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DEGREE BOUNDS FOR TYPE-A WEIGHT RINGS AND

GELFAND–TSETLIN SEMIGROUPS

BENJAMIN J. HOWARD AND TYRRELL B. MCALLISTER

Abstract. A weight ring in type A is the coordinate ring of the GIT quotient of the
variety of flags in Cn modulo a twisted action of the maximal torus in SL(n, C). We
show that any weight ring in type A is generated by elements of degree strictly less
than the Krull dimension, which is at worst O(n2). On the other hand, we show that
the associated semigroup of Gelfand–Tsetlin patterns can have an essential generator of
degree exponential in n.
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1. Introduction

Given a pair λ, µ of weights for SLn(C) with λ dominant, let Vλ[µ] denote the µ-isotropic

component of the irreducible representation Vλ with highest weight λ. The weight ring

R(λ, µ) is the graded ring
⊕∞

N=0 VNλ[Nµ]; it is the projective coordinate ring of the GIT

quotient of the flag variety modulo the µ–twisted action of the maximal torus T in SLn(C).

We define the weight variety W (λ, µ) as

W (λ, µ) := ProjR(λ, µ).

Remark 1.0.1. Weight varieties for arbitrary reductive Lie groups (not just those of type A)

were studied by A. Knutson in his Ph.D. thesis [11]. Knutson also studied the symplectic

geometry of these spaces.

Our first theorem (Theorem 3.0.13 below) is that R(λ, µ) is generated in degree strictly

less than the Krull dimension of R(λ, µ), provided that the degree-one piece Vλ[µ] is nonzero.
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The basic idea behind the proof is to show that the degree-one piece contains a system of

parameters, and that the a-invariant of R(λ, µ) is negative. (The a-invariant is the degree

of the Hilbert series, which is a rational function.) The theorem then follows from the fact

that R(λ, µ) is Cohen–Macaulay.

Remark 1.0.2. The a-invariant is negative in all types; however, for types other than type A,

the degree-one piece sometimes fails to contain a system of parameters. This condition is

equivalent to the condition that all semistable flags lie in the supports of degree-one T-

invariants; see [9] for a counterexample in G = SO5(C).

It is well known (cf. [6,7,12]) that R(λ, µ) has a flat degeneration to the semigroup algebra

R′(λ, µ) of the semigroup of Gelfand–Tsetlin patterns associated to semistandard tableaux

of shape mλ and content mµ for m ≥ 0. In particular, the ring R′(λ, µ) is the graded ring

associated to a filtration of R(λ, µ) by natural numbers. Generators for R′(λ, µ) can be lifted

to generators of R(λ, µ), so one might hope that R′(λ, µ) is relatively simple. Unfortunately,

we find pairs λ, µ for which R′(λ, µ) has essential generators of degree exponential in n.

Our second main result (Theorem 5.0.16 below) is that, in the case where n = 3k is a

multiple of 3, the semigroup algebra R′(k̟3, 0) has an essential generator of degree approx-

imately (
√

2)n. This is in striking contrast to the lower bound of 2n− 8 for R(k̟3, 0) that

follows from our first theorem (since the Krull dimension of R(k̟3, 0) is 2n− 7). This case

is particularly interesting, because, via the Gelfand–MacPherson correspondence, it is the

moduli space of n-tuples of points in the projective plane. This is a remarkable example of

how a semigroup algebra produced by a promising toric degeneration can fail to serve as an

effective proxy for the original ring.

Our motivation for studying the semigroup of Gelfand–Tsetlin patterns was to imitate

the method of [10], which studied the case of n points on the projective line. Here one

takes λ to be a multiple of the second fundamental weight ̟2. It was shown in [10] that

the associated semigroup of Gelfand–Tsetlin patterns is generated in degree ≤ 2. We had

hoped to use the same method in the case of n points in the projective plane, but the

second theorem indicates why this is not the right approach. However, there might still

be another toric degeneration that yields a bound better than the one in Theorem 3.0.13,

perhaps among those discovered by Caldero [2].

Acknowledgments. We thank Harm Derksen, Ionut Ciocan-Fontanine, and Mircea Mustata

for their invaluable advice.

2. A description of the weight ring R(λ, µ)

In this section, we give an explicit description of R(λ, µ). Let n ≥ 2, and let B denote

the Borel subgroup of SLn(C) consisting of the upper-triangular matrices in SLn(C). Fix

a nontrivial dominant weight λ of SLn(C). We represent λ as a partition, i.e., as a weakly
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decreasing sequence (λ1, . . . , λn) of nonnegative integers, with λ1 ≥ 1 and λn = 0. Let µ

be a weight of SLn(C) such that Vλ[µ] is nonzero. Thus µ may be expressed as a sequence

(µ1, . . . , µn) of nonnegative integers such that
∑n

i=1 µi =
∑n

i=1 λi.

By the Borel–Weil construction, the irreducible representation with highest weight λ is

the finite-dimensional vector space

Vλ =
{

holomorphic f : SLn(C) → C | f(gb) = eλ(b)f(g) for all g ∈ SLn(C) and b ∈ B
}

,

where eλ(b) :=
∏n

i=1 bλi

ii for b = (bij)1≤i,j≤n ∈ B. The action of SLn(C) on Vλ is given by

(g · f)(h) = f(g−1h) for g, h ∈ SLn(C). We define

R(λ) :=

∞
⊕

N=0

VNλ.

Multiplication in R(λ) is the usual multiplication of functions SLn(C) → C.

Remark 2.0.3. As we will review in the next section, the dominant weight λ determines a line

bundle Lλ → SLn(C)/B such that the space Γ(SLn(C)/B, Lλ) of sections is isomorphic to

Vλ. The multiplication in R(λ) coincides with multiplication of the corresponding sections.

The ring R(λ) is the coordinate ring of the partial flag variety.

We define

Vλ[µ] := {f ∈ Vλ | f(tg) = eµ(t)f(g) for all t ∈ T, g ∈ SLn(C)}.

We now define a µ-twisted action of T ⊂ SLn(C) on R(λ). For f ∈ VNλ = R(λ)N of degree

N , the action of t ∈ T on f is given by

(t · f)(g) := eNµ(t)f(t−1g).

Relative to this twisted action, the T-invariant subring of R(λ) is exactly

R(λ, µ) :=
∞

⊕

N=0

VNλ[Nµ].

Remark 2.0.4. There is a unique SLn(C)-linearization of Lλ. This defines a canonical T-

linearization of Lλ by restriction T →֒ SLn(C). The above action of T coincides with the

canonical T-linearization twisted by µ.

A fundamental fact from the representation theory of SLn(C) is that Vλ has a basis

indexed by semistandard tableaux of shape λ. A Young diagram of shape λ is a left-

justified arrangement of λ1 + · · · + λn boxes with λi boxes in the ith row. For example, if

λ = (3, 3, 2, 1, 1, 0), then the Young diagram of shape λ is

.



4 BENJAMIN J. HOWARD AND TYRRELL B. MCALLISTER

A semistandard tableaux of shape λ is a filling of each box in a Young diagram of shape λ

with a number from 1 through n such that the rows are weakly increasing and the columns

are strictly increasing. For example, if λ = (3, 3, 2, 1, 1, 0) then

τ =

1 1 5
2 4 6
3 5
5
6

is a semistandard tableau of shape λ.

Such a tableau τ determines a basis vector bτ ∈ Vλ as follows. Write len(I) for the

length of a column I of τ . We identify I with the len(I)-tuple of its entries, read from top

to bottom. If I = (i1, . . . , ilen(I)), let detI : SLn(C) → C be the function that returns the

determinant of the len(I) × len(I) submatrix consisting of rows i1, . . . , ilen(I) and columns

1, 2, . . . , len(I). The basis vector bτ is then defined by

bτ :=
∏

columns I of τ

detI .

Hence, in the example above, bτ = det1,2,3,5,6 det1,4,5 det5,6.

We can also describe the T-isotropic subspace Vλ[µ] in terms of semistandard tableaux.

The content of a tableau τ is µ = (µ1, . . . , µn) if µi is the number of boxes in τ that contain

the number i for 1 ≤ i ≤ n. The subspace Vλ[µ] is the span of the bτ such that τ has shape

λ and content µ.

3. The first theorem: generators of R(λ, µ)

We will derive an upper bound on the degree in which R(λ, µ) is generated. We generally

follow the method of [14] (also explained in [3]). The idea is to find a homogeneous system

of parameters, together with an upper bound on the a-invariant of the ring; this yields an

upper bound on the degree of a generating set.

We begin by referencing a result of [9] and showing why this implies the existence of a

system of parameters in degree one. First we must introduce the notion of semistability.

Recall that B is the Borel subgroup of SLn(C), and SLn(C)/B is the flag variety. A function

f ∈ Vλ defines a section of the line bundle Lλ := SLn(C) ×B C → SLn(C)/B, where

SLn(C) ×B C denotes the quotient of SLn(C)× C by the equivalence relation (gb, eλ(b)z) ∼
(g, z). The projection Lλ → SLn(C)/B is given by sending the equivalence class of (g, z) to

gB. We define the µ-twisted linearization of T on Lλ by t · (g, z) := (t−1g, eµ(t)z). Given

f ∈ Vλ, we define a global section sf of Lλ by sf (gB) = (g, f(g)). The map f 7→ sf is an

isomorphism Vλ
∼= Γ(SLn(C)/B, Lλ). The µ-twisted torus action on Lλ defines an action

on global sections, which coincides with the µ-twisted action on Vλ that we earlier defined.

A flag gB is semistable if there is a positive integer N and a T-invariant global section s

of LNλ such that s(gB) 6= 0. That is, gB is semistable if and only if there is an N > 0 and
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an f ∈ VNλ[Nµ] such that f(g) 6= 0. It was shown in [9] that we may take N = 1. That is,

gB is semistable if and only if there exists an f ∈ Vλ[µ] such that f(g) 6= 0. We shall use

this fact to show that there is a system of parameters within Vλ[µ] for R(λ, µ).

We now recall some basic facts from commutative algebra. Our main references on Cohen–

Macaulay rings and modules are [1,13]. Let k be an algebraically closed field. Suppose that

A is a Z≥0-graded finitely-generated k-algebra with A0 = k. Let m denote the graded ideal

generated by the positive degree homogeneous elements of A. Then m is the unique graded

ideal such that all other graded ideals are contained within it. A homogeneous system of

parameters for A is a set of homogeneous elements x1, . . . , xs such that s is the Krull-

dimension of A and the ideal (x1, . . . , xs) is m-primary. By [1, Theorem 1.5.17] we have that

x1, . . . , xs is a homogeneous system of parameters if and only if A is an integral extension of

the subalgebra k[x1, . . . , xs], and that this is the case if and only if A is a finitely-generated

k[x1, . . . , xs]-module.

Let the null cone N be the subvariety of points in Spec R(λ) at which all positive-degree

homogeneous elements of R(λ, µ) vanish. The result of [9] translates into the following:

Proposition 3.0.5. The elements of Vλ[µ] suffice to cut out the null cone set-theoretically.

That is, N is exactly the set of points at which all elements of Vλ[µ] vanish.

Now suppose that I ⊂ R(λ) is the ideal of elements vanishing on the null cone. By the

above proposition, I is the radical closure in R(λ) of the ideal generated by Vλ[µ] ⊂ R(λ).

Recall that R(λ, µ) is the ring of polynomials in R(λ) that are invariant under the µ-twisted

action of T. Since T is linearly reductive, there is a canonical projection π : R(λ) → R(λ, µ),

called the Reynolds operator, which is R(λ, µ)-linear. Following Hilbert (cf. [3, Prop. 3.1]),

we have the following result.

Proposition 3.0.6. The invariant ring R(λ, µ) is a finitely-generated module over the sub-

algebra generated by Vλ[µ] ⊂ R(λ, µ).

Proof. Let J and S be the ideal and subalgebra, respectively, generated by Vλ[µ] in R(λ).

Then, since I = Rad(J), we have that Im ⊂ J for some m > 0. Since T is linearly reductive,

the invariant ring R(λ, µ) is finitely generated. Thus, there exist homogeneous y1, . . . , yt ∈
R(λ, µ) such that y1, . . . , yt generate R(λ, µ). Suppose that h1, . . . , hℓ span Vλ[µ]. We

have that each ym
i belongs to the ideal J , and so ym

i =
∑ℓ

j=1 fjhj for some homogeneous

fj ∈ R(λ). Now we apply the Reynolds’s operator π to obtain ym
i =

∑ℓ
j=1 π(fj)hj . Each

coefficient π(fj) is a homogeneous invariant of degree less than ym
i . It follows that R(λ, µ)

is generated as an S-module by monomials m =
∏t

i=1 yei

i , where each ei < m. There are

only a finite number of such monomials, proving the claim. �

We now have the following: (cf. Proposition 3.2 of [3])



6 BENJAMIN J. HOWARD AND TYRRELL B. MCALLISTER

Proposition 3.0.7. The degree-one piece Vλ[µ] of R(λ, µ) contains a homogeneous system

of parameters.

Proof. We already know from the previous proposition that R(λ, µ) is a finitely-generated

module over the subalgebra generated by its degree-one piece Vλ[µ]. Let s be the Krull

dimension of R(λ, µ). It is easy to show that s generic elements f1, . . . , fs in Vλ[µ] are

algebraically independent and that R(λ, µ) is an integral extension of C[f1, . . . , fs]. �

Proposition 3.0.8. The weight ring R(λ, µ) is Cohen–Macaulay.

Proof. The argument is the same as that given in [13, Corollary 14.25] to show that R(λ) is

Cohen–Macaulay. We know that R(λ, µ) has a Gröbner degeneration to a semigroup algebra

of Gelfand–Tsetlin patterns (see Section 4). Such semigroup algebras are the invariant

subrings of polynomial rings by the action of a torus (cf. [4]). By the theorem of Hochster [8],

the subring of torus invariants in a polynomial ring is Cohen–Macaulay. A general principle

regarding Gröbner degenerations is that any good property of the special fiber is shared by

the general fiber. This is true in particular for the Cohen–Macaulay property [13, Corollary

8.31]. �

Proposition 3.0.9. If f1, . . . , fs is a homogeneous system of parameters for R(λ, µ), then

R(λ, µ) is a free C[f1, . . . , fs]-module.

Proof. Since f1, . . . , fs are algebraically independent, the ring C[f1, . . . , fs] is regular, and

so this proposition follows from [1, Proposition 2.2.11]. �

For a graded module M , let H(M ; t) :=
∑∞

d=0 dim(Md) td denote the Hilbert series of

M . It is well known that, if M is finitely generated, then H(M ; t) is a rational function in

t. Let a(M) be the degree of H(M ; t) as a rational function. The number a(M) is called

the a-invariant of M .

Fix a homogeneous system of parameters f1, . . . , fs ∈ Vλ[µ] for R(λ, µ). Let S =

C[f1, . . . , fs] be the subalgebra generated by the fi. For brevity of notation, we will write

R := R(λ, µ). Let f denote the s-tuple f1, . . . , fs. By Theorems 13.37(5) and 13.37(6)

of [13], R is a free S-module, and

H(R/fR; t) = H(R; t)(1 − t)s.

But we can easily compute H(R/fR; t). Suppose that R = Sy1 ⊕ · · · ⊕ Sym. Let k :=

maxj(deg yj). Now, H(R/fR; t) is the polynomial p(t) =
∑k

i=0 hdt
d, where hd is the number

of yj such that deg yj = d. Therefore, we have proved the following.

Proposition 3.0.10. The ring R(λ, µ) is generated in degree ≤ k = dim R(λ, µ)+a(R(λ, µ)).

Proposition 3.0.11. The a-invariant of R(λ, µ) is negative.
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Proof. Let R := R(λ, µ). The dimension of the d-th graded piece Rd of R is equal to the

number of semistandard tableaux of shape dλ and content dµ; this coincides with the number

of integer lattice points in the d-th dilate of the rational polytope GT (λ, µ) (see Definition

4.0.14 below). As a result of the theory of lattice point enumeration for rational polytopes

(see, e.g., [15, Chapter 4]), we may conclude that the Hilbert series H(R; t) =
∑∞

d=0 f(d)td

is a rational function of negative degree. �

Remark 3.0.12. In fact, in all types, given a pair of weights λ, µ with λ dominant, the

dimension of the dµ-weight space in the irreducible representation Vdλ with highest weight

dλ equals the number of integer lattice points in the d-th dilate of a certain polytope (for

example the string polytope associated with the reduced word for the longest Weyl element).

And so, in all types, the a-invariant of weight rings is negative.

The above propositions imply our first theorem:

Theorem 3.0.13. The algebra R(λ, µ) is generated in degree strictly less than the Krull

dimension of R(λ, µ).

Proof. This follows immediately from Proposition 3.0.10 and Proposition 3.0.11. �

Finally, we point out that the Krull dimension of R(λ, µ) is one more than the dimension

of the GIT quotient of the flag variety by T. This is at most the dimension of the flag variety

itself, which is n(n − 1)/2. In the case of n points in projective space Pm−1, where λ is a

multiple of the m-th fundamental weight ̟m for SLn(C), the Krull dimension of R(λ, µ) is

at most n(m − 1) − (m2 − 1) + 1.

4. The toric degeneration to Gelfand–Tsetlin patterns

A Gelfand–Tsetlin pattern, or GT pattern, is a triangular array x = (xij)1≤i≤j≤n of real

numbers satisfying the interlacing inequalities xi,j+1 ≥ xij ≥ xi+1,j+1. We express x as a

triangular array by arranging the entries as follows:

x1n x2n x3n · · · xnn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x13 x23 x33

x12 x22

x11

Given a semistandard tableaux τ with entries from 1 through n, let τ(j) be the tableau

obtained from τ by deleting all boxes containing indices strictly larger than j. Hence,

τ(n) = τ . Let λ(j) denote the shape of τ(j). One obtains an integral GT pattern x(τ) =
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(x(τ)ij)1≤i≤j≤n by letting x(τ)ij = λ(j)i. If τ has shape λ and content µ = (µ1, . . . , µn),

then the resulting GT pattern x(τ) has top row λ, and, for 1 ≤ j ≤ n,

j
∑

i=1

x(τ)ij = µ1 + · · · + µj .

We denote this assignment by Φ: τ → x(τ). It is easy to see that it is a bijection from

semistandard tableaux of shape λ and content µ to integral GT patterns with top row λ

and row sums equal to the partial sums of µ. The GT patterns with a fixed top row and

fixed row sums constitute a rational polytope.

Definition 4.0.14. The GT polytope GT (λ, µ) is the set of real GT patterns (xij)1≤i≤j≤n

with top row λ and with row sums
∑j

i=1 xij = µ1 + · · · + µj for 1 ≤ j ≤ n.

Let S(λ, µ) denote the graded semigroup of integer GT patterns (under addition) that lie

in GT (Nλ, Nµ) for some nonnegative integer N . Gonciulea and Lakshmibai have described

a Gröbner degeneration of the ring R(λ) =
⊕∞

N=0 VNλ to a semigroup algebra R′(λ) as

the special fiber [7]. It was shown in [12] (and also in [13, Corollary 14.24]) that this

semigroup is isomorphic to the semigroup of integral GT patterns with top row Nλ for some

nonnegative integer N . This construction also applies to the subring R(λ, µ) by restricting

to T-invariants, as we now describe. See [6] for details.

The resulting degenerated ring R′(λ, µ) has the same underlying graded vector space as

R(λ, µ). The semistandard tableaux of shape Nλ and content Nµ, N > 0, index a basis

for R′(λ, µ)N . Let b′τ ∈ R′(λ, µ) denote the basis element indexed by τ . The basis element

b′τ is the leading term of bτ ∈ R(λ, µ) for a certain filtration of R(λ, µ) (see [7] and [6, 12]).

The filtration has the special property that, if τ1, τ2 are any two semistandard tableaux,

and if bτ1
bτ2

=
∑

τ cτbτ , where the sum is over semistandard tableaux, then the term

bΦ−1(x(τ1)+x(τ2)) appears on the right-hand side with coefficient equal to 1. Furthermore, all

other terms cτbτ have strictly smaller filtration level. Thus, in R′(λ, µ), the multiplication

rule becomes

b′τ1
b′τ2

= b′Φ−1(x(τ1)+x(τ2))
.

Therefore R′(λ, µ) is isomorphic to C[S(λ, µ)], the semigroup algebra of GT patterns under

addition of patterns.

Given an m-tuple of rational numbers q1, . . . , qm, define den(q1, . . . , qm) to be the least

positive integer N such that Nqi ∈ Z for each i, 1 ≤ i ≤ m. We call this the denominator of

the m-tuple. Now, if some vertex x of the polytope GT (λ, µ) has denominator N > 1, then

the integer point Nx is an essential generator of the semigroup C[S(λ, µ)], since x cannot

be written as a sum of other integral patterns in S(λ, µ). In the next section we show the

existence of such a vertex with large denominator for the case where n is a multiple of 3,

λ = n
3 ̟3, and µ = (1, 1, . . . , 1).
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5. The second theorem: 3k points on P2 and a nasty GT pattern

Suppose that n = 3k, where k ≥ 2 is an integer. Let λ = k̟3 be a multiple of the third

fundamental weight for SLn(C). Thus, as a partition, λ = (k, k, k, 0, . . . , 0) ∈ R3k. Now let

µ be the “democratic” weight dominated by λ. That is, we represent µ by the composition

(1, . . . , 1) ∈ R3k. With this choice of λ and µ, the projective variety ProjR(λ, µ) is the

moduli space of equally weighted 3k-tuples of points in projective space P
2 (see [5] for more

details).

We now construct a GT pattern that we claim will be a vertex of GT (λ, µ). Define the

sequences {T (1)
j } and {T (2)

j } by the coupled recurrence relations

(5.1)
T

(1)
0 = k T

(2)
0 = k − 1/2

T
(1)
j = T

(2)
j−1 − 1 (j ≥ 1) T

(2)
j =

1

2

(

T
(1)
j + T

(1)
j−1

)

(j ≥ 1).

Solving this system of recurrence relations yields the closed-form expressions

T
(1)
j = k − 2

3
j +

5

9

(−1

2

)j

− 5

9
(5.2)

T
(2)
j = k − 2

3
j − 5

18

(−1

2

)j

− 2

9
.(5.3)

Let N = k + ⌊k/2⌋− 2. We will construct a triangular array x by filling in the entries of

x in blocks from the upper left to the lower right using the values T
(1)
j and T

(2)
j . Begin by

filling the entries in the upper left of the triangular array as follows.

x1n x2n x3n

x1,n−1 x2,n−1 x3,n−1

x1,n−2 x2,n−2

x1,n−3

=

k k k

k k k − 1

k k − 1
2

k

We then proceed from the upper left to the lower right of the triangular array by filling in

blocks of entries as follows. For 1 ≤ j ≤ N − 1, let

x3,n−2j

x2,n−2j−1 x3,n−2j−1

x1,n−2j−2 x2,n−2j−2

x1,n−2j−3

=

T
(1)
j

T
(1)
j T

(1)
j

T
(2)
j T

(1)
j

T
(1)
j



10 BENJAMIN J. HOWARD AND TYRRELL B. MCALLISTER

·
·
·

T
(1)
N

1

T
(1)
N−1

T
(2)
N−1

2− T
(1)
N

k k − 1

k −
1
2

T
(2)
1

T
(1)
1

T
(1)
2

T
(2)
2

Figure 1. Tiling of x when k is even

If k is even, the final entries at the bottom of the array are filled in as follows.

x34

x23 x33

x12 x22

x11

=

T
(1)
N

T
(1)
N T

(1)
N

2 − T
(1)
N T

(1)
N

1

On the other hand, if k is odd, then the final entries are filled in as follows:

x35

x24 x34

x13 x23 x33

x12 x22

x11

=

T
(1)
N

T
(1)
N T

(1)
N

T
(1)
N T

(1)
N 3 − 2T

(1)
N

T
(1)
N 2 − T

(1)
N

1

All the remaining entries of the triangular array are assigned the value 0.
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Proposition 5.0.15. The triangular array constructed above is a vertex of GT (λ, µ) with

denominator 2N .

Proof. To show that x ∈ GT (λ, µ), we first check that x is a GT-pattern. In this case, the

interlacing inequalities to be verified are

T
(1)
j−1 > T

(1)
j > 0

T
(1)
j−2 > T

(2)
j−1 > T

(1)
j−1

}

for 2 ≤ j ≤ N ,

T
(1)
N−1 > 2 − T

(1)
N > T

(1)
N

2 − T
(1)
N > 1 > T

(1)
N

}

if k is even,

T
(1)
N > 3 − 2T

(1)
N > 0

T
(1)
N > 2 − T

(1)
N > 3 − 2T

(1)
N

T
(1)
N > 1 > 2 − T

(1)
N















if k is odd.

These are all straightforward consequences of the closed-form expressions (5.2) and (5.3)

for T
(1)
j and T

(2)
j , respectively, so x is a GT-pattern. Thus, to show that x ∈ GT (λ, µ), we

need only establish that the row-sums of x are correct. This amounts to showing that

T
(2)
j−1 + T

(1)
j−1 + T

(1)
j = 3k − 2j

T
(1)
j−1 + 2T

(1)
j = 3k − 2j − 1(5.4)

for 2 ≤ j ≤ N . These equalities may be shown using induction and the recursive definition

(5.1) of T
(1)
j and T

(2)
j . It is clear from equation (5.4) that T

(1)
j has denominator 2j when

written as a reduced fraction. Hence, x has denominator 2N , as claimed.

It remains only to show that x is a vertex of GT (λ, µ). We prove this by showing that,

for any triangular array ε, if x ± ε ∈ GT (λ, µ), then ε = 0. This is most easily seen by

partitioning the entries of x so that entries that are equal and adjacent are grouped together.

We call each group of entries in this partition a tile. See Figure 1 for a depiction of the case

when k is even. Each tile is labeled with the value shared by the entries that it contains.

Suppose that x ± ε ∈ GT (λ, µ). Note that, after the addition of ±ε, the entries in each

tile must still share a value, and the row-sums must be unchanged. We prove inductively

that the entries in each tile cannot have changed, proceeding from the upper left to the

lower right.

The entries in the tile labeled T
(1)
0 = k cannot have changed because the top row is fixed.

For the same reason, the 0 entries in x are also fixed. Proceeding by induction, the entries

in the tile labeled T
(1)
j cannot have changed because there is a row on which this is the only

tile besides the tile labeled T
(1)
j−1 and the tile of 0s, which have already been fixed. Hence,

the entries in all the tiles labeled T
(1)
j , 0 ≤ j ≤ N , are fixed under the addition of ±ε.
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Finally, for 1 ≤ j ≤ N − 1, the tile labeled T
(2)
j lies on a row in which the other entries,

T
(1)
j , T

(1)
j+1, and 0, have been shown to be fixed, so the entry in this tile is also fixed under

the addition ±ε. Therefore, we conclude that ε = 0, so that x is a vertex, as claimed. �

The following theorem is an immediate consequence.

Theorem 5.0.16. The Gelfand–Tsetlin algebra R′(k̟3, µ) has essential generators of de-

gree exceeding 2n/2−3.
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