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ON DOMINANCE AND MINUSCULE WEYL GROUP ELEMENTS

QËNDRIM R. GASHI AND TRAVIS SCHEDLER

Abstract. Fix a Dynkin diagram and let λ be a coweight. When does there exist an element w of
the corresponding Weyl group such that w is λ-minuscule and w(λ) is dominant? We answer this
question for general Coxeter groups. We express and prove these results using a variant of Mozes’s
game of numbers.

1. Introduction

Mazur’s Inequality [Maz72, Maz73] is an important p-adic estimate of the number of rational
points of certain varieties over finite fields. It can be formulated in purely group-theoretic terms, and
the classical version can be viewed as a statement for the group GLn (see [Kot03]). Kottwitz and
Rapoport formulated a converse to this inequality [KR03], which is also related to the non-emptiness
of certain affine Deligne-Lusztig varieties, and they reduced the proof to a purely root-theoretic
problem, which is solved in [Gas09]. A crucial step in [Gas09] involves the use of Theorem 1.1
below, which we state after introducing some standard notation and terminology.

Let Γ be a simply-laced Dynkin graph, with corresponding simple roots α1, . . . , αn, positive
roots ∆+, Weyl group W , and simple reflections s1, . . . , sn ∈ W . Let PΓ be the lattice of coweights
corresponding to Γ. Following Peterson, for λ ∈ PΓ and w ∈ W , we say that w is λ-minuscule if
there exists a reduced expression w = si1si2 · · · sit such that

sirsir+1
· · · sitλ = λ + α∨

ir + α∨
ir+1

+ . . . + α∨
it , ∀r ∈ {1, 2, . . . , t},

where α∨
i ∈ PΓ is the simple coroot corresponding to αi. Equivalently (cf. [Ste01]), a reduced

product w = s1s2 · · · sit is λ-minuscule if and only if 〈λ, α∨
it
〉 = −1 as well as 〈sir+1

· · · sitλ, α∨
ir
〉 = −1,

for all r ∈ {1, . . . , t − 1}, where 〈 , 〉 is the Cartan pairing.

Theorem 1.1. For λ ∈ PΓ, there exists a λ-minuscule element w ∈ W such that w(λ) is dominant

if and only if

(1.2) 〈λ, α∨〉 ≥ −1, ∀α ∈ ∆+.

The proof of this theorem is straightforward, and is given in §3. We also generalize the result to

the case of extended Dynkin graphs, in the following manner. Let Γ̃ be a simply-laced extended

Dynkin graph, W̃ be its Weyl group, and ReΓ
be the root lattice, i.e., the span of the simple roots

αi. Let ∆̃+ ⊂ ReΓ be the set of positive real roots (i.e., positive-integral combinations α of simple
roots such that 〈α,α〉 = 2). Define PeΓ in this case to be the dual to the root lattice ReΓ. Given
α ∈ ReΓ

and λ ∈ PeΓ
, denote their pairing by α · λ. Let δ ∈ ReΓ

be the positive-integral combination

of simple roots which generates the kernel of the Cartan form on ReΓ. Finally, for α ∈ ∆̃+, let

α∨ ∈ PeΓ
be the element such that β ·α∨ = 〈β, α〉 for all β ∈ ∆̃+. Then, the notion of λ-minusculity

carries over to this setting.

Theorem 1.3. For nonzero λ ∈ PeΓ, there exists a λ-minuscule element w ∈ W̃ such that w(λ) is

dominant if and only if

(i) α · λ ≥ −1, ∀α ∈ ∆̃+, and

(ii) δ · λ 6= 0.
1
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We generalize the theorems above in two directions. First, we allow λ to be non-integral, i.e., to
lie in PΓ ⊗Z R (respectively PeΓ ⊗Z R) and not just in PΓ (respectively PeΓ). Second, we consider all
Coxeter groups, not just finite and affine ones. For example, in the first direction, if λ ∈ PΓ⊗ZR, the
notion of λ-minuscule Weyl group element should be generalized accordingly: w ∈ W is λ-minuscule
if there exists a reduced expression w = si1 . . . sit such that sir . . . sitλ = λ + ξrα

∨
ir

+ . . . + ξtα
∨
it

for
all r ∈ {1, . . . , t}, for some positive real numbers ξ1, . . . , ξt ≤ 1.

In the original situation (for λ ∈ PΓ “integral” and Γ Dynkin), we prove a stronger result:

Theorem 1.4. Under the assumptions of Theorem 1.1, there exists a λ-minuscule element w ∈ W
such that w(λ) is dominant if and only if

(i) 〈λ, α∨
i 〉 ≥ −1 for every simple root αi, and

(ii) For every connected subdiagram Γ′ ⊆ Γ, the restriction λ|Γ′ is not a negative coroot.

In the theorem, the restriction λ|Γ′ ∈ PΓ′ is the unique element such that 〈λ|Γ′ , α∨
i 〉 = 〈λ, α∨

i 〉
for all simple roots αi associated to the vertices of Γ′.

We also prove a similar result for extended Dynkin graphs (see Theorem 4.1), and generalize it
so as to include the case where λ lies in a finite Weyl orbit.

Remark 1.5. Condition (1.2) is equivalent to the non-negativity of the coefficients of Lusztig’s q-
analogues of weight multiplicity polynomials (see [Bro93, Theorem 2.4]). It is also equivalent to
the vanishing of the higher cohomology groups of the line bundle that corresponds to λ on the
cotangent bundle of the flag variety (op. cit.). We hope to address and apply this in future work.

The paper is organized as follows. The second section introduces the terminology of Mozes’s
game of numbers [Moz90] and its variant with a cutoff [Gas09], which provides a useful language
to state and prove our results. We also recall some preliminaries on Dynkin and extended Dynkin
graphs. In the third section we solve the numbers game with a cutoff for Dynkin and extended
Dynkin graphs (Theorem 3.1), in particular proving Theorems 1.1 and 1.3 and the non-integral
versions thereof. Next, in §4, we give a more explicit solution in the integral case, which proves
Theorem 1.4 and the corresponding result for extended Dynkin diagrams. In the last section, we
generalize Theorem 1.1 to the case of arbitrary Coxeter groups.

1.1. Acknowledgements. We thank R. Kottwitz for useful comments and M. Boyarchenko for the
opportunity to speak on the topic. The first author is an EPDI fellow and the second author is an
AIM fellow, and both authors were supported by Clay Liftoff fellowships. The first author was also
partially supported by the EPSERC Grant EP/F005431/1, and the second author was partially
supported by the University of Chicago’s VIGRE grant. We thank the University of Chicago, MIT,
the Max Planck Institute in Bonn, and the Isaac Newton Institute for Mathematical Sciences, for
hospitality.

2. The numbers game with and without a cutoff

In this section we introduce the numbers game with a cutoff, which provides a useful language
to state our results. We begin with some preliminaries on Dynkin and extended Dynkin graphs.

2.1. Preliminaries on Dynkin and extended Dynkin graphs. We will largely restrict our
attention to simply-laced Dynkin and extended Dynkin graphs. By this, we mean graphs of type
An,Dn, or En, or Ãn, D̃n, or Ẽn. For such a graph Γ, let ∆ be the set of (real)1 roots of the
associated root system, and ∆+ the set of positive roots. Let I denote its set of vertices, so that

1These are sometimes called “real roots” in the literature to exclude multiples of the so-called imaginary root δ

below, which are also roots of the associated Kac-Moody algebra. We will omit the adjective “real.”

2



αi are the simple roots for i ∈ I. Identify ZI with the root lattice (i.e., the integral span of the αi),
so that ∆ ⊆ ZI , and αi ∈ ZI are the elementary vectors. Although we will use subscripts (e.g.,
βi of β ∈ ZI) to denote coordinates, we will never use them for a vector denoted by α, to avoid
confusion with the simple roots αi.

We briefly recall the essential facts about ∆+ and ∆. We have ∆ = ∆+ ⊔ (−∆+), and ∆+ =
{α ∈ ZI

≥0 : 〈α,α〉 = 2}, where 〈 , 〉 is the Cartan form

〈αi, αj〉 =





2, if i = j,

−1, if i is adjacent to j,

0, otherwise,

which is positive-definite in the Dynkin case and positive-semidefinite in the extended Dynkin case.
It is well known that ∆+ is finite in the Dynkin case. Consider the extended Dynkin case, and

let us switch notation to Γ̃, ∆̃, ∆̃+, and Ĩ. We may write Γ̃ ) Γ where Γ is the Dynkin graph

of corresponding type. The vertex i0 = Ĩ \ I is called an extending vertex (the other extending
vertices being obtained as the complements of different choices of Γ). Let ∆+ the set of positive

roots for Γ. There is an inclusion ∆+ ⊂ ∆̃+ obtained by setting the coefficient at i0 to zero, and

∆̃+ = (∆+ + Z≥0δ) ⊔ (−∆+ + Z>0δ), for the unique vector δ ∈ Z
eI
>0 characterized by 〈δ, u〉 = 0 for

all u ∈ R
eI and δi0 = 1.

Switching back to Γ,∆+, and I, for either the Dynkin or extended Dynkin case, we recall the
simple reflections. For any vertex i ∈ I, let si : RI → RI be defined by si(β) = β − 〈β, αi〉αi. It
is well known that β ∈ ∆+ implies si(β) ∈ ∆+ unless β = αi, in which case si(αi) = −αi. Also,
si(δ) = δ for all i.

For any β ∈ ∆+, its height, h(β), is defined as h(β) =
∑

i∈I βi, where β = (βi) =
∑

i βiαi. Note
that β may be obtained from some simple root αi by applying h(β) − 1 simple reflections, and is
not obtainable from any simple root by applying fewer simple reflections.

2.2. The numbers game with and without a cutoff. We first recall Mozes’s numbers game
[Moz90]. Fix an unoriented, finite graph with no loops and no multiple edges. (For the generalized
version of this game, with multiplicities, see §5.) Let I be the set of vertices. The configurations of
the game consist of vectors RI . The moves of the game are as follows: For any vector v ∈ RI and
any vertex i ∈ I such that vi < 0, one may perform the following move, called firing the vertex i:
v is replaced by the new configuration fi(v), defined by

(2.1) fi(v)j =





−vi, if j = i,

vj + vi, if j is adjacent to i,

vj , otherwise.

The entries vi of the vector v are called amplitudes. The game terminates if all the amplitudes are
nonnegative. Let us emphasize that only negative-amplitude vertices may be fired.2

In [Gas08], the numbers game with a cutoff was defined: The moves are the same as in the
ordinary numbers game, but the game continues (and in fact starts) only as long as all amplitudes
remain greater than or equal to −1. Such configurations are called allowed. Every configuration
which does not have this property is called forbidden, and upon reaching such a configuration the
game terminates (we lose). We call a configuration winning if it is possible, by playing the numbers
game with a cutoff, to reach a configuration with all nonnegative amplitudes.

2In some of the literature, the opposite convention is used, i.e., only positive-amplitude vertices may be fired.
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Call a configuration losing if, no matter how the game is played, one reaches a forbidden config-
uration. By definition, any losing configuration remains so by playing the numbers game. We will
see that the same is true for winning configurations (Theorem 5.3).

We now explain how to interpret the results from the introduction in terms of this language. Let
Γ be a Dynkin diagram, with set of vertices I. To every element λ ∈ PΓ one can associate naturally
an integral configuration of Γ, still denoted by λ, where the amplitude corresponding to the vertex
αi is given by 〈λ, α∨

i 〉. Firing the vertex αj changes these amplitudes to 〈sj(λ), α∨
i 〉, i.e., gives the

natural configuration (on the vertices of Γ) associated to the simple reflection sj(λ) of λ. In other
words, using the identifications made in the previous subsection between the coroot space and ZI ,
and letting · denote the standard dot product on RI , we have

(2.2) si(α) · v = α · fi(v), si(α) · fi(v) = α · v,

for any configuration v. In terms of Lie theory, we may think of the si as acting on RI with basis
given by the simple roots, and the fi as acting on the dual RI , with basis given by the fundamental
coweights. (Formula (2.2) remains true in the case of extended Dynkin graphs.)

The existence of an element w ∈ W such that w(λ) is dominant is then equivalent to the
winnability of the usual numbers game with initial configuration λ (and hence, one always wins).
Of course, we want to impose the extra condition that w be λ-minuscule, which is equivalent to
imposing the −1 cutoff to the numbers game. Thus, Theorem 1.1 gives a characterization of the
winning configurations v ∈ ZI for the numbers game with a cutoff, where vi = 〈λ, α∨

i 〉, λ ∈ PΓ, and
the graph Γ is a Dynkin one. Later on, we will give similar descriptions in terms of the numbers
game with a cutoff for the other results stated in the introduction.

Note that in the paragraph above we only considered the case of integral λ, but the analogy
holds in the non-integral case as well, and now we study the winnability of the numbers game with
a cutoff with real amplitudes, where we may fire any vertex with amplitudes from [−1, 0) and not
just those with amplitude −1 as in the integral case.

The language of the numbers game with a cutoff is useful because it makes apparent certain
phenomena that already occur without the bound of 1 or indeed with a different bound. It also
allows one to use results from the usual Mozes’s numbers game, which has been widely studied
(cf. [Pro84, Pro99, DE08, Eri92, Eri93, Eri94a, Eri94b, Eri95, Eri96, Wil03a, Wil03b]),3 and yields
useful algorithms for computing with the root systems and reflection representations of Coxeter
groups (see [BB05, §4.3] for a brief summary).

Finally, we recall some basic results about the usual numbers game, and why it exhibits special
behavior in the Dynkin and extended Dynkin cases:

Proposition 2.3. (i) [Moz90] If the usual numbers game terminates, then it must terminate

in the same number of moves and at the same configuration regardless of how it is played.

(ii) In the Dynkin case, the usual numbers game must terminate.

(iii) [Eri94a] In the extended Dynkin case, the usual numbers game terminates if and only if

δ · v > 0.
(iv) [Eri94a] Whenever the usual numbers game does not terminate, it reaches infinitely many

distinct configurations, except for the case of an extended Dynkin graph where δ · v = 0, in

which case only finitely many configurations are reached (i.e., the game “loops”).4

Thus, provided we can determine which configurations are winning (for the numbers game with a
cutoff) in the Dynkin case and the extended Dynkin case, then with the additional condition δ·v > 0,
these are also the ones that terminate in a nonnegative configuration, and this configuration (and
the number of moves required to get there) is unique.

3Mozes’s numbers game originated from (and generalizes) a 1986 IMO problem.
4Stronger results were stated in [Eri94a], and a detailed study appears in [GSS].
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3. The (extended) Dynkin case

Theorem 3.1. In the Dynkin case, a configuration v is winning if and only if

(3.2) α · v ≥ −1, ∀α ∈ ∆+.

Otherwise, v is losing.

In the extended Dynkin case, v 6= 0 is winning if and only if both

(3.3) α · v ≥ −1, ∀α ∈ ∆̃+,

and δ · v 6= 0. If (3.3) is satisfied but δ · v = 0 (and v 6= 0), then v is looping and the game cannot

terminate. Finally, if (3.3) is not satisfied (e.g., if δ · v < 0), then v is losing.

Remark 3.4. Theorem 3.1 implies Theorems 1.1 and 1.3, as well as their “non-integral” versions.

The above theorem shows, in particular, that exactly one of the following is true: v is winning,
looping, or losing.

To prove the theorem, it is helpful to introduce the set

(3.5) Xv := {(α,α · v) | α ∈ ∆+, α · v < 0}.

Consider the projections

(3.6) Xv
n
Nπ1

}}{{
{{

{{
{ π2

""
EE

EE
EE

EE

∆+ R<0.

Each time a vertex, say i ∈ I, is fired, there is a natural isomorphism Xv \ {(αi, vi)}
∼→ Xfiv, with

(α,α · v) 7→ (siα,α · v) = (siα, siα · fiv). The set Xv is defined similarly in the extended Dynkin

case, with ∆+ replaced by ∆̃+, and there is still a natural isomorphism Xv \ {(αi, vi)}
∼→ Xfiv.

Proof. In the Dynkin case, Xv is finite. Since the size decreases by one in each step, removing an
element whose second projection is the amplitude at the vertex which is fired, we see that the game
is won precisely when π2(Xv) ⊂ [−1, 0), and otherwise it is lost. The former is equivalent to (3.2).

In the extended Dynkin case, the game is won precisely when Xv is finite and π2(Xv) ⊂ [−1, 0);
finiteness is equivalent to δ · v > 0. The condition π2(Xv) ⊂ [−1, 0) is equivalent to (3.3), and
implies δ · v ≥ 0, so for v to be winning we only need to additionally assume that δ · v 6= 0.

Since, in the extended Dynkin case, a game that is not won is either lost or loops, it remains to

show that v is losing precisely when there exists α ∈ ∆̃+ with α·v < −1, i.e., when π2(Xv) 6⊂ [−1, 0).
It is clear that the condition is required for v to be losing. Thus, suppose that α · v < −1 for some

α ∈ ∆̃+. We will show that v is losing. We induct on the height of α. Suppose vi < 0, and that
we fire the vertex i. Consider two cases: first, suppose that h(siα) < h(α). Then, siα · fiv < −1
and h(siα) < h(α), completing the induction. Next, suppose h(siα) ≥ h(α), i.e., siα − α is a
nonnegative multiple of αi. Then, α · fiv ≤ siα · fiv (since (fiv)i > 0), and siα · fiv = α · v.

Thus, we may leave α unchanged. If we eventually fire a vertex i ∈ Ĩ such that h(siα) < h(α),
the induction is complete. Otherwise, we would be playing the game only on a Dynkin subgraph,
which would have to terminate in finitely many moves, and therefore reach a forbidden configuration
(since π2(Xv) 6⊂ [−1, 0)). �

Note that only finitely many inequalities in (3.3) are required: since (3.3) implies δ · v ≥ 0, (3.3)
is equivalent to the conditions δ · v ≥ 0, α · v ≥ −1, and (δ−α) · v ≥ −1 for all α which are positive
roots of a corresponding Dynkin subgraph obtained by removing an extending vertex. So, it is
enough to assume (3.3) for α ∈ ∆+ ∪ (δ − ∆+), which is finite.
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Corollary 3.7. If δ · v = 0, then the game loops (and cannot terminate) if and only if, after

removing an extending vertex, both v and −v are winning.

Proof. This follows from the fact that ∆̃+ = (∆+ + Z≥0δ) ⊔ (−∆+ + Z>0δ). �

Another interpretation of the above corollary is the following: v continues indefinitely if and
only if the restriction of v to the complement of an extending vertex cannot reach a forbidden
configuration by playing numbers game forwards or backwards (i.e., firing vertices with positive
instead of negative amplitudes).

Remark 3.8. T. Haines pointed out that Theorem 3.1 implies [Hai01, Lemma 3.1]: for every dom-
inant minuscule5 coweight µ and every coweight λ ∈ Wµ, there exists a sequence of simple roots
α1, . . . , αp, such that s1(µ) = µ − α∨

1 , s2s1µ = µ − α∨
1 − α∨

2 , . . . , and λ = spsp−1 · · · s1(µ) =
µ − α∨

1 − · · · − α∨
p .

4. The integral case

Of particular relevance is the case of integral configurations v ∈ ZI . Below, we apply Theorem 3.1
to give a surprisingly simple, explicit description of the losing and looping integral configurations
in the Dynkin and extended Dynkin cases.

To state the theorem, we will make use of the interpretation of configurations v ∈ RI as coweights.
In particular, as in the introduction, for every Dynkin graph Γ, and every root α ∈ ∆+, there is an
associated coroot configuration α∨ ∈ ZI , in the basis of fundamental coweights, uniquely defined
by β · α∨ = 〈β, α〉 for all β, using the Cartan form as in §2.1. For every extended Dynkin graph

Γ̃, Dynkin subgraph Γ, and α ∈ ∆̃+, we also have the configuration α∨ defined in the same way;
in particular, δ · α∨ = 0 (and the α∨

i are linearly dependent). Let ωi ∈ ZI be the elementary
vector, viewed as a configuration (i.e., in the Dynkin case, the i-th fundamental coweight).6 Thus,

αi · ωj = δij . For β ∈ ∆+ or ∆̃+, let its support, supp(β), be the (connected) subgraph on which
its coordinates βi are nonzero.

Theorem 4.1. (i) An integral configuration v on a Dynkin graph is winning if and only if

(1) vi ≥ −1 for all i, and

(2) For all α ∈ ∆+, v|supp(α) 6= −α∨;

(ii) An integral configuration v on an extended Dynkin graph is winning if and only if (1) and

(2) are satisfied (with α ∈ ∆̃+), and furthermore,

(3) v 6= −ωi for any extending vertex i.
(iii) An integral configuration on an extended Dynkin graph is looping if and only if it is in the

Weyl orbit of a vector µ = ωi − ωi′ for distinct extending vertices i, i′. In this case, the

numbers game can take the configuration to and from such a vector µ.

Remark 4.2. The above result implies Theorem 1.4, as well as the extended Dynkin version thereof.

As in the introduction, for Γ′ ⊆ Γ, with vertex sets I ′ ⊆ I, the restriction v|Γ′ is the restriction

RI
։ RI′ of coordinates.

We remark that an alternative way to state parts (i) and (ii) above is that the losing configurations
on (extended) Dynkin diagrams which are winning on all proper subgraphs, which we call the
minimal losing configurations, are exactly those of the form −β∨ for fully supported roots β, which
in the extended Dynkin case also satisfy βi ≤ δi for all i, and −ωj for extending vertices j, together
with the one-vertex forbidden configurations.

5Recall that minuscule means that 〈µ, α〉 ∈ {−1, 0, 1} for all α ∈ ∆.
6We use distinct notation αi, ωi for the same vector in ZI depending on whether it is viewed as a simple root or

a configuration, to avoid confusion.
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Here, we have used that (β + cδ)∨ = β∨ for all c ∈ Z, so that in part (ii) it suffices to assume

that β ∈ ∆̃+ satisfies βi ≤ δi for all i, i.e., βi ≤ 1 for all extending vertices i. In fact, we can further
restrict to the case of roots β that are supported on a Dynkin subdiagram, in exchange for adding
the condition that vsupp(γ) 6= γ∨ for all positive roots γ such that γi = 0 at all extending vertices
i. This is because the fully supported roots β such that βi ≤ δi for all i are exactly δ − γ where

γ ∈ ∆̃+ satisfies γi = 0 at all extending vertices, and then −β∨ = γ∨.

As a special case of (ii), for Ãn (with n ≥ 1), the only integral losing configurations which
are winning on all proper subgraphs are −ωi for all i. Also, by (iii), there is no looping integral

configuration on Ẽ8 (but these exist for all other extended Dynkin graphs).

Proof. (i) Following the discussion above, we show that the minimal losing configurations on Dynkin
graphs with more than one vertex are exactly −β∨ for fully supported β ∈ ∆+. Note that it
is clear that such configurations are minimal losing configurations, since β · (−β∨) = −2 and
γ · (−β∨) ∈ {−1, 0, 1} for all γ ∈ ∆+ \ {β}. Thus, we only need to show that there are no other
minimal losing configurations (other than one-vertex ones).

For any minimal losing configuration v ∈ ZI , Theorem 3.1 implies the existence of β ∈ ∆+ such
that β · v ≤ −2. By minimality, all such β are fully supported. It suffices to prove that, when β
is not simple (i.e., the graph has more than one vertex), v = −β∨. We prove this by induction on
the height of β, considering all Dynkin graphs simultaneously.

Let i be a vertex such that h(siβ) < β, i.e., 〈β, αi〉 = 1. It follows that vi = −1; otherwise,
siβ · v ≤ −2, a contradiction. Since siβ · fiv ≤ −2, we deduce from the inductive hypothesis that
the restriction of fiv to the support of siβ coincides with −(siβ)∨. Since −((siβ)∨)i = (β∨)i = 1,
we deduce that fiv = −(siβ)∨ and hence v = −β∨, as desired.

(ii) We prove that the minimal losing configurations in the extended Dynkin case are exactly

−β∨ for fully supported β ∈ ∆̃+ satisfying βi ≤ δi for all i, and −ωi for extending vertices i.
The former configuration is a minimal losing configuration by the same argument as in the Dynkin
case, and −ωi is a minimal losing configuration since δ · −ωi = −1 < 0 (so −ωi is losing) and

β · −ωi = −βi ∈ {−1, 0} for all β ∈ ∆̃+ (so −ωi is winning on all Dynkin subdiagrams). Hence, it
suffices to prove that there are no other minimal losing configurations.

Let v be an integral losing configuration which is winning on all proper subdiagrams, and let

β ∈ ∆̃+ be of minimal height such that β · v ≤ −2. Once again, we can induct on the height of β.

We reach the desired conclusion unless β = cδ + αi for some c ≥ 1 and i ∈ Ĩ, so assume this. Since
vi ≥ −1, it follows that δ ·v ≤ −1. Moreover, fix an associated Dynkin subdiagram Γ. Then, for all
γ ∈ ∆+, we must have γ · v ∈ {−1, 0} (since (δ− γ) · v ≥ −1 and γ · v ≥ −1 by minimality of β). In
particular, vj ∈ {−1, 0} for all j. In this case, in order not to be losing on a Dynkin subdiagram,
we must have v = −ωi, where i is an extending vertex.

(iii) Let i be an extending vertex, and let v ∈ ZI satisfy δ · v = 0 but v 6= 0. If we play the
numbers game by firing only vertices other than i, we must eventually obtain either a forbidden
configuration (if the restriction of v to the complement of i is losing) or a configuration whose sole
negative amplitude occurs at i. In the latter case, in order to not be forbidden, we must have −1
at the vertex i, and hence, in order to satisfy δ · v = 0, there can only be one positive amplitude, it
must be 1, and it must occur at another extending vertex, say i′. So, v is winning when restricted
to the complement of i if and only if one can obtain µ = ωi′ − ωi from v. This implies that v is in
the same Weyl orbit as µ. On the other hand, if v is in the Weyl orbit of µ, then δ · v = 0 and the

usual numbers game loops, and since α · v ∈ {−1, 0, 1} for all α ∈ ∆̃+, the numbers game with a
cutoff also loops. Hence, the conditions that v is looping, that v is in the Weyl orbit of such a µ,
and that µ can be obtained from v by playing the numbers game with a cutoff, are all equivalent.
Since, in this case, −v is also looping, we see also that −v can reach a configuration ν = ωj −ωi′ for
some extending vertex j, and since ν is in the same Weyl orbit as −µ, we must have ν = −µ (since

7



−µ and ν are dominant on the complement of i′). Hence, v can be obtained from µ by playing the
numbers game, which proves the remainder of the final assertion. �

Remark 4.3. In the Dynkin case, the above may be interpreted as saying that every losing integral
configuration which is winning on all proper subgraphs is obtainable from the maximally negative
coroot by playing the numbers game: this configuration is the one with vi = −1 when i is adjacent

to the extending vertex of Γ̃, and vi = 0 otherwise. On the other hand, in the non-integral case,
losing configurations are not necessarily obtainable from nonpositive ones by playing the numbers
game: for example, on D4, one may place −1 at all three endpoint vertices, and 3

2 at the node.

Remark 4.4. Note that the extended Dynkin case with δ · v ≥ 0 and v losing, integral, and winning
on all subgraphs may similarly be described as those configurations obtainable from αi

∨ = 2ωi −∑
j adjacent to i ωj, for i not an extending vertex, by playing the numbers game. This contrasts with

the nonintegral case: see the next remark.

Remark 4.5. In the extended Dynkin case, it is perhaps surprising that all losing integral configu-
rations with δ · v > 0 are also losing on a proper subgraph. This is not true in the non-integral case

(except in the case Ãn): e.g., one may take a configuration β∨ + εωi, for β ∈ ∆̃+ which satisfies

βj = 0 for all extending vertices j, and ε ∈ (0, 1
δi

) for any fixed i ∈ Ĩ. Similarly, one may find losing

configurations with δ ·v = 0 which are winning on all Dynkin subgraphs, but are not β∨ for β ∈ ∆+

(although there are still none for Ãn): for example, εβ∨ for ε ∈ (1
2 , 1) and β as before. For another

example, we can take any configuration in D̃n with values a, b, c, d ≥ −1 at exterior vertices such
that σ := a+b+c+d

2 < −1 and σ−x ≥ −1 for all x ∈ {a, b, c, d}. Finally, there are many more losing
nonintegral configurations with δ · v < 0 that are winning on all subgraphs than just −ωi for i an
extending vertex: for example, −ωi + u for any nonnegative vector u such that δ · u < 1.

5. Generalization to arbitrary graphs with multiplicities

In [Moz90, Eri96], the numbers game was stated in greater generality than the above. Namely,
in addition to a graph with vertex set I (and no loops or multiple edges), we are given a Coxeter
group W with generators si, i ∈ I and relations (sisj)

nij for nij ∈ {1, 2, . . .}∪{∞}, together with a
Cartan matrix C = (cij)i,j∈I , such that cii = 2 for all i, cij = 0 whenever i and j are not adjacent,
and otherwise cij , cji < 0 and either cijcji = 4cos2( π

nij
) (when nij is finite) or cijcji ≥ 4 (when

nij = ∞).
We recall that the numbers game is modified as follows in terms of C: The configurations are

again of the form v ∈ RI , and, we may fire the vertex i in a configuration v ∈ RI if and only if the
amplitude vi < 0. The difference is that the new configuration fi(vi) is now given by

(5.1) fi(v)j = vj − cijvi.

We call this the weighted numbers game. The non-weighted numbers game is recovered in the case
cij = −1 for all adjacent i, j.

The standard reflection action of W on RI is given by

(5.2) si(β)j =

{
βj , if j 6= i,

−βi −
∑

k 6=i cikβk, if j = i.

Recall from [Eri96] that, in this situation, the usual numbers game is strongly convergent : if the
game can terminate, then it must terminate, and in exactly the same number of moves and arriving
at the same configuration, regardless of the choices made.

We remark that, while it is standard to take C to be symmetric, there are cases when this is
not desired, particularly for the non-simply-laced Dynkin diagrams Γ, where C can be taken to
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be integral only if allowed to be non-symmetric. In these cases, if we choose C to be integral,
playing the numbers game on Γ is equivalent to playing the numbers game without multiplicities
on a simply-laced diagram Γ′ with some symmetry group S, such that Γ′/S = Γ, if we restrict to
S-invariant configurations on Γ′, where we allow simultaneous firing of any orbit of vertices under
S (since these orbits consist of nonadjacent vertices, it makes sense to fire them simultaneously).

Let ∆ =
⋃

i∈I Wαi be the set of (real) roots.7 Let ∆+ ⊂ ∆ be the subset of positive roots:
these are the elements whose entries are nonnegative. Note that, by a standard result (see [BB05,
Proposition 4.2.5]), ∆ = ∆+ ⊔ (−∆+).

Finally, we recall a useful partial ordering from, e.g., [BB05, §4.6]. For β ∈ ∆+, we say that
β < siβ if and only if βi < (siβ)i. Generally, for α, β < ∆+, we say α < β if there exists a sequence
α < si1α < si2si1α < · · · < simsim−1

· · · si1α = β. The argument of [BB05, Lemma 4.6.2] shows
that this is a graded partial ordering. The grading, dp(α), called the depth, is defined to be the
minimum number of simple reflections required to take α to a negative root. Thus, α < siα implies
dp(siα) = dp(α) + 1.

Theorem 5.3. Let Γ, C be associated to a Coxeter group. Assume that C satisfies cij = cji

whenever nij is odd (and finite). Then, v can reach a forbidden configuration if and only if β·v < −1
for some β ∈ ∆+, and in this case, the minimum number of moves required to take v to a forbidden

configuration is

(5.4) m(v) := min{dp(β) − 1 | β · v < −1, β ∈ ∆+}.

Furthermore, if vi < 0, then m(fiv) ∈ {m(v),m(v) − 1}.

Note that, in the non-simply-laced Dynkin cases with C integral, we may always take cij = cji

whenever nij is odd (and in these cases, this implies nij = 3), so the theorem applies.

Corollary 5.5. Under the assumptions of the theorem, v is winning if and only if the usual numbers

game terminates and

(5.6) α · v ≥ −1,∀α ∈ ∆+.

Moreover, if (5.6) is not satisfied and the usual numbers game terminates, then v is losing.

Also, under the hypotheses of the theorem, any winning configuration remains so regardless of
what moves are made.

We can also make a statement for arbitrary C and Γ:

Theorem 5.7. If C and Γ are arbitrary (associated to a Coxeter group), then v can reach a

forbidden configuration if and only if there exists β ∈ ∆+ and i ∈ I such that both β · v < −1 and

β > αi. In this case, the minimum number of moves required to reach a forbidden configuration is

(5.8) m′(v) := min{dp(β) − 1 | β · v < −1, and there exists i ∈ I with β > αi}.

Moreover, in this case, if i ∈ I is such that vi < 0, then m′(fiv) ≥ m′(v) − 1 (provided m′(fiv) is

defined, i.e., fiv can reach a forbidden configuration).

The difference from Theorem 5.3 is that we added the condition β > αi, and replaced the equality
for m under numbers game moves by an inequality.

We remark that the usual numbers game, beginning with v, terminates if and only if

(5.9) #P{β ∈ ∆+ | β · v < 0} < ∞,

7Note that, when the Cartan matrix C is associated to a nonreduced root system (i.e., BCn), then ∆ is a proper
subset of the whole root system, which does not contain 2α, for any simple root α.
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for arbitrary Γ, C, where P means modding by scalar multiples, since each move decreases the size
of this set by one. (We do not need to mod by scalar multiples if cij = cji whenever nij is odd.)
So, this gives a completely root-theoretic description of the winning conditions above.8

For the finite and affine cases, we have the following corollary, which generalizes Theorem 3.1.
As before, in the affine case, let δ ∈ RI

>0 be the additive generator of the semigroup {δ′ ∈ RI
>0 |

α ∈ ∆+ ⇒ α + δ′ ∈ ∆+}. In particular, 〈δ, α〉 = 0 for all α ∈ ∆.

Corollary 5.10. Let Γ, C be associated to a finite or affine Coxeter group and let v be a nonzero

configuration. Then, exactly one of the following is true:

(a) (5.6) is satisfied, and δ·v 6= 0: then v is winning, and cannot reach a forbidden configuration.

(b) (5.6) is satisfied but δ ·v = 0: then v is looping, and cannot reach a forbidden configuration.

(c) (5.6) is not satisfied. Then, provided cij = cji whenever nij is odd, v is losing.

Note that, by Theorem 5.7, we can strengthen this slightly by replacing (5.6) by the condition
that α · v ≥ −1 only for α such that α > αi for some i ∈ I.

Proof of Corollary 5.10. (a) In the affine case, δ · v > 0, so in either case, the usual numbers game
terminates. Then, v is winning by Theorem 5.7, and a forbidden configuration cannot be reached.

(b) v is looping, as in the simply-laced case, since the usual numbers game cannot terminate,
and the configuration is uniquely determined by its restriction to a subgraph obtained by removing
an extending vertex, where the configuration remains in the orbit of the restriction of v under the
associated finite Coxeter group. The rest follows from Theorem 5.7.

(c) In this case (we assume cij = cji whenever nij is odd), v can reach a forbidden configuration.
Moreover, in the proof of Theorem 5.3, we see that there always exists a vertex i ∈ I so that, for
any configuration v′ obtained from v by firing vertices other than i, we have m(fiv

′) = m(v′) − 1.
In the affine Coxeter group case, in order for the numbers game to continue indefinitely, all vertices
must be fired infinitely many times. This proves the result. �

Remark 5.11. The weakened conclusions of Theorem 5.7 are needed. Indeed, if cij 6= cji for some
i, j with nij odd, then it is possible that a winning configuration can become a losing one. For

example, take I = {1, 2} and C =

(
2 −2
−1

2 2

)
, with n12 = 3. Then, the configuration (−1

2 ,−1
2) is

winning under the sequence (−1
2 ,−1

2 ) 7→ (−3
4 , 1

2) 7→ (3
4 ,−1) 7→ (1

2 , 1), but if we instead fired vertex

1 first, we would get (1
2 ,−3

2), which is forbidden.

Remark 5.12. It is natural to ask what can happen in the numbers game with a cutoff if it continues
indefinitely. Suppose this happens and that Γ′ is the subgraph on vertices which are fired infinitely
many times. If Γ′ corresponds to an affine Coxeter group, then the configuration restricted to Γ′ is
looping, and in this case, in order for a forbidden configuration not to be reached, Γ′ must be the
whole graph (assuming that our whole graph is connected). Otherwise, if our graph is not affine,
then Γ′ cannot be associated to an affine or finite Coxeter group. Then, for any affine subgraph
Γ0 ⊆ Γ′ (where by this we allow reducing the numbers nij for edges between vertices of Γ0), the
inner product of the restriction of v with the associated δ0 must remain positive, and the value must
be decreasing. It must converge to some nonnegative number, and hence all amplitudes of vertices
in Γ′ must converge to zero. In particular, the configuration v must converge to some limiting
allowed configuration (which is zero on Γ′), and one could continue the numbers game from this
limit if desired. Note that, in the case that cij = cji for all odd nij, we must also have α · v > −1

8Also, this observation easily implies the main results (Theorems 2.1 and 4.1) of [DE08]: if vi ≤ 0 for all i and
v 6= 0, then the usual numbers game can only terminate if Γ, C are associated to a finite Coxeter group: otherwise
(assuming Γ is connected), infinitely many elements β ∈ ∆+ which are not multiples of each other satisfy β · v < 0:
note that, for each i ∈ I , the set P(Wαi) essentially does not depend on the choice of C for a given Coxeter group.
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for all α ∈ ∆+ supported on Γ′, i.e., v|Γ′ cannot reach a forbidden configuration by playing the
numbers game on Γ′.

5.1. Proof of Theorems 5.3 and 5.7. We will use the following lemma which is interesting in
itself (and is the connection between the two theorems):

Lemma 5.13. If Γ, C are such that cij = cji whenever nij is odd, then for all β ∈ ∆+, we have

αi ≤ β for some i ∈ I.

We remark that it is well known (and obvious) that the lemma holds when C is symmetric.

Proof. The case nij is odd is exactly the case when, on the subgraph with vertices i and j only, αi

is in the W -orbit of some positive multiple of αj and vice-versa (and this multiple is 1 if and only if
cij = cji). Thus, this assumption is exactly what is needed so that, whenever β = aαi + bαj ∈ ∆+

and dαi < β for some d ∈ R, then d = 1. As a result, using the Coxeter relations, it follows
inductively on depth that, if αi < β for some i ∈ I, then if γ < β and γ ∈ ∆+ is not simple, we
also have αj < γ for some j ∈ I. Thus, for all β ∈ ∆+, there exists i ∈ I with αi ≤ β. �

Proof of Theorem 5.3. It will be convenient to think of m(v) as being allowed to be infinite (infinite
if and only if the set appearing in the right hand side is empty). Similarly, call the number of moves
required to reach a forbidden configuration “infinite” if and only if a forbidden configuration cannot
be reached. We clearly have m(v) ≥ 0, and Lemma 5.13 implies that m(v) = 0 if and only if v is
forbidden. Thus, using induction, the theorem may be restated as: if v is not forbidden, then for
any vertex i with vi < 0, we have m(fiv) ∈ {m(v),m(v) − 1}, and there exists at least one such i
with m(fiv) = m(v) − 1. Here, ∞ + c := ∞ for any finite c.

Suppose that α ∈ ∆+ and j ∈ I are such that α · v < −1 and vj < 0. If we fire j, then the set
{β ∈ ∆+ : β · v < −1} changes by applying sj. Hence, m(fjv) ∈ {m(v) − 1,m(v),m(v) + 1}. In
particular, m(fjv) ≥ m(v) − 1.

Suppose that α ∈ ∆+ is such that α · v < −1 and dp(α) − 1 = m(v), and let i ∈ I be such that
siα < α. Then, if vi ≥ 0, then siα · v ≤ α · v < −1, which would contradict the minimality of
the depth of α. Thus, vi < 0, and it follows that m(fiv) = m(v) − 1. So, there exists i such that
m(fiv) = m(v) − 1.

Next, suppose that vi < 0 and siα > α. Then, α · fiv ≤ siα · fiv < −1. As a result, we
have m(fiv) ∈ {m(v),m(v) − 1}. Thus, for any i ∈ I such that vi < 0, we have m(fiv) ∈
{m(v),m(v) − 1}. �

Proof of Theorem 5.7. If α · v < −1, and siα > α, then vi < 0 implies that siα · fiv < −1 as well.
As a result, although firing i does not simply change

Yv := {β ∈ ∆+ : β · v < −1 and β > αi for some i}

by applying si, we still have Yfiv ⊆ siYv, which is all we need. �

Remark 5.14. Note that, as a corollary of Lemma 5.13, we see that, for a general Coxeter group W ,
vertex i ∈ I, and matrix C, the set {j ∈ I | ∃b ∈ R, bαj ∈ Wαi} is the set of vertices j connected
to i by a sequence of edges i′ 7→ j′ corresponding to odd integers ni′,j′. It is clear that all such j
are in the set; conversely, if an edge corresponding to an even integer or ∞ is required to connect i
to j, then if wαi = bαj , then by modifying the elements of C corresponding to the edges with even
ni′j′ , we would be able to change the value b such that bαj ∈ Wαi. But this is impossible, since
b = 1 whenever ci′j′ = cj′i′ for all odd ni′j′ , and symmetrizing the latter values of C would rescale
b by a fixed amount independent of the other values of C (and independent of b itself).
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