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Abstract We prove localization and Zariski-Mayer-Vietoris for higher Gro-
thendieck-Witt groups, alias hermitian K-groups, of schemes admitting an
ample family of line-bundles. No assumption on the characteristic is needed,
and our schemes can be singular. Along the way, we prove Additivity, Fibra-
tion and Approximation theorems for the hermitian K-theory of exact cate-
gories with weak equivalences and duality.
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1 Introduction

A classical invariant of a scheme X is its Grothendieck-Witt group GW0(X)

of symmetric bilinear spaces over X. According to Knebusch [16, Sect. 4],
this is the Abelian group generated by isometry classes [V, ϕ] of vector
bundles V over X equipped with a non-singular symmetric bilinear form
ϕ : V ⊗OX

V → OX modulo the relations [(V, ϕ) ⊥ (V ′, ϕ′)] = [V, ϕ] +
[V ′, ϕ′] and [M, ϕ] = [H(N )] for every metabolic space (M, ϕ) with La-
grangian subbundle N = N ⊥ ⊂ M and associated hyperbolic space H(N ).
Grothendieck-Witt groups naturally occur in A

1-homotopy theory [19] and
are to oriented Chow groups what algebraic K-theory is to ordinary Chow
groups; see [3, 6, 11].

Using a hermitian version of Quillen’s Q-construction, we have defined in
[25] the higher Grothendieck-Witt groups GW i (X), i ∈ N, of a scheme X,
generalizing the group GW0(X). The purpose of this article is to prove the
following Mayer-Vietoris principle for open covers.

Theorem 1 Let X = U ∪V be a scheme with an ample family of line-bundles
(e.g., quasi-projective over an affine scheme, or regular separated noetherian)
which is covered by two open quasi-compact subschemes U,V ⊂ X. Then
there is a long exact sequence where i ∈ Z

· · ·GW i+1(U ∩ V ) → GW i (X)

→ GW i(U) ⊕ GW i (V ) → GW i (U ∩ V ) → GW i−1(X) · · ·
This is a special case of our Theorem 16 which also includes versions for

skew-symmetric forms, for forms with coefficients in line-bundles other than
OX and for certain non-commutative schemes. Note that we don’t need the
common assumption 1

2 ∈ �(X,OX), and X can be singular!
Theorem 1 is a consequence of two theorems, Localization and Zariski-

excision. To explain the implication, let X be a scheme, L a line bundle
on X, n ∈ Z an integer, and Z ⊂ X a closed subscheme with open com-
plement U . With this set of data, we associate in Definition 7 a topologi-
cal space GWn(X on Z,L) which, for Z = X, n = 0 and L = OX , yields



The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes 351

the Grothendieck-Witt space GW(X) introduced in [25] whose homotopy
groups are the higher Grothendieck-Witt groups GW i (X) in Theorem 1; see
Corollary 1. The space GWn(X on Z,L) is the Grothendieck-Witt space (as
in Definition 3) of an exact category with weak equivalences and duality,
namely, the exact category of bounded chain complexes of vector bundles
on X which are (cohomologically) supported in Z, equipped with the set of
quasi-isomorphisms as weak equivalences and duality E �→ Hom(E,L[n]),
where L[n] denotes the complex which is L in degree −n. If Z = X, we
write GWn(X,L) for GWn(X on Z,L). The non-negative part of Theorem
1 is a consequence of the following two theorems (proved in Theorems 10
and 11). They are extended to negative Grothendieck-Witt groups in Sect. 10
(Theorems 14 and 15).

Theorem 2 (Localization) Let X be a scheme with an ample family of line-
bundles, let U ⊂ X be a quasi-compact open subscheme with closed comple-
ment Z = X − U . Let L be a line bundle on X, and n ∈ Z an integer. Then
there is a homotopy fibration

GWn(X on Z,L) −→ GWn(X,L) −→ GWn(U, j∗L).

Theorem 3 (Zariski excision) Let j : U ⊂ X be quasi-compact open sub-
scheme of a scheme X which has an ample family of line-bundles. Let Z ⊂ X

be a closed subset such that Z ⊂ U . Then restriction of vector-bundles in-
duces a homotopy equivalence for all n ∈ Z and all line bundles L on X

GWn(X on Z,L)
∼−→ GWn(U on Z,j∗L).

Theorems 1–3 have well-known analogs in algebraic K-theory proved by
Thomason in [30] based on the work of Waldhausen [31] and Grothendieck
et al. [4]. In fact, our Theorems 10, 14, 11, 15 and 16—special cases of which
are Theorems 2, 3 and 1—are generalizations of the corresponding theo-
rems in Thomason’s work. More recently, Balmer [1] and Hornbostel [10]
proved results reminiscent of our Theorems 1–3. Both need X to be regular
noetherian and separated and they need 2 to be a unit in the ring of regu-
lar functions on X. Balmer works with (triangular) Witt-groups instead of
Grothendieck-Witt groups, and Hornbostel works with Karoubi’s hermitian
K-groups of rings extended to regular separated schemes using Jouanolou’s
device of replacing such a scheme by an affine vector-bundle torsor.

Neither Balmer’s nor Hornbostel’s methods can be generalized to cover
our Theorems 2, 3 and 1. This is because the assumption 1

2 ∈ �(X,OX)

is ubiquitous in their work, the analog of Theorem 1 for Balmer’s triangu-
lar Witt groups fails to hold for singular quasi-projective schemes (see [27]
for a counter example even with 1

2 ∈ �(X,OX)), Hornbostel imposes ho-
motopy invariance which doesn’t hold for singular schemes, and his proof
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uses Karoubi’s Fundamental Theorem [14] which fails to hold for higher
Grothendieck-Witt groups when 1

2 /∈ �(X,OX) (see [26] for a counter ex-
ample). Instead, we generalize Thomason’s work [30]. His proofs of the
K-theory analogs of Theorems 2, 3 and 1 are based on Waldhausen’s Fibra-
tion Theorem [31, 1.6.4] and on “invariance of K-theory under derived equiv-
alences” [30, Theorem 1.9.8] which itself is a consequence of Waldhausen’s
Approximation Theorem [31, 1.6.7]. We prove in Theorem 6 the analog of
Waldhausen’s Fibration Theorem for higher Grothendieck-Witt groups. Its
proof, however, is not a formal consequence of Additivity (proved for higher
Grothendieck-Witt groups in Sect. 3), contrary to the K-theory situation.
Our proof relies on the author’s cone construction in [25]. “Invariance under
derived equivalences” as well as the naive generalization of Waldhausen’s
Approximation Theorem fail to hold for higher Grothendieck-Witt groups
when “2 is not a unit” (see [26] for a counter example). We prove in Theo-
rems 8 and 9 versions of Waldhausen’s Approximation Theorem for higher
Grothendieck-Witt groups. Though not as general as one might wish, they
are enough to show Theorems 2, 3 and 1 and their generalizations in Sects. 9
and 10.

Prerequisites. The article can be read independently of [30] and [31],
though, of course, much of our inspiration derives from these two papers.
The reader is advised to have some background in homotopy theory in the
form of [8, I–IV] and in the theory of triangulated categories in the form of
[15, 20], [21, Sects. 1–2]. Also, we will frequently use results from [25].

2 The Grothendieck-Witt space

In this section we introduce the Grothendieck-Witt group and the Grothen-
dieck-Witt space of an exact category with weak equivalences and duality
(Definitions 1 and 3), and we show in Proposition 2 that the Grothendieck-
Witt space of an exact category with duality defined here is equivalent to the
one defined in [25]. We start with recalling definitions from [25]. Note that
our terminology (for “category with duality”, “duality preserving functor”)
sometimes differs from standard terminology as in [17, 23].

2.1 Categories with duality, Ch and form functors

A category with duality is a triple (C,∗, η) with C a category, ∗ : Cop → C a
functor, η : 1 → ∗∗ a natural transformation, called double dual identification,
such that 1A∗ = η∗

A ◦ ηA∗ for all objects A in C . If η is a natural isomorphism,
we say that the duality is strong. In case η is the identity (in which case
∗∗ = id), we call the duality strict.
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A symmetric form in a category with duality (C,∗, η) is a pair (X,ϕ) where
ϕ : X → X∗ is a morphism in C satisfying ϕ∗ηX = ϕ. A map of symmetric
forms (X,ϕ) → (Y,ψ) is a map f : X → Y in C such that ϕ = f ∗ ◦ ψ ◦ f .
Composition of such maps is composition in C . For a category with duality
(C,∗, η), we denote by Ch the category of symmetric forms in C . It has objects
the symmetric forms in C and maps the maps between symmetric forms.

A form functor from a category with duality (A,∗, α) to another such cat-
egory (B,∗, β) is a pair (F,ϕ) with F : A → B a functor and ϕ : F∗ → ∗F

a natural transformation, called duality compatibility morphism, such that
ϕ∗

AβFA = ϕA∗F(αA) for every object A of A. There is an evident defini-
tion of composition of form functors; see [25, 3.2]. The category Fun(A, B)

of functors A → B is a category with duality, where the dual F� of a func-
tor F is ∗F∗, and double dual identification ηF : F → F�� at an object A

of A is the map βF(A∗∗) ◦ F(αA) = F(αA)∗∗ ◦ βFA. To give a form func-
tor (F,ϕ) is the same as to give a symmetric form (F, ϕ̂) in the category
with duality Fun(A, B) in view of the formulas ϕA = F(αA)∗ ◦ ϕ̂A∗ and
ϕ̂A = ϕA∗ ◦ F(αA). A natural transformation (F,ϕ) → (G,ψ) of form func-
tors is a map (F, ϕ̂) → (G, ψ̂) of symmetric forms in Fun(A, B).

A duality preserving functor between categories with duality (A,∗, α) and
(B,∗, β) is a functor F : A → B which commutes with dualities and double
dual identifications, that is, we have F∗ = ∗F and F(α) = βF . In this case,
(F, id) is a form functor. We will consider duality preserving functors F as
form functors (F, id). Note that our use of the phrase “duality preserving
functor” may differ from its use by other authors!

2.2 Exact categories with weak equivalences

Recall that an exact category is an additive category E equipped with a fam-
ily of sequences of maps in E , called conflations (or admissible short exact
sequences, or simply exact sequences),

X
i→ Y

p→ Z

satisfying a list of axioms; see [22], [15, Sect. 4], [25, 2.1]. The map i in an
exact sequence is called inflation (or admissible monomorphism) and may be
depicted as �, and the map p is called deflation (or admissible epimorphism)
and may be depicted as � in diagrams. Unless otherwise stated, all exact
categories in this article will be (essentially) small.

An exact category with weak equivalences is a pair (E ,w) with E an exact
category and w ⊂ Mor E a set of morphisms, called weak equivalences, which
contains all identity morphisms, is closed under isomorphisms, retracts, push-
outs along inflations, pull-backs along deflations, composition and the 2 out
of three property for composition (if 2 of the 3 maps among a, b, ab are
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in w then so is the third). A weak equivalence is usually depicted as ∼→ in
diagrams. A functor F : A → B between exact categories with weak equiva-
lences (A,w) and (B,w) is called exact if it sends conflations to conflations
and weak equivalences to weak equivalences.

For an exact category with weak equivalences (E ,w), we will write wE
for the subcategory of weak equivalences in E . Its objects are the objects of E
and its maps the maps in w. Also, we will regard an exact category E (without
specifying weak equivalences) as an exact category with weak equivalences
(E , i) where i is the set of isomorphisms in E .

2.3 Witt and Grothendieck-Witt groups of exact categories with weak
equivalences and duality

An exact category with weak equivalences and duality is a quadruple
(E ,w,∗, η) with (E ,w) an exact category with weak equivalences and
(E ,∗, η) a category with duality such that ∗ : (E op,w) → (E ,w) is an exact
functor (in particular, ∗(w) ⊂ w) and η : id → ∗∗ is a natural weak equiva-
lence, that is, ηX ∈ w for all objects X in E . We may simply say E or (E ,w)

is an exact category with weak equivalences and duality if the remaining data
are understood. Note that if E is an exact category with weak equivalences
and duality, the category wE of weak equivalences in E is a category with
duality.

A symmetric form (X,ϕ) in (E ,w,∗, η) is called non-singular if ϕ is a
weak equivalence. In this case, we call the pair (X,ϕ) a symmetric space
in (E ,w,∗, η). A form functor (F,ϕ) : (A,w,∗, η) → (B,w,∗, η) is called
exact if F : (A,w) → (B,w) is exact. It is called non-singular, if the duality
compatibility morphism ϕ : F∗ → ∗F is a natural weak equivalence.

An exact category with duality is an exact category with weak equivalences
and duality where the set of weak equivalences is the set of isomorphisms. In
particular, the double dual identification has to be a natural isomorphism.

Definition 1 The Grothendieck-Witt group

GW0(E ,w,∗, η)

of an exact category with weak equivalences and duality (E ,w,∗, η) is the
free Abelian group generated by isomorphism classes [X,ϕ] of symmetric
spaces (X,ϕ) in (E ,w,∗, η), subject to the following relations

(a) [X,ϕ] + [Y,ψ] = [X ⊕ Y,ϕ ⊕ ψ]
(b) if g : X → Y is a weak equivalence, then [Y,ψ] = [X,g∗ψg], and
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(c) if (E•, ϕ•) is a symmetric space in the category of exact sequences in E ,
that is, a map

E• :
ϕ•�

E−1
i

ϕ−1�

E0

p

ϕ0�

E1

ϕ1�

E∗• : E∗
1

p∗
E∗

0
i∗

E∗−1

of exact sequences with (ϕ−1, ϕ0, ϕ1) = (ϕ∗
1η,ϕ∗

0η,ϕ∗−1η) a weak equiv-
alence, then

[E0, ϕ0] =
[
E−1 ⊕ E1,

(
0 ϕ1

ϕ−1 0

)]
.

Remark 1 If in Definition 1, the set of weak equivalences is the set of iso-
morphisms, then we recover the classical Grothendieck-Witt group of an
exact category with duality; see for instance [25, 2.2]. In this case, rela-
tion (c) says that the class [E0, ϕ0] of a metabolic space (E0, ϕ0) with La-
grangian i : E−1 � E0 is equivalent in the Grothendieck-Witt group to the
class of the hyperbolic space H(E−1) of the Lagrangian E−1. In particular,
if E is the category Vect(X) of vector bundles on X, ∗ is the duality functor
E �→ Hom(E,OX) and η is the usual canonical double dual identification,
the group GW0(E , i,∗, η) is Knebusch’s Grothendieck-Witt group GW0(X)

of a scheme X, denoted L(X) in [16].

Definition 2 The Witt group

W0(E ,w,∗, η)

of an exact category with weak equivalences and duality (E ,w,∗, η) is the
free Abelian group generated by isomorphism classes [X,ϕ] of symmetric
spaces (X,ϕ) in (E ,w,∗, η), subject to the relations (a), (b) in Definition 1
and

(c′) if (E•, ϕ•) is a symmetric space in the category of exact sequences in
(E ,w,∗, η), then [E0, ϕ0] = 0.

The hermitian S•-construction of [29], [12, 1.5], which gives rise to the
Grothendieck-Witt space in Definition 3, is the edgewise subdivision of Wald-
hausen’s S•-construction [31]. We review the relevant definitions and start
with the edgewise subdivision of a simplicial object; see [31, 1.9 Appendix],
[28, Appendix 1].
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2.4 Edgewise subdivision

Let 	 be the category with objects [n], n ∈ N, the totally ordered sets [n] =
{0 < 1 < · · · < n} and morphisms all order preserving maps. Let n be the
totally ordered set

n = {n′ < (n − 1)′ < · · · < 0′ < 0 < · · · < n}.
It is (uniquely) isomorphic to [2n + 1]. The assignment T : [n] �→ n de-
fines an endo-functor 	 → 	 where a map θ : [n] → [m] is sent to the map
T (θ) : n → m given by p �→ θ(p),p′ �→ θ(p)′. For a simplicial object X•,
the edge-wise subdivision Xe• of X• is the simplicial object X• ◦ T . The in-
clusion [n] ↪→ n : i �→ i defines a map Xe → X of simplicial objects. It is
known [28, Appendix 1] that for a simplicial set X•, the topological realiza-
tion of X• and of its edge-wise subdivision Xe• are homeomorphic. We need
the following (well-known) variant.

Lemma 1 For any simplicial set X•, the map Xe• → X• is a homotopy equiv-
alence.

Proof Let X• be a simplicial set. For a small category C , write XC for the set
Hom(N∗C,X•) of simplicial maps from the nerve N∗C of C to X•. Note that
Xe is the simplicial set [n] �→ Xn. We define bisimplicial sets Xe•• and X••
by the formulas Xe

m,n = Xm×[n] and Xm,n = X[m]×[n]. Consider the following
diagram of bisimplicial sets

Xe
0•

∼

�

Xe•• Xe
•0

∼

X0•
∼

X•• X•0
∼

in which the horizontal maps are the canonical inclusions of horizontally re-
spectively vertically constant bisimplicial sets, and the vertical maps are in-
duced by the inclusions [m] ⊂ m. Once we show that all arrows labeled ∼→
are homotopy equivalences, we are done, because the right vertical map can
be identified with Xe• → X•.

The left vertical map Xe
0• → X0• is a homotopy equivalence since it can

be identified with the map XI• → X• which is evaluation at 0, where I is
the standard simplicial interval I = N∗0 ∼= N∗[1]. In order to see that the
upper right horizontal map Xe

•0 → Xe•• is a homotopy equivalence, it suf-
fices to prove that for every n, the map Xe

•0 → Xe•n is a homotopy equiva-
lence of simplicial sets. Since the map [0] → [n] : 0 �→ 0 induces a retraction
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Xe•n → Xe
•0, we have to show that the composition Xe•n → Xe

•0 → Xe•n is ho-
motopic to the identity. The unique natural transformation from the constant
functor [n] → [n] : i �→ 0 to the identity functor [n] → [n] defines a functor
h : [1] × [n] → [n] such that the restrictions to {i} × [n] → [n], i = 0,1 are
the constant respectively the identity functor. We have a map of simplicial
sets

I e × Xe•n → Xe•n (1)

which in degree m sends the pair (ξ, f ) ∈ Im × Xm×[n] to the composition

N∗(m × [n]) (1,ξ)×1−→ N∗(m × [1] × [n]) (1×h)−→ N∗(m × [n]) f−→ X•.

Since the two points {0,1} = {0,1}e ⊂ I e are path connected in I e, the map
(1) defines the desired homotopy. The other horizontal homotopy equiva-
lences in the diagram are similar, and we omit the details. �

2.5 Waldhausen’s S•-construction

We recall Waldhausen’s S•-construction [31, Sect. 1.3]. Let Ar[n] denote
the category whose objects are the arrows of the category [n] = {0 < 1 <

· · · < n} and whose morphisms are the commutative squares in [n]. For an
exact category with weak equivalences (E ,w), Waldhausen defines SnE ⊂
Fun(Ar[n], E ) as the full subcategory of the category Fun(Ar[n], E ) of func-
tors

A : Ar[n] → E : (p ≤ q) �→ Ap,q

for which Ap,p = 0 and Ap,q � Ap,r � Aq,r is a conflation whenever
p ≤ q ≤ r , p,q, r ∈ [n]. The category SnE is an exact category with weak
equivalences where a sequence A → B → C of functors Ar[n] → E in SnE
is exact if Ap,q � Bp,q � Cp,q is exact in E , and a map A → B of functors
in SnE is a weak equivalence if Ap,q → Bp,q is a weak equivalence in E for
all p ≤ q ∈ [n].

The cosimplicial category n �→ Ar[n] makes the assignment n �→ SnE into
a simplicial exact category with weak equivalences. According to [30, 31],
the K-theory space K(E ,w) of an exact category with weak equivalences
(E ,w) is the space

K(E ,w) = 
|wS•E |.
2.6 The hermitian S•-construction

The category [n] has a unique structure of a category with strict duality
[n]op → [n] : i �→ n − i. This induces a strict duality on the category Ar[n]
of arrows in [n]. For an exact category with weak equivalences and duality
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(E ,w,∗, η), the category Fun(Ar[n], E ) is therefore a category with duality
(see Sect. 2.1). This duality preserves the subcategory SnE ⊂ Fun(Ar[n], E ),
and makes SnE into an exact category with weak equivalences and duality. It
turns out that the simplicial structure maps of n �→ SnE are not compatible
with dualities. However, its edgewise subdivision

Se• E : n �→ Se
nE = S2n+1E

is a simplicial exact category with weak equivalences and duality; the simpli-
cial structure maps being duality preserving. Considering Se

nE as a full sub-
category of Fun(Ar(n), E ), the dual A∗ of an object A : Ar(n) → E satisfies
(A∗)p,q = A∗

q ′,p′ for p ≤ q ∈ n with the understanding that p′′ means p. The
double dual identification A → A∗∗ at (p ≤ q) is ηAp,q .

2.7 The Grothendieck-Witt space

Definition 3 Let (E ,w,∗, η) be an exact category with weak equivalences
and duality. By Sect. 2.6, the assignment n �→ Se

nE defines a simplicial exact
category Se• E with weak equivalences and duality. The subcategories of weak
equivalences define a simplicial category with duality n �→ wSe

nE . Taking as-
sociated categories of symmetric forms (see Sect. 2.1), we obtain a simplicial
category (wSe• E )h.

The composition (wSe• E )h → wSe• E → wS•E of simplicial categories, in
which the first arrow is the forgetful functor (X,ϕ) �→ X, and the second is
the canonical map Xe• → X• of simplicial objects (see Sect. 2.4), yields a map
of classifying spaces

|(wSe• E )h| → |wS•E | (2)

whose homotopy fibre (with respect to a zero object1 of E as base point of
wS•E ) is defined to be the Grothendieck-Witt space

GW(E ,w,∗, η)

of (E ,w,∗, η). If (∗, η) are understood, we may simply write GW(E ,w) in-
stead of GW(E ,w,∗, η). We define the higher Grothendieck-Witt groups of
(E ,w,∗, η) as the homotopy groups

GW i (E ,w,∗, η) = πiGW(E ,w,∗, η), i ≥ 1,

and show in Proposition 3 below that π0GW(E ,w,∗, η) ∼= GW0(E ,w,∗, η).
Therefore, our definition here extends that in Definition 1.

1We assume that every exact category comes with a choice of a zero object and exact functors
are to preserve that choice.
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Remark 2 Orthogonal sum makes the spaces (wSe• E )h and GW(E ,w,∗, η)

into commutative H -spaces. Since the commutative monoid of connected
components of these spaces are groups (see Proposition 3 and Remark 5 be-
low), both spaces are actually commutative H -groups.

2.8 Functoriality

A non-singular exact form functor (F,ϕ) : (A,w,∗, η) → (B,w,∗, η) be-
tween exact categories with weak equivalences and duality induces maps

(F,ϕ) : (wSe• A)h → (wSe• B)h : (A,α) �→ (FA,ϕAF(α)), and

F : wS•A → wS•B : A �→ FA

of simplicial categories compatible with composition of form functors. Tak-
ing homotopy fibres of (wSe•)h → wS•, we obtain an induced map

GW(F,ϕ) : GW(A,w,∗, η) → GW(B,w,∗, η)

of associated Grothendieck-Witt spaces. For the next lemma, recall that a nat-
ural transformation of form functors (F,ϕ) → (G,ψ) is a map of associated
symmetric forms in Fun(A, B). It is a natural weak equivalence if FA → GA

is a weak equivalence for all objects A of A.

Lemma 2 Let (F,ϕ)
∼→ (G,ψ) be a natural weak equivalence of non-

singular exact form functors (A,w,∗, η) → (B,w,∗, η) between exact cate-
gories with weak equivalences and duality. Then, on associated Grothendieck-
Witt spaces, (F,ϕ) and (G,ψ) induce homotopic maps GW(A,w,∗, η) →
GW(B,w,∗, η).

Proof The natural weak equivalence (F,ϕ)
∼→ (G,ψ) induces natural trans-

formations of functors (wSe
nA)h → (wSe

nB)h and wSnA → wSnB. These
natural transformations define functors [1] × (wSe

nA)h → (wSe
nB)h and

[1] × wSnA → wSnB whose restrictions to 0,1 ∈ [1] are the two given func-
tors. They are compatible with the simplicial structure and induce, after topo-
logical realization, the homotopy between GW(F,ϕ) and GW(G,ψ). �

2.9 Hyperbolic categories

We will associate to every exact category with weak equivalences (E ,w)

a category with weak equivalences and duality (H E ,w) such that the
Grothendieck-Witt space of (H E ,w) is equivalent to the K-theory space of
(E ,w). In this sense, Grothendieck-Witt theory is a generalization of alge-
braic K-theory.
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Let C be a category. Its hyperbolic category is the category with strict dual-
ity H C = (C × Cop,∗) where (X,Y )∗ = (Y,X). For any category with duality
A there is a functor Ah → A : (X,ϕ) �→ X that “forgets the forms”. We de-
fine the functor (H C)h → C as the composition of the functor (H C)h → H C
and the projection H C = C × Cop → C onto the first factor.

Lemma 3 For any small category C , the functor (H C)h → C is a homotopy
equivalence.

Proof The category (H C)h of symmetric forms in H C is isomorphic to the
category whose objects are maps f : X → Y in C and where a map from f

to f ′ : X′ → Y ′ is a pair of maps a : X → X′, b : Y ′ → Y in C such that
f = bf ′a. Composition is composition in C of the a’s and b’s. The functor
(H C)h → C in the lemma sends the object f : X → Y to X and the map
(a, b) to a. Write F for this functor, and let A be an object of the target
category C . We will show that the comma categories (A ↓ F) are contractible.
By Quillen’s Theorem A [22, Sect. 1], this implies the lemma.

The category (A ↓ F) has objects sequences A
x→ X

f→ Y of maps in C .

A morphism from (x, f ) to A
x′→ X′ f ′

→ Y ′ is a pair a : X → X′, b : Y ′ → Y

of maps in C such that x′ = ax and f = bf ′a. In particular, the category
(A ↓ F) is non-empty as (1A,1A) is one of its objects. Let C0 ⊂ (A ↓ F)

be the full subcategory of objects (x, f ) with x = 1A. The inclusion has a
right adjoint (A ↓ F) → C0 : (x, f ) �→ (1A,f x) with counit of adjunction
(1A,f x) → (x, f ) given by the pair of maps x : A → X and 1 : Y → Y . It
follows that the inclusion C0 ⊂ (A ↓ F) is a homotopy equivalence. Since
the category C0 has a terminal object, namely (1A,1A), the categories C0 and
(A ↓ F) are contractible. �

If (E ,w) is an exact category with weak equivalences, we make H E into an
exact category with weak equivalences and (strict) duality by declaring a map
(a, b) : (X,Y ) → (X′, Y ′) in H E to be a weak equivalence if a : X → X′ and
b : Y ′ → Y are weak equivalences in E . Note that wH E = HwE as categories
with strict duality.

Proposition 1 Let (E ,w) be an exact category with weak equivalences, then
there is a natural homotopy equivalence

GW(H E ,w) � K(E ,w).
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Proof Consider the commutative diagram of simplicial categories

(wSe• H E )h
=

(HwSe• E )h

∼

wSe• H E =
�

wSe• E × (wSe• E )op

�
p1

wSe• E

�

wS•H E
=

wS•E × (wS•E )op
p1

wS•E

where the upper vertical maps are the functors that “forget the forms”. The
lower vertical maps are induced by the inclusion [n] ↪→ n and are thus ho-
motopy equivalences, by Lemma 1. The diagonal map is a homotopy equiv-
alence by Lemma 3. By the “octahedron axiom” for homotopy fibres ap-
plied to the upper right triangle, it follows that the homotopy fibre of the
composition of the left vertical maps is equivalent to the loop space of the
fibre of p1 : wS•E × (wS•E )op → wS•E which is the loop of the fibre of
(wS•E )op → (point) which is K(E ,w). �

Remark 3 Let (E ,w,∗, η) be an exact category with weak equivalences and
duality. The functor

F : (E ,w,∗, η) → (H E ,w) : X �→ (X,X∗)

together with (1, ηX) : (X∗,X∗∗) → (X∗,X) as duality compatibility mor-
phism is called forgetful form functor. It is a non-singular exact form func-
tor between exact categories with weak equivalences and duality. The map
(wSe• E )h → wS•E defining the Grothendieck-Witt space factors as

(wSe• E )h
F→ (wSe• H E )h

∼→ wS•E ,

where the second map is the homotopy equivalence in the diagram of the
proof of Proposition 1 (going right, diagonally and down). It follows that the
Grothendieck-Witt space GW(E ,w,∗, η) is naturally homotopy equivalent to
the homotopy fibre of

(wSe• E )h
F→ (wSe• H E )h.

2.10 The hermitian Q-construction

We finish the section with a comparison result between the definition of
the Grothendieck-Witt space of an exact category with duality (E , i,∗, η) in
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terms of the hermitian S•-construction and the definition given in [25, Defin-
ition 4.4] in terms of the hermitian Q-construction. We begin with recalling
the relevant definitions.

Recall from [22] that for an exact category E its Q-construction is the
category with objects the objects of E and maps X → Y equivalence classes
of diagrams

X
p
� U

i
� Y (3)

with p a deflation and i an inflation. The datum (U, i,p) is equivalent
to (U ′, i ′,p′) if there is an isomorphism g : U → U ′ in E such that
p = p′ ◦ g and i = i′ ◦ g. The composition in QE of maps X → Y and
Y → Z represented by the data (U, i,p) and (V , j, q) is given by the datum
(U ×Y V,pq̄, j ī) where q̄ : U ×Y V → U and ī : U ×Y V → V are the
canonical projections to U and V , respectively.

For an exact category with duality (E ,∗, η), the hermitian Q-construction
is the category Qh(E ,∗, η) with objects the symmetric spaces (X,ϕ) in E . A
map (X,ϕ) → (Y,ψ) is a map X → Y in Quillen’s Q-construction, that is, an
equivalence class of diagrams (3), such that the square of maps p, i, p∗ϕ and
i∗ψ is commutative and biCartesian. Composition of maps is as in Quillen’s
Q-construction. For more details, we refer the reader to [25, Definition 4.1]
and the references in [25, Remark 4.2].

In [25, Definition 4.4], we defined the Grothendieck-Witt space of (E ,∗, η)

as the homotopy fibre of the forgetful functor QhE → QE : (X,ϕ) �→ X. The
following proposition reconciles this definition with the one given in Defini-
tion 3. This allows us to freely use the results proved in [25].

Proposition 2 For an exact category with duality (E ,∗, η), there are nat-
ural zigzags of homotopy equivalences between |QhE | and |(iSe• E )h| and
between the homotopy fibre of the forgetful functor |QhE | → |QE | and the
Grothendieck-Witt space of Definition 3.

Proof For the first homotopy equivalence, the proof is the same as in [31, 1.9
Appendix]. In detail, let iQh• E be the simplicial category which in degree n

is the category iQh
nE whose objects are sequences X0 → X1 → ·· · → Xn

of maps in QhE and a map in iQh
nE is an isomorphism of such sequences.

As n varies, iQh
nE defines a simplicial category where face and degeneracy

maps are defined as in the usual nerve construction. The nerve of iQh• E as a
bisimplicial set is isomorphic to the nerve of the simplicial category which in
degree m are the sequences X0 → X1 → ·· · → Xm of isomorphisms in QhE
and where maps are maps of sequences in QhE (which are not necessarily
isomorphisms). The latter simplicial category is degree-wise equivalent to
QhE (via the embedding of QhE as the constant sequences). Thus the latter
simplicial category (and therefore also iQh• E ) is homotopy equivalent to QhE .
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Every object (Ap,q)p≤q ∈ n in (Se
nE )h defines a string of maps

A0′,0 → A1′,1 → ·· · → An′,n

in QhE . This defines a map (iSe• E )h → iQh• E of simplicial categories which
is degree-wise an equivalence. Therefore, this map defines a homotopy equiv-
alence on topological realizations.

For the second homotopy equivalence, consider the commutative diagram
of topological spaces

|(iSe• E )h| |(iSe• E )h|1 ∼ |iQh• E | |QhE |∼

|iS•E | |iSe• E |∼ ∼ |iQ•E | |QE |∼

in which the lower right two horizontal maps are defined in a similar way as
their hermitian analogs above them (see [31, 1.9 Appendix]), the three right
vertical maps are “forgetful” functors and all maps labeled ∼→ are homotopy
equivalences. It follows that the homotopy fibre of the first vertical map is
equivalent to the homotopy fibre of the last vertical map. �

3 Additivity theorems

Additivity theorems are fundamental in algebraic K-theory. They imply, for
instance, Waldhausen’s Fibration Theorem [31, 1.6.4] which is the basis for
the K-theory version of Theorem 2. In this section, we prove the analogs of
Additivity for higher Grothendieck-Witt theory. In order to formulate them,
we recall the concept of “admissible short complexes” from [25, Sect. 7].

3.1 Admissible short complexes and their homology

Let (E ,w,∗, η) be an exact category with weak equivalences and duality.
A short complex in E is a complex

A• : 0 → A1
d1→ A0

d0→ A−1 → 0 (d0 ◦ d1 = 0) (4)

in E concentrated in degrees −1,0,1. It is admissible if d1 and d0 are infla-
tion and deflation, respectively, and the map A1 → ker(d0) (or equivalently
coker(d1) → A−1) is an inflation (deflation). A sequence A• → B• → C•
of admissible short complexes is exact if Ai → Bi → Ci is exact in E ;
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a map A• → B• is a weak equivalence if Ai → Bi is a weak equivalence
in E , i = −1,0,1. The dual of the complex (4) is the (admissible short)
complex

A∗−1

d∗
0→ A∗

0

d∗
1→ A∗

1,

and the double dual identification ηA• : A• → (A•)∗∗ is ηAi
in degrees

i = −1,0,1. We denote by ( sCx(E ),w,∗, η) the exact category with weak
equivalences and duality of admissible short complexes in E .

If (A•, α•) is a symmetric form in sCx(E ), we write H0(A•, α•) for its
zeroth homology symmetric form. It has H0(A•) = ker(d0)/im(d1) as under-
lying object and is equipped with the form ᾱ which is the unique symmetric
form such that ᾱ|ker(d0) = α|ker(d0). This makes H0 : sCx(E ) → E into a non-
singular exact form functor for every exact category with weak equivalences
and duality E . For more details, we refer the reader to [25, Sect. 7].

In the special case of an exact category with duality (where all weak
equivalences are isomorphisms), the following two theorems were proved
in [25, Theorems 7.1, 7.2]. The K-theory version is due to Waldhausen
in [31, Theorem 1.4.2 and Proposition 1.3.2], in view of the equivalence
Se

1 E → sCx(E ) : A �→ (A1′0′ → A1′1 → A01) of exact categories with weak
equivalences and duality.

Theorem 4 (Additivity for short complexes) Let (E ,w,∗, η) be an exact cat-
egory with weak equivalences and duality. Then the non-singular exact form
functor H0 : sCx(E ) → E together with the exact functor ev1 : sCx(E ) → E :
A• �→ A1 induce homotopy equivalences (H0, ev1):

(wSe• sCx E )h
∼−→ (wSe• E )h × wS•E ,

GW( sCx E ,w,∗, η)
∼−→ GW(E ,w,∗, η) × K(E ,w).

For the next theorem, recall that a form functor (A,∗, η) → (B∗, η) be-
tween categories with duality is nothing else than a symmetric form (F,ϕ) in
the category with duality of functors (Fun(A, B), �, η); see Sect. 2.1.

Theorem 5 (Additivity for functors) Let (A,w,∗, η) and (B,w,∗, η) be ex-
act categories with weak equivalences and duality. Given a non-singular exact
form functor (F•, ϕ•) : (A,w,∗, η) → sCx(B,w,∗, η), that is, a commuta-
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tive diagram of exact functors Fi : (A,w) → (B,w)

F• :
ϕ•�

F1

d1

ϕ1�

F0

d0

ϕ0�

F−1

ϕ−1�

F
�• : F

�
−1

d
�
0

F
�
0

d
�
1

F
�
1

with d0d1 =0, F1 � kerd0 an inflation, and (ϕ1, ϕ0, ϕ−1)= (ϕ
�
−1η,ϕ

�
0η,ϕ

�
1η).

Then the two non-singular exact form functors

(F0, ϕ0) and H0(F•, ϕ•) ⊥
(

F1 ⊕ F−1,

(
0 ϕ−1
ϕ1 0

))
(5)

induce homotopic maps on Grothendieck-Witt spaces

GW(A,w,∗, η) → GW(B,w,∗, η).

We will reduce the proofs of the Additivity Theorems 4 and 5 to the case
of exact categories with dualities dealt with in [25, Sect. 7]. This will be done
with the help of the Simplicial Resolution Lemma 5 below. For that, we need
to replace an exact category with weak equivalences and duality (where the
double dual identification is a natural weak equivalence) by one with a strong
duality (where the double dual identification is a natural isomorphism) with-
out changing its hermitian K-theory. This will be done in the strictification
Lemma 4 below.

We introduce notation for Lemma 4. Let ExWeDu be the category of small
exact categories with weak equivalences and duality; and non-singular exact
form functors as maps. Recall that a category with duality (A,∗, η) has a strict
duality if η = id (and in particular, ∗∗ = id). Let ExWeDustr be the category of
small exact categories with weak equivalences and strict duality; and duality
preserving functors as maps. Write lax : ExWeDustr ⊂ ExWeDu for the natural
inclusion.

Lemma 4 (Strictification lemma) There is a (strictification) functor

str : ExWeDu → ExWeDustr : (A,w,∗, η) �→ (Astr
w ,w, �, id)

and natural transformations (�,σ) : id → lax◦ str and (�,λ) : lax◦ str → id
such that the compositions (�,σ) ◦ (�,λ) and (�,λ) ◦ (�,σ) are weakly
equivalent to the identity form functor. In particular, for any exact category
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with weak equivalences and duality (A,w,∗, α), we have a homotopy equiv-
alence of Grothendieck-Witt spaces

GW(�,σ) : GW(A,w,∗, α)
∼−→ GW(Astr

w ,w, �, id).

Proof The construction of the strictification functor is as follows. Let
(A,w,∗, α) be an exact category with weak equivalences and duality.
The objects of Astr

w are triples (A,B,f ) with A, B objects of A and
f : A

∼→ B∗ a weak equivalence in A. A morphism from (A0,B0, f0) to
(A1,B1, f1) is a pair (a, b) of morphisms a : A0 → A1 and b : B1 → B0
in A such that f1a = b∗f0. Composition is composition of the a’s and
b’s in A. A map (a, b) is a weak equivalence if a and b are weak equiv-
alences in A. A sequence (A0,B0, f0) → (A1,B1, f1) → (A2,B2, f2) is
exact if A0 → A1 → A2 and B2 → B1 → B0 are exact in A. The dual-
ity � : (Astr

w )op → Astr
w is defined by (A,B,f : A → B∗)� = (B,A,f ∗αB)

on objects, and by (a, b)� = (b, a) on morphisms. The double dual identifi-
cation is the identity natural transformation. The category thus constructed
Astr

w = (Astr
w ,w, �, id) is an exact category with weak equivalences and strict

duality. We may write Astr, or Astr
w for (Astr

w ,w, �, id) if the remaining data
are understood. If (F,ϕ) : (A,w,∗, α) → (B, v,∗, β) is a non-singular ex-
act form functor, its image under the strictification functor is the functor
F str : Astr

w → Bstr
v given by F str : (A,B,f ) �→ (FA,FB,ϕBF(f )) on ob-

jects, and by (a, b) �→ (Fa,Fb) on morphisms. One checks that F str pre-
serves composition and commutes with dualities.

The natural transformations (�,σ) : id → lax ◦ str and (�,λ) : lax ◦ str →
id are defined as follows. The functor � : A → Astr

w sends an object A to
(A,A∗, αA) and a morphism a to (a, a∗). The duality compatibility mor-
phism σ : �(A∗) → �(A)� is the map (1, αA) : (A∗,A∗∗, αA∗) → (A∗,A,1).
The functor � : Astr → A sends the object (A,B,f ) to A and a mor-
phism (a, b) to a, and is equipped with the duality compatibility morphism
λ : �[(A,B,f )�] → [�(A,B,f )]∗ the map f ∗αB : B → A∗.

The composition (�,σ) ◦ (�,λ) sends (A,B,f ) to (A,A∗, αA) and
a morphism (a, b) to (a, a∗). It is equipped with the duality compatibil-
ity morphism (f ∗αB,f ) : (B,B∗, αB) → (A∗,A,1). There is a natural
weak equivalence of form functors (�,σ) ◦ (�,λ)

∼→ id given by the map
(1, f ∗αB) : (A,A∗, αA) → (A,B,f ). Regarding the other composition, we
have (�,λ) ◦ (�,σ) = id.

By Lemma 2, the form functor (�,σ) : A → Astr
w induces a homotopy

equivalence of Grothendieck-Witt spaces with homotopy inverse (�,λ). �

Remark 4 Here is a slight generalization of Lemma 4. If v is another set of
weak equivalences for (A,∗, α) such that w ⊂ v, then (Astr

w , v, �, id) is also an
exact category with weak equivalences and strict duality. The form functors
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(�,λ) : (Astr
w , v) → (A, v) and (�,σ) : (A, v) → (Astr

w , v) are still exact and
non-singular with compositions that are naturally weakly equivalent to the
identity functors. In particular, we have a homotopy equivalence

GW(�,σ) : GW(A, v,∗, α)
∼−→ GW(Astr

w , v, �, id).

The next lemma will sometimes allow us to replace an exact category with
weak equivalences and duality by a simplicial exact category with duality
(where weak equivalences and double dual identification are isomorphisms).

Notation for the Simplicial Resolution lemma Let (E ,w,∗, η) be an ex-
act category with weak equivalences and duality, and let D be an arbitrary
(small) category. Recall from Sect. 2.1 that the category Fun(D, E ) of func-
tors D → E is a category with duality. It is an exact category with weak equiv-
alences and duality if we declare maps F → G (sequences F−1 → F0 → F1)
of functors D → E to be a weak equivalence (conflation) if F(A) → G(A) is
a weak equivalence (F−1(A) → F0(A) → F1(A) is a conflation) in E for all
objects A of D. We write Funw(D, E ) ⊂ Fun(D, E ) for the full subcategory
of those functors F : D → C for which the image F(d) of all maps d of D
are weak equivalences in E : F(d) ∈ wE . The category Funw(D, E ) inherits
from Fun(D, E ) the structure of an exact category with weak equivalences
and duality. In particular, for n ∈ N and (E ,w,∗, η) an exact category with
weak equivalences and strong duality, the category Funw(n, E ) is an exact
category with weak equivalences and strong duality. It has objects strings of
weak equivalences and maps commutative diagrams in E . Varying n, the cat-
egories Funw(n, E ) define a simplicial exact category with weak equivalences
and strong duality. Recall that the symbol i stands for the set of isomorphisms
in a category.

Lemma 5 (Simplicial Resolution lemma) Let (E ,w,∗, η) be an exact cat-
egory with weak equivalences and strong duality. Then there are homotopy
equivalences

|(wSe• E )h| � |n �→ (iSe•Funw(n, E ))h|,
GW(E ,w) � |n �→ GW(Funw(n, E ), i)|

which are functorial for exact form functors (F,ϕ) for which ϕ is an isomor-
phism.

Proof We start with some general remarks. Let C be a category, and re-
call that i stands for the set of isomorphisms in C . Since C = Funi ([0], C),
inclusion of degree-zero simplices yields a map of simplicial categories
C → (n �→ Funi ([n], C)) which is degree-wise an equivalence of categories,
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and thus induces a homotopy equivalence after topological realization. Using
the equality of bisimplicial sets

p,q �→ NpFuni ([q], C) = NqiFun([p], C),

where N• stands for the nerve of a category, we obtain a homotopy equiv-
alence |C| ∼→ |n �→ iFun([n], C)|. Since the topological realizations of p �→
iFun([p], C) and of p �→ iFun([p]op, C) are isomorphic, we have a homotopy
equivalence

|C| ∼→ |n �→ iFun([n]op, C)|. (6)

The homotopy equivalence is natural in the category C .
Let (C,∗, η) be a category with strong duality. There is an equivalence of

categories iFun([n]op, Ch) → (iFun(n, C))h which sends an object

(Xn,ϕn)
fn→ (Xn−1, ϕn−1)

fn−1→ ·· · f1→ (X0, ϕ0)

of the left hand category to the object

Xn
fn→ Xn−1

fn−1→ ·· · f1→ X0
ϕ0→ X∗

0

f ∗
1→ X∗

1

f ∗
2→ ·· · f ∗

n→ X∗
n

equipped with the form (ηXn, . . . , ηX0,1, . . . ,1). A map (gn, . . . , g0) (which
is an isomorphism compatible with forms) is sent to (gn, . . . , g0, (g

∗
0)−1, . . . ,

(g∗
n)−1). The equivalence is functorial in [n] ∈ 	 and thus induces a homo-

topy equivalence after topological realization. Together with (6), we obtain a
homotopy equivalence of topological spaces

|Ch| ∼−→ |n �→ (iFun(n, C))h| (7)

which is natural for categories with strong duality (C,∗, η) and form functors
(F,ϕ) between them for which ϕ is an isomorphism.

For an exact category with weak equivalences and strong duality
(E ,w,∗, η), we apply the homotopy equivalence (7) to the form functor
wSe

p E → wSe
p H E induced by the forgetful form functor E → H E (see Re-

mark 3). Varying p, we obtain a map of homotopy equivalences after topo-
logical realization

|(wSe• E )h| ∼ |n �→ (iSe•Funw(n, E ))h|

|(wSe• H E )h| ∼ |n �→ (iSe• HFunw(n, E ))h|.
The top row gives the first homotopy equivalence of the lemma. By Remark 3,
the left vertical homotopy fibre of the diagram is GW(E ,w,∗, η). In view of
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Bousfield-Friedlander’s Theorem [5, B4], [8, Theorem IV 4.9], the homotopy
fibre of the right vertical map is the simplicial realization of the degree-wise
homotopy fibres. By Remark 3, this is

|n �→ GW(Funw(n, E ), i,∗, η)|. �

Before proving the Additivity Theorems, we give a first application of
the Simplicial Resolution Lemma and show that π0GW(E ,w,∗, η) is the
Grothendieck-Witt group as in Definition 1.

Proposition 3 (Presentation of GW0) Let (E ,w,∗, η) be an exact category
with weak equivalences and duality. There is a natural isomorphism

GW0(E ,w,∗, η) ∼= π0GW(E ,w,∗, η).

Proof In view of relation (b) of Definition 1 and Lemma 2, weakly equivalent
non-singular exact form functors (F,ϕ)

∼−→ (G,ψ) induce the same map on
GW0 and on π0GW . Therefore, we can replace (E ,w) by its strictification
(E str

w ,w) given in Lemma 5. So we can assume the duality on (E ,w) to be
strong which will allow us to use the Simplicial Resolution Lemma 5. For a
bisimplicial set X••, there is a co-equalizer diagram

π0 |X1•|
d1

d0

π0 |X0•| π0 |X••|. (8)

This is well known and follows from an examination of the usual skele-
tal filtration of |X••| = |n �→ Xn,n| = |n �→ Xn•|—which the reader can
find in [8, Diagram IV.1 (1.6)], for instance—using the fact that the func-
tor π0 : 	opSets → Sets preserves push-out diagrams as it is left adjoint to
the inclusion functor Sets → 	opSets. By the Simplicial Resolution Lemma
5 and the fact (proven in [25, Proposition 4.11] together with Proposition 2)
that the proposition holds when the set of weak equivalences is the set of iso-
morphisms, we deduce that π0GW(E ,w) is the co-equalizer of the diagram

GW0

⎧⎩Funw(1, E )

⎫⎭ d1

d0

GW0

⎧⎩Funw(0, E )

⎫⎭

of Grothendieck-Witt groups of exact categories with duality. It suffices there-
fore to display GW0(E ,w,∗, η) as the co-equalizer of the same diagram.
Evaluation at the object 0′ of 0 defines a non-singular exact form func-
tor F : (Funw(0, E ), i) → (E ,w) which sends the object f : X0′ → X0 to
F(f ) = X0′ and has duality compatibility morphism F(f ∗) → F(f )∗ the
map f ∗ : X∗

0 → X∗
0′ . The form functor induces a map GW0(Funw(0, E ), i) →
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GW0(E ,w) which equalizes d0 and d1 in view of the relation (b) in Defini-
tion 1. We therefore obtain a map from the co-equalizer of the diagram to
GW0(E ,w). To construct its inverse, consider the map from the free Abelian
group generated by isomorphism classes [X,ϕ] of symmetric spaces in (E ,w)

to GW0(Funw(0, E ), i) sending (X,ϕ) to ϕ : X → X∗ equipped with the non-
singular form (ηX,1). This map is surjective and factors through relations (a)
and (c) of Definition 1. The map induces a surjective map to the co-equalizer
which factors through relation (b) of Definition 1 and thus induces a surjec-
tive map from GW0(E ,w,∗, η) to the co-equalizer. Since composition with
the map from the co-equalizer to GW0(E ,w,∗, η) is the identity, the claim
follows. �

Remark 5 Using the co-equalizer diagram (8), one can show directly the iso-
morphism π0|(wSe• E )h| ∼= W0(E ,w,∗, η) without the need of the Simplicial
Resolution lemma.

Proof of Theorem 4 In view of the strictification Lemma 4 we can assume the
duality on E to be strong. By the Simplicial Resolution Lemma 5 the proof
reduces further to the case of an exact category with duality (in which all weak
equivalences are isomorphisms). This case was proved in [25, Theorems 7.2,
Corollary 7.7] in view of Proposition 2. �

Proof of Theorem 5 Theorem 5 is a formal consequence of Theorem 4.
Let (E ,w,∗, η) be an exact category with weak equivalences and duality.
Consider the form functors sCx(E ) → H E : E• �→ (E1,E

∗−1) and H E →
sCx(E ) : (E1,E−1) �→ (E1 → E1 ⊕ E∗−1 → E∗−1) with duality compatibil-

ity morphisms (1, η) : (E∗−1,E
∗∗
1 ) → (E∗−1,E1) and (η,

( 0 1
η 0

)
,1) : (E−1 →

E−1 ⊕ E∗
1 → E∗

1) → (E∗∗−1 → E∗
1 ⊕ E∗∗−1 → E∗

1 ). Together with the form
functor H0 : sCx(E ) → E and the duality preserving functor E → sCx(E ) :
E �→ (0 → E → 0) they define non-singular exact form functors

E × H E → sCx(E ) → E × H E

whose composition is weakly equivalent to the identity functor. By the Ad-
ditivity Theorem for short complexes (Theorem 4), the second form functor
induces a homotopy equivalence in hermitian K-theory. It follows that the
two form functors induce inverse homotopy equivalences on Grothendieck-
Witt spaces and on hermitian S• constructions. Therefore, the compositions

A (F•,ϕ•)−→ sCx(B)
ev0−→ B and

A (F•,ϕ•)−→ sCx(B) → B × H B → sCx(B)
ev0−→ B
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induce homotopic maps in hermitian K-theory. These compositions are
(weakly equivalent to) the maps in (5). �

Remark 6 In the proof of Proposition 4 below, we will need the following rel-
ative version of Theorem 5. Let A0 ⊂ A, B0 ⊂ B be duality preserving exact
inclusions of exact categories with duality. Recall that there is an equivalence
of categories with duality sCx(B) ∼= Se

1(B). With this in mind, we will give
the relative version in terms of Se

1. Let (F,ϕ) : A → Se
1 B be a non-singular

exact form functor sending A0 to Se
1 B0. Then the homotopy

(F1′1, ϕ1′1) ∼ (F0′0, ϕ0′0) ⊥ H(F1′0′)

of Theorem 5 is a homotopy of pairs

(GW(A),GW(A0)) → (GW(B),GW(B0)),

that is, the homotopy sends GW(A0) to GW(B0).
This follows directly from the proof of Theorem 5 given just above. We

only have to see that the map sCx(B) → B × H B → sCx(B) and the identity
map induce maps on Grothendieck-Witt spaces which are homotopic as maps
of pairs. For that, recall that the category of morphisms of topological spaces
has a model category structure in which a map (f0, f1) : (X0 → X1) →
(Y0 → Y1) of morphisms is a weak equivalence (fibration) if f0 and f1 are
homotopy equivalences (Hurewicz fibrations), and the map (f0, f1) is a cofi-
bration if f0 and f1 are cofibrations and if the induced map Y0 �X0 X1 → Y1 is
a cofibration. In particular, every object is fibrant and the object (X0 → X1)

is cofibrant if X0 → X1 is a cofibration of spaces. In our case, the objects
(X0 → X1) and (Y0 → Y1), which are the Grothendieck-Witt spaces of the
inclusions

sCx(B0) ⊂ sCx(B) and B0 × H B0 ⊂ B × H B,

are fibrant and cofibrant in the category of morphisms of spaces. From the
proof of Theorem 5, the maps (X0 → X1) → (Y0 → Y1) and (Y0 → Y1) →
(X0 → X1) are weak equivalence of pairs, and they are inverse to each other
in the homotopy category of pairs. Since both objects are fibrant and cofibrant,
the composition of the maps (X0 → X1) → (Y0 → Y1) → (X0 → X1) is
homotopic to the identity through a homotopy of pairs.

Remark 7 Iterated application of Theorem 5 implies homotopy equivalences

(wSe•Se
nE )h

∼−→

⎧⎪⎨
⎪⎩

(wSe• E )h ×∏k
p=1 wS•E , n = 2k + 1

∏k
p=1 wS•E , n = 2k.
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This allows us to identify (wSe•Se• E )h with the Bar construction of the
H -group wS•E acting on (wSe• E )h and leads to a homotopy fibration

(wSe• E )h → (wSe•Se• E )h → wS•S•E

in which the first map is “inclusion of degree zero simplices” and the second
map is the “forgetful map” (E,ϕ) �→ E followed by the canonical homotopy
equivalence Xe• → X•. In particular, the iterated hermitian S•-construction
(wSe•Se• E )h is not a delooping of (wSe• E )h contrary to the K-theory situation,
compare [31, Proposition 1.5.3 and remark thereafter].

Remark 8 Define the Witt-theory space W(E ,w,∗, η) as the colimit of the
top row in the sequence of homotopy fibrations

GW(E ,w) (wSe• E )h (wSe•Se• E )h (wSe•Se•Se• E )h · · ·

wS•E wS•S•E wS•S•S•E

Since the spaces in the second row get higher and higher connected, we see
that π0W(E ,w,∗, η) = W0(E ,w,∗, η) and π1W(E , i,∗, η) = Wform(E ,∗, η)

where the group Wform(E ,∗, η) is the Witt-group of formations in (E ,∗, η),
that is, the cokernel of the hyperbolic map K0(E ) → GWform(E ) : [X] �→
[HX,X,X∗] to the Grothendieck-Witt group of formations GWform(E ) de-
fined in [25, 4.3].

If E is a Z[1
2 ]-linear category and “complicial”, we show in [26] that the

Witt-theory space W(E ,w,∗, η) is the infinite loop space associated with
(the (−1)-connected cover of) Ranicki’s L-theory spectrum, and its homo-
topy groups

πiW(E ,w,∗, η) = W−i (w−1E ,∗, η), i ≥ 0,

are Balmer’s Witt groups W−i (w−1E ,∗, η) of the triangulated category
with duality (w−1E ,∗, η). At this point, I don’t know how to calculate
πnW(E , i,∗, η), n ≥ 2, for (complicial) (E ,w,∗, η) when E is not Z[1

2 ]-
linear.

4 Change-of-weak-equivalences and cofinality

In this section we prove in Theorems 6 and 7 the higher Grothendieck-Witt
theory analogs of Waldhausen’s Fibration Theorem [31, 1.6.4] and of Thoma-
son’s Cofinality Theorem [30, 1.10.1].
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Waldhausen’s K-theory version of Theorem 6 below needs a “cylin-
der functor”. The purpose of the next definition is to define the higher
Grothendieck-Witt theory analog. We first fix some notation. For an exact
category with weak equivalences (E ,w), write E w ⊂ E for the full subcate-
gory of w-acyclic objects, that is, those objects E of E for which the unique
map 0 → E is a weak equivalence. The category E w is closed under exten-
sions in E , and thus inherits an exact structure from E such that the inclusion
E w ⊂ E is fully exact.

Definition 4 Let (E ,w,∗, η) be an exact category with weak equivalences
and duality. A symmetric cone on (E ,w,∗, η) is given by the following data:

(a) exact functors P : E → E w , and C : E → E w ,
(b) a natural deflation pE : PE � E and a natural inflation iE : E � CE,
(c) a natural map γE : P(E∗) → (CE)∗ such that i∗EγE = pE∗ for all objects

E of E .

It is convenient to define γ̄E : C(E∗) → (PE)∗ by γ̄E = P(ηE)∗ ◦ γ ∗
E∗ ◦

ηC(E∗). Then p∗
E = γ̄E ◦ iE∗ , and γE = C(ηE)∗ ◦ γ̄ ∗

E∗ ◦ηP(E∗). In other words,
the sequence P → id → C defines an exact form functor from E to the cat-
egory of sequences E−1 � E0 � E1 in E with duality compatibility map
(γ,1, γ̄ ).

For examples of symmetric cones, see Sect. 7.5.

The proof of the next theorem will occupy most of this section.

Theorem 6 (Change-of-weak-equivalences) Let (E ,w,∗, η) be an exact cat-
egory with weak equivalences and duality which has a symmetric cone. Let v

be another set of weak equivalences in E containing w and which is closed
under the duality. Then the duality (∗, η) on E makes (E v,w), (E v, v), (E , v)

into exact categories with weak equivalences and duality such that the com-
mutative square of duality preserving inclusions

(E v,w) (E v, v)

(E ,w) (E , v)

induces a homotopy Cartesian square of associated Grothendieck-Witt
spaces. Moreover, the upper right corner has contractible Grothendieck-Witt
space.

Remark 9 A square of homotopy commutative H -groups (such as Grothen-
dieck-Witt spaces) is homotopy Cartesian if and only if the map between,



374 M. Schlichting

say, horizontal homotopy fibres is a homotopy equivalence, and the map of
Abelian groups between horizontal cokernels of π0’s is a monomorphism.

Remark 10 In Theorem 6, the map GW0(E ,w,∗, η) → GW0(E , v,∗, η) is
not surjective, in general, contrary to the K-theory situation in [31, Fibration
Theorem 1.6.4].

4.1 Idempotent completion

We will reduce the proof of Theorem 6 to idempotent complete exact cate-
gories with weak equivalences and duality. Recall that the idempotent comple-
tion Ẽ of an exact category E has objects pairs (A,p) with p = p2 : A → A

an idempotent in E . A map (A,p) → (B, q) is a map f : A → B in E such
that f = fp = qf . Composition is composition of maps in E . The idempo-
tent completion Ẽ has a canonical structure of an exact category such that the
inclusion E ⊂ Ẽ : A �→ (A,1) is fully exact (see [30, Theorem A.9.1], where
“idempotent completion” is called “Karoubianisation”). Any duality (∗, η)

on E extends to a duality (A,p)∗ = (A∗,p∗) on Ẽ with double dual identi-
fication ηA ◦ p : (A,p) → (A,p)∗∗. If (E ,w,∗, η) is an exact category with
duality, call a map in the idempotent completion Ẽ weak equivalence if it is a
retract of a weak equivalence in E . Then (Ẽ ,w,∗, η) is an exact category with
weak equivalences and duality. Note that the natural inclusion Ẽ w ⊂ (Ẽ )w is
an equivalence of categories if (E ,w,∗, η) has a (symmetric) cone. This is
because for an object X in (Ẽ )w , the weak equivalence 0 → X in Ẽ is, by
definition, a retract of a weak equivalence f : Y → Z in E , and, by functori-
ality, also a retract of 0 → C(f ), where C(f ) is the push-out of iY : Y → CY

along f . Since C(f ) is in E w , the object X is (isomorphic to an object) in Ẽ w .

Lemma 6 Let (E ,w,∗, η) be an exact category with weak equivalences and
strong duality which has a symmetric cone. Then the commutative diagram of
exact categories with duality

(E w, i) (Ẽ w, i)

(E , i) (Ẽ , i)

induces a homotopy Cartesian square of Grothendieck-Witt spaces.

Proof By the Cofinality Theorem in [25, Corollary 5.2], the horizontal ho-
motopy fibres of associated Grothendieck-Witt spaces are contractible. There-
fore, it suffices to show that the map GW0(Ẽ w)/GW0(E w)→GW0(Ẽ )/GW0(E )
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between the cokernels of horizontal π0’s is injective. For an exact category
with duality A, the quotient GW0(Ã)/GW0(A) is the Abelian monoid of
isometry classes of symmetric spaces in Ã modulo the submonoid of sym-
metric spaces in A [25, 5.2]. In particular, a symmetric space in Ã yields the
zero class in GW0(Ã)/GW0(A) if and only if it is stably in A.

Let (A,α) be a symmetric space in Ẽ w whose class in GW0(Ẽ )/GW0(E ) is
zero. Then there are symmetric spaces (X,ϕ) and (Y,ψ) in E and an isometry
(A,α) ⊥ (Y,ψ) ∼= (X,ϕ). In particular, there is an exact sequence 0 → A →
X

f→ Y → 0 in Ẽ . The push-out C(f ) of f along the E -inflation X � CX is
in E . In the exact sequence 0 → A → CX → C(f ) → 0, we have A and
CX in Ẽ w . Therefore, C(f ) is also in Ẽ w , hence C(f ) ∈ Ẽ w ∩ E = E w .
Choose Ā ∈ Ẽ w such that A ⊕ Ā ∈ E w . Then Ā ⊕ CX is in E w as it is
an extension of A ⊕ Ā and C(f ), both being in E w . It follows that the
symmetric spaces (A,α) ⊕ H(Ā ⊕ CX) and H(Ā ⊕ CX) lie in E w , where
HE = (E ⊕ E∗,

( 0 1
η 0

)
) is the hyperbolic space associated with E. This im-

plies that (A,α) is trivial in GW0(Ẽ w)/GW0(E w). �

For an exact category with weak equivalences and duality (E ,w,∗, η),
the category Mor E = Fun([1], E ) of morphisms in E is an exact cate-
gory with weak equivalences and duality such that the fully exact inclu-
sion E ⊂ Mor E : E �→ idE , induced by the unique map [1] → [0], is du-
ality preserving. The inclusion factors through the fully exact subcategory
Morw E = Funw([1], E ) ⊂ Mor E of weak equivalences in E and defines a
duality preserving functor

I : E → Morw E .

Note that (Morw E )w = Morw(E w) = Mor(E w).
The following proposition is the key to proving Theorem 6.

Proposition 4 Let (E ,w,∗, η) be an exact category with weak equivalences
and strong duality. Assume that (E ,w,∗, η) has a symmetric cone. Then the
commutative diagram

E w Morw E w

E
I

Morw E

(9)

of duality preserving inclusions of exact categories with duality (all weak
equivalences being isomorphisms) induces a homotopy Cartesian square of
associated Grothendieck-Witt spaces.
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4.2 Cone exact categories

The proof of Proposition 4 uses the cone category construction of [25,
Sect. 9]. We recall the relevant definitions and facts.

Let A ⊂ U be a duality preserving fully exact inclusion of idempotent com-
plete exact categories with duality (∗, η). In [25, Sect. 9], we constructed a
duality preserving fully exact inclusion � : U ⊂ C(U , A) of exact categories
with duality, depending functorially on the pair A ⊂ U , such that the duality
preserving commutative square

A
�

C(A, A)

U
�

C(U , A)

(10)

of exact categories with duality induces a homotopy Cartesian square of as-
sociated Grothendieck-Witt spaces, and the upper right corner C(A, A) (also
written as C(A)) has contractible Grothendieck-Witt space [25, Theorem 9.7].

We recall the definition of the cone category C(U , A), details can be found
in [25, Sect. 9.1–9.3]. One first constructs a category C0(U , A), a localization
of which is C(U , A). Objects of C0(U , A) are commutative diagrams in U

U0
∼

U1
∼

U2
∼

U3
∼ · · ·

U0 U1
∼

U2
∼

U3
∼ · · ·∼

(11)

such that the maps Ui
∼� Ui+1 and Ui+1 ∼� Ui , i ∈ N are inflations with

cokernel in A and deflations with kernel in A, respectively. Moreover, there
has to be an integer d such that for every i ≥ j , the map Uj → Ui+d is
an inflation with cokernel in A and the map Ui+d → Uj is a deflation with
kernel in A. If the maps in diagram (11) are understood, we may abbreviate
the diagram as (U• → U•). Maps in C0(U , A) are natural transformations
of diagrams. A sequence of diagrams in C0(U , A) is exact if at each Ui , Uj

spot it is an exact sequence in U . The dual of the diagram (11) is obtained by
applying the duality to the diagram: (U• → U•)∗ = ((U•)∗ → (U•)∗).

For each diagram (11), forgetting the upper left corner U0 gives us a new
object (U• → U•)[1] = (U•+1 → U•) and a canonical map (U• → U•) →
(U•+1 → U•). Similarly, forgetting the lower left corner U0 defines a new
object (U• → U•)[1] = (U• → U•+1) and a canonical map (U• → U•+1) →
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(U• → U•). Finally, the category C(U , A) is the localization of C0(U , A)

with respect to the two types of canonical maps just defined. A sequence
in C(U , A) is a conflation if and only if it is isomorphic in C(U , A) to the
image under the localization functor C0(U , A) → C(U , A) of a conflation in
C0(U , A).

There is a fully exact duality preserving inclusion � : U ⊂ C(U , A) which
sends an object U of U to the constant diagram

U
=

id

U
=

id

U
=

id

U
=

id

· · ·

U U
=

U
=

U
= · · ·=

Proof of Proposition 4 By Lemma 6, we can (and will) assume E to be idem-
potent complete. Then all categories in diagram (9) are idempotent complete.

We will write C(E ,w) and C(E w) instead of the categories C(E , E w)

and C(E w, E w) of Sect. 4.2, and we will write (F,ϕ) ∼ (G,ψ) if the two
non-singular exact form functors (F,ϕ), (G,ψ) induce homotopic maps on
Grothendieck-Witt spaces. The strategy of proof is as follows. We will ex-
tend diagram (9) to a commutative diagram of exact categories with duality
and non-singular exact form functors

E w Morw E w C(E w) C(Morw E w)

E
I

Morw E
(F,ϕ)

C(E ,w)
C(I )

C(Morw E ,w)

(12)

where the right hand square is obtained from (9) by functoriality of the cone
category construction in Sect. 4.2. We will show:

(†) (GW applied to) the compositions (F,ϕ) ◦ (I, id) and (C(I ), id) ◦ (F,ϕ)

are homotopic to the constant diagram inclusions (�, id) of Sect. 4.2 in
such a way that the homotopies restricted to E w and Morw E w have im-
ages in the Grothendieck-Witt spaces of C(E w) and C(Morw E w), respec-
tively.

We will first derive Proposition 4 assuming (†). For that, call fi the map on
Grothendieck-Witt spaces of the i-th vertical map in diagram (12), call Fi the
homotopy fibre of fi , and Ai the cokernel of π0(fi). (†) implies that the outer
diagrams of the left two squares and of the right two squares of diagram (12)
are homotopy Cartesian in hermitian K-theory. That is, the maps F1 → F3
and F2 → F4 are homotopy equivalences, and A1 → A3 and A2 → A4 are in-
jective. The first homotopy equivalence implies that F2 → F3 is surjective on
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homotopy groups. The second homotopy equivalence implies that F2 → F3
is injective on homotopy groups, hence an isomorphism. The first homo-
topy equivalence then implies that F1 → F2 is an isomorphism on homotopy
groups. Moreover, injectivity of A1 → A3 implies injectivity of A1 → A2.
By Remark 9, the left square in diagram (12) is homotopy Cartesian, hence
the Proposition 4.

To construct diagram (12), we will define the non-singular exact form
functor (F,ϕ) : Morw E → C(E ,w) as the composition of a non-singular ex-
act form functor (F0, ϕ) : Morw E → C0(E ,w) and the localization functor
C0(E ,w) → C(E ,w) such that its restriction to Mor E w has image in C0(E w).
Recall that (E ,w,∗, η) is assumed to have a symmetric cone (see Defini-
tion 4), where i : id � C and p : P � id denote the natural inflation and
deflation which are part of the structure of a symmetric cone. The functor
(F,ϕ) (or rather (F0, ϕ)) sends an object g : X → Y of Morw E to the object
F(g) given by the diagram

X

g

X ⊕ PY

(g p

i 0

)
X ⊕ PY ⊕ CX

(
g p 0
i 0 1
0 1 0

)
X ⊕ PY ⊕ CX ⊕ PY · · ·

Y Y ⊕ CX Y ⊕ CX ⊕ PY Y ⊕ CX ⊕ PY ⊕ CX · · ·
(13)

of C0(E ,w). In the notation (U• → U•) of Sect. 4.2 corresponding to diagram
(11), the object F(g) is given by

Un = X ⊕ PY ⊕ CX ⊕ PY ⊕ CX ⊕ · · · (n + 1 summands),

Un = Y ⊕ CX ⊕ PY ⊕ CX ⊕ PY ⊕ · · · (n + 1 summands).

The maps Un → Un+1 and Un+1 → Un are the canonical inclusions into the
first n+1 summands and the canonical projections onto the first n+1 factors.
The maps Un → Un are given by the matrix

(urs)0≤r,s≤n =

⎛
⎜⎜⎜⎜⎜⎜⎝

g p 0 0 0 · · ·
i 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 1
... 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

with urs = 0 unless r = s = 0 or |r − s| = 1, and u0,0 = g, u0,1 = pY ,
u1,0 = iX , ur,r+1 = 1, ur+1,r = 1 for r ≥ 1. The construction of diagram (13)
is functorial in g, so that F : Morw E → C(E ,w) is indeed a functor. The du-
ality compatibility map ϕg : F(g∗) → (Fg)∗ for g : X → Y is the identity on
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X∗ and Y ∗, it is γX on the summands P(X∗) and γ̄Y on C(Y ∗). It is clear that
F sends the subcategory Morw E w to the full subcategory C(E w) of C(E ,w).
This defines diagram (12).

We are left with proving (†). Since U0 = X is the initial object of dia-
gram (13), it defines a map j = jg : X = U0 → F(g), where U0 (and X)
is considered an object of C(E ,w) via the constant diagram embedding � :
E → C(E ,w). The map j : X → F(g) is an inflation in C(E ,w) with coker-
nel in C(E w) because j : X → (U• → U•+1) is an inflation in C0(E ,w) with
cokernel in C0(E w). Varying g, the map jg defines a natural transformation
j : � → F . Similarly, U0 is the final object of diagram (13) and thus defines
a (functorial) map q = qg : F(g) → U0 = Y with kernel in C(E w). We have
g = qj .

Let ϕ̂ : F → F� = ∗F∗ be the symmetric form on the functor F associated
with the duality compatibility map ϕ (see Sect. 2.1). The form ϕ̂ : F → F�

fits into a commutative diagram in C0(E ,w)

X
jg

ηX

F (g)

ϕ̂g

qg

Y

ηY

X∗∗
q∗
g∗

F(g∗)∗
j∗
g∗

Y ∗∗.

(14)

Write (F I,ϕFI ) for the composition (F,ϕ) ◦ (I, id) of form functors. The
natural transformation j above makes the canonical inclusion (�, id) : E →
C(E ,w) into an admissible subfunctor j : � ⊂ FI of FI . Commutativity of
diagram (14) for g = idX implies that η = j�ϕ̂FI j , that is, j defines a map
(�,η) → (F I, ϕ̂FI ) of symmetric spaces associated with the form functors
(�, id) and (F I,ϕFI ). Since the maps id and ϕFI are isomorphisms, the sym-
metric space (F I, ϕ̂FI ) decomposes in Fun(E , C(E ,w)) as (�,η) ⊥ (A, ϕ̂A)

with (A, ϕ̂A) the orthogonal complement of (�,η) in (F I, ϕ̂FI ). As men-
tioned above, the cokernel of j : X → FI (X) = F(1X) is in C(E w). There-
fore, the form functor (A,ϕA) factors through the category C(E w) (whose her-
mitian K-theory space is contractible [25, Corollary 9.6]). So, (A,ϕA) ∼ 0.
Hence, (F I,ϕFI ) ∼= (�, id) ⊥ (A,ϕA) ∼ (�, id). By construction, the homo-
topy restricted to E w has image in the Grothendieck-Witt space of C(E w).
This shows the first half of the claim (†).

For the second half, write (IF,ϕIF ) and (IF0, ϕIF0) for the compo-
sitions of form functors (C(I ), id) ◦ (F,ϕ) and (C(I ), id) ◦ (F0, ϕ), and
note that (IF,ϕIF ) is just the composition of (IF0, ϕIF0) with the local-
ization functor C0(Morw E ,w) → C(Morw E ,w). There is an obvious iso-
morphism of exact categories with duality Morw C0(E ,w) ∼= C0(Morw E ,w)

such that the composition IF0 sends the object (g : X → Y) ∈ Morw E to
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idF(g) : F(g) → F(g), and the duality compatibility morphism ϕIF0 becomes
(ϕg,ϕg) : idF(g∗) → idF(g)∗ . Consider the functorial biCartesian square

(X
j→ F(g))

(j,1)

(1,q)

(F (g)
1→ F(g))

(1,q)

(X
g→ Y)

(j,1)

(F (g)
q→ Y)

in Morw C0(E ,w). The total complex of the square (considered as a bi-
complex) is a conflation in Morw C0(E ,w) = C0(Morw,w). It is therefore
also a conflation in C(Morw,w), hence the square is also biCartesian in
C(Morw,w). In C(Morw,w), the horizontal maps in the square are inflations
with cokernel in C(Morw E w) since (j,1) is isomorphic to the C0(Morw,w)-
inflation (j,1)[1] which has cokernel in C0(Morw E w). Similarly, the vertical
maps in the square are deflations in C(Morw,w) with kernel in C(Morw E w)

since (1, q) is isomorphic to the C0(Morw,w)-deflation (1, q)[1] with kernel
in C0(Morw E w).

Commutativity of diagram (14) implies that the form ϕ̂IF0 on the upper
right corner IF0 of the square extends to a form on the whole biCartesian
square such that its restriction to the lower left corner is the constant diagram
inclusion (�,η) : Morw E → C0(Morw E ,w). It follows that ker(1, q) ⊂ IF is

a totally isotropic subfunctor of (IF,ϕIF ) with induced form on (X
g→ Y) =

ker(1, q)⊥/ker(1, q) isometric to the constant diagram inclusion (�, id) :
Morw E → C(Morw E ,w). By the Additivity Theorem [25, Theorem 7.1]
(or its generalization in Theorem 5), the form functors (�, id) ⊥ H ker(1, q)

and (IF,ϕIF ) induce homotopic maps on Grothendieck-Witt spaces. Since
H ker(1, q) has image in C(Morw E w) whose Grothendieck-Witt space is con-
tractible, we have (IF,ϕIF ) ∼ (�, id) ⊥ H ker(1, q) ∼ (�, id). The homo-
topies restricted to Morw E w have image in the Grothendieck-Witt space of
C(Morw E w). This is clear for the second homotopy, and for the first, it fol-
lows from Remark 6. �

Next, we prove a variant of the Change-of-weak-equivalence Theorem.

Proposition 5 Let (E ,w,∗, η) be an exact category with weak equivalences
and strong duality which has a symmetric cone. Then the following commuta-
tive diagram of exact categories with weak equivalences and duality induces
a homotopy Cartesian square of Grothendieck-Witt spaces with contractible
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upper right corner

(E w, i) (E w,w)

(E , i) (E ,w).

(15)

Proof From Lemma 2 it is clear that GW(E w,w) is contractible since 0 → id
is a natural weak equivalence in (E w,w). Consider the commutative diagram
of (simplicial) exact categories with dualities (all weak equivalences being
isomorphisms)

E w Funw(0, E w)

⎧⎩n �→ Funw(n, E w)

⎫⎭

E Funw(0, E )

⎧⎩n �→ Funw(n, E )

⎫⎭

in which the left hand square can be identified with the square of Proposition
4 and induces therefore a homotopy Cartesian square of Grothendieck-Witt
spaces. On Grothendieck-Witt spaces, the right vertical map can be identi-
fied with the map (E w,w) → (E ,w) in view of the Simplicial Resolution
Lemma 5. The right hand square is the inclusion of degree zero simplices.
The proof of Proposition 5 is thus reduced to showing that the right hand
square of the diagram induces a homotopy Cartesian square of Grothendieck-
Witt spaces.

Let Fun1
w(n, E ) ⊂ Funw(n, E ) be the full subcategory of those functors

A : n → E for which Ap → Aq is an inflation, and Aq ′ → Ap′ is a deflation,
0 ≤ p � q ≤ n. It inherits the structure of an exact category with duality from
Funw(n, E ). Further, let Fun0

w(n, E ) be the category which is equivalent to
Fun1

w(n, E ) but where an object is an object A of Fun1
w(n, E ) together with a

choice of subquotients Ap,q = Aq/Ap = coker(Ap
∼� Aq) ∈ E w and induced

maps Ap,q → Ap,q , and together with a choice of kernels Aq ′,p′ = ker(Aq ′
∼�

Ap′) ∈ E w for 0 ≤ p ≤ q ≤ n. The category Fun0
w(n, E ) is an exact cate-

gory with duality such that the forgetful functor Fun0
w(n, E ) → Fun1

w(n, E )

is an equivalence of exact categories with duality. We have an exact functor
Fun0

w(n, E ) → SnE w : A �→ (Ap,q)0≤p≤q≤n. By the Additivity Theorem [25,
Theorem 7.1] (or Theorem 5), this functor induces a map which is part of a
split homotopy fibration

GW(Funw(0, E )) → GW(Fun0
w(n, E )) → K(SnE w).
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The same argument applies to (E w,w) instead of (E ,w). So, varying n, we
obtain a map of homotopy fibrations after topological realization

GWFunw(0, E w) |n �→ GWFun0
w(n, E w)| |n �→ K(SnE w)|

GWFunw(0, E ) |n �→ GWFun0
w(n, E )| |n �→ K(SnE w)|

which shows that the left square is homotopy Cartesian.
Since Fun0

w → Fun1
w is an equivalence of exact categories with duality,

the proposition follows once we show that the inclusion I : Fun1
w(n, A) ⊂

Funw(n, A) induces a homotopy equivalence on Grothendieck-Witt spaces
for A = E , E w . We illustrate the argument for A = E and n = 1. The general
case is mutatis mutandis the same.

We define two functors F,G : Funw(1, E ) → Fun1
w(1, E ). The functor F

sends E1′ ∼→ E0′ ∼→ E0
∼→ E1 to E1′ ⊕PE0′

∼� E0′ ∼→ E0
∼� E1 ⊕CE0, the

functor G sends the same object to PE0′
∼� 0 ∼→ 0

∼� CE0. Both functors F

and G are equipped with canonical duality compatibility morphisms, induced
by γ and γ̄ from Definition 4, such that F and G are non-singular exact
form functors. By the Additivity Theorem, we have IF ∼ id ⊥ IG and FI ∼
id ⊥ GI . Therefore, GW(F ) − GW(G) defines an inverse of GW(I ), up to
homotopy. �

Proof of Theorem 6 By Lemma 2, GW(E w,w) is contractible. Let A = E str
w

be the strictification of E from Lemma 4, and recall that it has a strong dual-
ity. Consider the commutative diagram of exact categories with weak equiva-
lences and duality

(Aw, i) (Aw,w)

(Av, i) (Av,w) (Av, v)

(A, i) (A,w) (A, v).

By the strictification Lemma 4 and Lemma 2, the square in Theorem 6 is
equivalent to the lower right square in the diagram. By Proposition 5, the
upper square and the outer diagram of the left two squares are homotopy
Cartesian in hermitian K-theory. Since the left vertical maps are surjective
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on GW0 (because A = E str
w ), it follows that the lower left square is homotopy

Cartesian in hermitian K-theory, by Remark 9. Again, by Proposition 5, the
outer diagram of the two lower squares induces a homotopy Cartesian square
of Grothendieck-Witt spaces. Together with the facts that the lower left square
is homotopy Cartesian in hermitian K-theory and that the lower left vertical
map is surjective on GW0, this implies that the lower right square induces a
homotopy Cartesian square of Grothendieck-Witt spaces. �

Theorem 7 (Cofinality) Let (E ,w,∗, η) be an exact category with weak
equivalences and duality which has a symmetric cone. Let A ⊂ K0(E ,w) be a
subgroup closed under the duality action on K0(E ,w), and let EA ⊂ E be the
full subcategory of those objects whose class in K0(E ,w) belongs to A. Then
the category EA inherits the structure of an exact category with weak equiv-
alences and duality from (E ,w,∗, η), and the induced map on Grothendieck
Witt spaces

GW(EA,w,∗, η) −→ GW(E ,w,∗, η)

is an isomorphism on πi , i ≥ 1, and a monomorphism on π0.

Proof Let U = E str
w , and consider the diagram of exact categories with weak

equivalences and duality

(U w
A , i) (UA, i) (UA,w)

(U w, i) (U , i) (U ,w).

On Grothendieck-Witt spaces, the right vertical map can be identified (up
to homotopy) with the map in the theorem, by Lemmas 4 and 2. The rows
are homotopy fibrations, by Proposition 5, and the right horizontal maps are
surjective on GW0 (as U = E str

w ). It follows that the right square induces a
homotopy Cartesian square of Grothendieck-Witt spaces. Since UA ⊂ U is
a cofinal inclusion of exact categories with duality, the Cofinality Theorem
of [25, Corollary 5.2] shows that the homotopy fibre of the Grothendieck-
Witt spaces of the middle vertical map is contractible. As the right square
is homotopy Cartesian in hermitian K-theory, the same is true for the right
vertical map. �

5 Approximation, change of exact structure and resolution

In this section we prove in Theorems 8 and 9 variants of Waldhausen’s Ap-
proximation Theorem [31, Theorem 1.6.7] which hold for higher Grothen-
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dieck-Witt groups. We explain two immediate consequences, one concern-
ing the conditions under which a change of exact structure has no effect on
Grothendieck-Witt groups (Lemma 7, compare [30, Theorem 1.9.2]) and the
other concerning an analog of Quillen’s Resolution Theorem (Lemma 9, com-
pare [22, Sect. 4, Corollary 1]).

Theorem 8 (Approximation I) Let (F,ϕ) : A → B be a non-singular exact
form functor between exact categories with weak equivalences and duality.
Assume the following.

(a) Every map in A can be written as the composition of an inflation followed
by a weak equivalence.

(b) A map in A is a weak equivalence iff its image in B is a weak equivalence.
(c) For every map f : FA → E in B, there is a map a : A → B in A and a

weak equivalence g : FB
∼→ E in B such that f = g ◦ Fa:

FA
∀f

Fa

E

∃ FB

∼

(d) The duality compatibility morphism ϕA : F(A∗) → F(A)∗ is an isomor-
phism for every A in A.

(e) For every map f : FA → FB in B, there is an exact functor L : A → A,
a natural weak equivalence λ : L

∼→ idA and a map a : LA → B in A
such that Fa = f ◦ FλA:

∃ FLA
∼

Fa

FA
∀f

FB.

(f) For every map a : A → B in A such that Fa = 0 in B, there is an exact
functor L : A → A and a natural weak equivalence λ : L

∼→ idA such
that a ◦ λA = 0 in A:

∃ LA
∼

0

A
∀a

B, Fa = 0.

Then (F,ϕ) induces homotopy equivalences

(wSe• A)h
∼−→ (wSe• B)h and GW(A,w,∗, η)

∼−→ GW(B,w,∗, η).
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Proof For the purpose of the proof, we call lattice a pair (L,λ) with L : A →
A an exact functor and λ : L ∼→ idA a natural weak equivalence. Lattices form
an associative monoid under composition

(L2, λ2) ◦ (L1, λ1) := (L2L1, λ2 ◦ L2(λ1)).

Since λ2 ◦ L2(λ1) = λ1 ◦ λ2,L1 (as λ2 is a natural transformation), lattices be-
have like a multiplicative set in a commutative ring. More precisely, compo-
sition of lattices allows us to generalize properties (e) and (f) to finite families
of maps:

(e′) for any finite set of maps fi : FAi → FBi in B, i = 1, . . . , n, there are
a lattice (L,λ) and maps ai : LAi → Bi such that Fai = fi ◦ FλAi

,
i = 1, . . . , n, and

(f′) for any finite set of maps ai : Ai → Bi in A such that Fai = 0 in B, i =
1, . . . , n, there is a lattice (L,λ) such that aiλAi

= 0 in A, i = 1, . . . , n.

We will refer to (e′) and (f′) as “clearing denominators”, in analogy with the
localization of a commutative ring with respect to a multiplicative subset.
“Clearing denominators” together with (b) and (d) implies that we can lift
non-degenerate symmetric forms from B to A in the following sense:

(†) For any non-degenerate symmetric form (FA,α) ∈ (wB)h on the image
FA of an object A of A, there is a lattice (L,λ) and a non-degenerate
symmetric form (LA,β) ∈ (wA)h on LA such that F(λA) is a map of
symmetric spaces F(λA) : F(LA,β)

∼→ (FA,α).

The proof is the same as the classical proof which shows that a non-
degenerate symmetric form over the fraction field of a Dedekind domain can
be lifted to a (usual) lattice in the ring. In detail, the map ϕ−1

A α : FA → F(A∗)
lifts to a map a1 : L1A → A∗ such that ϕAFa1 = αFλ1,A for some lattice
(L1, λ1). The map a : λ∗

1,Aa1 : L1A → (L1A)∗ is a weak equivalence but
not necessarily symmetric. However, the difference δ = a − a∗ηL1A satisfies
Fδ = 0. Therefore, there is a second lattice (L2, λ2) such that δλ2,L1A = 0.
Then β = λ∗

2,L1A
aλ2,L1A : L2L1A → (L2L1A)∗ is a non-degenerate sym-

metric form on LA with (L,λ) = (L2, λ2) ◦ (L1, λ1), and F(λA) defines a
map of symmetric spaces F(LA,β) = (FLA,ϕLAFβ)

∼→ (FA,α).
Apart from “clearing denominators”, the proof of the first homotopy equiv-

alence in the theorem proceeds now as the proof of [24, Theorem 10] which
was based on the proof of [31, Theorem 1.6.7]. We first note that under the
assumptions of the theorem, the non-singular exact form functors Sn(F,ϕ) :
SnA → SnB also satisfy (a)–(f), n ∈ N. For (a)–(c), this is in [31, Lemma
1.6.6] (using the fact that in the presence of (a), the map a : A → B in (c)
can be replaced by an inflation), (d) extends by functoriality, and the exten-
sion of (e), (f) to Sn easily follows by induction on n by successively clearing
denominators.
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In order to show that (wSe• A)h → (wSe• B)h is a homotopy equivalence, it
suffices to prove that (wSe

nA)h → (wSe
nB)h is a homotopy equivalence for

every n ∈ N, which, by the argument of the previous paragraph, only needs to
be checked for n = 0, that is, it is sufficient to prove that

F : (wA)h → (wB)h

is a homotopy equivalence. The last claim will follow from Quillen’s Theo-
rem A once we show that for every object X = (X,ψ) of (wB)h, the comma
category (F ↓ X) is non-empty and contractible.

By (a) with A = 0, there is an object B of A and a weak equivalence FB
∼→

X, hence a map (FB,ψ|FB) → (X,ψ) in (wB)h. By (†) above, there is a
symmetric space (C, γ ) in A and a map F(C,γ ) → (FB,ψ|FB) in (wB)h.
Hence, the category (F ↓ X) is non-empty.

In order to show that (F ↓ X) is contractible it suffices to show that
every functor P → (F ↓ X) from a finite poset P to the comma category
(F ↓ X) is homotopic to a constant map (see for instance [24, Lemma
14]). Such a functor is given by a triple (A,α,f ) where A is a functor
A : P → wA : i �→ Ai, (i ≤ j) �→ aj,i together with a collection α of non-
degenerate symmetric forms αi : Ai → A∗

i in A, i ∈ P , such that αi = αj |Ai

whenever i ≤ j in P , and f is a collection of compatible maps of symmetric
spaces fi : F(Ai,αi) → (X,ψ) in (wB)h such that fi = fjFaj,i whenever
i ≤ j ∈ P . It is convenient to consider f as a map F(A,α) → (X,ψ) of
functors P → (wB)h, where objects in (wB)h (or in A, B, (wA)h) such as
(X,ψ) are interpreted as constant P -diagrams. By [24, Lemma 13], there is
a map b : B → A of functors P → wA such that bi : Bi → Ai is a weak
equivalence, i ∈ P , and the P -diagram B : P → A has a colimit in A such
that F(B) → F(colimP B) represents the colimit of F(B) in B (the diagram
B is a cofibrant replacement of A in a suitable cofibration structure on the
category of functors P → A; see [24, Appendix A.2], cofibrant objects have
colimits, and F , being an exact functor, preserves cofibrant objects and their
colimits). By (c), the natural map F(colimP B) = colimP F(B) → X induced

by b ◦ f factors as F(colimP B) → F(C)
c→ X where the first map is in the

image of F and the second map is a weak equivalence in B. Let g : B → C

be the composition B → colimP B → C which, by (b), is a weak equivalence
since b, f , and c are. The null-homotopy to be constructed can be read off
the following diagram

L′LB,β

β=α|L′LB=γ|L′LB

λ′
LB

λ

Lg

B
b

g

A,α

f

LC,γ
λ

C
c

X,ψ

(16)
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of which we have constructed the right hand square, so far. In the diagram, a
dashed arrow A ��� X stands for an arrow FA → X in B, and solid arrows
are arrows in A. By (†), there is a lattice (L,λ) and a non-degenerate symmet-
ric form (LC,γ ) ∈ (wA)h such that FλC : F(LC,γ ) → (FC,ψ|FC) defines
a map in (wB)h. The restrictions of γ and αi to LBi may not coincide, but
their images under F coincide since in B, both are (up to composition with
the isomorphism ϕBi

) the restriction of ψ to FLBi . Clearing denominators,
we can find a lattice (L′, λ′) such that γ|L′LBi

= αi|L′LBi
=: βi for all i ∈ P

simultaneously. The outer part of the diagram involving (L′LB,β), (A,α),
(LC,γ ), (X,ψ) and the maps between them, defines a homotopy between
(A,α,f ) and the constant functor (LC,γ, cFλ) : P → (F ↓ X) via the func-
tor (L′LB,β,f F (bλλ′)) : P → (F ↓ X). This finishes the proof of the first
homotopy equivalence in the theorem.

The same proof (forgetting forms), or an appeal to [31, 1.6.7], implies
that the map wS•A → wS•B is a homotopy equivalence. Therefore, the map
GW(A,w,∗, η) → GW(B,w,∗, η) is also a homotopy equivalence. �

5.1 Change of exact structure

Let (A,w,∗, η) be an additive category with weak equivalences and duality,
and assume that A can be equipped with two exact structures E1 and E2
one smaller than the other, E1 ⊂ E2, so that the identity functor (A,E1) →
(A,E2) is exact. Assume furthermore that the duality functor ∗ : Aop → A is
exact for both exact structures E2 and E2, so that the identity defines a duality
preserving exact functor

(A,E1,w,∗, η) → (A,E2,w,∗, η). (17)

The following is an immediate consequence of Theorem 8.

Lemma 7 In the situation of Sect. 5.1, if every map in A can be written as
the composition of an inflation in E1 followed by a weak equivalence, then
the map (17) induces an equivalence of hermitian S•-constructions and of
associated Grothendieck-Witt spaces.

5.2 Approximation for categories of chain complexes and resolution

The purpose of the next lemma (Lemma 8 below) is to simplify some of the
hypothesis of Theorem 8 provided the exact categories with weak equiva-
lences in the theorem are “categories of complexes”.

Definition 5 We call an exact category with weak equivalences (C,w) a cat-
egory of complexes (with underlying additive category C0) if C ⊂ Ch C0 is a
full additive subcategory of the category Ch C0 of chain complexes in C0 such
that
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– C is closed under degree-wise split extensions in Ch C0,
– degree-wise split exact sequences are exact in C ,
– with a complex A in C its usual cone CA (that is, the cone on the identity

map of A) and all its shifts A[i], i ∈ Z, are in C , and
– the set of weak equivalences w contains at least all usual homotopy equiv-

alences between complexes in C .

Lemma 8 Let (A,w) and (B,w) be categories of complexes with associ-
ated additive categories A0 and B0, and let F : (A,w) → (B,w) be an exact
functor which is the induced functor on chain complexes of an additive func-
tor A0 → B0. Then condition (a) of Theorem 8 holds and condition (c) of
Theorem 8 is implied by conditions (b), (e) of Theorem 8 and the following
condition.

(c′) For every object E of B there is an object A of A and a weak equivalence

FA
∼−→ E.

Proof Every map f : A → B in A can be written as the composition

A

(
f

i

)
B ⊕ CA

(1 0 )

∼ B,

where i : A � CA is the canonical inclusion of A into its cone CA. This
shows that condition (a) of Theorem 8 holds.

To prove condition (c) of Theorem 8 assuming conditions (b), (e) of The-
orem 8 and (c′) are satisfied, let f : FA → E be a map in B with A in A.
By (c′), there is a weak equivalence s : F(B ′) → E in B with B ′ in A. Let
M be the pull-back of f : FA → E along the degree-wise split surjection
(s,p) : F(B ′) ⊕ PE → E where p : PE → E is the canonical degree-wise
split surjection from the contractible complex PE = CE[−1] to E. There-
fore, we have a homotopy commutative diagram

M F(A)

f

F (B ′) ∼
s

E.

Since F(B ′) ⊕ PE → E is a deflation and a weak equivalence, its pull-back,
the map M → FA, is a deflation and a weak equivalence, too. By condi-
tion (c′), there is a weak equivalence F(A′) → M with A′ in A, and by
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condition (e) of Theorem 8 we can assume the compositions F(A′) → FA

and F(A′) → F(B ′) to be the images Fα and Fβ of maps α : A′ → A and
β : A′ → B in A. The resulting square involving F(A′), F(B ′), FA and E

homotopy commutes, and the map α : A′ → A is a weak equivalence, by
condition (b) of Theorem 8. Replacing B ′ with B ′ ⊕ CA′, we obtain a com-
mutative diagram

F(A′)
Fα

∼(
Fβ

F i

)
F(A)

f

F (B ′) ⊕ F(CA′)
( s g )

E,

where i : A′ � CA′ is the canonical inclusion of A′ into its cone, g :
F(CA′) = CF(A′) → E a map such that g ◦ Fi is the null-homotopic map
f ◦ Fα − s ◦ Fβ : F(A′) → E. Let B be the push-out of α : A′ → A along
the degree-wise split inclusion A′ � B ′ ⊕ CA′ and call a : A → B and
b : B ′ ⊕ CA′ → B the induced maps. Since α : A′ → A is a weak equiva-
lence, so is b. The functor F preserves push-outs along inflations. Therefore,
we obtain an induced map t : F(B) → E which is a weak equivalence since
F(b) and (s, g) are. By construction, we have t ◦ Fa = f . �

Next, we prove an analog of Quillen’s Resolution Theorem [22, Sect. 4].

Lemma 9 (Resolution) Let (B,w,∗, η) be an exact category with weak
equivalences and duality such that (B,w) is a category of complexes. Let
A ⊂ B be a full subcategory closed under the duality, degree-wise split ex-
tensions and under taking cones and shifts in B. Restricting (w,∗, η) to A
makes A into an exact category with weak equivalences and duality. Assume
that the following resolution condition holds:

For every object E of B, there is an object A of A and a weak equivalence

A
∼−→ E.

Then the duality preserving inclusion A ⊂ B induces homotopy equivalences

(wSe• A)h
∼−→ (wSe• B)h and GW(A,w,∗, η)

∼−→ GW(B,w,∗, η).

Proof This follows from Theorem 8 in view of Lemma 8 and the fact that
conditions (e) and (g) of Theorem 8 trivially hold since A ⊂ B is fully faithful,
and condition (d) holds since A → B is duality preserving. �
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5.3 Approximation and calculus of fractions

We finish the section with Theorem 9 below. It is a variant of Theorem 8 when
conditions (e) and (f) of Theorem 8 can not be achieved in a functorial way
but the form functor is a localization by a calculus of right fractions.

Definition 6 Call a functor F : A → B between small categories a localiza-
tion by a calculus of right fractions if the following three conditions hold
(compare Theorem 8(e), (f)).

(a) The functor F : A → B is essentially surjective.
(b) For every map f : F(A) → F(B) between the images of objects A, B

of A, there are maps s : A′ → A and g : A′ → B in A with F(s) an
isomorphism in B and f ◦ F(s) = F(g).

(c) For any two maps a, b : A → B in A such that F(a) = F(b) there is a
map s : A′ → A such that F(s) is an isomorphism in B and as = bs.

Remark 11 A functor F : A → B between small categories is a localization
by a calculus of right fractions if and only if the set � of maps f in A such
that F(f ) is an isomorphism in B satisfies a calculus of right fractions (the
dual of [7, Sect. I.2.2]) and the induced functor A[�−1] → B is an equiva-
lence of categories.

Context for Theorem 9 Consider an additive functor A → B between addi-
tive categories. It induces an exact functor F : Chb A → Chb B between the
associated exact categories of bounded chain complexes where we call a se-
quence of chain complexes exact if it is degree-wise split exact. We assume
that F is part of an exact form functor

(F,ϕ) : (Chb A,w,∗, η) → (Chb B,w,∗, η)

between exact categories with weak equivalences and duality such that the
duality compatibility map F∗ → ∗F is a natural isomorphism.

Theorem 9 (Approximation II) If in the context above, a map in Chb A is
a weak equivalence iff its image in Chb B is a weak equivalence, and if the
functor A → B is a localization by a calculus of right fractions, then (F,ϕ)

induces homotopy equivalences

(wSe•Chb A)h
∼−→ (wSe•Chb B)h and

GW(Chb A,w,∗, η)
∼−→ GW(Chb B,w,∗, η).

(18)

The proof of Theorem 9 is a consequence of the following two lemmas.
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Lemma 10 Let F : A → B be a localization by a calculus of right fractions.
Then the following holds.

(a) For every integer n ≥ 0, the induced functor Fun([n], A) → Fun([n], B)

on diagram categories is a localization by a calculus of right fractions.
(b) If (F,ϕ) : (A,∗, η) → (B,∗, η) is a form functor between categories with

duality such that the duality compatibility map ϕ : F∗ → ∗F is a nat-
ural isomorphism, then the induced functor Ah → Bh on associated cat-
egories of symmetric forms is a localization by a calculus of right frac-
tions.

(c) If F is an additive functor between additive categories, then the induced
functors Chb A → Chb B and SnA → SnB are localizations by a calculus
of right fractions.

Proof The proof is an exercise in clearing denominators, and we omit the
details. �

Lemma 11 Let F : A → B be a functor between small categories A and
B which is a localization by a calculus of right fractions. Then F induces a
homotopy equivalence on classifying spaces

|A| ∼−→ |B|.

Proof For a category C and a subcategory wC , the category Funw([n], C) is
the full subcategory of the category Fun([n], C) of functors [n] → C which
have image in wC . Maps are natural transformations of functors [n] → C .
There are homotopy equivalences of topological realizations of simplicial cat-
egories (a variant of which already appeared in the proof of Lemma 5)

|C| ∼→ |n �→ Funw([n], C)| � |n �→ wFun([n], C)| (19)

which is functorial in the pair (C,wC). In the first map, the category C is con-
sidered as a constant simplicial category, and the functor C → Funw([n], C)

sends an object C ∈ C to the string consisting of only identity maps on C. This
functor is a homotopy equivalence with inverse the functor Funw([n], C) → C
which sends a string of maps C0 → ·· · → Cn to C0. The composition of the
two functors is the identity in one direction, and in the other, it is homotopic
to the identity, where the homotopy is given by the natural transformation

from C0
1→ C0

1→ ·· · → C0 to C0 → C1 → ·· · → Cn induced by the struc-
ture maps of the last string. Therefore, the first map in (19) is a homotopy
equivalence. The second map in (19) is in fact a homeomorphism as it is the
realization in two different orders of the same bisimplicial set.
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In order to prove the lemma, let σ A ⊂ A be the subcategory of A whose
maps are the maps which are sent to isomorphisms in B. By the natural homo-
topy equivalences in (19), the map |A| → |B| in the lemma is equivalent to the
map |n �→ σFun([n], A)| → |n �→ iFun([n], B)| which is the realization of a
map of simplicial categories, so that it suffices to show that for each integer
n ≥ 0, the functor σFun([n], A) → iFun([n], B) is a homotopy equivalence.
By part (a) of Lemma 10, this functor is a localization by a calculus of frac-
tions. Therefore, we are reduced to proving that G : σ A → iB is a homotopy
equivalence whenever A → B is a localization by a calculus of right fractions.
In this case, the comma category (G ↓ B) is left filtering for every object B

of B, hence contractible. By Theorem A of Quillen, the functor σ A → iB is
a homotopy equivalence. �

Proof of Theorem 9 We only prove the first homotopy equivalence in the the-
orem, the second homotopy equivalence follows from this and the homotopy
equivalence wS•Chb A → wS•Chb B which is proved in the same way (for-
getting forms).

A map of simplicial categories which is degree-wise a homotopy equiv-
alence induces a homotopy equivalence after topological realization. There-
fore, it suffices to show that for every n ≥ 0, the form functor (F,ϕ) induces
a homotopy equivalence

(wSe
nChb A)h −→ (wSe

nChb B)h. (20)

By Lemma 10(c) and in view of the isomorphism SnChb E = Chb SnE of exact
categories applied to E = A, B, we are reduced to showing that the map (20)
is a homotopy equivalence for n = 0. The functor Chb A → Chb B is a local-
ization by a calculus of right fractions, by Lemma 10(c). The assumption that
Chb A → Chb B preserves and detects weak equivalences, implies that, on
subcategories of weak equivalences, the functor wChb A → wChb B is also
a localization by a calculus of right fractions. By Lemma 10(b), the induced
functor on categories of symmetric forms (Chb A)h → (Chb B)h, which is the
map (20) in degree n = 0, is a localization by a calculus of right fractions and
therefore a homotopy equivalence, by Lemma 11. �

6 From exact categories to chain complexes

The purpose of this section is to prove Proposition 6 which allows us the re-
place the Grothendieck-Witt space of an exact category with duality by the
Grothendieck-Witt space of the associated category of bounded chain com-
plexes.
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6.1 Chain complexes and dualities

Let (E ,∗, η) be an exact category with duality, that is, an exact category
with weak equivalences and duality where all weak equivalences are isomor-
phisms. Let Chb(E ) be the category of bounded chain complexes

(E,d) : · · · → En−1
dn−1→ En

dn→ En+1 → ·· · , dndn−1 = 0,

in E . A sequence of chain complexes (E′, d) → (E,d) → (E′′, d) is exact if
it is degree-wise exact in E , that is, if the sequence E′

n � En � E′′
n is exact

for all n. Call a chain complex (E,d) in E strictly acyclic if every differential
dn is the composition En � imdn � En+1 of a deflation followed by an
inflation, and the sequences imdn−1 � En � imdn are exact in E . A chain
complex is called acyclic if it is homotopy equivalent to a strictly acyclic
chain complex. A map of chain complexes is a quasi-isomorphism if its cone
is acyclic. Write quis for the set of quasi-isomorphisms, then the triple

(Chb(E ),quis)

is an exact category with weak equivalences.
For n ∈ Z, the duality (∗, η) induces a (naive) duality (∗n, ηn) on Chb E

which on objects (E,d) and on chain maps f : (E,d) → (E′, d) is given by
the formulas

(E∗n
)i = (E−i−n)

∗, (f ∗n
)i = (f−i−n)

∗,

(d∗n
)i = (d−i−1−n)

∗, (ηn
E)i = (−1)

n(n−1)
2 ηEi

.

With these definitions, we have an exact category with weak equivalences and
duality

(Chb(E ),quis,∗n, ηn).

If n = 0 we may simply write (∗, η) for (∗0, η0).

Remark 12 The functor T : Chb E → Chb E given by the formula

(T E)i = Ei+1, T (f )i = fi+1, (dT E)i = di+1

defines a duality preserving isomorphism of exact categories with duality

T : (Chb E ,∗n, ηn) ∼= (Chb E ,∗n+2,−ηn+2).
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Remark 13 There is another (more natural) sign choice for defining induced
dualities (�n, cann) on Chb E coming from the internal hom of chain com-
plexes, compare Sect. 7.4. They are given by the formulas

(E�n
)i = (E−i−n)

∗, (f �n
)i = (f−i−n)

∗,

(d�n
)i = (−1)i+1(d−i−1−n)

∗, (cann
E)i = (−1)i(i+n)ηEi

.

The identity functor on Chb E together with the duality compatibility isomor-
phism εn

E : E∗n → E�n
which in degree i is

(εn
E)i = (−1)

i(i+1)
2 idE∗−i−n

: (E∗n

)i → (E�n

)i

defines an isomorphism of exact categories with duality

(id, εn) : (Chb E ,∗n, ηn)
∼=−→ (Chb E , �n, cann).

For the purpose of proving Proposition 6 below, the duality (∗, η) is con-
venient. For most other purposes, the duality (�, can) is more natural. It is
the latter duality, which we will use from Sect. 8 on. In any case, both give
rise to isomorphic exact categories with duality and thus have isomorphic
Grothendieck-Witt spaces.

Exercise. Show that the exact categories with weak equivalences and duality
(Chb E ,∗n, ηn) and (Chb E , �n, cann) have symmetric cones in the sense of
Definition 4 (hint: see Sect. 7.5).

For an exact category with duality (E ,∗, η), inclusion as complexes con-
centrated in degree 0, defines a duality preserving exact functor

(E , i,∗, η) → (Chb E ,quis,∗, η). (21)

The following proposition generalizes [30, Theorem 1.11.7]; see also Re-
mark 14.

Proposition 6 For an exact category with duality (E ,∗, η), the functor (21)
induces a homotopy equivalence of Grothendieck-Witt spaces

GW(E ,∗, η)
∼−→ GW(Chb E ,quis,∗, η).

6.2 Semi-idempotent completions

We will reduce the proof of Proposition 6 to “semi-idempotent complete”
exact categories. This has the advantage that for such categories, every acyclic
complex is strictly acyclic. Here are the relevant definitions and facts.
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Call an exact category E semi-idempotent complete if any map p : A → B

which has a section s : B → A, pi = 1, is a deflation in E . A semi-idempotent
complete exact category has the following property: any map B → C for
which there is a map A → B such that the composition A → C is a defla-
tion, is itself a deflation. This is because a semi-idempotent complete exact
category satisfies Thomason’s axiom [30, A.5.1]. Therefore, the standard em-
bedding of E into the category of left exact functors E op → 〈ab〉 into the
category of Abelian groups is closed under kernels of surjections [30, Theo-
rem A.7.1 and Proposition A.7.16 (b)]. For a semi-idempotent complete exact
category, every acyclic complex is strictly acyclic.

The semi-idempotent completion of an exact category E is the full sub-
category Ẽ semi ⊂ Ẽ of the idempotent completion Ẽ of E of those objects
which are stably in E . Clearly, Ẽ semi is semi-idempotent complete, and the
map K0(E ) → K0(Ẽ semi) is an isomorphism. If (E ,∗, η) is an exact cate-
gory with duality, then (Ẽ semi,∗, η) is an exact category with duality such
that the fully exact inclusion E ⊂ Ẽ semi is duality preserving. If (A,w,∗, η)

is an exact category with weak equivalences and duality, then (Ãsemi,w,∗, η)

inherits the structure of an exact category with weak equivalence and duality
from (Ã,w,∗, η); see Sect. 4.1. Therefore, the inclusion A ⊂ Ãsemi is duality
preserving.

Lemma 12 Let (A,w,∗, η) be an exact category with weak equivalences and
strong duality, then the inclusion A ⊂ Ãsemi induces a homotopy equivalence
of Grothendieck-Witt spaces

GW(A,w,∗, η) → GW(Ãsemi,w,∗, η).

Proof By Cofinality [25], the map GW i (E ) → GW i(Ẽ semi) is an isomorphism
for i ≥ 1 and injective for i = 0 for any exact category with duality (E ,∗, η).
The map GW0(E ) → GW0(Ẽ semi) is also surjective, hence an isomorphism,
since for every symmetric space (X,ϕ) in Ẽ semi, we can find an A in E such
that X ⊕ A is in E , and thus, [X,ϕ] = [(X,ϕ) ⊥ HA] − [HA] is in the image
of the map. Therefore, Lemma 12 holds when w is the set of isomorphisms.
The lemma now follows from this case and the Simplicial Resolution Lemma
5 since Funw(n, Ãsemi) is the semi-idempotent completion of Funw(n, A).
(For a string Xn′ → · · · → Xn of weak equivalences in Ãsemi, there is an
object A of A such that Xi ⊕ A is in A for all i ∈ n. Therefore, (Xn′ →
· · · → Xn) ⊕ (A

1→ ·· · 1→ A) is a string of weak equivalences in A.) �

6.3 Proof of Proposition 6

Proof of Proposition 6 In view of Lemma 12, we can assume E to be semi-
idempotent complete. So, acyclic complexes are strictly acyclic. By the stric-
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tification Lemma 4, we can assume E to have a strict duality, since an exact
category with duality is equivalent to its strictification. Let Acb E ⊂ Chb E be
the full subcategory of acyclic chain complexes. It inherits the structure of an
exact category with weak equivalences and strict duality from Chb E . Con-
sider the commutative diagram of exact categories with weak equivalences
and strict duality

0 (Acb E , i) (Acb E ,quis)

(E , i) (Chb E , i) (Chb E ,quis).

We will show that

(a) the left square induces a homotopy Cartesian square of Grothendieck-
Witt spaces, and that

(b) the map GW0(E , i) → GW0(Chb E ,quis) is surjective.

By Proposition 5, the right hand square induces a homotopy Cartesian square
of Grothendieck-Witt spaces. By (a) the same is true for the outer square.
Together with (b), this implies the proposition.

We prove (a). For n ≥ 0, let Chb[−n,n] E ⊂ Chb E and Acb[−n,n] E ⊂ Acb E
be the full subcategories of those chain complexes which are concentrated in
degrees [−n,n]. They inherit a structure of exact categories with duality. Note
that the inclusion Acb[−n,n] E ⊂ Chb[−n,n] E is 0 ⊂ E for n = 0. The natural
inclusions induce a commutative diagram of exact categories with duality

0 Acb[−n,n] E Acb
[−n−1,n+1] E

E Chb[−n,n] E Chb
[−n−1,n+1] E .

(22)

We will show that the right-hand square induces a homotopy Cartesian
square of Grothendieck-Witt spaces. Then, by induction, the outer square in-
duces a homotopy Cartesian square, too. Taking the colimit over n of the
Grothendieck-Witt spaces of the outer squares yields the desired homotopy
Cartesian square, since the Grothendieck-Witt space functor GW commutes
with filtered colimits.
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Consider the following form functors between exact categories with dual-
ity (equipped with the obvious duality compatibility maps):

H E × Acb[−n,n] E s→ Acb[−n−1,n+1] E :

(A,B),C �→ A
(1 0)−→ A ⊕ C−n → C−n+1 → ·· · → Cn−1 → Cn ⊕ B∗ (0 1)−→ B∗

Chb[−n−1,n+1] E ρ→ H E × Chb[−n,n] E :

C �→ (C−n−1, (Cn+1)∗),C−n → ·· · → Cn

H E × Acb[−n,n] E → H E × Chb[−n,n] E :

(A,B),C �→ (A,B), A ⊕ C−n → C−n+1 → ·· · → Cn−1 → Cn ⊕ B∗.

These functors, together with the natural inclusions, fit into a commutative
diagram of exact categories with duality

Acb[−n,n] E ( 0
1

) Chb[−n,n] E( 0
1

)

H E × Acb[−n,n] E

s

H E × Chb[−n,n] E

Acb[−n−1,n+1] E Chb[−n−1,n+1] E .

ρ

The upper square induces a homotopy Cartesian square of Grothendieck-Witt
spaces. By Additivity (Theorem 5 or [25, 7.1]), the diagonal maps s and ρ in
the lower square induce homotopy equivalences of Grothendieck-Witt spaces
(details below). Therefore, the outer square induces a homotopy Cartesian
square as well. To see that the functors s and ρ induce homotopy equiva-
lences, consider the following functors of categories with duality

Acb
[−n−1,n+1] E r→ H E × Acb[−n,n] E :

C �→ (C−n−1, (Cn+1)
∗),

C−n/C−n−1 → C−n+1 → ·· · → Cn−1 → ker(Cn → Cn+1)

H E × Chb[−n,n] E σ→ Chb
[−n−1,n+1] E :

(A,B),C �→ A
0→ C−n → C−n+1 → ·· · → Cn−1 → Cn

0→ B∗.
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We have ρσ = id. The identity functor id on Chb
[−n−1,n+1] has a totally

isotropic subfunctor G ⊂ id given by

G 0 · · · 0 Cn+1

1

id C−n−1 · · · Cn Cn+1.

By Additivity [25, 7.1], the identity functor id and σρ = G⊥/G ⊕ HG in-
duce homotopic maps on Grothendieck-Witt spaces, thus ρ induces a homo-
topy equivalence. Similarly, we have rs = id, and the identity functor id on
Acb

[−n−1,n+1] E has a totally isotropic subfunctor F ⊂ id given by

F C−n−1
1

1

C−n−1 0 · · · 0

id C−n−1 C−n C−n+1 · · · Cn+1.

Again, by Additivity [25], the identity functor id on Acb
[−n−1,n+1] E and

sr = F⊥/F ⊕ HF induce homotopic maps on Grothendieck-Witt spaces. It
follows that s induces a homotopy equivalence. This finishes the prove of (a).

We are left with proving (b). We will show that

(c) a symmetric space (A,α), where A is supported in [−n,n], n ≥
1, equals [A,α] = [B,β] + [H(C)] in the Grothendieck-Witt group
GW0(Chb E ,quis), where B is supported in [−n + 1, n − 1].

By induction, [A,α] is then a sum of hyperbolic objects plus a symmet-
ric space supported in degree 0. Since the latter two kinds of symmetric
spaces are obviously in the image of GW0(E , i) → GW0(Chb E ,quis), this
proves (b). To show (c), let n ≥ 1 and let (A,α) be a symmetric space sup-
ported in [−n,n]. Since the cone of α is acyclic (hence strictly acyclic, by
semi-idempotent completeness of E ), the map

(
d−n
α−n

) : A−n → A−n+1 ⊕A∗
n is

an inflation. Define a complex Ã, also supported in [−n,n], by

A−n

(
d−n

α−n

)
� A−n+1 ⊕ A∗

n

( d 0 )−→ A−n+2
d→ ·· · d→ An−2

(
d
0
)

−→ An−1 ⊕ An

(
dn−1 1

)
� An.

The complex Ã is equipped with a non-singular symmetric form α̃ which is
αi in degree i except in degrees i = −n+ 1, n− 1 where it is αi ⊕ 1. We have
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a symmetric space in the category of admissible short complexes in Chb E

A∗
n[n − 1] � Ã � An[−n + 1]

with form (1, α̃, η), where for an object E of E , we denote by E[i] the com-
plex which is E in degree −i and 0 elsewhere. The maps A∗

n � Ã−n+1 =
A−n+1 ⊕ A∗

n and An−1 ⊕ An = Ãn−1 → An are the canonical inclusions and
projections, respectively. Since (A,α) is the zero-th homology of this ad-
missible short complex equipped with its form, we have [Ã, α̃] = [A,α] +
[H(An[−n + 1])] in GW0(Chb E ,quis). There is another symmetric space in
the category of admissible short complexes in Chb E

CA−n[n − 1] � Ã � CAn[n]
with non-singular from (α−n, α̃, αn), where for an object E of E , we write

CE[i] for the complex E
1→ E placed in degrees i and i − 1. The maps

CA−n[n − 1] � Ã and Ã � CAn[n] are the unique maps which are the
identity in degree −n and n, respectively. Since CA−n[n − 1] and CAn[n]
are acyclic, the form on the admissible short complex is non-singular and its
zero-th homology, which is concentrated in degrees [−n + 1, n − 1], has the
same class in GW0(Chb E ,quis) as (Ã, α̃). �

Remark 14 We can equip (Chb E ,quis,∗, η) with two exact structures, the
one defined in Sect. 6.1, and the degree-wise split exact structure. By
Lemma 7, the two yield homotopy equivalent Grothendieck-Witt spaces.

7 DG-Algebras on ringed spaces and dualities

In this section we recall basic definitions and facts about differential graded
algebras and modules over them. Besides fixing terminology, the main point
here is the construction of the canonical symmetric cone in Sect. 7.5, and the
interpretation of certain form functors as symmetric forms in dg bimodule
categories; see Sect. 7.7.

7.1 DG κ-modules

Let κ be a commutative ring. Unless otherwise indicated, modules will always
mean left module, tensor product ⊗ will be tensor product ⊗κ over κ , and
homomorphism sets Hom(M,N) between κ-modules means set of κ-linear
homomorphisms, and is itself a κ-module. Recall that a differential graded
κ-module M is a graded κ-module

⊕
n∈Z

Mn together with a κ-linear map
d : Mn → Mn+1, n ∈ Z, called differential of M , satisfying d ◦d = 0. In other
words, M is a chain complex of κ-modules. A map of dg κ-modules is a map
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of graded κ-modules commuting with the differentials. For two dg κ-modules
M , N , the tensor product dg κ-module M ⊗ N and the homomorphism dg
κ-module [M,N] are defined by the usual formulas

(M ⊗ N)n =
⊕
i+j

Mi ⊗ Nj d(x ⊗ y) = dx ⊗ y + (−1)|x|x ⊗ dy

[M,N]n =
∏

j−i=n

Hom(Mi,Nj ) d(f ) = dN ◦ f − (−1)|f |f ◦ dM.

7.2 DGAs and modules over them

A differential graded κ-algebra (dga) is a dg κ-module A equipped with dg
κ-module maps · : A ⊗ A → A and κ → A, called multiplication and unit,
making the usual associativity and unit diagrams commute [18, diagrams (1),
(2), p. 166]. In other words, A is an associative graded κ-algebra with multi-
plication satisfying d(a ·b) = (da) ·b+(−1)|a|a ·(db). For dg algebras A and
B , we denote by A-Mod-B the category of left A and right B-modules. Its
objects are the dg κ-modules M equipped with dg κ-maps A ⊗ M → M and
M ⊗ B → M , called multiplication, both of which are associative and unital,
and furthermore, (am)b = a(mb) for all a ∈ A, m ∈ M and b ∈ B . We also
denote by A-Mod = A-Mod-κ , Mod-A = κ-Mod-A, A-Bimod = A-Mod-A
the categories of dg left A-modules, right A-modules, and of dg A-bimodules.

Let A, B , C be dg algebras. Recall that for a right B module M and left
B-module N , tensor product M ⊗B N of M and N over B is the dg κ-module
which is the co-equalizer

M ⊗ B ⊗ N

1⊗μ

μ⊗1

M ⊗ N M ⊗B N

in the category of dg κ-modules, where μ stands for the multiplications
M ⊗ B → M and B ⊗ N → N . For two dg right C-modules M and N , the
dg κ-module [M,N]C of right C-module morphisms is the equalizer in the
category of dg κ-modules

[M,N]C [M,N]
[μ,1]

[1,μ]◦(?⊗1C)

[M ⊗ C,N],

where (? ⊗ 1C) : [M,N] → [M ⊗ C,N ⊗ C] is the dg κ-module map f �→
f ⊗ 1C defined by (f ⊗ 1C)(x ⊗ c) = f (x) ⊗ c for x ∈ M and c ∈ C. Simi-
larly, one can define the dg κ-module of left C-module morphisms C[M,N]
for two dg left C-modules.
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Tensor product ⊗B and right C-module morphisms [ , ]C define functors

⊗B : A-Mod-B × B-Mod-C −→ A-Mod-C : M,N �→ M ⊗B N

[ , ]C : (B-Mod-C)op × A-Mod-C −→ A-Mod-B : M,N �→ [M,N]C.

7.3 DGAs with involution

For a dg κ-module M , we denote by Mop the opposite dg κ-module which,
as a dg κ-module, is simply M itself. To avoid confusion we may sometimes
write xop, yop , etc, for the elements in Mop corresponding to x, y ∈ M . For
instance, d(xop) = (dx)op denotes an equation in Mop as opposed to in M .
For a dg κ-algebra A, its opposite dga Aop has underlying dg κ-module
the opposite module of A and multiplication xopyop = (−1)|x||y|(yx)op .
A dg algebra with involution is a dg κ-algebra A together with an isomor-
phism A → Aop : a �→ ā of dgas satisfying ¯̄a = a for all a ∈ A. The base
commutative ring κ is always considered as a dga with trivial involution
κ → κop : x �→ x.

Let A,B be dgas with involution. For a left A, right B-module M ∈
A-Mod-B its opposite module Mop is a left Bop and right Aop-module which
we consider as a left B and right A-module via the isomorphisms A → Aop ,
B → Bop , that is, mop · a = (−1)|a||m|(ā · m)op , b · mop = (−1)|b||m|(m · b̄)op

for a ∈ A, b ∈ B , m ∈ M . For dgas with involution A, B , C and M ∈
A-Mod-B , N ∈ B-Mod-C, the commutativity isomorphism of the tensor
product defines an A-Mod-C-isomorphism

c : M ⊗B N
∼=−→ (Nop ⊗B Mop)op : x ⊗ y �→ (−1)|x||y|(yop ⊗ xop)op.

This can be iterated to obtain for rings with involution A, B , C, D and M ∈
A-Mod-B , N ∈ B-Mod-C, P ∈ C-Mod-D an isomorphism c3 in A-Mod-D
defined by

(M ⊗B N ⊗C P )
c3−→ (P op ⊗C Nop ⊗B Mop)op

x ⊗ y ⊗ z �→ (−1)|x||y|+|x||z|+|y||z|(zop ⊗ yop ⊗ xop)op.

7.4 DG-modules and dualities

Let A be a dga with involution, and let I be an A-bimodule equipped with an
A bimodule isomorphism i : I → I op such that iop ◦ i = id, for instance A

itself with i(x) = x̄. We call the pair (I, i) a duality coefficient for the category
A-Mod of dg A-modules, as it defines a duality �(I,i) : (A-Mod)op → A-Mod
by

M�(I,i) = [Mop, I ]A.
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The canonical double dual identification can(I,i),M : M → M�(I,i)�(I,i) is the
left A-module map given by the formula

can(I,i),M(x)(f op) = (−1)|x||f |i(f (xop))

for f ∈ [Mop, I ]A and x ∈ M . It is a straight forward to check the identity
can�

(I,i),Mcan(I,i),M� = 1M� . Therefore, the triple (A-Mod, �(I,i), can(I,i)) is
a category with duality. In this paper, for the duality �(I,i), the double dual
identification will always be the natural map can(I,i). With this in mind, we
will write

(A-Mod, �(I,i))

for the category with duality (A-Mod, �(I,i), can(I, i)), the double dual iden-
tification being can(I,i). If i : I → I op is understood, we may write �I instead
of �(I,i).

To give a symmetric form ϕ : M → [Mop, I ]A in (A-Mod, �I ) is the same
as to give an A-bimodule map ϕ̂ : M ⊗ Mop → I such that the diagram

M ⊗ Mop
ϕ̂

c

I

i

(M ⊗ Mop)op
ϕ̂op

I op

commutes. The bijection is given by the identity ϕ̂(x ⊗ yop) = ϕ(x)(yop).

7.5 The canonical symmetric cone

Let C = κ · 1C ⊕ κ · ε be the dg κ-module whose underlying κ-module is
free of rank 2 with basis 1C and ε in degrees 0 and −1, respectively, and
differential dε = 1C . In fact, C is a commutative dga with unit 1C and
unique multiplication. Let A be a dga and M a (left) dg A-module. We
write C : A-Mod → A-Mod for the functor M �→ M ⊗ C, and iM for the
natural inclusion M → CM = M ⊗ C : x �→ x ⊗ 1C . Similarly, we write
P : A-Mod → A-Mod for the functor M ⊗ [Cop, κ] and pM for the natural
surjection PM = M ⊗ [Cop, κ] → M : m ⊗ g �→ m · g(1op

C ). If A is a dga
with involution, and (I, i) a duality coefficient for A-Mod, we define a nat-
ural transformation

γM : [Mop, I ]A ⊗ [Cop, κ] −→ [(M ⊗ C)op, I ]A
by the formula γM(f ⊗g)((x⊗a)op) = (−1)|a||x|f (xop) ·g(aop). One checks
the equality i

�I

M ◦ γM = pM�I .



The Mayer-Vietoris principle for Grothendieck-Witt groups of schemes 403

Therefore, an exact category with weak equivalences and duality
(E ,w,∗, η) which admits a fully faithful and duality preserving embedding
into (A-Mod, �I ) has a symmetric cone in the sense of Definition 4 provided
the functors C and P restrict to exact endofunctors of E , the natural maps
iM and pM are inflation and deflation, and the objects CM and PM are
w-acyclic for all M ∈ E .

7.6 Symmetric forms in bimodule categories and their tensor product

Let A and B be dgas with involution, and let (I, i), (J, j) be duality coeffi-
cients for A-Mod and B-Mod, respectively. A symmetric form in A-Mod-B ,
with respect to the duality coefficients (I, i) and (J, j), is a pair (M,ϕ) where
M ∈ A-Mod-B is a left A and right B-module, and ϕ : M ⊗B J ⊗B Mop → I

is an A-bimodule map making the diagram of A-bimodule maps

M ⊗B J ⊗B Mop
ϕ

c3◦(1⊗j⊗1)

I

i

(M ⊗B J ⊗B Mop)op

ϕop
I op

(23)

commute. Isometries and orthogonal sums of symmetric forms in A-Mod-B
are defined in the obvious way.

Tensor product of symmetric forms is defined as follows. Let A, B , C be dg
algebras with involution, and let (I, i), (J, j), (K, k) be duality coefficients
for A-Mod, B-Mod and C-Mod, respectively. Further, let M ∈ A-Mod-B
and N ∈ B-Mod-C be equipped with symmetric forms given by the A- and
B-bimodule maps ϕ : M ⊗B J ⊗B Mop → I and ψ : N ⊗C K ⊗C Nop → J

(making diagram (23) and its analog for ψ commute). The tensor product

(M,ϕ) ⊗B (N,ψ)

of the symmetric forms (M,ϕ) and (N,ψ) has M ⊗B N as underlying left
A and right C-module, and is equipped with the symmetric form which is the
A-bimodule map

(M ⊗B N) ⊗C K ⊗C (M ⊗B N)op
c→ M ⊗B N ⊗C K ⊗C Nop ⊗B Mop

ψ→ M ⊗B J ⊗B Mop ϕ→ I.

7.7 Form functors as tensor product with symmetric forms

Let A and B be dgas with involution, and let (I, i), (J, j) be duality coef-
ficients for A-Mod and B-Mod, respectively. We want to think of (certain)
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form functors (B-Mod, �J ) → (A-Mod, �I ) as tensor product with symmet-
ric forms in A-Mod-B . For that, let (M,ϕ) be a symmetric form in A-Mod-B .
It defines a form functor

(M,ϕ)⊗B? : (B-Mod, �J )
(F,�)−→ (A-Mod, �I ),

where F(P ) = M ⊗B P and the duality compatibility map is the left
A-module homomorphism

M ⊗B [P op, J ]B �P−→ [(M ⊗B P )op, I ]A
defined by

�(x ⊗ f )((y ⊗ t)op) = (−1)|y||t |ϕ(x ⊗ f (top) ⊗ yop)

for x, y ∈ M , f ∈ [P op, J ]B , and t ∈ P .

7.8 Basic properties of (M,ϕ)⊗B?

Let A, B , C be dg algebras with involution, and let (I, i), (J, j), (K, k) be
duality coefficients for A-Mod, B-Mod and C-Mod, respectively. Further, let
(M,ϕ), (M ′, ϕ′) be symmetric forms in A-Mod-B and (N,ψ) a symmetric
form in B-Mod-C. Form functors induced by tensor product with symmetric
forms have the following elementary properties.

(a) Tensor product (A,μI )⊗A? with the symmetric form

μI : A ⊗A I ⊗A Aop → I : a ⊗ t ⊗ b �→ a · t · b̄
on the A-bimodule A induces the identity form functor on (A, �I ).

(b) An isometry (M,ϕ) ∼= (M ′, ϕ′) between symmetric forms in A-Mod-B
defines an isometry of associated form functors

(M,ϕ)⊗B? ∼= (M ′, ϕ′)⊗B? : (B-Mod, �J ) → (A-Mod, �I ).

(c) Orthogonal sum (M,ϕ) ⊥ (M ′, ϕ′) of symmetric forms in A-Mod-B cor-
responds to orthogonal sum of associated form functors:

(M,ϕ)⊗B? ⊥ (M ′, ϕ′)⊗B? ∼= [(M,ϕ) ⊥ (M ′, ϕ′)]⊗B?

(d) Tensor product of symmetric forms corresponds to composition of asso-
ciated form functors:

[(M,ϕ) ⊗B (N,ψ)]⊗C? ∼= [(M,ϕ)⊗B?] ◦ [(N,ψ)⊗C?]
These properties follow directly from the definitions, and we omit the details.
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7.9 Tensor product of dgas with involution

For two dgas A, V , the tensor product dg κ-module AV = A ⊗κ V is a
dga with multiplication (a ⊗ v) · (b ⊗ w) = (−1)|b||v|(a · b) ⊗ (v · w). If
A, V are dgas with involution, then the tensor product dga AV is a dga with
involution AV → (AV )op : a ⊗ v �→ (ā ⊗ v̄)op . Furthermore, if (I, i) and
(U,u) are duality coefficients for A-Mod and V -Mod, then IU = I ⊗U is an
AV -bimodule with left multiplication (a ⊗ v) · (t ⊗ x) = (−1)|v||t |a · t ⊗ v · x
and right multiplication (t ⊗ x) · (a ⊗ v) = (−1)|a||x|t · a ⊗ x · v, for a ∈ A,
v ∈ V , t ∈ I , x ∈ U , and the AV -bimodule map iu = i ⊗ u : I ⊗ U →
(I ⊗ U)op : t ⊗ x �→ (i(t) ⊗ u(x))op makes the pair (IU, iu) into a duality
coefficient for AV -Mod.

If B is another dga with involution, and (J, j) is a duality coefficient for
B-Mod, then, with the same formulas as in Sects. 7.6 and 7.7, any symmetric
from (M,ϕ) in A-Mod-B with respect to the duality coefficients (I, i) and
(J, j) defines a form functor

(M,ϕ)⊗B? : (BV -Mod, �(JU,ju)) → (AV -Mod, �(IU,iu))

satisfying the properties in Sect. 7.8.

7.10 Extension to ringed spaces

Let (X,OX) be a ringed space with OX a sheaf of commutative rings
on a topological space X. Replacing in Sects. 7.1–7.9 the ground ring
κ with the sheaf of commutative rings OX , all definitions and proper-
ties from Sects. 7.1–7.9 extend to modules over differential graded sheaves
of OX-algebras. Definitions are extended by applying the definitions of
Sects. 7.1–7.9 to sections over open subsets of X. For instance, let A
be a sheaf of dg OX-algebras with involution, (I, i) a duality coeffi-
cient for A-Mod, and P a sheaf of left dg A-modules. The canonical
double dual identification can : P → [[P op, I ]opA , I ]A is defined by send-
ing a section x ∈ P(U), U ⊂ X, to the map of sheaves of dg mod-
ules can(x) : ([P op, I ]opA )|U → I|U defined on V ⊂ U by can(x)(f op) =
(−1)|x||f |i(f (x

op
|V )) for f ∈ [P op, I ]A(V ).

8 Higher Grothendieck-Witt groups of schemes

Let X be a scheme, AX be a quasi-coherent sheaf of OX-algebras with in-
volution, L a line bundle on X, Z ⊂ X a closed subscheme and n ∈ Z an
integer. The purpose of this section is to introduce the Grothendieck-Witt
space GWn(AX on Z,L) of symmetric spaces over AX with coefficients in
the n-th shifted line bundle L[n] and support in Z. We work in this generality
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in order to be able to extent the localization and excision theorems of Sect. 9
to negative degrees.

Recall that, unless otherwise indicated, “module” will always mean “left
module”. In what follows, we will denote by ⊗ the tensor product ⊗OX

of
OX-modules.

8.1 Vector bundles and strictly perfect complexes

Let AX be a quasi-coherent sheaf of OX-algebras with involution. The cat-
egory of quasi-coherent left AX-modules (dg-modules concentrated in de-
gree 0) is a fully exact Abelian subcategory of the Abelian category of left

AX-modules. We denote by

Vect(AX)

the full subcategory of AX vector bundles, that is, of those quasi-coherent left
AX-modules F for which F(U) is a finitely generated projective AX(U)-
module for every affine U ⊂ X. As usual, the last condition only needs to be
checked for those U running through a choice of an affine open cover of X.
The category of AX vector bundles inherits the notion of exact sequences
from the category of all (quasi-coherent) AX-modules. Note that AX vector
bundles need not be locally free, since AX,x may not be commutative nor a
local ring for x ∈ X. In case AX = OX , the category Vect(X) is the usual
exact category of vector-bundles on X.

A strictly perfect complex of AX-modules is a dg left AX-module M such
that Mn = 0 for all but finitely many n ∈ Z and Mn is an AX vector bundle
for all n ∈ Z. Denote by sPerf(AX) the category of strictly perfect complexes
of AX-modules, in oder words, the category of bounded chain complexes of
AX vector bundles.

Let L be a line bundle on X. Then AXL[n] = AX ⊗ L[n] is a dg
AX-bimodule via the multiplication defined on sections by a(x ⊗ l)b =
(−1)|b||l|axb ⊗ l for a, b, x ∈ AX and l ∈ L[n]. We equip AXL[n] with a dg
AX-bimodule isomorphism i : AXL[n] → (AXL[n])op : a ⊗ l �→ ā ⊗ l satis-
fying iop ◦ i = 1. Therefore, (AXL[n], i) is a duality coefficient for AX-Mod.
If ε ∈ {+1,−1}, then (AXL[n], εi) is also a duality coefficient for AX-Mod.
In the notation of Sect. 7.9, the duality coefficient (AXL[n], εi) is the ten-
sor product of the duality coefficient (AX,μ) for AX-Mod and the duality
coefficient (L[n], ε) for OX-Mod.

For a strictly perfect complex of AX-modules M , the left dg AX-module

M�n
εL = [Mop, AXL[n] ]AX

is also strictly perfect, the functor M �→ M�n
εL is exact and preserves quasi-

isomorphisms. Moreover, the double dual identification can(AXL[n],εi) defined
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in Sect. 7.4 is an isomorphism. Therefore, the triple

(sPerf(AX),quis, �n
εL)

defines an exact category with weak equivalences and duality, the double dual
identification being understood as can(AXL[n],εi). If n = 0 (or ε = 1, or L =
OX), we may omit the label corresponding to n (or ε, or L, respectively). For
instance (AX-Mod, �n) means (AX-Mod, �n

1,OX
). By restriction of structure,

we have an exact category with duality

(Vect(AX), �εL).

Let Z ⊂ X be a closed subscheme with open complement U = X − Z.
A strictly perfect complex M of AX-modules has cohomological support in
Z if the restriction M|U of M to U is acyclic. We write sPerf(AX on Z) for
the category of strictly perfect complexes of AX-modules which have coho-
mological support in Z. By restriction of structure, we have exact categories
with weak equivalences and duality

(sPerf(AX on Z), quis, �n
εL). (24)

Definition 7 Let X be a scheme, AX be a quasi-coherent sheaf of OX-
algebras with involution, L a line bundle on X, Z ⊂ X a closed subscheme,
n ∈ Z an integer, and ε ∈ {+1,−1}. The Grothendieck-Witt space

εGWn(AX on Z,L)

of ε-symmetric spaces over AX with coefficients in the n-th shifted line bun-
dle L[n] and (cohomological) support in Z is the Grothendieck-Witt space
of the exact category with weak equivalences and duality (24). If Z = X

(or ε = 1, or L = OX , or n = 0), we may omit the label corresponding to
Z (ε, L, n, respectively). For instance, the space GW(AX,L) denotes the
Grothendieck-Witt space 1GW 0(AX on X,L).

Remark 15 By Sect. 7.5, the exact category with weak equivalences and du-
ality (24) has a symmetric cone in the sense of Definition 4.

In the following proposition, we write μ : OX ⊗ OX → OX for the multi-
plication in OX .

Proposition 7 Tensor product with the (−1)-symmetric space (OX[1],μ) in-
duces an equivalence of exact categories with weak equivalences and duality

(sPerf(AX on Z), quis, �n
εL) ∼= (sPerf(AX on Z), quis, �n+2

−εL).
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In particular, we have homotopy equivalences of Grothendieck-Witt spaces

(OX[1],μ)⊗? : εGWn(AX on Z,L) � −εGWn+2(AX on Z,L) and

(OX[2],μ)⊗? : εGWn(AX on Z,L) � εGWn+4(AX on Z,L).

Proof The pair (OX[1],μ) defines a symmetric space in OX-Mod
with respect to the duality coefficient (OX[2],−1). Tensor product
(OX[1],μ)⊗OX

? defines a form functor (AX-Mod, �n
εL) → (AX-Mod, �n+2

−εL)

as explained in Sects. 7.7–7.10. Since (OX[1],μ) ⊗OX
(OX[−1],−μ) and

(OX[−1],−μ) ⊗OX
(OX[1],μ) are isometric to (OX,μ) which induces the

identity form functor, the equivalence of categories with duality and the first
homotopy equivalence follow. The second map of spaces is a homotopy
equivalence with inverse given by the tensor product with the symmetric
space (OX[−2],μ). �

Corollary 1 For n ∈ Z, there are functorial homotopy equivalences

GW4n(AX,L) � GW(Vect(AX), �L, canL), and

GW4n+2(AX,L) � GW(Vect(AX), �L,−canL).

where the Grothendieck-Witt spaces on the right hand side are the ones as-
sociated with the exact categories with duality (Vect(AX), �L,±canL) as de-
fined in [25, Definition 4.4].

Proof The homotopy equivalences follow from Proposition 6, Remark 13,
and Proposition 7. �

9 Localization and Zariski-excision in positive degrees

9.1 Schemes with an ample family of line bundles

A scheme X has an ample family of line bundles if there is a finite set
L1, . . . ,Ln of line bundles with global sections si ∈ �(X,Li) such that the
non-vanishing loci Xsi = {x ∈ X | si(x) �= 0}, i = 1, . . . , n, form an open
affine cover of X; see [30, Definition 2.1], [4, II 2.2.4].

Recall that if f ∈ �(X,L) is a global section of a line bundle L on a
scheme X, then the open inclusion Xf ⊂ X is an affine map (as can be seen
by choosing an open affine cover of X trivializing the line bundle L). As a
special case, Xf is affine whenever X is affine. Thus, for the affine cover
above X =⋃Xsi , all finite intersections of the Xsi ’s are affine. In particular,
a scheme with an ample family of line bundles is quasi-compact (as a finite
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union of affine, hence quasi-compact, subschemes) and it is quasi-separated.
Recall that the latter means that the intersection of any two quasi-compact
open subsets is quasi-compact (a condition which only needs to be checked
for the pair-wise intersections Ui ∩ Uj of a cover of X =⋃i Ui by quasi-
compact open subsets Ui ; in our case, we can take Ui = Xsi ).

For a scheme X with an ample family of line bundles, there is a set Li ,
i ∈ I , of line bundles on X with global sections si ∈ �(X,Li) such that the
open subsets Xsi , i ∈ I , form an open affine basis for the topology of X [30,
2.1.1(b)]. If X is affine, this follows from the definition of the Zariski topol-
ogy. For a general X (with an ample family of line bundles), the sections
which give rise to a basis of topology on an open affine Xs can be extended
(up to a power of s) to global sections; see [9, Théorème 9.3.1]. Therefore,
every open subset of a basis for Xs is also the non-vanishing locus of a global
section of some line bundle on X.

For examples of schemes with an ample family of line bundles, see [30,
2.1.2]. Any quasi-compact open or closed subscheme of a scheme with an
ample family of line bundles has itself an ample family of line bundles. Any
scheme quasi-projective over an affine scheme, and any separated regular
noetherian scheme has an ample family of line bundles.

The main purpose of this section is to prove the following two theorems.

Theorem 10 (Localization) Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open comple-
ment j : U ⊂ X, and let L be a line bundle on X. Let AX be a quasi-coherent
sheaf of OX-algebras with involution. Then for every n ∈ Z there is a homo-
topy fibration of Grothendieck-Witt spaces

GWn(AX on Z,L) −→ GWn(AX,L) −→ GWn(AU, j∗L).

Theorem 11 (Zariski-excision) Let X be a scheme with an ample family of
line-bundles, let Z ⊂ X be a closed subscheme with quasi-compact open com-
plement, let L be a line bundle on X and let AX be a quasi-coherent sheaf of
OX-algebras with involution. Then for every n ∈ Z and every quasi-compact
open subscheme j : V ⊂ X containing Z, restriction of vector-bundles in-
duces a homotopy equivalence

GWn(AX on Z,L)
∼−→ GWn(AV on Z,j∗L).

The proofs of Theorems 10 and 11 will occupy the rest of this section. First,
we introduce some terminology. For an open subscheme U ⊂ X, call a map
M → N of left dg AX-modules a U -isomorphism (U -quasi-isomorphism)
if its restriction M|U → N|U to U is an isomorphism (quasi-isomorphism).
A left dg AX-module M is called U -acyclic if its restriction M|U to U is
acyclic.
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9.2 Notation for Sect. 9.3 and Lemmas 13 and 14

Below, we will consider the following objects:

• a scheme X which is quasi-compact and quasi-separated,
• a finite set of line bundles Li , i = 1, . . . , l together with global sections

si ∈ �(X,Li),
• the union U =⋃l

i=1 Xsi of the non-vanishing loci Xsi of the si’s, denoting
j : U ⊂ X the corresponding open immersion, and

• a quasi-coherent sheaf of OX-algebras AX .

9.3 Truncated Koszul complexes

In the situation of Sect. 9.2, the global sections si define maps si : OX →
Li of line-bundles whose OX-duals are denoted by s−1

i : L−1
i → OX . We

consider the maps s−1
i as (cohomologically graded) chain-complexes with

OX placed in degree 0. For an l-tuple n = (n1, . . . , nl) of negative integers,
the Koszul complex

l⊗
i=1

(L
ni

i

sni→ OX) (25)

is acyclic over U . This is because the map sni = (s−1
i )⊗|ni | : Lni

i → OX is an
Xsi -isomorphism. Therefore, the Koszul complex (25) is acyclic (even con-
tractible) over each Xsi . Let K(sn) denote the bounded complex whose non-
zero part (which we place in degrees −l + 1, . . . ,0) is the Koszul complex
(25) in degrees ≤ −1. The last differential d−1 of the Koszul complex defines
a map

K(sn) =
[

l⊗
i=1

(L
ni

i

sni→ OX)

]

≤−1

[−1] ε−→ OX

of strictly perfect complexes of OX-modules which is a U -quasi-isomorphism
since its cone, the Koszul complex, is U -acyclic. For a left dg AX-module
M , we write εM for the tensor product map εM = 1M ⊗ ε : M ⊗ K(sn) →
M ⊗ OX

∼= M .
The following lemma is a consequence of the well-known techniques of

extending a section of a quasi-coherent sheaf from an open subset cut out by
a divisor to the scheme itself [9, Théorème 9.3.1]. It is implicit in the proof of
[30, Proposition 5.4.2].

Lemma 13 In the situation Sect. 9.2, let M be a complex of quasi-coherent
left AX-modules and let A be a strictly perfect complex of AX-modules. Then
the following holds.
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(a) For every map f : j∗A → j∗M of left dg AU -modules between the
restrictions of A and M to U , there is an l-tuple of negative integers
n = (n1, . . . , nl), and a map f̃ : A ⊗ K(sn) → M of left dg AX-modules
such that f ◦ j∗(εA) = j∗(f̃ ).

(b) For every map f : A → M of left dg AX-modules such that j∗(f ) = 0,
there is an l-tuple of negative integers n = (n1, . . . , nl) such that
f ◦ εA = 0.

Proof For any complex of OX-modules K , to give a map A ⊗ K → M of
chain complexes of AX-modules is the same as to give a map K → AX

[A,M]
of chain complexes of OX-modules, by adjointness of the tensor product
functor A⊗? : OX-Mod → AX-Mod and the left AX-module map func-
tor AX

[A, ] : AX-Mod → OX-Mod. If A is strictly perfect, the complex
AX

[A,M] is a complex of quasi-coherent OX-modules and the natural map
AX

[A,j∗j∗M] → j∗j∗ AX
[A,M] is an isomorphism. The adjunction allows

us to reduce the proof of the lemma to AX = OX and A = OX (concentrated
in degree 0).

Every map OX → M of chain complexes of OX-modules factors through
the subcomplex Z0M ⊂ M of M which is the complex ker(d0 : M0 → M1)

concentrated in degree 0. By adjunction, every map OX → j∗j∗M factors
as OX → j∗Z0j

∗M = j∗j∗Z0M → j∗j∗M . This allows us to further reduce
the proof to M a complex with Mi = 0, i �= 0. In this case, the proof for l = 1
is classical; see [9, Théorème 9.3.1], [30, Lemma 5.4.1]. Hence, the lemma is
proved in case l = 1.

Before we treat the case l > 1 (and AX = OX; A = OX , M concentrated
in degree 0), we prove the following.

(†) For every map A → G of complexes of quasi-coherent OX-modules with
A strictly perfect and j∗G contractible, there is an l-tuple of negative
integers (n1, . . . , nl) and a commutative diagram of complexes of OX-
modules

A
1A⊗ι

A ⊗
[

l⊗
i

(L
ni

i

sni→ OX)

]

G

where ι is the canonical embedding of OX (concentrated in degree 0) into
the Koszul complex.

It suffices to prove (†) for l = 1, since the general case is a repeated appli-
cation of the case l = 1. For the proof of (†) with l = 1, we can assume
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A = OX , as above. The composition OX → G → j∗j∗G has contractible tar-
get and therefore factors through the cone (OX → OX) of OX . By the case
l = 1 of the lemma (proved above), there is an n < 0 such that the com-

position (Ln → Ln)
sn→ (OX → OX) → j∗j∗G lifts to G. The two maps

(0 → Ln)
sn→ (0 → OX) → G and (0 → Ln) → (Ln → Ln) → G may not

be the same, but their compositions with G → j∗j∗G are. Therefore, again

by case l = 1 of the lemma, precomposing both maps with Ln+t st→ Ln makes
the two maps with target G equal. Replacing n with n+ t , we can assume that
the two maps (0 → Ln) → G above coincide. Then we obtain a map from the

push-out (Ln sn→ OX) of (Ln → Ln) ← (0 → Ln)
sn→ (0 → OX) to G. This

proves (†) for l = 1, hence for all l.
For part (a) of the general case of Lemma 13 (and AX = OX; A = OX ,

M concentrated in degree 0), we apply (†) to the map of chain-complexes
of OX-modules (0 → OX) → (M → j∗j∗M), and obtain a factorization of

that map through the Koszul complex
⊗

i (L
ni

i

sni→ OX) for some l-tuple of
negative integers (n1, . . . , nl). The canonical map from the stupid truncation
in degrees ≤ −1 (shifted by 1 degree) to its degree 0 part

K(sn) =
[

l⊗
i=1

(L
ni

i

sni→ OX)

]

≤−1

[−1] d−1

OX

M = [M → j∗j∗M]≤−1[−1]
d−1

j∗j∗M

yields (a). The general case of part (b) is a repeated application of the case
l = 1. �

For an exact category with weak equivalences (C,w), we write D(C,w) for
its derived category, that is, the category C[w−1] obtained from C by formally
inverting the arrows in w. If (C,w) is a category of complexes in the sense of
Definition 5, its derived category D(C,w) is a triangulated category. In this
case, it can also be obtained as the localization by a calculus of fractions of
the homotopy category K(C) of C which is the factor category of C modulo
the ideal of maps which are homotopic to zero.

Lemma 14 In the situation Sect. 9.2, let A ⊂ sPerf(AX) be a full subcate-
gory of the category of strictly perfect AX-modules such that the inclusion
A ⊂ sPerf(AX) is closed under degree-wise split extensions, usual shifts and
cones. Assume furthermore that for all A ∈ A, k ≤ 0 and i = 1, . . . , l, we have
A ⊗ Lk

i ∈ A.
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Then for every U -quasi-isomorphism M → A of complexes of quasi-
coherent AX-modules with A ∈ A, there is a U -quasi-isomorphism B → M

of complexes of AX-modules with B ∈ A:

B
∃

U-quis
M

∀
U-quis

A.

In particular, the inclusion A ⊂ sPerf(AX) induces a fully faithful triangle
functor

D(A, U -quis) ⊂ D(sPerf(AX), U -quis).

Proof We first prove the following statement.

(†) Let s ∈ �(X,L) be a global section of a line-bundle L such that Xs is
affine. Then for every Xs-quasi-isomorphism N → E of complexes of
quasi-coherent AX-modules with E strictly perfect on X, there is an Xs -
quasi-isomorphism E ⊗ L−k → N for some integer k > 0.

Write j : Xs ⊂ X for the open inclusion. Since Xs is affine, we have an equiv-
alence of categories between quasi-coherent AXs -modules and AX(Xs)-
modules under which the map j∗N → j∗E becomes a quasi-isomorphism of
complexes of AX(Xs)-modules with j∗E a bounded complex of projectives.
Such a map always has a section up to homotopy f : j∗E → j∗N which is
then a quasi-isomorphism. By Lemma 13 with l = 1, there is a map of com-
plexes f̃ : E ⊗Lk → N such that j∗f̃ = f · sk , for some k < 0. In particular,
f̃ is a U -quasi-isomorphism.

Now we prove the lemma by induction on l. For l = 1, this is (†). Let U0 =⋃l−1
i=1 Xsi . By our induction hypothesis, there is a U0-quasi-isomorphism

B0 → M with B0 ∈ A. Let M0 and A0 be the cones of the maps B0 → M and
B0 → A, that is, the push-out of these maps along the canonical (degree-wise
split) injection of B0 into its cone CB0. We obtain a commutative (in fact bi-
Cartesian) diagram involving M , M0, A and A0 with M → M0 and A → A0
degree-wise split injective. Factor the map A → A0 as in the diagram

M M1 M0

A A ⊕ PA0 A0

with A ⊕ PA0 → A0 degree-wise split surjective and PA0 = CA0[−1] ∈
Chb A contractible. Then M → M0 factors through the pull-back M1 of
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M0 → A0 along the surjection A ⊕ PA0 → A. The map M → M1 is degree-
wise split injective (as M → M0 is), and has cokernel the contractible com-
plex PA0. It follows that M → M1 is a homotopy equivalence, and we
can choose a homotopy inverse M1 → M . By construction, A0 and M0 are
acyclic over U0 and A0 ∈ A. Moreover, the map M0 → A0 is an Xsl -quasi-
isomorphism. By (†), there is an Xsl -quasi-isomorphism A0 ⊗L−k → M0 for
some k > 0. The complex A0 ⊗ L−k is U0-acyclic since A0 is Therefore, the
map A0 ⊗ L−k → M0 is in fact a U -quasi-isomorphism. Let B be the pull-
back of A0 ⊗ L−k → M0 along the surjection M1 → M0. The resulting map
B → M1 is a U -quasi-isomorphism. Moreover B is an object of A since B is
also the pull-back of A0 ⊗L−k → A0 along the (degree-wise split) surjection
A ⊕ PA0 → A0. Composing the map B → M1 with the homotopy inverse
M1 → M of M → M1 yields the desired U -quasi-isomorphism B → M . �

9.4 The derived category of quasi-coherent AX-modules

Recall that a Grothendieck Abelian category is an Abelian category A in
which all set-indexed direct sums exist, filtered colimits are exact, and A
has a set of generators. We remind the reader that a set I of objects of A
generates the Abelian category A if for every object E ∈ A, there is a surjec-
tion
⊕

Ai � E from a set indexed direct sum of (possibly repeated) objects
Ai ∈ I to E.

If X is a scheme with an ample family of line-bundles, and AX a quasi-
coherent OX-algebra, then the category Qcoh(AX) of quasi-coherent AX-
modules is an Abelian category with generating set the set AX ⊗ Lk

i , i =
1, . . . , n, k ≤ 0, where L1, . . . ,Ln is a set of line bundles on X with global
sections si ∈ �(X,Li) such that the non-vanishing loci Xsi are affine and
cover X.

For a Grothendieck Abelian category A, write D(A) for the unbounded
derived category of A, that is, the triangulated category D(Ch A,quis). This
category has small homomorphism sets, by [32, Remark 10.4.5]. Coprod-
ucts of complexes are also coproducts in D A. Therefore, the triangulated
category D A has all set-indexed coproducts. This applies in particular to the
unbounded derived category DQcoh(AX) of quasi-coherent AX modules. If
Z ⊂ X is a closed subset with quasi-compact open complement U = X − Z,
we write DZQcoh(AX) ⊂ DQcoh(AX) for the full triangulated subcategory
of those complexes E of quasi-coherent AX-modules whose restriction E|U
to U are acyclic.

Lemma 15 Let A be a Grothendieck Abelian category with generating set of
objects I . Then, an object E of the triangulated category D A is zero iff every
map A[j ] → E in D A is the zero map for A ∈ I and j ∈ Z.
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Proof Let E be an object of the derived category D A of A such that every
map A[j ] → E in D A is the zero map for A ∈ I and j ∈ Z. We can choose a
surjection

⊕
J Aj � ker(d0) in A with Aj objects in the generating set I . The

inclusion of complexes ker(d0) → E yields a map of complexes
⊕

J Aj →
ker(dk) → E which induces a surjective map

⊕
J Aj � ker(d0) � H 0E on

cohomology. Since every map
⊕

J Aj → E is zero in D A, the induced sur-
jective map

⊕
J Aj � H 0E is the zero map, hence H 0E = 0. The same

argument applied to E[k] instead of to E shows that HkE = 0 for all k ∈ Z.
Therefore, E is quasi-isomorphic to the zero complex. �

Next, we recall the concept of a compactly generated triangulated category
due to Neeman [20] in the form of [21].

9.5 Compactly generated triangulated categories

Let T be a triangulated category in which (all set-indexed) coproducts ex-
ist. An object A of T is called compact [21, Definition 1.6] if the natural
map
⊕

j∈J Hom(A,Mj) → Hom(A,
⊕

j∈J Mj) is an isomorphism for any
set Mj , j ∈ J , of objects in T . The full subcategory T c ⊂ T of compact ob-
jects is closed under shifts and cones and thus is a triangulated subcategory.

A triangulated category T is compactly generated [21, Definition 1.7] if T
has all set-indexed direct sums, and if there is a set I of compact objects in
T such that an object M of T is the zero object iff all maps A → M are the
zero map for A ∈ I .

A set I of compact objects in a compactly generated triangulated category
T is called a generating set [21, Definition 1.7] if I is closed under shifts and
if an object M of T is the zero object iff all maps A → M are the zero map
for A ∈ I .

The following theorem is due to Neeman [21, Theorem 2.1].

Theorem 12 (Neeman)

(a) Let T be a compactly generated triangulated category with generating set
of objects I . Then the full triangulated subcategory T c of compact objects
in T is an essentially small category which coincides with the smallest
idempotent complete triangulated subcategory of T containing I .

(b) Let R be a compactly generated triangulated category, S0 ⊂ Rc a set
of compact objects closed under taking shifts. Let S ⊂ R be the small-
est full triangulated subcategory closed under formation of coproducts
in R which contains S0. Then S and R/S are compactly generated tri-
angulated categories with generating sets S0 and the image of (a set of
representatives for the isomorphism classes of objects of) Rc in R/S .
Moreover, the functor Rc/S c → R/S induces an equivalence between
the idempotent completion of Rc/S c and the category of compact objects
in R/S .
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(c) Let S → R be a triangle functor between compactly generated triangu-
lated categories which preserves coproducts and compact objects. Then
S → R is an equivalence iff the functor S c → Rc on compact objects is
an equivalence.

The following two propositions are essentially due to Thomason [30]. We
include the proofs here because only the commutative situation is considered
in [30], and we need the explicit versions below.

For an exact category E , we will write Db(E ) for the triangulated category
D(Chb E ,quis). Recall that a fully faithful functor A → B of additive cate-
gories is called cofinal if every object of B is a direct factor of an object of
A.

Proposition 8 Let X be a quasi-compact and quasi-separated scheme which
is the union X =⋃n

i=1 Xsi of open affine non-vanishing loci Xsi of global
sections si ∈ �(X,Li) of line-bundles Li , i = 1, . . . , n. Let AX be a quasi-
coherent OX-algebra. Then the triangulated category DQcoh(AX) is com-
pactly generated by the set of objects AX ⊗ Lk

i [j ] for k ≤ 0, i = 1, . . . , n and
j ∈ Z.

Moreover, the inclusion Vect(AX) ⊂ Qcoh(AX) induces a fully faithful
triangle functor DbVect(AX) ⊂ DQcoh(AX) which identifies, up to equiv-
alence, the category DbVect(AX) with the full triangulated subcategory
DcQcoh(AX) of compact objects in DQcoh(AX).

Proof In the triangulated category DQcoh(AX), every strictly perfect com-
plex of AX modules is a compact object. To see this, note that for an
AX vector bundle A and a set Mj , j ∈ J , of quasi-coherent AX-modules
the canonical map of sheaves of homomorphisms

⊕
j HomAX

(A,Mj) →
HomAX

(A,
⊕

j Mj ) is an isomorphism since this can be checked on an affine
open cover of X where the statement is clear. Taking global sections, we ob-

tain an isomorphism
⊕

j HomAX
(A,Mj)

∼=→ HomAX
(A,
⊕

Mj). This iso-
morphism extends to an isomorphism of homomorphism sets of complexes
of AX-modules for A a strictly perfect complex and M an arbitrary com-
plex of quasi-coherent AX-modules. For such complexes, the isomorphism
induces an isomorphism

⊕
j

HomKQcoh(AX)(A,Mj)
∼=→ HomKQcoh(AX)

(
A,
⊕

j

Mj

)
(26)

of homomorphism sets in the homotopy category KQcoh(AX) of chain
complexes of quasi-coherent AX-modules. It follows from Lemma 14 with
U = X and A = sPerf(AX) that maps in DQcoh(AX) from a strictly perfect
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complex A to an arbitrary complex M of quasi-coherent AX-modules can be
computed as the filtered colimit

colim
B

∼→A
HomKQcoh(AX)(B,M)

∼=−→ HomDQcoh(AX)(A,M)

of homomorphism sets in KQcoh(AX) where the indexing category is the
left filtering category of homotopy classes of quasi-isomorphisms B

∼→ A of
strictly perfect complexes with target A. Taking the colimit over this filtering
category of the isomorphism (26) yields the isomorphism which proves that
A is compact in DQcoh(AX).

Since the set AX ⊗ Lk
i , i = 1, . . . , n, k ≤ 0 is a set of generators for

the Grothendieck Abelian category Qcoh(AX) all of which are compact in
the derived category DQcoh(AX), Lemma 15 shows that DQcoh(AX) is a
compactly generated triangulated category with generating set AX ⊗ Lk

i [j ],
i = 1, . . . , n, k ≤ 0, j ∈ Z.

The inclusion Vect(AX) ⊂ Qcoh(AX) of vector bundles into all quasi-
coherent AX-modules induces a triangle functor DbVect(AX) → DQcoh(AX)

which is fully faithful, by the existence of an ample family of line bundles
and the criterion in [15, 12.1]. Since the exact category Vect(AX) is idem-
potent complete, its bounded derived category DbVect(AX) is also idempo-
tent complete [2, Theorem 2.8]. By Neeman’s Theorem 12 (a), the inclusion
DbVect(AX) → DcQcoh(AX) is an equivalence. �
9.6 Reminder on Rj∗
Let X be a scheme with an ample family of line bundles, and let j : U ↪→ X

be an open immersion from a quasi-compact open subset U to X. We recall
one possible construction of the right-derived functor Rj∗ : DQcoh(U) →
DQcoh(X) of j∗ : Qcoh(U) → Qcoh(X). To that end, choose a finite cover
U = {U0, . . . ,Un} of U such that the inclusion of all finite intersections
Ui0 ∩ · · · ∩ Uik ⊂ X into X are affine maps, i0, . . . , ik ∈ {0, . . . , n}. For in-
stance, we can take as U an open cover of U by a finite number of non-
vanishing loci Xsi associated with a set of line bundles Li on X and global
sections si ∈ �(X,Li), i = 0, . . . , n. For a k + 1-tuple i = (i0, . . . , ik), set
Ui = Ui0 ∩ · · ·∩Uik and write ji : Ui ⊂ U for the corresponding open immer-
sion.

For a quasi-coherent AU module F , consider the sheafified Čech complex
Č(U,F ) associated with this covering. In degree k it is the quasi-coherent
AU -module

Č(U,F )k =
⊕

i

ji,∗j∗
i F

where the indexing set is taken over all k + 1-tuples i = (i0, . . . , ik) such that
0 ≤ i0 < · · · < ik ≤ n. The differential dk : Č(U,F )k → Č(U,F )k+1 for the
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component i = (i0, . . . , ik+1) is given by the formula

(dk(x))i =
k+1∑
l=0

(−1)l ji,∗j∗
i x

(i0,...,îl ,...,ik+1)
.

Note that the complex Č(U,F ) is concentrated in degrees 0, . . . , n.
The units of adjunction F → ji∗j∗

i F define a map F → Č(U,F )0 =⊕n
i=0 ji∗j∗

i F into the degree zero part of the Čech complex with d0(F ) = 0,
and thus a map of complexes of quasi-coherent AU -modules λF : F →
Č(U,F ). This map is a quasi-isomorphism for any quasi-coherent AU -
module F as can be checked by restricting the map to the open subsets Ui of
the cover of U . Since, by assumption, for every k + 1-tuple, i = (i0, . . . , ik),
the open inclusion j ◦ ji : Ui ⊂ X is an affine map, the functor

j∗Č(U) : Qcoh(AU) → ChQcoh(AX) : F �→ j∗Č(U,F )

is exact. Taking total complexes, this functor extends to a functor on all com-
plexes

j∗TotČ(U) : ChQcoh(AU) → ChQcoh(AX) :
F �→ j∗TotČ(U,F ) = Totj∗Č(U,F ).

This functor preserves quasi-isomorphisms as it is exact and sends acyclics to
acyclics. It is equipped with a natural quasi-isomorphism

λF : F ∼−→ TotČ(U,F ). (27)

Finally, the pair (j∗TotČ(U), j∗λ) represents the right derived functor Rj∗ of
j∗, that is,

Rj∗ = j∗TotČ(U) : DQcoh(AU) → DQcoh(AX).

Lemma 16 Let X be a scheme with an ample family of line bundles, j :
U ⊂ X a quasi-compact open subscheme, Z ⊂ X a closed subset with quasi-
compact open complement X − Z such that Z ⊂ U , then we have an equiva-
lence of triangulated categories

j∗ : DZQcoh(AX)
�−→ DZQcoh(AU)

with inverse the functor Rj∗.

Proof We first check that Rj∗ preserves cohomological support. Denote by
jU : U −Z ⊂ U , jX : X −Z ⊂ X and jZ : U −Z ⊂ X −Z the corresponding
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open immersions, and note that the canonical map j∗
Xj∗M → jZ∗j∗

UM is an
isomorphism for every quasi-coherent AU -module M . By the existence of
an ample family of line bundles on X, we can choose a finite open cover
U = {U0, . . . ,Un} of U such that all inclusions Ui0 ∩ · · · ∩Uik ⊂ X are affine
maps. For a complex F of quasi-coherent AU -modules, we have

j∗
XRj∗F = j∗

Xj∗TotČ(U,F ) = jZ∗j∗
U TotČ(U,F ) = jZ∗TotČ(U − Z,j∗

UF)

where U − Z is the cover {U0 − Z, . . . ,Un − Z} of U − Z. As pull-backs
of affine maps, all inclusions (Ui0 − Z) ∩ · · · ∩ (Uik − Z) ⊂ X − Z are also
affine maps. Therefore, the functor jZ∗TotČ(U − Z) represents RjZ∗, and
we obtain a natural isomorphism of functors

j∗
X ◦ Rj∗

∼=−→ RjZ∗ ◦ j∗
U .

In particular, Rj∗ sends DZQcoh(AU) into DZQcoh(AX).
We prove the lemma. The functor j∗Rj∗ = j∗j∗TotČ(U) = TotČ(U) is

naturally quasi-isomorphic to the identity functor via the map (27). Fur-
thermore, the unit of adjunction F → Rj∗ ◦ j∗(F ), which is adjoint to the
map (27) applied to j∗F , is a quasi-isomorphism for F ∈ DZQcoh(AX)

since both complexes have cohomological support in Z. Therefore, we can
check this property by restricting the map to U where it is the quasi-
isomorphism (27). �

Proposition 9 Let X be a scheme with an ample family of line-bundles. Let
Z ⊂ X be a closed subscheme with quasi-compact open complement X − Z.
Let j : U ⊂ X be a quasi-compact open subscheme. Let AX be a quasi-
coherent sheaf of OX-algebras. Then the following hold.

(a) Restriction of vector bundles induces a fully faithful triangle functor

j∗ : DsPerf(AX on Z,U -quis) ↪→ DsPerf(AU on Z ∩ U,U -quis).

(b) The triangulated category DZQcoh(AX) is compactly generated and the
triangle functor DsPerf(AX on Z,quis) → DZQcoh(AX) induces an
equivalence of DsPerf(AX on Z,quis) with the full triangulated subcat-
egory of compact objects in DZQcoh(AX).

(c) If Z ⊂ U , then restriction of vector bundles induces an equivalence of
triangulated categories

j∗ : DsPerf(AX on Z,quis)
�→ DsPerf(AU on Z,quis).

(d) The triangle functor in (a) is cofinal.
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Proof The functor in (a) is clearly conservative. It is full by the following
argument. Let A and B be strictly perfect complexes of AX-modules with
support in Z, and let j∗A ∼← E → j∗B be a diagram in sPerf(AU on U ∩ Z)

representing a map f : j∗A → j∗B in Dc(AU on Z∩U,U -quis) where E
∼→

j∗A is a U -quasi-isomorphism. Let M be the pull-back of j∗E → j∗j∗A and
the U -isomorphism A → j∗j∗A. The induced maps M → j∗E and M → A

are U -isomorphism and U -quasi-isomorphism, respectively. By Lemma 14
with A = sPerf(AX on Z), there is a A0 ∈ A and a U -quasi-isomorphism
A0 → M . By Lemma 13, there is a map A0 ⊗ K(sn) → B such that the
two maps A0 ⊗ K(sn) → A0 → M → j∗E → j∗j∗B and A0 ⊗ K(sn) →
B → j∗j∗B coincide. If follows that the map f : j∗A → j∗B is the image
of the map in Dc(AX on Z,U -quis) which is represented by the diagram
A

∼← A0 ⊗K(sn) → B . Therefore, the functor in (a) is full. Any conservative
and full triangle functor is faithful, hence the triangle functor in (a) is fully
faithful.

It follows from Proposition 8 and Neeman’s Theorem 12(a) that the functor
in (a) is cofinal for Z = X since in this case both categories contain as a
cofinal subcategory the triangulated category generated by AX ⊗ L where L

runs through the line bundles on X. This shows part (d) when Z = X.
In order to prove (b), write R for the compactly generated triangulated cat-

egory DQcoh(AX) with category of compact objects Rc = DsPerf(AX,quis);
see Proposition 8. Let S ⊂ R be the full triangulated subcategory closed
under the formation of coproducts in R which is generated by the set
S = sPerf(AX on Z,quis) ⊂ Rc of compact objects. By part (d) for Z = X

proved above and Proposition 8, we have a cofinal inclusion Rc/S c →
DcQcoh(AU). By Neeman’s Theorem 12(b) and (c), this implies that the
functor R/S → DQcoh(AU) is an equivalence. In particular S is the ker-
nel category of the functor DQcoh(AX) → DQcoh(AU). Therefore, S =
DZQcoh(AU) is compactly generated by DsPerf(AX on Z,quis). Since the
triangulated category DsPerf(AX,quis) = DcQcoh(AX) is idempotent com-
plete, its epaisse subcategory DsPerf(AX on Z,quis) is also idempotent
complete. Therefore, we have the identification DsPerf(AX on Z,quis) =
Dc

ZQcoh(AX), by Neeman’s Theorem 12(a).
In view of (b), the functor j∗ in (c) is the restriction to compact objects of

the equivalence of Lemma 16. It is therefore also an equivalence.
For the proof of (d), we simplify notation by writing Dc(AX on Z,w) for

the triangulated category DsPerf(AX on Z,w). Let V = U ∪ (X − Z) and
consider the commutative diagram of triangulated categories

Dc(AX on Z,V -quis) Dc(AX,V -quis) Dc(AX,X − Z-quis)

Dc(AV on Z ∩ U,V -quis) Dc(AV ,V -quis) Dc(AV ,X − Z-quis)
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in which all vertical functors are fully faithful, by (a). The middle and the right
vertical functors are cofinal since all four categories have as cofinal subcate-
gory the triangulated category generated by AX ⊗L where L runs through the
line-bundles on X, by Proposition 8. Therefore, the right two vertical functors
are equivalences after idempotent completion. Since the two left triangulated
categories are the “kernel categories” of the two right horizontal functors, and
this property is preserved under idempotent completion, the left vertical func-
tor is also an equivalence after idempotent completion. Thus, the left vertical
functor is cofinal.

The functor Dc(AX on Z,U -quis) ↪→ Dc(AU on Z ∩ U,U -quis) in (a)
can be identified with the left vertical functor in the diagram since U -quasi-
isomorphisms are V -quasi-isomorphisms for complexes of AX-modules co-
homologically supported in Z, and since the functor Dc(AV on Z ∩ U,

V -quis) → Dc(AU on Z ∩ U,U -quis) is an equivalence, by (b). �

Corollary 2 Let X be a scheme which has an ample family of line-bundles,
let Z ⊂ X be a closed subset with quasi-compact open complement X − Z,
and let j : U ⊂ X be a quasi-compact open subscheme. Let M be a complex
of quasi-coherent AX-modules such that j∗M is strictly perfect on U and has
cohomological support in Z ∩ U . If the class [j∗M] ∈ K0(AU on Z ∩ U) is
in the image of the map K0(AX on Z) → K0(AU on Z ∩ U), then there is a
U -quasi-isomorphism

A
∃

U-quis
M

with A a strictly perfect complex of AX-modules which has cohomological
support in Z.

Proof We start with a standard fact about K0 of triangulated categories. Let
T0 ⊂ T1 be a (fully faithful and) cofinal functor between triangulated cate-
gories. Then an object T of T1 is isomorphic to an object of T0 if and only if
its class [T ] ∈ K0(T1) is in the image of K0(T0) → K0(T1). This is because
the cokernel of K0(T0) → K0(T1) can be identified with the quotient monoid
of the Abelian monoid of isomorphism classes of objects in T1 under direct
sum modulo the submonoid of isomorphism classes of objects in T0. There-
fore, an object of T1 defines the zero class in the cokernel if and only if it is
stably in T0. But for triangulated categories, an object is stably in T0 iff it is
isomorphic to an object in T0.

For the proof of the corollary, we apply this argument to the inclusion in
Proposition 9(a) which is cofinal, by Proposition 9(d). We see that j∗M is
isomorphic in Dc(AU on Z ∩ U,U -quis) to an object j∗B , where B is a
perfect complex of AX-modules with cohomological support in Z. It follows
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that there is a zig-zag of U -quasi-isomorphisms j∗M ∼← F
∼→ j∗B . Let P

be the pull-back of j∗F → j∗j∗B along the U -isomorphism B → j∗j∗B .
Then P → j∗F is a U -isomorphism, and it follows that P → B is a U -quasi-
isomorphism. By Lemma 14 with A the subcategory of those strictly perfect
complexes which are cohomologically supported in Z, there is a U -quasi-
isomorphism B ′ → P with B ′ strictly perfect and cohomologically supported
in Z. Since X has an ample family of line-bundles and U is quasi-compact,
we can choose line-bundles Li and global sections si ∈ �(X,Li), i = 1, . . . , l

such that the set of non-vanishing loci Xsi , i = 1, . . . , l is an affine open cover
of U . By Lemma 13, we can find an l-tuple of negative integers n such that
the composition of U -quasi-isomorphisms A = B ′ ⊗ K(s) → B ′ → j∗j∗M
lifts to M . �

Proposition 10 Let X be a scheme which has an ample family of line bun-
dles, let Z ⊂ X be a closed subscheme with quasi-compact open complement,
and let j : U ⊂ X be a quasi-compact open subscheme. Let AX be a quasi-
coherent OX-algebra with involution. Then for any line-bundle L on X and
any integer n ∈ Z, restriction of AX vector bundles to U defines non-singular
exact form functors

(sPerf(AX on Z), U -quis, �n
L)

−→ (sPerf(AU on U ∩ Z), U -quis, �n
j∗L)

which induce isomorphisms on higher Grothendieck-Witt groups GW i for i ≥
1 and a monomorphism for GW0.

If, moreover, we have Z ⊂ U , then the form functors induce isomorphisms
for all higher Grothendieck-Witt groups GW i where i ≥ 0.

Proof Let sPerfK0(AU on U ∩ Z) ⊂ sPerf(AU on U ∩ Z) be the full sub-
category of those strictly perfect complexes of AU -modules with cohomo-
logical support in U ∩ Z which have class in the image of K0(AX on Z) →
K0(AU on Z ∩ U). By the Cofinality Theorem 7, the duality preserving in-
clusion

sPerfK0(AU on U ∩ Z) → sPerf(AU on U ∩ Z) (28)

of exact categories with weak equivalences the U -quasi-isomorphisms and
duality �n

j∗L induces maps on higher Grothendieck-Witt groups GW i which
are isomorphisms for i ≥ 1 and a monomorphism for i = 0. Restriction of
vector-bundles defines a non-singular exact form functor

(sPerf(AX on Z), U -quis) → (sPerfK0(AU on U ∩ Z), U -quis) (29)
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which induces a homotopy equivalence of Grothendieck-Witt spaces by The-
orem 8, where (c) of Theorem 8 follows from Corollary 2 and Lemma 8; parts
8(e) and (f) are proved in Lemma 13; the remaining hypothesis of Theorem 8
being trivially satisfied.

If Z ⊂ U , then K0(AX on Z) = K0(AU on Z ∩ U), by Proposition 9(c).
Therefore, (28) is the identity inclusion, and the map (29), which induces a
homotopy equivalence of Grothendieck-Witt spaces, is the map in the propo-
sition. �

Proof of Theorem 10 By the Change-of-weak-equivalence Theorem 6, the
sequence of exact categories with weak equivalences and duality

(sPerf(AX on Z), quis, �n
L) → (sPerf(AX), quis, �n

L)

→ (sPerf(AX), U -quis, �n
L)

induces a homotopy fibration of Grothendieck-Witt spaces. By Proposition
10, the form functor

(sPerf(AX), U -quis, �n
L) → (sPerf(AU), quis, �n

j∗L)

induces isomorphisms on GW i for i ≥ 1 and a monomorphism for i = 0. �

Proof of Theorem 11 The theorem is a special case of Proposition 10. �

10 Extension to negative Grothendieck-Witt groups

For an open subscheme U ⊂ X, the restriction map GW0(X) → GW0(U) is
not surjective, in general, not even if X is regular. The purpose of this section
is to extend the long exact sequence associated with the homotopy fibration
of Theorem 10 to negative degrees. Theorems 10 and 11 will be extended to
a fibration and a weak equivalence of non-connective spectra.

10.1 Cone and suspension of AX

The cone ring is the ring C of infinite matrices (ai,j )i,j∈N with coefficients
ai,j in Z for which each row and each column has only finitely many non-
zero entries. Transposition of matrices t (ai,j ) = (aj,i) makes C into a ring
with involution. As a Z-module C is torsion free, hence flat.

The suspension ring S is the factor ring of C by the two sided ideal
M∞ ⊂ C of those matrices which have only finitely many non-zero entries.
Transposition also makes S into a ring with involution such that the quo-
tient map C � S is a map of rings with involution. For another description
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of the suspension ring S, consider the matrices en ∈ C, n ∈ N, with entries
(en)i,j = 1 for i = j ≥ n and zero otherwise. They are symmetric idempo-
tents, i.e., t en = en = e2

n, and they form a multiplicative subset of C which
satisfies the Øre condition, that is, the multiplicative subset satisfies the ax-
ioms for a calculus of fractions. One checks that the quotient map C � S

identifies the suspension ring S with the localization of the cone ring C with
respect to the elements en ∈ C, n ∈ N. In particular, the suspension ring S is
also a flat Z-module.

Let X be a quasi-compact and quasi-separated scheme. For a quasi-
coherent sheaf AX of OX-algebras, write CAX and SAX for the quasi-
coherent sheaves of OX-algebras associated with the presheaves C ⊗Z AX

and S ⊗Z AX . On quasi-compact open subsets U ⊂ X, we have (CAX)(U) =
C ⊗Z AX(U) and SAX = S ⊗Z AX(U), by flatness of C and S. If AX is a
sheaf of algebras with involutions, then the involutions on C and on S make
CAX and SAX into sheaves of OX-algebras with involution.

Let ε = 1−e1 ∈ C be the symmetric idempotent with entries 1 at (0,0) and
zero otherwise. The image Cε of the right multiplication map ×ε : C → C

is a finitely generated projective left C-module. It is equipped with a sym-
metric form ϕ : Cε ⊗Z (Cε)op → C : x ⊗ yop �→ x · t y. The idempotent ε

makes (Cε,ϕ) into a direct factor of the unit symmetric form (C,μ); see
Sect. 7.8(a). Therefore, tensor product (Cε,ϕ)⊗Z? defines a non-singular
exact form functor

ι : (sPerf(AX), �n
L) → (sPerf(CAX), �n

L) : V �→ Cε ⊗Z V.

Since S is a flat C-algebra, the quotient map C → S induces an exact functor
ρ : CAX-Mod → SAX-Mod : M �→ S ⊗C M on categories of modules which
sends vector bundles to vector bundles. The two functors ι and ρ yield a
sequence of non-singular exact form functors

(sPerf(AX), �n
L)

ι−→ (sPerf(CAX), �n
L)

ρ−→ (sPerf(SAX), �n
L). (30)

The functors satisfy ρ ◦ ι = 0 because S ⊗C Cε = im(×ε : S → S) = 0 as
0 = ε ∈ S.

The following theorem will allow us to extend the results of Sect. 9 to
negative Grothendieck-Witt groups.

Theorem 13 Let X be a scheme with an ample family of line-bundles, let
Z ⊂ X be a closed subset with quasi-compact open complement X − Z, and
let AX be a quasi-coherent OX-algebra with involution. Then for any line
bundle L on X, and any integer n ∈ Z, the sequence (30) induces a homotopy
fibration of Grothendieck-Witt spaces with contractible total space

GWn(AX on Z,L) → GWn(CAX on Z,L) → GWn(SAX on Z,L).
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The proof of Theorem 13 will occupy us until Definition 8.

Lemma 17 The functor ι in (30) is fully faithful.

Proof The image εC of the left multiplication map ε× : C → C is a right
C-module. We have a Z-bimodule isomorphism η : Z → εC ⊗C Cε : 1 �→
ε ⊗C ε = 1 ⊗ ε = ε ⊗ 1 and a C-bimodule map μ : Cε ⊗Z εC → C : Aε ⊗
εB �→ AεB such that the compositions

Cε ∼= Cε ⊗Z Z
id⊗η−→ Cε ⊗Z εC ⊗C Cε

μ⊗id−→ C ⊗C Cε ∼= Cε and

εC ∼= Z ⊗Z εC
η⊗id−→ εC ⊗C Cε ⊗Z εC

id⊗μ−→ εC ⊗C C ∼= εC

are the identity maps. It follows that η and μ define unit and counit of an ad-
junction between the functors AX-Mod → CAX-Mod : M �→ Cε ⊗Z M and
CAX-Mod → AX-Mod : N �→ εC ⊗C N . Since the unit η is an isomorphism,
the first functor is fully faithful. In particular, ι is fully faithful. �

Proposition 11 The sequence of triangulated categories

DbVect(AX)
ι−→ DbVect(CAX)

ρ−→ DbVect(SAX)

is exact up to direct factors.

Proof The multiplication map μ : Cε ⊗Z εC → C factors through M∞ ⊂ C

and induces an isomorphism μ : Cε ⊗Z εC → M∞ (it is a filtered colimit of
isomorphisms of finitely generated free Z-modules). The exact functors

Qcoh(AX)
ι−→ Qcoh(CAX)

ρ−→ Qcoh(SAX)

have exact right adjoints κ : Qcoh(CAX) → Qcoh(AX) : M �→ εC⊗C M and
σ : Qcoh(SAX) → Qcoh(CAX) : N �→ N such that for a left CAX-module
M the adjuntion maps ικ → id and id → σρ are part of a functorial exact
sequence

0 → ικM → M → σρM → 0 (31)

which is the tensor product (over C) of M with the exact sequence of flat
C-modules 0 → M∞ → C → S → 0. It follows that the sequence of triangu-
lated categories

DQcoh(AX)
ι−→ DQcoh(CAX)

ρ−→ DQcoh(SAX)

is exact as κ and ρ induce right adjoint functors on derived categories,
and (31) induces a functorial distinguished triangle for every object of
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DQcoh(CAX). By Proposition 8, these triangulated categories are compactly
generated. Since ι and ρ preserve compact objects, the associated sequence
of compact objects—which is the sequence in Proposition 11—is exact up to
factors, by Theorem 12. �

Let sPerfS(CAX) ⊂ sPerf(CAX) be the full subcategory of those com-
plexes V for which S ⊗C V is acyclic. This subcategory is closed under the
involution �n

L. Therefore, sPerfS(CAX) inherits the structure of an exact cat-
egory with weak equivalences and duality from sPerf(CAX). Since ρι = 0,
ι induces a non-singular exact form functor ι : sPerf(AX) → sPerfS(CAX).

Proposition 12 For any line bundle L on X, and any n ∈ Z, the functor ι

induces a homotopy equivalence

GWn(sPerf(AX),quis,L)
∼−→ GWn(sPerfS(CAX),quis,L).

Proof The proof is a consequence of Theorem 8 (or of Lemma 9). Since ι

is fully faithful, conditions (e) and (f) are satisfied. Since ι induces a fully
faithful functor on derived categories, by Proposition 11, condition (b) is also
satisfied. The only non-trivial condition to check is (c). By Lemma 8, we only
need to show that for every M ∈ sPerfS(CAX) there is an A ∈ sPerf(AX)

and a quasi-isomorphism Cε ⊗Z A → M . Let M be a strictly perfect com-
plex of CAX modules with S ⊗C M acyclic. By Proposition 11, there is a
zigzag of quasi-isomorphisms Cε ⊗Z B ← N → M in sPerfS(CAX) with
B ∈ sPerf(AX). Since N ∈ sPerfS(CAX), Proposition 11 implies that the
counit of adjunction Cε ⊗Z εC ⊗C N → N is a quasi-isomorphism. We ap-
ply Lemma 14 with CAX in place of AX and U = X, A = sPerf(AX) to the
quasi-isomorphism εC ⊗C N → εC ⊗C Cε ⊗Z B ∼= B , and obtain a strictly
perfect complex A of AX-modules and a quasi-isomorphism A → εC ⊗C N .
Finally, the composition Cε ⊗Z A → Cε ⊗Z εC ⊗C N = M∞ ⊗C N → N →
M is a quasi-isomorphism. �

For a quasi-coherent OX-algebra AX , call an AX-module M quasi-free if
it is isomorphic to a finite direct sum

⊕
i AX ⊗Li of AX-modules of the form

AX ⊗ Li for some line bundles Li on X. Note that a quasi-free AX-module
is a vector bundle.

Lemma 18 Let X be a quasi-compact and quasi-separated scheme, and let
AX be a quasi-coherent sheaf of OX-algebras. Let A,M be quasi-coherent
CAX-modules with A quasi-free. Then the following hold.

(a) For every map f : ρA → ρM of SAX-modules, there are maps s : B →
A and g : B → M of CAX-modules with B quasi-free such that f ◦
ρ(s) = ρ(g) and ρ(s) an isomorphism.
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(b) For any two maps f,g : A → M of CAX-modules such that ρ(f ) = ρ(g)

there is a map s : B → A of quasi-free CAX-modules such that f ◦ s =
g ◦ s and ρ(s) is an isomorphism.

Proof The proof reduces to A = CAX ⊗ L with L a line-bundle on X. For
such an A, the map HomCAX

(A,M) → HomSAX
(ρS,ρM) can be identified

with the map on global sections �(X,M ⊗ L−1) → �(X,S ⊗C M ⊗ L−1) =
S ⊗C �(X,M ⊗ L−1). This map is surjective since C → S is, proving (a).
The map is also a localization by a calculus of fractions with respect to the
set of elements en ∈ C, n ∈ N, of Sect. 10.1. This shows that (b) also holds. �

Lemma 19 Let X be a quasi-compact and quasi-separated scheme, L a line
bundle on X, and let AX be a quasi-coherent sheaf of OX-algebras with
involution. Then for every n ∈ Z, the Grothendieck-Witt space

GWn(CAX,L)

is contractible.

Proof (Compare [13]) We will define a C-bimodule M , which is finitely gen-
erated projective as left C-module, together with a symmetric form ϕ : M ⊗C

Mop → C in C-Bimod whose adjoint M → [Mop,C]C is an isomorphism.
Furthermore, we will construct an isometry (C,μ) ⊥ (M,ϕ) ∼= (M,ϕ) of
symmetric forms in C-Bimod. Therefore, tensor product (M,ϕ)⊗C? de-
fines a non-singular exact form functor (F,ϕ) : (sPerf(CAX),quis, �n

L) →
(sPerf(CAX),quis, �n

L) which satisfies id ⊥ (F,ϕ) ∼= (F,ϕ). Therefore,
on higher Grothendieck-Witt groups we have GWn

i (id) + GWn
i (F,ϕ) =

GWn
i (F,ϕ) which implies GWn

i (id) = 0, that is, GWn
i (CAX,L) = 0, hence

GWn(CAX,L) is contractible.
To construct (M,ϕ) and the bimodule isometry (C,μ) ⊥ (M,ϕ) ∼= (M,ϕ)

we choose a bijection σ : N
∼=→ N × N : n �→ (σ1(n), σ2(n)) and define a ho-

momorphism of rings with involutions

I : C → C : a �→ I (a) with I (a)ij =
⎧⎨
⎩

aσ1(i),σ1(j) if σ2(i) = σ2(j)

0 otherwise.

The C-bimodule M is C as a left module, and has right multiplication defined
by M ×C → M : (x, a) �→ x ·I (a). The symmetric form ϕ is the C-bimodule
map M ⊗C Mop → C : x ⊗ yop �→ x · t y. Since, as a left C-module, (M,ϕ)

is just the unit symmetric form (C,μ) (see Sect. 7.8 (a)), the adjoint M →
[Mop,C]C of ϕ is an isomorphism.
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In order to define the bimodule isometry (C,μ) ⊥ (M,ϕ) ∼= (M,ϕ), con-
sider the elements γ, δ ∈ C defined by

γij =
⎧⎨
⎩

1 if σ(j) = (i,0)

0 otherwise,
and δij =

⎧⎨
⎩

1 if σ(j) = σ(i) + (0,1)

0 otherwise.

The homomorphism I and the elements γ, δ ∈ C are related by the following
identities

δ · t γ = 0, γ · t γ = δ · t δ = 1, tγ · γ + t δ · δ = 1,

a · γ = γ · I (a), I (a) · δ = δ · I (a)

for all a ∈ C. Therefore, the map C ⊕ M → M : (a, x) �→ a · γ + x · δ is a
C-bimodule isomorphism with inverse the map M → C ⊕ M : x �→ (x · t γ ,

x · t δ). It preserves forms because (aγ + xδ) · t (bγ + yδ) = a · t b + x · t y. �

Write sPerf0(AX) ⊂ sPerf(AX) for the full subcategory of those strictly
perfect complexes of AX-modules which are degree-wise quasi-free. Note
that this category is closed under the duality �n

L. We equip the category
sPerf0(AX) with the degree-wise split exact structure. Together with the set
of quasi-isomorphisms of complexes of AX vector bundles, it becomes a cat-
egory of complexes in the sense of Definition 5.

Lemma 20 Let X be a scheme with an ample family of line bundles. The
inclusion of quasi-free modules into the category of vector bundles induces a
(fully faithful) cofinal triangle functor

D(sPerf0(AX), quis) ⊂ D(sPerf(AX), quis).

Moreover, for every strictly perfect complex M of AX-modules with class
[M] in the image of the map K0(sPerf0(AX), quis) → K0(sPerf(AX), quis)
there is a quasi-isomorphism A → M of complexes of AX-modules with A a
bounded complex of quasi-free modules.

Proof The triangle functor in the lemma is fully faithful, by Lemma 14 with
U = X and A = sPerf0(AX). It is cofinal, by Neeman’s Theorem 12(a) and
Proposition 8. Let sPerfK0(AX) ⊂ sPerf(AX) be the full subcategory of those
strictly perfect complexes of AX-modules M whose class [M] is in the im-
age of the map K0(sPerf0(AX), quis) → K0(sPerf(AX), quis). Then the in-
clusion (sPerf0(AX), quis) ⊂ (sPerfK0(AX), quis) of exact categories with
weak equivalences induces an equivalence of derived categories, so that an-
other application of Lemma 14 with U = X and A = sPerf0(AX) finishes the
proof of the claim. �
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Proof of Theorem 13 By Theorem 10, we only need to treat the case Z = X.
In this case, the total spaces are contractible, by Lemma 19.

Let sPerfK0(SAX) ⊂ sPerf(SAX) be the full subcategory of those strictly
perfect complexes of SAX-modules E whose class [E] is zero in the Grothen-
dieck group K0(sPerf(SAX),quis) of SAX-vector bundles. Furthermore,
call a map f of strictly perfect complexes of CAX-modules an S-quasi-
isomorphism if ρ(f ) is a quasi-isomorphism of complexes of SAX-modules.
The set of S-quasi-isomorphisms is denoted by S-quis. Consider the com-
mutative diagram of exact categories with weak equivalences and duality �n

L
induced by inclusions and the map of rings with involution C → S

(sPerf0(CAX),quis) (sPerf0(CAX),S-quis)
ρ

(sPerf0(SAX),quis)

(sPerf(CAX),quis) (sPerf(CAX),S-quis)
ρ

(sPerfK0(SAX),quis).

Note that K0 of all categories with weak equivalences in the diagram is 0.
For the two left hand categories, this follows from Lemmas 19 and 20, since
for cofinal triangle functors T 0 ⊂ T , the map K0(T 0) → K0(T ) is injec-
tive. Since the left horizontal maps are surjective on K0, the middle two cat-
egories with weak equivalences have trivial Grothendieck group K0. For the
upper right corner, vanishing of K0 follows moreover from the fact that its
K0 is generated by classes of complexes concentrated in degree 0 and the fact
that every quasi-free SAX-module is the image of a quasi-free CAX-module.
Therefore, the upper horizontal map is surjective on K0. Hence, the right ver-
tical and the lower right horizontal functors, which—a priori—have images
in sPerf(SAX), have indeed image in sPerfK0(SAX). We will show that the
upper right horizontal and middle and right vertical functors induce equiva-
lences of Grothendieck-Witt spaces (for any duality �n

L). So, the lower right
horizontal functor will induce an equivalence, too.

The upper right horizontal functor is a localization by a calculus of right
fractions, by Lemmas 18 and 10(c). Therefore, Theorem 9 shows that it in-
duces a homotopy equivalence of Grothendieck-Witt spaces. For the right
vertical functor, the Resolution Lemma 9 (which we can apply because
of Lemma 20) shows that it induces an equivalence of Grothendieck-Witt
spaces. Similarly, by Lemma 20, for every strictly perfect complex of CAX-
modules M , there is a bounded complex A of quasi-free CAX-modules and a
quasi-isomorphism A → M . A quasi-isomorphism of complexes of CAX-
modules is, a fortiori, an S-quasi-isomorphism. Therefore, the Resolution
Lemma applies to show that the middle vertical functor induces an equiv-
alence of Grothendieck-Witt spaces. Summarizing, we have shown that the
lower right horizontal functor induces an equivalence of Grothendieck-Witt
spaces.
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By the Change-of-weak-equivalence Theorem (Theorem 6), the sequence
of exact categories with weak equivalences and duality �n

L

(sPerfS(CAX), quis) → (sPerf(CAX), quis) → (sPerf(CAX), S-quis)

induces a homotopy fibration of Grothendieck-Witt spaces. Using Proposi-
tion 12 we can replace the left hand term with (sPerf(AX), quis). Using
the equivalence of Grothendieck-Witt spaces of the lower right horizontal
functor above and Cofinality (Theorem 7) applied to the inclusion of ex-
act categories with weak equivalences and duality (sPerfK0(SAX), quis) ⊂
(sPerf(SAX), quis), we can replace the right hand term in the sequence by
(sPerf(SAX), quis). �

Since the total space in the fibration of Theorem 13 is contractible, we
obtain a homotopy equivalence of spaces

GWn(AX on Z,L)
�−→ 
 GWn(SAX on Z,L). (32)

Definition 8 Let X be a scheme with an ample family of line-bundles, AX be
a quasi-coherent sheaf of OX-algebras with involution, L a line bundle on X,
Z ⊂ X a closed subscheme with quasi-compact open complement X −Z and
n ∈ Z an integer. The Grothendieck-Witt spectrum

GWn(AX on Z,L)

of symmetric spaces over AX with coefficients in the n-th shifted line bundle
L[n] and support in Z is the sequence

GWn(Sk AX on Z,L), k ∈ N,

of Grothendieck-Witt spaces together with the bonding maps given by the
homotopy equivalence (32). As usual, if Z = X, n = 0, AX = OX or L = OX ,
we omit the label corresponding to Z, n, A, or L, respectively.

By construction, we have

πiGWn(AX on Z,L) =
⎧⎨
⎩

GWn
i (AX on Z,L) for i ≥ 0

GWn
0(S

−i AX on Z,L) for i ≤ 0.

Remark 16 By Proposition 7, there are natural homotopy equivalences of
spectra GWn(AX on Z,L) � GWn+4(AX on Z,L).

Finally, we are in position to prove the main theorems of this article.
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Theorem 14 (Localization) Let X be a scheme with an ample family of line-
bundles, let Z ⊂ X be a closed subscheme with quasi-compact open comple-
ment j : U ⊂ X, and let L be a line bundle on X. Let AX be a quasi-coherent
sheaf of OX-algebras with involution. Then for every n ∈ Z, the following
sequence is a homotopy fibration of Grothendieck-Witt spectra

GWn(AX on Z,L) −→ GWn(AX,L) −→ GWn(AU, j∗L).

Proof This is because the sequences

GWn(Si AX on Z,L) −→ GWn(Si AX,L) −→ GWn(Si AU, j∗L)

are homotopy fibrations for i ∈ N, by Theorem 10. �

Theorem 15 (Zariski-excision) Let X be a scheme with an ample family of
line-bundles, let Z ⊂ X be a closed subscheme with quasi-compact open com-
plement, let L be a line bundle on X and let AX be a quasi-coherent sheaf of
OX-algebras with involution. Then for every n ∈ Z and every quasi-compact
open subscheme j : V ⊂ X containing Z, restriction of vector-bundles in-
duces a homotopy equivalence of Grothendieck-Witt spectra

GWn(AX on Z,L)
∼−→ GWn(AV on Z, j∗L).

Proof This is because the maps

GWn(Si AX on Z,L) −→ GWn(Si AV on Z, j∗L).

are homotopy equivalences for i ∈ N, by Theorem 11. �

Theorem 16 (Mayer-Vietoris for open covers) Let X = U ∪ V be a scheme
with an ample family of line-bundles which is covered by two open quasi-
compact subschemes U,V ⊂ X. Let AX be a quasi-coherent OX-module with
involution. Let L be a line-bundle on X, and n ∈ Z. Then restriction of vector
bundles induces a homotopy Cartesian square of Grothendieck-Witt spectra

GWn(AX,L) GWn(AU,L)

GWn(AV ,L) GWn(AU∩V ,L).

Proof The map on vertical homotopy fibres is an equivalence, by Theorems
14 and 15. �
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