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THE FREIHEITSSATZ FOR NOVIKOV ALGEBRAS*

LEONID MAKAR-LIMANOV1, UALBAI UMIRBAEV2

Abstract. We prove the Freiheitssatz for Novikov algebras in characteristic zero. It is also

proved that the variety of Novikov algebras is generated by a Novikov algebra on the space

of polynomials k[x] in a single variable x over a field k with respect to the multiplication

f ◦ g = ∂(f)g. It follows that the base rank of the variety of Novikov algebras equals 1.
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1. Introduction

In 1930 W. Magnus proved one of the most important theorems of the combinatorial group
theory (see [8]): Let G = 〈x1, x2, . . . , xn|r = 1〉 be a group defined by a single cyclically reduced

relator r. If xn appears in r, then the subgroup of G generated by x1, . . . , xn−1 is a free

group, freely generated by x1, . . . , xn−1. He called it the Freiheitssatz (“freedom/independence
theorem” in German). In the same paper W. Magnus proved the decidability of the word
problem for groups with a single defining relation. The Freiheitssatz for solvable and nilpotent
groups was researched by many authors (see, for example [13]).

In 1962 A. I. Shirshov [14] established the Freiheitssatz for Lie algebras and proved the decid-
ability of the word problem for Lie algebras with a single defining relation. These results recently
were generalized in [7] for right-symmetric algebras. In 1985 L. Makar-Limanov [9] proved the
Freiheitssatz for associative algebras of characteristic zero and in [10] it was also proved for Pois-
son algebras of characteristic zero. Note that the question of decidability of the word problem
for associative algebras and Poisson algebras with a single defining relation and the Freiheitssatz
for associative algebras in a positive characteristic remain open. The Freiheitssatz for Poisson
algebras in a positive characteristic is not true [10].

In this paper we prove the Freiheitssatz for Novikov algebras over fields of characteristic zero.
There are two principal methods of proving the Freiheitssatz: one, employing the combinatorics
of free algebras, applied in [7, 8, 13, 14], and the other, related to the study of algebraic and
differential equations, applied in [9, 10]. The latter is used here.

Recall that an algebra A over a field k is called right-symmetric if it satisfies the identity

(xy)z − x(yz) = (xz)y − x(zy). (1)
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In other words, the associator (x, y, z) = (xy)z − x(yz) is symmetric in y and z. The variety
of right-symmetric algebras is Lie-admissible, i.e., each right-symmetric algebra A with the
operation [x, y] = xy − yx is a Lie algebra. A right-symmetric algebra A is called Novikov ([2],
[12], [6]), if it satisfies also the identity

x(yz) = y(xz). (2)

Let k[x] be the polynomial algebra in a single variable x over a field k of characteristic 0.
There are two interesting multiplications on k[x] (see, for example [3, 4, 5]):

f ∗ g = f

∫ x

0
gdx

and

f ◦ g = ∂(f)g, ∂ =
d

dx
.

The algebra 〈k[x], ∗〉 is a free dual Leibniz algebra freely generated by 1 and it was proved in [11]
that the variety of dual Leibniz algebras is generated by 〈k[x], ∗〉. The algebra A = 〈k[x], ◦〉 is a
Novikov algebra [3] and it is the main object of this paper. We prove that the variety of Novikov
algebras is generated by A. It follows that the base rank of the variety of Novikov algebras is
equal to 1.

The paper is organized as follows. In Section 2 we prove that all identities of A are corollaries
of (1)–(2). In Section 3, using the homomorphisms of free Novikov algebras into A and some
results on differential equations from [10], we prove the Freiheitssatz.

2. Identities

Let k be a field of characteristic 0. Denote by N the variety of Novikov algebras over k

and denote by N〈X〉 the free Novikov algebra freely generated by X = {x1, x2, . . . , xn}. Put
x1 < x2 < . . . < xn. In [3, 5] several constructions of a linear basis of N〈X〉 are given. We use
a linear basis of N〈X〉 given in [5] in terms of Young diagrams.

Recall that a Young diagram is a set of boxes (we denote them by bullets) with non-increasing
numbers of boxes in each row. Rows and columns are numbered from the top to the bottom
and from the left to the right. Let k be the number of rows and ri be the number of boxes in
the ith row. The total number of boxes, r1 + · · ·+ rk, is called the degree of the Young diagram.

To get a Novikov diagram, we need to add one box (call it ”a nose”) to a Young diagram.
Namely, we need to add one more box to the first row, i.e.,

• · · · • • •
• · · · • •
... · · · ...

...
• · · · •

7→

• · · · • • • ∗
• · · · • •
... · · · ...

...
• · · · •

The number of boxes in a Novikov diagram is also called its degree. So, the difference between
the degrees of a Novikov diagram and the corresponding Young diagram is 1.

To construct Novikov tableaux on X we need to fill Novikov diagrams by elements of X.
Denote by ai,j the element of X in the box (i, j), that is the cross of the i-th row and the j-th
column. The filling rules are

(F1) ai,1 ≥ ai+1,1, if ri = ri+1, i = 1, 2, . . . , k − 1;
(F2) the sequence of elements ak,2, . . . , ak,rk

, ak−1,2, . . . , ak−1,rk−1
, . . . , a1,2, . . . , a1,r1 , a1,r1+1 is

non-decreasing.
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In particular, all boxes beginning from the second place in each row are labeled by non-decreasing
elements of X.

To any Novikov tableau

T =

a1,1 · · · · · · a1,r1−1 a1,r1 a1,r1+1

a2,1 · · · a2,r2−1 a2,r2

... · · · ...
...

ak,1 · · · ak,rk

(3)

associate a non-associative word

WT = Wk(Wk−1(. . . (W2W1) . . .)), (4)

in the alphabet X where

W1 = (. . . ((a1,1a1,2)a1,3) . . . a1,r1)a1,r1+1,

Wi = (. . . ((ai,1ai,2)ai,3) . . . ai,ri−1)ai,ri , 1 < i ≤ k.

The set of all non-associative words associated with Novikov tableaux composes a linear basis
of the free Novikov algebra N〈X〉 [5].

Recall that A = 〈k[x], ◦〉 is the Novikov algebra on the space of the polynomial algebra k[x]
with respect to multiplication ◦. For any s = (s1, . . . , sn) ∈ Zn

+, where Z+ is the set of all
nonnegative integers, we define a homomorphism

s : N〈X〉 −→ A = 〈k[x], ◦〉
given by s(xi) = xsi for all 1 ≤ i ≤ n.

Consider the polynomial algebra k[λ1, . . . , λn] in the variables λ1, . . . , λn. Put λ = (λ1, . . . , λn)
and k[λ] = k[λ1, . . . , λn]. Put also xk[λ] = {xf(λ)|f(λ) ∈ k[λ]}. Define a multiplication on xk[λ]

by
xf(λ)xg(λ) = xf(λ)+g(λ).

Obviously, xk[λ] is a multiplicative copy of the additive group of k[λ]. Denote by G the group
algebra of xk[λ] over k[λ]. It is easy to check that there exists a unique k[λ]-linear derivation

D : G −→ G

such that D(xf(λ)) = f(λ)xf(λ)−1 for all f(λ) ∈ k[λ]. With respect to

a ◦ b = D(a)b, a, b ∈ G,

G is a Novikov algebra again. Denote by A(λ) the Novikov k-subalgebra of G generated by
xλ1 , . . . , xλn . The algebra A(λ) looks like an algebra of general matrices (see, for example [1]).

Let
λ : N〈X〉 −→ A(λ)

be an epimorphism of Novikov algebras defined by λ(xi) = xλi for all 1 ≤ i ≤ n. Note that λ is
a ”general” element for the set of all homomorphisms s, where s ∈ Zn

+. A homomorphism s is
called a specialization of λ.

Now we fix a Novikov tableau T and its associated non-associative word WT from (3)–(4).
Denote by deg the standard degree function on N〈X〉 and by degxi

the degree function with
respect to xi for all 1 ≤ i ≤ n. Denote by d the degree of T and by di the number of occurrences
of xi in T . Obviously, d = deg WT , di = degxi

WT , and

λ(WT ) = fT (λ)xgT (λ)

for some fT (λ), gT (λ) ∈ k[λ] = k[λ1, . . . , λn].
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Our first aim is to calculate the polynomials fT (λ) and gT (λ). For this reason we change the
tableau T from (3) by substituting λi instead of xi for all 1 ≤ i ≤ n. Denote the new tableau by
T (λ). Then denote by λi,j the element in the box (i, j) of T (λ). In fact, we have just changed
all ai,j to λi,j in (3).

Lemma 2.1. The following statements are true:

(a) gT (λ) = (d1λ1 + . . . + dnλn − d + 1);
(b) fT (λ) = f1f2 . . . fk where

fi = λi,1(λi,1 + λi,2 − 1) . . . (λi,1 + . . . + λi,ri − ri + 1), 1 ≤ i ≤ k.

Proof. Direct calculation gives that

λ(W1) = λ((· · · ((a1,1a1,2)a1,3) · · · a1,r1)a1,r1+1) =

= λ((· · · ((xλ1,1 ◦ xλ1,2) ◦ xλ1,3) ◦ · · · ◦ xλ1,r1 ) ◦ xλ1,r1+1) =

= λ1,1(λ1,1 + λ1,2 − 1) . . . (λ1,1 + . . . + λ1,r1 − r1 + 1)x(λ1,1+...+λ1,r1+λ1,r1+1−r1).

Using this and leading an induction on k we get

λ(Wk) = λk,1(λk,1 + λk,2 − 1) . . . (λk,1 + . . . + λk,rk−1 − rk + 2)x(λk,1+...+λk,rk
−rk+1)

and
λ(Wk−1(Wk−2 · · · (W2W1) · · · )) = f1f2 . . . fk−1x

s,

where s =
∑

i<k,j λi,j − d + rk + 1. Consequently,

λ(WT ) = λ(Wk) ◦ λ(Wk−1(Wk−2 · · · (W2W1) · · · )) =

= ∂(λ(Wk))λ(Wk−1(Wk−2 · · · (W2W1) · · · )) =

= fkx
(λk,1+...+λk,rk

−rk)f1f2 . . . fk−1x
s = fT xt,

where t = λk,1 + . . . + λk,rk
− rk + s =

∑
i,j λi,j − d + 1 = gT (λ). ¤

Lemma 2.2. A Novikov tableau T is uniquely defined by the polynomials fT (λ) and gT (λ).

Proof. For any linear form l of the type

l = t1λ1 + . . . + tnλn − t1 − . . .− tn + 1 (5)

we put α(l) = t1 + . . . + tn and l̂ = t1λ1 + . . . + tnλn. Let si be the number of boxes in the
i-th column of the Young diagram corresponding to T . It follows from Lemma 2.1(b) that si is
equal to the number of all divisors l of fT of the form (5) with α(l) = i, counted together with
multiplicity. So, the Young diagram and the Novikov diagram corresponding to T are uniquely
defined.

By Lemma 2.1(a), the degree of T and the number of occurrences of xi in T are also uniquely
defined by gT (λ). It follows from Lemma 2.1(b) that xi occurs in the first column of T m-times
if and only if λm

i |fT and λm+1
i †fT . Consequently, the elements of all columns of T , except the

first one, are uniquely defined by the filling rule (F2).
So, the only question to answer is that how to arrange the elements of the first row. Let

l1, . . . , ls be all divisors of fT of the form (5) with maximal α = α(l1) = . . . = α(ls). By Lemma
2.1(b), l1, . . . , ls correspond to the first s rows of T and the first s rows of the Young diagram
corresponding to T have lengths r1 = . . . = rs = α. We have

∑

1≤i≤s

∑

1≤j≤ri

λi,j = l̂1 + . . . + l̂s.
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Suppose that
∑

1≤i≤s

λi,1 = l̂1 + . . . + l̂s −
∑

1≤i≤s

∑

2≤j≤ri

λi,j =
n∑

i=1

tiλi.

Obviously ti ≥ 0, t1 + . . . + tn = s, and

(a1,1, . . . , as,1) = (xn, . . . , xn︸ ︷︷ ︸
tn

, . . . , x1, . . . , x1︸ ︷︷ ︸
t1

)

by the filling rule (F1). So, the first s rows of the Novikov tableaux T are uniquely determined.
Consequently, the polynomials f1, . . . , fs are also uniquely determined. Using the polynomial
fT /(f1 . . . fs) and continuing the same discussions, we can uniquely determine T . ¤

Denote by Tn the set of all Novikov tableaux of degree n on X = {x1, . . . , xn} without repeated
elements. Then {WT |T ∈ Tn} is a linear basis of the space of all multi-linear homogeneous of
degree n elements of the free Novikov algebra N〈X〉 [5].

Corollary 2.1. Suppose that T ∈ Tn. Then T is uniquely defined by fT .

Let u = λk1
1 . . . λkn

n be an arbitrary monomial in k[λ] = k[λ1, . . . , λn]. Put |u| = k1 + . . . + kn.
Put also γ(u) = (s1, . . . , sn) if u = λs1

σ(1) . . . λsn

σ(n) where σ is a permutation on {1, . . . , n} and
s1 ≥ s2 ≥ . . . ≥ sn. We define a linear order ¹ on the set of all monomials of k[λ]. If u and
v are two monomials then put u ¹ v if |u| < |v| or |u| = |v| and γ(u) is preceeds to γ(v) with
respect to the lexicographical order (from left to right) on Zn

+. If |u| = |v| and γ(u) = γ(v) then
u ¹ v is defined arbitrarily. For any f ∈ k[λ] denote by f̃ its highest term with respect to ¹.

The statement of the next corollary trivially follows from Lemma 2.1(b).

Corollary 2.2. Suppose that T ∈ Tn and (a1,1, a2,1, . . . , ak,1) = (xi1 , xi2 , . . . , xik) in (3). Then,

f̃T = λr1
i1

λr2
i2

. . . λrk
ik

and γ(f̃T ) = (r1, r2, . . . , rk).

Corollary 2.3. The set of polynomials fT ∈ k[λ], where T runs over Tn, is linearly independent
over k.

Proof. Suppose that (a1,1, a2,1, . . . , ak,1) = (xi1 , xi2 , . . . , xik) in (3). Then, γ(f̃T ) = (r1, r2, . . . , rk)
by Corollary 2.2. It follows that the Novikov diagram corresponding to T is uniquely determined
by f̃T . Moreover, xis is the first element of the row with length rs. Then the filling rule (F1)
uniquely determines the elements of the first row of T . The filling rule (F2) determines uniquely
the other part of T .

So, the mapping T 7→ f̃T associates different tableaux to different basis elements of k[λ].
Consequently, the set of polynomials f̃T , where T runs over Tn, is linearly independent. This
proves the lemma. ¤

In characteristic 0 any identity is equivalent to the set of multi-linear homogeneous identities
[15]. Any nontrivial multi-linear homogeneous Novikov identity of degree n can be written as

∑

T∈Tn

αT WT = 0 (6)

where αT ∈ k and at least one of αT is nonzero.

Theorem 2.1. The Novikov algebra A = 〈k[x], ◦〉 does not satisfy any nontrivial Novikov iden-
tity.
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Proof. Suppose that A satisfies a nontrivial identity of the form (6). Consider the homomorphism
λ. Applying λ to the left hand side of (6) we get

λ(
∑

T∈Tn

αT WT ) =
∑

T∈Tn

αT fT xgT = (
∑

T∈Tn

αT fT )xλ1+...+λn−n+1

since gT (λ) = λ1+. . .+λn−n+1 for all T . By Corollary 2.3,
∑

T αT fT is a nontrivial polynomial
from k[λ]. Then it is not difficult to find s = (s1, . . . , sn) ∈ Zn

+ such that
∑

T αT fT (s1, . . . , sn) 6=
0. This means that the image of the left hand side of (6) under the homomorphism s is not
equal to 0. Consequently, (6) is not a nontrivial identity of A. ¤

Corollary 2.4. The variety of Novikov algebras N is generated by A = 〈k[x], ◦〉, i.e., N = VarA.

Recall that the least natural number n such that the variety V ar(N〈x1, x2, . . . , xn〉) of algebras
generated by N〈x1, x2, . . . , xn〉 is equal to N is called the base rank rb(N) of the variety N (see,
for example [11]).

Corollary 2.5. The base rank of the variety of Novikov algebras is equal to one.

Proof. Consider the ideal I of the polynomial algebra k[x] generated by x2. It is easy to check
that 〈I, ◦〉 is a Novikov algebra generated by x2. In the proof of Theorem 2.1, we can easily
chose s = (s1, . . . , sn) such that si ≥ 2 for all i. Consequently, 〈I, ◦〉 does not satisfy any
nontrivial Novikov identity. Then, N = Var 〈I, ◦〉. We have Var(N〈x1〉) ⊇ Var 〈I, ◦〉 since 〈I, ◦〉
is a homomorphic image of N〈x1〉. Therefore, N = Var(N〈x1〉). ¤

3. The Freiheitssatz

To prove the Freiheitssatz we need the following corollary of Proposition 1 from [10].

Corollary 3.1. [10] Let f(x, tα1 , tα2 , . . . , tαm) ∈ k[x, tα1 , tα2 , . . . , tαm ] and α1 < α2 < . . . <

αm be nonnegative integers. Suppose that there exists (c, cα1 , cα2 , . . . , cαm) ∈ k1+m so that
f(c, cα1 , cα2 , . . . , cαm) = 0 and ∂f

∂tαm
(c, cα1 , cα2 , . . . , cαm) 6= 0. Then the differential equation

f(x, ∂α1(T ), ∂α2(T ), . . . , ∂αm(T )) = 0

has a solution in the formal power series algebra k[[x− c]].

Note that in the formulation of this corollary, the variables x, tα1 , tα2 , . . . , tαm are independent
variables, ∂ is the standard derivation d

dx of k[[x− c]] ⊇ k[x], and ∂αi is the αith power of ∂.
If f ∈ N〈x1, . . . , xn〉, then we denote id(f) the ideal of N〈x1, . . . , xn〉 generated by f .

Theorem 3.1. (Freiheitssatz) Let N〈x1, . . . , xn〉 be the free Novikov algebra over a field k of
characteristic 0 in the variables x1, . . . , xn. If f ∈ N〈x1, . . . , xn〉 and f /∈ N〈x1, . . . , xn−1〉, then
id(f) ∩N〈x1, . . . , xn−1〉 = 0.

Proof. Without loss of generality we may assume that k is algebraically closed and that
f(x1, . . . , xn−1, 0) 6= 0. The theorem will be proved if for f and any nonzero g ∈ N〈x1, . . . , xn−1〉
there exist a Novikov algebra B and a homomorphism θ : N〈x1, . . . , xn〉 → B of Novikov algebras
such that θ(g) 6= 0, θ(f) = 0.

Let f̂ be the highest homogeneous part of f with respect to xn. By Theorem 2.1, there
exists a homomorphism φ : N〈x1, . . . , xn〉 → A = 〈k[x], ◦〉 such that φ((gf)f̂) 6= 0. Denote
by Z1, Z2, . . . , Zn−1 the images of x1, x2, . . . , xn−1 under φ, by Z a general element of A, and
consider the equation

f(Z1, Z2, . . . , Zn−1, Z) = 0
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in A. Using the definition of the multiplication in A, we can rewrite the last equation in the
form

h(x, ∂α1(Z), ∂α2(Z), . . . , ∂αr(Z)) = 0, (7)

where h = h(x, tα1 , . . . , tαr) is a polynomial in the variables x, tα1 , . . . , tαr . Since
f /∈ N〈x1, . . . , xn−1〉 the polynomial h essentially depends on tα1 , . . . , tαr , i.e. r > 0 in (4).

Assume that α1 < . . . < αr and that h is irreducible. If h is not irreducible we can replace it
with its irreducible factor which contains tαr . We assert that there exists L = (c, cα1 , . . . , cαr) ∈
k1+r such that h(L) = 0 and ∂h

∂tαr
(L) 6= 0. If this is not true then by Hilbert’s Nulstellenssatz h

divides ( ∂h
∂tαr

)s for some s > 0. But then, since h is irreducible, h divides ( ∂h
∂tαr

), which is clearly
impossible.

Therefore we can use Corollary 3.1 and find a solution Zn of the differential equation (7) in
the formal power series algebra k[[x − c]]. Note that B = 〈k[[x − c]], ◦〉 is a Novikov algebra
and A is a subalgebra of B. Take a homomorphism of Novikov algebras θ : N〈x1, . . . , xn〉 → B

defined by
θ(x1) = Z1, θ(z2) = Z2, . . . , θ(zn−1) = Zn−1, θ(xn) = Zn.

Then θ|N〈x1,...,xn−1〉 = φ|N〈x1,...,xn−1〉 and θ(f) = 0. ¤

In many cases the Freiheitssatz is formulated directly in the language of freeness.

Corollary 3.2. (Freiheitssatz) Let N〈x1, . . . , xn〉 be the free Novikov algebra over a field
k of characteristic 0 in the variables x1, . . . , xn. Suppose that f ∈ N〈x1, . . . , xn〉 and f /∈
N〈x1, . . . , xn−1〉. Then the subalgebra of the quotient algebra N〈x1, . . . , xn〉/id(f) generated by
x1 + id(f), . . . , xn−1 + id(f) is a free Novikov algebra with free generators x1 + id(f), . . . , xn−1 +
id(f).
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