1, . . . , ik, pk+1, . . . , pn−1, f) +

∂P
∂q

J(i1, . . . , ik, pk+1, . . . , pn−2, q, f)) = 0. Both π( ∂P
∂pn−1

) and π(∂P
∂q

) are polyno-

mials of ∂-constants rk+1, . . . , rn−1, sn−1, and so π( ∂P
∂pn−1

), π(∂P
∂q

) ∈ R∂ \ 0 by

the definition of P . So the corresponding derivations are linearly dependent

over F ∂, are both non-zero, and are linearly independent with ε(i, s).

Since {sk+1, . . . , sn−1} has more common elements with {π(pk+1), . . . , π(pn−2), π(q)}

= {rk+1, . . . , rn−2, sn−1} than with {rk+1, . . . , rn−1} we reached a contradic-

tion which proves the Lemma.

Remark. Since r is a transcendence basis of R∂, the kernel of ε(i, r) is

F ∂ by Lemma 4.

This Lemma shows that the derivations ε(i, r) essentially do not depend
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on r. So let us fix a basis r and omit it from the notation for ε: ε(i, r) = ε(i).

From Lemma 5 we know that ε(i) is a non-zero derivation for some choices

of i. Recall s ∈ F satisfying ∂(s) = 1. If ε(i) 6= 0 then ε(i)(s) 6= 0 since

otherwise the kernel of ε(i) is too large. So there are choices of i1, . . . , ik ∈ I

for which q = ε(i)(s) 6= 0 and deg(q) is minimal possible. Let us fix such a q.

Lemma 7. For any j1, . . . , jk ∈ I the element ε(j)(s) is divisible by q as

an element of F ∂[s].

Proof. If the claim is wrong choose a pair i, j so that q = ε(i)(s),

p = ε(j)(s) is not divisible by q, and the number d of common elements of i

and j is maximal possible.

For any h1, . . . , hk ∈ I denote ε(h)(s) by ∆(h1, . . . , hk). Since ∆(h1, . . . , hk) =

π(J(h1, . . . , hk, pk+1, . . . , pn−1, s) it is skew-symmetric. Also J(fh1, h2, . . . , hk, pk+1,

. . . , pn−1, s) = h1J(f, . . . , hk, pk+1, . . . , pn−1, s)+fJ(h1, . . . , hk, pk+1, . . . , pn−1, s)

for any f ∈ Cn. So π(J(fh1, . . . , hk, pk+1, . . . , pn−1, s)) = π(f)π(J(h1, . . . , hk, pk+1,

. . . , pn−1, s)) since π(h1) = 0. This can be written with a slight abuse of no-

tations as ∆(gh1, h2, . . . , hk) = g∆(h1, . . . , hk) where g = π(f) because any

co-image of g in the left side gives the same right side. Since ∆ is skew-

symmetric ∆(h1, h2, . . . , ghj, . . . , hk) = g∆(h1, . . . , hk) for any j.

It is easy to see now that δ(i) = ∆(i1, . . . , ik−1, i) is divisible by q for

any i ∈ I. Consider q and δ(i) as elements of F ∂[s] and choose u, v ∈ F ∂[s]

so that w = uq + vδ(i) is the greatest common divisor of q and δ(i). If

q does not divide δ(i) then deg(w) < deg(q). Since F ∂ = Frac(R∂) and

11



s = t
∂(t)

where t ∈ R and ∂(t) ∈ R∂ we may assume that u, v ∈ R. But

∆(i1, . . . , ik−1, uik+vi) = w which leads to a contradiction with the definition

of q.

Without loss of generality we may assume that jk /∈ {i1, . . . , ik} and

that ik /∈ {j1, . . . , jk}. As we already know ∆(i1, . . . , ik−1, jk) = rq for some

r ∈ F ∂[s]. If r /∈ R find f ∈ R∂ so that fr ∈ R. For j = fjk − frik we have

∆(i1, . . . , ik−1, j) = 0. Now, ∆(j1, . . . , jk−1, j + ik) = f∆(j1, . . . , jk) + (1 −

fr)∆(j1, . . . , jk−1, ik). The element ∆(j1, . . . , jk−1, ik) is divisible by q since

the number of common elements of {i1, . . . , ik} and {j1, . . . , jk−1, ik} is d+1.

On the other hand ∆(i1, . . . , ik−1, j + ik) = q since ∆(i1, . . . , ik−1, j) = 0.

The sets {j1, . . . , jk−1, j + ik} and {i1, . . . , ik−1, j + ik} also have d + 1 com-

mon elements, so q divides ∆(j1, . . . , jk−1, j+ ik). Therefore f∆(j1, . . . , jk) =

∆(j1, . . . , jk−1, j+ik)−(1−r)∆(j1, . . . , jk−1, ik) is divisible by q. Since f ∈ R∂

we can conclude that ∆(j1, . . . , jk) is divisible by q in F ∂[s].

Lemma 8. q ∈ F ∂ \ 0.

Proof. Let us show that 1 = π(J(x1, . . . , xn)) is divisible by q in F ∂[s].

Write π(xa) =
∑

fa,bs
b where fa,b ∈ F ∂.

As we know it is possible to find a v ∈ R∂ \ 0 so that vπ(xa) =
∑

ga,bt
b

where ga,b ∈ R∂ and t ∈ R. We can lift these expressions into Cn: V xa =
∑

Ga,bT
b + ia where V , Ga,b, and T are corresponding co-images and ia ∈ I.

Let A = Cn[V −1] i. e. A is a subring of the field of fractions of Cn with

denominators which are powers of V . Projection π can be defined on A and

it will take it to R[v−1], which is a subring of F ∂[s].
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So J(x1, . . . , xn) =
∑

J(y1, . . . , yn) where ya is either
Ga,b

V
T b or ia

V
. Since

J(. . . , HT b, . . .) = T bJ(. . . , H, . . .)+ bT b−1HJ(. . . , T, . . .) and J(. . . , G
V

, . . .) =

V −1J(. . . , G, . . .) − GV −2J(. . . , V, . . .) we can write J(x1, . . . , xn) =
∑

umJ(z1, . . . , zn) where um ∈ C[T, G1,0, . . . , Gn,N , i1, . . . , in, V −1] and zj is

either Ga,b, or T , or ia.

Since π(um) ∈ F ∂[s] it suffices to show that q divides π(J(z1, . . . , zn)). If

T appears in this Jacobian in two positions then it is zero, so we may assume

that there is at most one T in it. Also by Lemma 3 at most k positions

have elements from I. If exactly k positions have elements from I then q

divides π(J(z1, . . . , zn)) by Lemmas 6 and 7. So we may assume that at least

n − k positions have elements Ga,b. Since π(Ga,b) ∈ F ∂ these elements are

algebraically dependent over I.

Assume that π(J(z1, . . . , zn)) is not divisible by q and rewrite it so that

the elements from I are in the beginning and T is in the last position if at all.

So J(z1, . . . , zn) = J(i1, . . . , im, hm+1, . . . , hn−1, U) where ij ∈ I, π(hj) ∈ F ∂,

π(U) ∈ F ∂ ⋃
t and m < k. Assume also that the number of elements from I

is maximal possible under this condition.

Let P be a non-zero polynomial of hm+1, . . . , hn−1 with value in I and of

minimal total degree possible. We may assume (up to renumbering) that P

depends on hm+1. Therefore J(i1, . . . , im, P, hm+2, . . . , hn−1, U) =

∂P
∂hm+1

J(i1, . . . , im, hm+1, . . . , hn−1, U) is divisible by q. Since π( ∂P
∂hm+1

) ∈ R∂\0

it implies that J(i1, . . . , im, hm+1, . . . , hn−1, U) is divisible by q. So q is a unit

in F ∂[s], i. e. q ∈ F ∂.

Find now any i1, . . . , ik ∈ I for which ε(i)(s) = q and take ε = ε(i). It

13



is clear that ε = ε(s)∂. Since q = a
b

where a, b ∈ R∂ \0 the Theorem is proved.

Remarks. Some forms of this Theorem appeared before. In [ML2] it

was proved for any lnd of Cn, and in [Da1] a more precise result was found

for n = 3. Also in [KML] a somewhat confusing form of it was proved for

hypersurfaces. It should be mentioned that for hypersurfaces and complete

intersections the choice of elements from the corresponding ideal is essentially

unique.

Example. The following example shows that in general we can give with

a Jacobian only an equivalent lnd. Let ∂ be an lnd on C4 given by ∂(z) = y,

∂(y) = x, ∂(x) = a, and ∂(a) = 0. Since ∂ is a homogeneous operator any

invariant of ∂ is the sum of homogeneous invariants. It is clear that there is

just one invariant of degree 1. So J(f1, f2, f3, x) 6= a if fi ∈ ker(∂). Indeed

fi may be assumed homogeneous and then only one of them can have degree

1. Therefore deg(J(x, f1, f2, f3)) > 1.
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