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GEOMETRY AND ARITHMETIC OF VERBAL DYNAMICAL SYSTEMS ON

SIMPLE GROUPS

TATIANA BANDMAN, FRITZ GRUNEWALD, AND BORIS KUNYAVSKĬI
WITH AN APPENDIX BY NATHAN JONES

Abstract. We study dynamical systems arising from word maps on simple groups. We develop a
geometric method based on the classical trace map for investigating periodic points of such systems.
These results lead to a new approach to the search of Engel-like sequences of words in two variables
which characterize finite solvable groups. They also give rise to some new phenomena and concepts
in the arithmetic of dynamical systems. ân �rq¬ ªn å lìgo. . .KATA IWANNHN 1:11
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1. Introduction

The initial goal of the present paper was to get deeper understanding of what is behind re-
cent results achieved in describing the class of finite solvable groups by identities in two variables
[BGGKPP1], [BGGKPP2], [BWW]. Although the results were purely group-theoretic, it was clear
that the key role is played by geometry and dynamics. Byproducts of this investigation seem to us
not less interesting than the initial problem.

We reformulated the original problem in the language of a verbal dynamical system on an
algebraic group G (the notion of its own interest). We study these systems for the case G = SL(2),
the most important for the initial group-theoretic problem. Towards this end, we

• prove several surjectivity theorems for the classical trace map over finite fields;
• introduce a new method based on the trace map and these theorems.

This allowed us not only to explain the mechanism of the proofs from the above cited papers
but to obtain a method for producing more sequences of the same nature.

These arithmetic-geometric considerations led us to a new notion of residual periodicity of a
dynamical system which reflects its local-global behaviour. This concept will hopefully yield new
results in the arithmetic of dynamical systems on algebraic varieties. Here we present some primary
examples and propose some conjectures.

To be more precise, let Fr+s be the free group with basis x1, . . . , xs, u1, . . . , ur, and let

W =





w1(x1, . . . , xs, u1, . . . , ur),

. . . ,

wr(x1, . . . , xs, u1, . . . , ur).





(1)

be an r-tuple of words in Fr+s. Thus for any group G we obtain a self-map:

DW : Gr+s → Gr+s, (2)

(g1, . . . , gs, v1, . . . , vr) 7→ (g1, . . . , gs, w1(g1, . . . , gs, v1, . . . , vr), . . . , wr(g1, . . . , gs, v1, . . . , vr).

Choosing G to be a linear algebraic group defined over some field k, we thus find a polynomial
self-map of the underlying affine variety Gr+s attached to W.

A set M ⊂ Gr+s is called invariant if DW(M) ⊂M.
For our purposes it is important to introduce initial conditions and, for every group G, a so-

called forbidden set. Let J = (f1(x1, . . . , xs), . . . , fr(x1, . . . , xs)) be words in Fs. Then given G and
(g1, . . . , gs) ∈ Gs we have an iterative sequence of r-tuples of elements of G:

e0 = (f1(g1, . . . , gs), . . . , fr(g1, . . . , gs)), . . . ,

en+1 = (w1(g1, . . . , gs, en), . . . , wr(g1, . . . , gs, en)), . . .

We are interested in finding (g1, . . . , gs) such that the sequence e0, e1, . . . has certain properties.
To find such (g1, . . . , gs), we add s extra “tautological” variables and obtain a self-map as in (2).

Then given W, G and J , we have an iterative sequence:

e′0 = (g1, . . . , gs, f1(g1, . . . , gs), . . . , fr(g1, . . . , gs)), . . . ,

e′n+1 = DW(e′n), . . .

The forbidden set consists of the choice of an invariant set IG ⊂ Gr+s for every group G.
We call the triple D = (W,J , IG) a verbal dynamical system. We are interested in invariant sets

disjoint from IG.

Remark 1.1. It is sometimes convenient to modify this general setup as follows.
(i) It may happen that the r-tuple W depends on less than r + s variables (say, of x1, . . . , xs

only x1, . . . , xt, t < s, show up in W whereas the rest of the xi only appear in the initial conditions
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J ). In such a case, we will restrict our dynamical system to Gr+t (in particular, the forbidden set
is also chosen inside Gr+t). See Example 1.4 below.

(ii) One can fix an s-tuple (g◦ := (g◦1 , . . . , g
◦
s ) ∈ Gs and consider the corresponding “fibre” of our

dynamical system D0
W : Gr → Gr defined by

D0
W((v1, . . . , vr)) = (w1(g

◦
1 , . . . , g

◦
s , v1, . . . , vr), . . . , wr(g

◦
1 , . . . , g

◦
s , v1, . . . , vr)).

In particular, for r = 1 we arrive at a self-map G→ G. This simplified system will be largely used
in what follows.

Example 1.2. Take s = 2, r = 1 and consider a triple D1 consisting of

W = ([xux−1, yuy−1]),

J = (x−2y−1x),

IG = {G×G× {1}}.
The corresponding map is

DW(x, y, u) = (x, y, [xux−1, yuy−1]).

The associated iterative sequence is

e0 = x−2y−1x, e1 = [x−1y−1, yx−2y−1xy−1], e2 = [xe1x
−1, ye1y

−1], . . .

A key step in our characterization of finite solvable groups [BGGKPP1], [BGGKPP2] can now
be reformulated as follows:

Theorem 1.3. For G = SL(2, q) the dynamical system D1 has a fixed point outside IG for every
q > 3.

A key step to the characterization obtained in [BWW] can be reformulated in a similar way:

Example 1.4. Take s = 2, r = 1, W = ([y−1uy, u−1]), J = (x). As the variable x does not show
up in W but only appears in J (and so t = 1), we proceed as in Remark 1.1(i) and consider the
restricted system G2 → G2, (y, u) 7→ (y, [y−1uy, u−1]), with the forbidden set IG := {G × {1}}.
Denote this system by D2.

The associated iterative sequence is

e0 = x, e1 = [y−1xy, x−1], e2 = [y−1e1y, e
−1
1 ], . . .

The main result of [BWW] can now be read off as follows:

Theorem 1.5. For G = SL(2, q) the dynamical system D2 has a periodic point outside IG for
every q > 3.

In the present paper we mostly restrict ourselves to considering the most important case G =
SL(2, k) (though in Section 4 we also consider the Suzuki groups).

In the case G = SL(2, k) we introduce a new method based on classical results of Klein, Fricke,
Vogt, Magnus from which it follows (see, e.g., [Pe2]) that there is a polynomial map ψ : AN (k) →
AN (k) making the diagram

Gs+r
DW−−−−→ Gs+r

π

y π

y

AN (k)
ψ−−−−→ AN(k)

(3)

commutative. Here π is defined using the traces of products as in Theorem 3.1 below.
In the case r = 1, t = 1 the projection π : SL(2, k)2 → A3(k) is defined as

π(x, y) = (tr(x), tr(xy), tr(y)).
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In the case r = 1, s = 2 the map π : SL(2, k)3 → A7(k) is defined as

π(x, y, u) = (tr(x), tr(y), tr(u), tr(xy), tr(xu), tr(yu), tr(xyu)),

and the image of π is contained in a hypersurface Z ⊂ A7 (see (13) below for an explicit equation
of Z).

We prove the following surjectivity theorems (see Theorems 3.4 and 3.10 below).

Surjectivity Theorem 1. For any point a = (s0, u0, t0) ∈ A3(Fq) the set π−1(a) ⊂ SL(2, q)2 is
nonempty.

Surjectivity Theorem 2. For any point y ∈ Z(Fq) the set π−1(y) ⊂ SL(2, q)3 is nonempty.

These surjectivity theorems allow us to obtain sufficient conditions for the existence of fixed
points of the reduced (modulo p) dynamical system, uniformly in p, and treat concrete examples
arising from [BGGKPP1], [BGGKPP2], [BWW].

On the other hand, the above dynamical reinterpretation of our group-theoretic problem leads
to some interesting “local-global” properties of dynamical systems on algebraic varieties. By an
AG dynamical system (AG stands for arithmetic-geometric) we mean a triple D = (X,V, ϕ), where

• either X is an algebraic variety defined over a global field K, ϕ : X → X is a dominant
endomorphism and V ⊂ X(K) is a subset invariant under ϕ;

• or X is an O-scheme (O stands for the ring of integers in K), ϕ : X → X is dominant and
V ⊂ X(O) is a ϕ-invariant subset.

A periodic point is a fixed point of an iteration ϕ(n) of ϕ. Together with the system D = (X,V, ϕ),
we consider its reductions Dp = (Xp, Vp, ϕp), where p ranges over all but finitely many places of K
(see Section 6 for precise definitions). For each reduction, we consider the length ℓp of the shortest
orbit Cp which does not intersect the “forbidden” set Vp ⊂ Xp. If such an orbit does not exist, we
set ℓp = ∞. We are interested in the distribution of ℓp’s. More specifically, let M ⊂ N be the set of
all primes p such that ℓp = ∞. Let N = {ℓp : p 6∈M}.

• If M is infinite, we call the system residually aperiodic.
• If M is finite, we call the system residually periodic.
• If both M and N are finite, we call the system strongly residually periodic.

Precise definitions, examples and discussion of these notions are the subject of Section 6.

Remark 1.6. According to a theorem of Hrushovski [Hr], ϕ has a periodic point in X(Fp) \V (Fp)
provided X is an affine Fp-variety and V is a proper affine subset of X (Fp stands for the algebraic
closure of Fp). In contrast, we are only interested in periodic points in X(Fp).

In this language our approach to the problem of characterization of finite solvable groups looks
as follows. We consider word maps of groups G = SL(2, q). For every word map ϕ : Gm →
G, m = 2, 3 (and an additional word f : G2 → G in the case m = 3) we define a verbal dynamical
system (see, e.g., Examples 1.2, 1.4). Regarding the group as an affine variety, we obtain from
a verbal dynamical system an AG dynamical system on an affine Z-scheme. (In Example 1.2 we
have X = SL(2) × SL(2) × SL(2), V = SL(2) × SL(2) × {1}, ϕ(x, y, u) = (x, y, [xux−1, yuy−1]),
in Example 1.4 we have X = SL(2) × SL(2), V = SL(2) × {1}, ϕ(y, u) = (y, [y−1uy, u−1]).) The
word map is a “good” candidate if and only if that system is residually periodic. Using the trace
map we simplify the AG system by including it into a commutative diagram

X
ϕ̃−−−−→ X

π

y π

y

Y
ψ−−−−→ Y

(4)
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where π is a surjective projection, defined over Z, and ψ is the trace map (see Subsections 3.1,
3.2 for more details). Moreover, the dynamical system D′ = (Y, π(V ), ψ) has special geometric
properties allowing us to find out when it is strongly residually periodic. Note that π is surjective,
therefore if D′ is strongly residually periodic then D is residually periodic.

It is an interesting question what arithmetic or geometric conditions can guarantee residual
periodicity (or aperiodicity) of a given dynamical system. Certainly, if the forbidden set V is
empty then the system is residually periodic.

The role of arithmetic may be demonstrated by the following example.

Example 1.7. Let a and b denote distinct integers, and let H(x) = (x2 − a)(x2 − b)(x2 − ab) + x.
The polynomial H(x) defines a morphism H : A1

Z → A1
Z.

For every p the reduced morphism Hp has fixed points. Indeed, if p|a or p|b, we have Hp(0) = 0.
If none of a and b is divisible by p, we can use the fact that the Legendre symbol is a multiplicative
function and conclude that at least one of three numbers: a, b, ab, is a square modulo p. A square
root of this number is then a fixed point of Hp, so we have ℓp = 1.

On the other hand, the morphism H : A1
Z → A1

Z may have no periodic points. Indeed, according
to [Na], the period of a rational point for a monic polynomial cannot exceed 2, and Magma com-
putations show that for a = 2, b = 3 there is no rational solution to the equation H(H(x))−x = 0.

This example shows that one of the reasons for residual periodicity may be the existence of
periodic points defined over a splitting field. Polynomials of that kind were studied in [BB], [Br],
[BBH], [So].

As to geometric conditions, the dynamical system under consideration may happen to be residu-
ally periodic because of the existence of invariant functions (say, when there is an “extra” coordinate
on which ϕ acts trivially) as in the following simple example.

Example 1.8. Let D = (X,V, ϕ), where X = A2, V = {(a, b) ∈ X : a = ±1 or b = ±1 or a =
0 or b = 0}, and ϕ(a, b) = (a2b, b). Consider the integral model D = (X ,V,Φ) where X = A2

Z, V =
{(a, b) ∈ X(Z) : a = ±1 or b = ±1 or a = 0 or b = 0} and Φ(a, b) = (a2b, b). We have M = {2, 3}.
The variety of fixed points of Φ is a curve C = {(a, b) : ab = 1}, C⋂V = {±(1, 1)}. Nevertheless,
for any prime p > 3 we have Cp \ Vp 6= ∅, i.e. ℓp = 1.

These examples show that there are at least two general reasons for a dynamical system to
be strongly residually periodic. The first one is purely arithmetic as in Example 1.7. Our first
observations show that even in the simplest cases of one-dimensional systems, arising questions are
related to nontrivial arithmetical problems. In the case of elliptic curves, one of such problems
has been solved by N. Jones by establishing a weakened version of the long-standing Koblitz’s
conjecture (see the appendix to the present paper).

The second one is of geometric nature as for the trace map above. This map has an invariant
function which leads to the dimension jump for the variety of fixed points. Once we can prove that
this variety W is absolutely irreducible (or at least contains an absolutely irreducible component),
we can apply the Lang–Weil estimates [LW] to conclude that there exists a fixed point on the
reduction Wq for q big enough. (Of course, if dimW = 1, classical Weil’s estimates (see, e.g., [FJ])
are quite enough.)

We believe that residually periodic dynamical systems is an object worthy of investigation. The
following particular case seems to be especially interesting. Consider a Z-scheme X, a dominant
endomorphism ϕ of X, and define V as the union of all finite ϕ-orbits in X(Z). Then Vp is the union
of orbits of the reductions of all preperiodic points of ϕ. In simple words, this means that in this
case we are interested in the distribution of the smallest periods of the maps ϕp not coming from
preperiodic points of ϕ. To the best of our knowledge, such a classification of dynamical systems
according to their “hidden” periodicity did not appear in the literature.
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The structure of the paper is as follows.
Section 3 contains a general framework of our method for the most important caseG = PSL(2, q).

The Suzuki groups are treated in Section 4. Applications to concrete sequences are contained in
Section 5. Section 6 is completely devoted to the new notion of residually periodic dynamical
systems. We give basic definitions, consider simple examples and state some conjectures. The
appendix contains a theorem of N. Jones answering one the questions posed in Section 6.

2. Notation and preliminaries

Recall that in [BGGKPP1], [BGGKPP2], [BWW] there have been exhibited explicit families
αn(x, y), βn(x, y) of words in F2 allowing one to characterize the class S of finite solvable groups
in the class of all finite groups as follows:

A finite group G belongs to S if and only if there exists n such that G satisfies the identity γn(x, y) :=
[αn(x, y), βn(x, y)] ≡ 1.

Here [a, b] = aba−1b−1 denotes the commutator.
As in the introduction, we produce these recurrence formulas using the dynamical viewpoint. We

consider the dynamical systems D1 and D2 from Examples 1.2 and 1.4, respectively, and consider
their fibres as in Remark 1.1(ii). This means that for any group G we introduce the maps G→ G:
ρu,v(w) := [uwu−1, vwv−1], σu(w) := [u−1wu,w−1]. Then the n-th term of the characterizing
sequence can be written as the n-th iteration of the map ρ (resp. σ):

γn(x, y) = ρ(n)
x,y(γ0(x, y)) (5)

(resp.

γn(x, y) = σ(n)
y (γ0(x, y))), (6)

where γ0(x, y) = x−2y−1x (resp. γ0(x, y) = x).
Suppose that S is a solvable group of derived length n. Then the recursive structure of the above

formulas shows that γn(x, y) ≡ 1 in S. To establish the converse statement, it is enough to show
that the identity γn(x, y) ≡ 1 does not hold in any finite minimal simple non-solvable group G.
(That is precisely what was done in [BGGKPP1], [BGGKPP2], [BWW].)

To establish this fact in the case of sequences of type (6), it is enough to show that there exists
u = y0 ∈ G such that the map σu has a (non-identity) periodic point, i.e. there exist a positive
integer m and an element 1 6= g ∈ G such that g can be written in the form g = γ(x, y0) and

σ
(m)
y0 (g) = σy0(g). (For sequence (6), that is precisely what was done in [BWW].) It is important

to note here that every point has a finite orbit (i.e. is preperiodic in the sense of [Si1]) but a priori
it can happen that all these orbits contain identity, which being fixed is the only periodic point.
We need an orbit that never hits the identity, and therefore contains another periodic point. This
explains our choice of the forbidden set in Examples 1.2 and 1.4.

Let us recall the list of minimal simple non-solvable groups [Th]:
(1) G = PSL(2, p), p = 5 or p ≡ ±2 (mod 5), p 6= 3,
(2) G = PSL(2, 2p),
(3) G = PSL(2, 3p), p is an odd prime,
(4) G = Sz(2p), p is an odd prime,
(5) G = PSL(3, 3).
Here Sz stands for the Suzuki group (twisted form of B2, see, e.g., [HB] for details).
To obtain a characterization of finite solvable groups, we wish to find a word ϕ ∈ F2(x, y) with

the following properties:
(i) for any finite solvable group S there exists an integer n such that for every y ∈ S the map

ϕ
(n)
y : S → S is the identity map (here ϕy(x) := ϕ(x, y));
(ii) for each finite simple non-solvable group G from the above list, there exists y ∈ G such that

the self-map ϕy : G → G has a non-identity periodic point. For the PSL(2) case, this fits into the
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approach described in Section 1: we consider the dynamical system (PSL(2,Z), {1}, ϕy) and all
its reductions. (Note that in our context, the difference between SL and PSL is negligible, see
Remark 3.22 below.)

In order to satisfy condition (i), one has to impose some restrictions on ϕ. We shall discuss this
matter in Section 6.

In the sequel, we shall consider two separate cases: G = PSL(2, q) and G = Sz(q) (the case
of the single group G = PSL(3, 3) is usually easy to handle). In each case we will show that the
corresponding dynamical system D gives rise to a dynamical system D′ in the space of traces (the
trace map) as in diagram (4). The trace map has special geometry: the set of its fixed points (or of
periodic points of bounded period) has positive dimension. This allows us to formulate a geometric
sufficient condition on ϕ in order to get a periodic point in every reduction. (See Section 6 where
we dare formulate some general conjectures.)

Further on we denote by An
x1,...,xn

the affine space with coordinates x1, . . . , xn.

For brevity, we denote G̃ = SL(2, q).
We will repeatedly use expressions of the form “a rational curve with n punctures” (even if our

curve lies in an affine space) referring to an open subset of a projective curve of genus zero whose
complement consists of n points (e.g., the curve xy = 1 in the affine plane will be referred to as a
rational curve with two punctures).

3. Case G = PSL(2, q)

In this section we show how every word map gives rise to a dynamical system. Then we prove
that this dynamical system may be included into a commutative diagram of type (4) (namely,
diagrams (8) and (14) below). The idea is that it is sufficient to look for periodic points of the
trace map ψ. Indeed, if a point a is ψ-periodic, then all the points in the fibre over a are ϕ-periodic.
The problem is to show that this fibre is not empty. We first show how to construct the trace
map, then we show that the projection is a surjective morphism for every reduction (Theorems
3.4 and 3.10). Specific geometry of the trace map allows us to give sufficient conditions for the
correewponding dynamical system to be residually periodic (Theorems 3.6 and 3.21).

Our method is based on the following classical fact ([Vo], [Fr], [FK], [Ma1]) cited here from the
paper [Ho] (see also [Ma2], [Go] for a nice modern exposition of these results).

Theorem 3.1. Let F = 〈a1, . . . , an〉 denote the free group on n generators. Let us embed F into
SL(2,Z) and denote by tr the trace character. If u is an arbitrary element of F , then the character
of u can be expressed as a polynomial

tr(u) = P (t1, . . . , tn, t12, . . . , t12...n)

with integer coefficients in the 2n − 1 characters ti1i2...iν = tr(ai1ai2 . . . aiν ), 1 ≤ ν ≤ n, 1 ≤ i1 <
i2 < · · · < iν ≤ n. �

Note that the theorem remains true for the group G̃ = SL(2, q) (and, more generally, for SL(2, R)
where R is any commutative ring, see [CMS]).

We shall use this theorem in two different situations: for maps arising from formulas of type
(6), called two-variable maps, and for those arising from formulas of type (5), called three-variable
maps. These situations will be described in the next two subsections respectively.

3.1. Two-variable maps. In this section we focus on the underlying affine algebraic variety of

the algebraic group G̃. Consider a morphism ϕ : G̃ × G̃ → G̃ satisfying the property (needed for
descending to G = PSL(2)):

ϕ(±x,±y) = ±ϕ(x, y).
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For example, any word map provides such a morphism. Namely, for any x, y ∈ G̃ denote s = tr(x),

t = tr(y), and u = tr(xy), and define a morphism π : G̃× G̃→ A3
s,u,t by

π(x, y) := (s, u, t).

Then in view of Theorem 3.1 there exists a map ψ : A3
s,u,t → A3

s,u,t such that

ψ(π(x, y)) = π(ϕ(x, y), y). (7)

This map is called a “trace map” and is widely used (see, e.g., [Pe2]).

Define ϕ̃ = (ϕ, id) : G̃ × G̃ → G̃ × G̃ by ϕ̃(x, y) = (ϕ(x, y), y). Then the following diagram
commutes:

G̃× G̃
ϕ̃−−−−→ G̃× G̃

π

y π

y

A3
s,u,t

ψ−−−−→ A3
s,u,t

(8)

Here ψ(s, u, t) := (f1(s, u, t), f2(s, u, t), t), where f1(s, u, t) = tr(ϕ(x, y)), f2(s, u, t) = tr(ϕ(x, y)y).

Lemma 3.2. For any word map ϕ(x, y) the variety

Φ : {f1(s, u, t) = s, f2(s, u, t) = u} ⊂ A3
s,u,t

of fixed points of ψ has positive dimension.

Proof. Since the variety Φ is defined by two equations in A3
s,u,t, it is sufficient to show that it is not

empty. But for any word ω(x, y) we have: ω(1, 1) = 1, thus ψ(2, 2, 2) = (2, 2, 2), hence Φ 6= ∅. �

Lemma 3.3. Let Q = (s0, u0, t0) be a fixed point of ψ defined over Fq. Let (x, y) ∈ π−1(Q). Then
(ϕ(x, y), y) ∈ π−1(Q) as well.

Proof. Indeed, (7) gives π(ϕ(x, y), y) = ψ(Q) = Q. �

Theorem 3.4. For every Fq-rational point Q = (s0, u0, t0) ∈ A3
s,u,t the fibre H = π−1(Q) has an

Fq-rational point.

Proof. We will look for an element of H among pairs of matrices of the form
((

0 1
−1 s0

)
,

(
a b
c −a+ t0

))
. (9)

To lie in H, the entries of these matrices must satisfy the equations

a(−a+ t0) − bc = 1, c− b+ s0(−a+ t0) = u0.

On eliminating b, we arrive at the following equation in a and c:

a2 + c2 − s0ac− t0a+ (s0t0 − u0)c+ 1 = 0, (10)

which has a solution for every q. Of course, this can be proved using the Chevalley–Warning
theorem, but for the reader’s convenience we present here an elementary proof.

Case 1. q is odd.

The discriminant D of the quadratic part of the left-hand side of (10) equals s20 − 4. If D = 0,
i.e. s0 = ±2, we exhibit an explicit point in H:

((
±1 u0 ∓ t0
0 ±1

)
,

(
1 t0 − 2
1 t0 − 1

))
, (11)

so we may assume D 6= 0. First, by a linear change of variables over Fq, let us bring (10) to the
form

ã2 + εc̃2 = r.
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If r is a square, r = v2, we can put ã = v, c̃ = 0, so we may assume that r is not a square. If ε is
not a square, then r/ε is a square, r/ε = v2, and we can put ã = 0, c̃ = v, so we may assume ε is a
square, ε = v2. In Fq there are (q + 1)/2 squares and (q − 1)/2 nonsquares, thus among (q + 1)/2
elements r − ã2, when ã ranges over Fq, there is a square w2. We then put c̃ = w/v.

Case 2. q is even.
If s0 = 0, then we get a point in H from (11), so we may assume s0 6= 0. Then on putting

ã = a+ (s0t0 + u0)/s0, c̃ = c+ t0/s0, we bring (10) to the form

ã2 + c̃2 + s0ãc̃ = r.

As every element of Fq is a square, we have r = v2 and we can put ã = v, c̃ = 0. �

Corollary 3.5. Consider the following “conjugation” equivalence relation ∼ on SL(2,Fq)2:

(x, y) ∼ (x′, y′) iff ∃g ∈ SL(2,Fq) | x′ = gxg−1, y′ = gyg−1.

Then every absolutely irreducible component of the set of conjugacy classes of ϕ̃-periodic points is
positive dimensional.

Proof. Indeed (SL(2,Fq)2 \ V (Fq))/∼ can be identified with F3
q. The corollary is valid, because the

periodic set of the trace map is positive dimensional. �

We can now obtain a sufficient condition for the existence of periodic points. Consider the maps

ϕ : G̃ × G̃ → G̃ and ψ : A3
s,u,t → A3

s,u,t as in diagram (8), and denote by Φ ⊂ A3
s,u,t the variety of

fixed points of ψ. As in Section 2, for a fixed y denote by ϕy : G̃→ G̃ the map x 7→ ϕ(x, y).
Note that Φ contains a line

L1 = {s = 2, u = t}.
Since Φ is a complete intersection, all its irreducible components have dimension at least one.

Theorem 3.6. Write Φ =
k⋃
i=1

Wi ∪L1, where Wi are irreducible Fq-components of Φ. Suppose q is

big enough. If at least one of Wi’s is absolutely irreducible, then there exists a pair (x, y) ∈ G×G
such that x 6= 1, y 6= 1 and x is a periodic point of ϕy.

Proof. Let Wi be an absolutely irreducible component of W , W 6= L1. By the Lang–Weil theorem
[LW], there is a point Q = (s0, u0, t0) 6= (±2, t,±t) ∈ Wi(Fq). According to Theorem 3.4, we

have HQ(Fq) 6= ∅, where HQ = π−1(Q). It follows that there exists a pair (x, y) ∈ G̃ × G̃ such
that s0 = tr(x), u0 = tr(xy), t0 = tr(y). By Lemma 3.3, (ϕy(x), y) ∈ HQ(Fq) as well. Since

the set HQ(Fq) is finite, there are numbers n < m ∈ N such that ϕ
(m)
y (x) = ϕ

(n)
y (x). Thus,

x̃ = ϕ
(n)
y (x) is a periodic point of ϕy. Moreover, the image of x̃ in G = PSL(2, q) is non-identity

since Q = (s0, u0, t0) 6= (±2, t,±t). �

Remark 3.7. If there is a component Wi ⊂ Φ defined over Z and irreducible over Q, then, by [Gr,
Theorem IV, 9, 7.7(i)], the assumptions of the theorem are satisfied for any prime p big enough.

Remark 3.8. Suppose q = p > 3 is a prime number. Note that all the maps in diagram (8)
are defined over Z, and it can thus be viewed as the special fibre at p of the following diagram of
morphisms of Z-schemes (denoted by the same letters):

G × G ϕ̃−−−−→ G × G
π

y π

y

A3
Z

ψ−−−−→ A3
Z

(12)

where G = SL(2,Z).
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3.2. Three-variable maps. Let here G̃ denote SL(2,K) where K is an arbitrary field. Consider

a morphism ϕ : G̃× G̃× G̃→ G̃ such that

ϕ(±x,±u,±y) = ±ϕ(x, u, y).

The modified map ϕ̃ : G̃× G̃× G̃→ G̃× G̃× G̃ is defined by ϕ̃(x, u, y) = (x, ϕ(x, u, y), y).
As above, we consider a representation ρ of the free group F3 in SL(2,Z) and assume that ϕ is

defined by a word w = w(x, u, y). The trace of ρ(w) can be expressed as a polynomial in 7 variables
a1 = tr(x), a2 = tr(y), a3 = tr(u), a12 = tr(xy), a13 = tr(xu), a23 = tr(yu), a123 = tr(xyu). These
variables are dependent (see, e.g., [Ma1] or formulas (2.3)–(2.5) in [Ho]):

a2
123 − a123(a12a3 + a13a2 + a23a1 − a1a2a3)

+ (a2
1 + a2

2 + a2
3 + a2

12 + a2
13 + a2

23 − a1a2a12 − a1a3a13 − a2a3a23 + a12a13a23 − 4) = 0.
(13)

Let a = (a1, a2, a3, a12, a13, a23, a123) ∈ A7, let Z ⊂ A7 be an absolutely irreducible set defined by
(13). Let π(x, u, y) = a ∈ Z be the trace projection. Then the following diagram is commutative:

G̃× G̃× G̃
ϕ̃−−−−→ G̃× G̃× G̃

π

y π

y

Z(K)
ψ−−−−→ Z(K)

(14)

where ψ(a) = (a1, a2, l1(a), a12, l2(a), l3(a), l4(a)),

l1 = tr(ϕ(x, u, y)), l2 = tr(ϕ(x, u, y)x),

l3 = tr(ϕ(x, u, y)y), l4 = tr(ϕ(x, u, y)xy).

The variety F (ϕ) ⊂ Z of fixed points of ψ is defined by the equations

l1(a) = a3, l2(a) = a13, l3(a) = a23, l4(a) = a123,

and, since it is nonempty, its dimension is at least 3.
Let us now consider diagram (14) more carefully.

Lemma 3.9. Let F be any algebraically closed field. Then the set Z is an irreducible hypersurface
over F .

Proof. Assume the contrary. Let p denote the natural projection of A7 to A6, forgetting the
coordinate a123. Let L ⊂ A6 be an irreducible curve not contained in the branch locus of the
restriction of p to Z. Then the set p−1(L)

⋂
Z is reducible.

Case 1. char(F ) 6= 2.
Let c 6= ±2. Consider the curves L = {a1 = a2 = a13 = a23 = 0, a12 = c} ⊂ A6 and

M = p−1(L) = {a1 = a2 = a13 = a23 = 0, a12 = c} ⊂ A7. Then from (13) it follows that
M ′ = Z

⋂
M is defined by the following equations:

(a123 − a3c/2)
2 − (c2 − 4)(a2

3 − 4)/4 = 0, a1 = a2 = a13 = a23 = 0, a12 = c.

Therefore M ′ is a branched double cover of L, hence it is irreducible. Contradiction.

Case 2. char(F ) = 2. We now consider the curve L = {a1 = a2 = a13 = a23 = 0, a12 =
a3 + 1} ⊂ A6. In the notation of Case 1, M ′ is defined by the equations

a2
123 − a3(a3 + 1)a123 + 1 = 0, a1 = a2 = a13 = a23 = 0, a12 = a3 + 1.

Thus it is irreducible. Contradiction.

Hence Z is irreducible. �

Theorem 3.10. Let Z ⊂ A7
a1,a2,a3,a12,a13,a23,a123 be defined by equation (13). Then for all q the

map π : SL(2, q) × SL(2, q) × SL(2, q) → Z(Fq) is surjective.
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Proof. The result will follow from identities between certain polynomials in the polynomial ring

R := Z[x1, x2, x3, x12, x13, x23, x123, α1, γ1, α2, γ2].

Denote

L :=x2
123 − x123(x12x3 + x13x2 + x23 + x1 − x1x2x3)

+ x2
1 + x2

2 + x2
3 + x2

12 + x2
13 + x2

23 − x1x2x12 − x1x3x13 − x2x3x23 + x12x13x23 − 4,
(15)

L12 := x2
1 + x2

2 + x2
12 − x1x2x12 − 4, L13 := x2

1 + x2
3 + x2

13 − x1x3x13 − 4,

L23 := x2
2 + x2

3 + x2
23 − x2x3x23 − 4

(all viewed as elements of R).
We start with the following lemma (skipping an elementary proof).

Lemma 3.11. Let K be a finite field, and let r, s, t, a ∈ K be such that the equation in x, y

x2 + y2 + rxy + sx+ ty = a

is not solvable in K. Then the characteristic of K is 2 and r = 0, s = t hold. �

We now define two more polynomials in the ring R (the reason will become clear later on):

D1 := −α2
1 + α1γ1x3 + α1x1 − γ2

1 − γ1x1x3 + γ1x13 − 1,

D2 := −α2
2 + α2γ2x3 + α2x2 − γ2

2 − γ2x2x3 + γ2x23 − 1.

Our argument will also need the following two by two matrix over R:

A =

(
2α2 − γ2x3 − x2 −α2x3 + 2γ2 + x2x3 − x23

α2x3 − 2γ2 − x2x3 + x23 −α2x
2
3 + 2α2 + γ2x3 + x2x

2
3 − x2 − x3x23

)
. (16)

Define further Ã to be the adjoint matrix of A, that is Ã is A with the diagonal entries permuted
and the off-diagonal entries multiplied by −1. The product ÃA is the scalar matrix corresponding
to the determinant of A. We further consider the vector

b :=

(
α2x1 − γ2x1x3 + γ2x13 − x1x2 + x12

α2x13 − γ2x1 − x2x13 + x123

)
∈ R2

and define r, s ∈ R by (
r
s

)
:= Ãb.

Multiply now D1 by L2
23 and replace y1 := L2

23α1, y2 := L2
23γ1, obtaining the polynomial

F (y1, y2) := −y2
1 + y1y2x3 + y1L23x1 − y2

2 − y2L23x1x3 + y2L23x13 − L2
23

in the variables y1, y2.
We need one more lemma.

Lemma 3.12. Let D2 be the ideal of R generated by D2 and D the ideal generated by D2 and L.
Then the following hold:

(i) det(A) − L23 is in D2;
(ii) F (r, s) is in D.

The proof of this lemma amounts to certain simple computations which are best done using a
computer algebra system. The first item follows for example from the identity:

det(A) − L23 = (x2
3 − 4)D2.

For the second item, the formula is more complicated. We skip the details. �

We can now go over to the proof of the theorem.
Let K be any field. Let x = (x1, x2, x3, x12, x13, x23, x123) ∈ Z(K). As we are working with

traces and are thus allowed to make simultaneous conjugation, we start our search of solutions to
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π(B1, B2, B3) = x by considering the following triples of two by two matrices over the polynomial
ring K[α1, γ1, α2, γ2]:

B1 =

(
α1 −α1x3 + γ1 + x1x3 − x13

α1 x1 − α1

)
, B2 =

(
α2 −α2x3 + γ2 + x2x3 − x23

γ2 x2 − α2

)
,

(17)

B3 =

(
0 1
−1 x3

)
. (18)

The condition that B1, B2, B3 have determinant 1 and satisfy π(B1, B2, B3) = x is equivalent
to the four equations:

D1 = −α2
1 + α1γ1x3 + α1x1 − γ2

1 − γ1x1x3 + γ1x13 − 1 = 0, (19)

D2 = −α2
2 + α2γ2x3 + α2x2 − γ2

2 − γ2x2x3 + γ2x23 − 1 = 0, (20)

α1(2α2 − γ2x3 − x2) + γ1(−α2x3 + 2γ2 + x2x3 − x23)

− α2x1 + γ2x1x3 − γ2x13 + x1x2 − x12 = 0,
(21)

α1(α2x3 − 2γ2 − x2x3 + x23) + γ1(−α2x
2
3 + 2α2 + γ2x3 + x2x

2
3 − x2 − x3x23)

− α2x13 + γ2x1 + x2x13 − x123 = 0.
(22)

Notice that the first equation is quadratic in α1, γ1 only and the second is quadratic in α2, γ2 only.
The third and fourth equations are written as a linear system in α1, γ1. Defining the vectors

y :=

(
α1

γ1

)
, b :=

(
α2x1 − γ2x1x3 + γ2x13 − x1x2 + x12

α2x13 − γ2x1 − x2x13 + x123

)
,

the third and fourth of the above equations can be schematically written as

Ay = b

with the matrix A defined in (16) evaluated at our point x.
We now assume that K is a finite field. We shall now write L23(x) for the polynomial L23 defined

above evaluated at our point x ∈ Z(K), that is L23(x) = x2
2 + x2

3 + x2
23 − x2x3x23 − 4. We use a

similar notation for all the other polynomials.
Case 1: At least one of the values L12(x), L13(x), L23(x) is nonzero. Assume, say,

L23(x) 6= 0 (the other cases are similar).
First we show that (20), viewed as an equation in the indeterminates α2, γ2, has a solution.

Assume the contrary. Then by Lemma 3.11 we conclude that the characteristic of K is two, x3 = 0
and x2 = x23. This contradicts the assumption L23 6= 0.

We shall now fix a solution (α2, γ2) ∈ K2 of equation (20) and put these into the above matrix
A getting a two by two matrix over K. Similarly we get a vector b in K2. By Lemma 3.12 we find

det(A) = L23(x) 6= 0

which is guaranteed by our assumption. We now define (α1, γ1) ∈ K2 by
(
α1

γ1

)
:= A−1b.

By Lemma 3.12(ii), we have found three matrices B1, B2, B3 ∈ SL(2,K) satisfying π(B1, B2, B3) =
x.

If now L23(x) = 0, we have either L12(x) 6= 0 or L13(x) 6= 0. These cases are treated in a similar
way. �

Remark 3.13. The above proof remains true if K is any quadratically closed field (cf. also [Pe1]).
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Case 2: L12(x) = L13(x) = L23(x) = 0.
Loosely speaking, our strategy in this case is to use automorphisms of the free group F3 to get

from x another point of Z(K) such that not all three values of Lij vanish at that point, and then
use the result of Case 1. Let us make this more precise.

We start with an obvious lemma.

Lemma 3.14. Let n ≥ 2, let Fn denote the free group on n generators X1,. . . , Xn, and let Gn be
the product of n copies of a group G. The map

Aut(Fn) → Sym(Gn), ϕ 7→ ϕ̂,

defined by
ϕ̂(T ) = (ϕ(X1)T , . . . , ϕ(Xn)T ),

is a group homomorphism.
Here T is an n-tuple of elements of G and ϕ(Xi)T is the element of G obtained by substitution of

the elements of T instead of the Xi’s appearing in the expression of ϕ(Xi) in the basis {X1, . . . ,Xn}.
�

The following constructions are described in [Ho] (see also [Ma1], [Pe2]), sometimes with details
omitted. For the reader’s convenience and sake of completeness we now focus on the case n = 3
giving some more details. Fix a basis {X,Y,Z} of F3.

Definition 3.15. For every ϕ ∈ Aut(F3) define a map Fϕ : A7 → A7 by the formula

Fϕ(u) := (Pϕ(X)(u), Pϕ(Y )(u), . . . , Pϕ(XY Z)(u)),

where Pw is the integer polynomial in 7 variables corresponding to the word w (cf. Theorem 3.1).

Lemma 3.16. For every ϕ ∈ Aut(F3) and every T ∈ SL(2,K)3 we have

π(ϕ̂(T )) = Fϕ(π(T )).

Proof. Obvious. �

Lemma 3.17. For every ϕ ∈ Aut(F3) and every field K we have Fϕ(Z(K)) ⊆ Z(K).

Proof. We first prove that Fϕ(Z(K)) ⊆ Z(K), where K is an algebraic closure of K. From this the
needed inclusion will follow as soon as Fϕ is defined over K. In Case 1 we have proven that the
map π is surjective onto an open subset

U(K) = {L12 6= 0, L13 6= 0, L23 6= 0} ⊆ Z(K),

since the proof was valid for any algebraically closed field (see Remark 3.13).
Let u ∈ U(K), u = π(T ), T ∈ SL(2,K)3. Then Fϕ(u) = Fϕ(π(T )) = π(ϕ̂(T )) ∈ Z(K). Hence,

Fϕ(U(K)) ⊆ Z(K). Since U is open in Z and Z is irreducible, the same inclusion is valid for Z.
Since Fϕ is defined over Z, the inclusion for K-points follows as well. �

Lemma 3.18. (i) Fid = id;
(ii) For every ϕ,ψ ∈ Aut(F3) and every u ∈ Z(K) we have

Fϕ◦ψ(u) = Fϕ ◦ Fψ(u).

Proof. The first item is obvious, so let us prove the second one. Once again, similarly to Lemma 3.17,
it is sufficient to prove it over an open subset U considered in Lemma 3.17, and over the algebraically
closed field K).

Let us take u ∈ U(K), u = π(T ), T ∈ SL(2,K)3. Using Lemmas 3.14 and 3.16, we get

Fϕ◦ψ(u) = π(ϕ̂ ◦ ψ(T )) = π(ϕ̂ ◦ ψ̂(T )),

Fϕ ◦ Fψ(u) = Fϕ(π(ψ̂(T )) = π(ϕ̂(ψ̂(T ))),

so the needed equality is proved. �
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Corollary 3.19. The correspondence ϕ 7→ Fϕ defines a group homomorphism Aut(F3) → Aut(Z)
where Aut(Z) is the group of Z-defined polynomial automorphisms of the variety Z. �

We can now go over to the proof of the theorem in Case 2.
Let, as above, x ∈ Z(K) be such that L12(x) = L13(x) = L23(x) = 0.

Case 2a. Let first assume that there exists ϕ ∈ Aut(F3) such that u := Fϕ(x) is such that
not all three values L12(u), L13(u), L23(u) are zero. By Case 1, there exists T ∈ SL(2,K)3 such
that π(T ) = u. Define T ′ := ϕ̂−1(T ). By Lemma 3.16 and Corollary 3.19, we have π(T ′) =
Fϕ−1(π(T )) = Fϕ−1(u) = F−1

ϕ (u) = x, and we are done.

Case 2b. Assume that there is no such ϕ as in Case 2a.
Denote by Lϕij (where i, j stand for distinct numbers from the set {1, 2, 3}) the polynomials in

7 variables obtained after applying Fϕ to Lij. The needed contradiction immediately follows from
the following proposition.

Proposition 3.20. Denote the automorphisms of F3 sending the basis {X,Y,Z} to the bases
{XY, Y,Z}, {X,Y Z,Z}, {X,Y,XZ}, {XY −1, Y, Z}, {X,Y, Y Z}, {XY 2, Y, Z}, {X,ZY Z−1, Z},
{X,Y,XZX−1}, by ϕ1, . . . , ϕ8, respectively. Denote by a the ideal in Z[x1, . . . , x123] generated
by the functions Lϕm

ij where, as above, i, j stand for distinct numbers from the set {1, 2, 3}, and
k = 1, . . . , 8, and let

Za(K) = {x ∈ A7(K) : f(x) = 0 for all f ∈ a}.
Then for any field K of characteristic different from 2 we have

Za(K) ={(2, 2, 2, 2, 2, 2, 2), (0,−2,−2, 0, 0, 2, 0), (0,−2, 2, 0, 0,−2, 0), (0, 2,−2, 0, 0,−2, 0),

(0, 2, 2, 0, 0, 2, 0), (0, 0, 0,−2,−2,−2, 0), (0, 0, 0,−2, 2, 2, 0), (0, 0, 0, 2,−2, 2, 0),

(0, 0, 0, 2, 2,−2, 0)},
and for any field of characteristic 2 we have Za(K) = {(0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 1, 0, 1)}.
Proof. MAGMA computation. �

For each of the points x appearing in Proposition 3.20 one can easily exhibit an explicit triple
of matrices T such that π(T ) = x. Say, π(Id, Id, Id) = (2, 2, 2, 2, 2, 2, 2),

π

((
0 −1
1 0

)
,

(
−1 0
0 −1

)
,

(
−1 0
0 −1

))
= (0,−2,−2, 0, 0, 2, 0),

and so on.
Theorem 3.10 is proved. �

Coming back to the map ϕ̃, let us consider an additional condition:

u = w(x, y), (23)

where x ∈ G̃, y ∈ G̃ and w ∈ F2. Let g3(a1, a2, a12) = tr(w(x, y)), g13(a1, a2, a12) = tr(w(x, y)x),
g23(a1, a2, a12) = tr(w(x, y)y), g123(a1, a2, a12) = tr(w(x, y)xy). Then (23) defines a three-dimensional
variety W (w) ⊂ Z:

W (w) = Z
⋂





a3 = g3(a1, a2, a12),

a13 = g13(a1, a2, a12),

a23 = g23(a1, a2, a12),

a123 = g123(a1, a2, a12)




. (24)

We can now formulate a result which treats the SL(2, q)-case for three-variable maps and thus
makes a crucial step towards getting a sufficient condition for a given sequence of type (5) to
characterize finite solvable groups.
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Theorem 3.21. Let v(x, u, y) and w(x, y) be words in the free groups with three and two generators,
respectively. Define a sequence un(x, y) by the following recurrence relations:

u0(x, y) = w(x, y), un+1(x, y) = v(x, un(x, y), y).

Let ϕ : G̃ × G̃ × G̃ → G̃ be the map defined by (x, u, y) 7→ v(x, u, y), let F (ϕ) be the variety of
fixed points of the trace map ψ induced by ϕ (see diagram (14)), and let W (w) be defined by (24).
With the notation of Theorem 3.10, let V = {a2 = 2, a1 = a12, a3 = a23, a13 = a123}.

Assume that F (ϕ)
⋂
W (w) contains a positive dimensional, absolutely irreducible Q-subvariety

Φ such that Φ′ := Φ \ (Φ
⋂
V ) is an open subset of Φ.

Then there is q0 such that for every q > q0 there exists a pair (x, y) ∈ G̃ × G̃ with un(x, y) 6= 1
for all n ∈ N.

Proof. Let q0 be such that Φ′(Fq) 6= ∅. Let a ∈ Φ′(Fq). By Theorem 3.10, there is a triple (x, u, y) ∈
G̃ × G̃ × G̃ such that π(x, u, y) = a. Moreover, since a ∈ W (w), we may take u = w(x, y). Since
a ∈ Φ, we have ψ(a) = a, hence π(x, u1(x, y), y) = a. Similarly, π(x, un(x, y), y) = a for all n ∈ N.

Since a2 = tr un(x, y) 6= 2, we have un(x, y) 6= 1. �

Remark 3.22. Although this section was completely devoted to considering the group SL(2) (until
now PSL(2) only appeared in its title), the obtained results (in particular, Theorems 3.6 and 3.21)
are also applicable to the PSL(2)-case. (In the two-variable case, this is explicitly explained at the
end of the proof of Theorem 3.6, the case of Theorem 3.21 is similar).

4. Case G = Sz(q)

In this section we consider a map ϕ : G×G→ G where G is a Suzuki group, Sz(q), q = 22m+1,
m ≥ 1. As above, for a fixed y ∈ G we denote by ϕy : G → G the map (x, y) 7→ ϕ(x, y). There is
no trace map in this case. Nevertheless there is a factorization (see diagram (27)) which simplifies
the picture. This leads to a sufficient condition (Theorem 4.3) for the existence of periodic points.
Although the condition is not that simple, we have an example in Subsection 5.1 when it works.

Recall that according to the Bruhat decomposition, G = U1 ∪ U2, where the first Bruhat cell
U1 = B consists of all lower-triangular matrices of the form x = T (a, b)D(k) with

T (a, b) =




1 0 0 0
a 1 0 0

a1+s + b as 1 0
a2+s + ab+ bs b a 1


 ,

D(k) =




ks/2+1 0 0 0

0 ks/2 0 0

0 0 k−s/2 0

0 0 0 k−s/2−1


 ,

and the second Bruhat cell U2 consists of the matrices

x = T (a, b)D(k)wT (c, d), (25)

where

w =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 .

Here a, b ∈ Fq, k ∈ F∗
q, s = 2m+1.

Recall the following properties of these matrices:

(i) T (0, 1)T (a, b) = T (a, b)T (0, 1);
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(ii) D(k)w = wD(k−1);
(iii) T (a, b)T (c, d) = T (a+ b, acs + b+ d);

(iv) wT (0, t)w = T (t1−s, t−1)D(t2s/(s+2))wT (t1−s, 0);
(v) T (0, 1)−1 = T (0, 1);
(vi) D(k)−1T (a, b)D(k) = T (ak, bk1+s).

For x = T (a, b)D(k)wT (c, d) ∈ U2 define

x′ = κ(x) = T (c, d)xT (c, d)−1 = T (c, d)T (a, b)D(k)w = T (a+ c, cas + b+ d)D(k)w.

Note that for any z = T (α, β) we have

κ(zxz−1) = κ(T (α, β)T (a, b)D(k)wT (c, d)T (α, β)−1)

= T (c, d)T (α, β)−1T (α, β)T (a, b)D(k)w = T (c, d)T (a, b)D(k)w = κ(x).

Lemma 4.1. If for any y, x, h ∈ G we have

ϕy(hxh
−1) = hϕhyh−1(x)h−1, (26)

then for y = T (0, t) we have
ϕy(κ(x)) = κ(ϕy(x)).

Proof. For z = T (c, d) we have

ϕy(zxz
−1) = zϕz−1yz(x)z

−1.

Since the matrices T (0, t) commute with any z, it follows that

ϕy(zxz
−1) = zϕy(x)z

−1,

i.e.
ϕy(κ(x)) = κ(zϕy(x)z

−1) = κ(ϕy(x)).

�

From now on until the end of this section we only consider elements x from the second Bruhat
cell.

Corollary 4.2. For x ∈ U2 denote π1(x) = a+c, π2(x) = cas+b+d, k(x) = k. Then for y = T (0, t)
there exist functions f, g and h such that if ϕy(x) 6= 1 then

π1(ϕy(x)) = f(π1(x), π2(x), k(x)),

π2(ϕy(x)) = g(π1(x), π2(x), k(x)),

k(ϕy(x)) = h(π1(x), π2(x), k(x)).

Proof. Indeed, by construction κ(x) = T (π1(x), π2(x))D(k(x))w. Thus by Lemma 4.1, we have

T (π1(ϕy(x)), π2(ϕy(x))D(k(ϕy(x))w = κ(ϕy(x)) = ϕy(κ(x)) = ϕy(T (π1(x), π2(x))D(k(x))w).

It follows that π1(ϕy(x)), π2(ϕy(x)) and k(ϕy(x)) are determined uniquely by the values of π1(x),
π2(x) and k(x). �

Corollary 4.2 may be expressed by the following commutative diagram of Fq-morphisms:

A2
a,b × A∗

k × A2
c,d ⊇ U

ϕy−−−−→ A2
a,b × A∗

k × A2
c,d

π

y π

y

A2
a,b × A∗

k

ψ−−−−→ A2
a,b × A∗

k

(27)

where U denotes the set of x ∈ U2 such that ϕy(x) 6= 1.
This corollary provides the following sufficient condition for the existence of periodic points which

can be viewed as an analogue of Theorem 3.6:
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Theorem 4.3. Let G = Sz(q), let y = T (0, 1) ∈ G, and suppose that the map ϕy satisfies the
following conditions:

• equality (26) holds for any x, y, h ∈ G;
• the morphism ψ : A2

a,b×A∗
k → A2

a,b×A∗
k induced by ϕy (see diagram (27)) has an invariant

set V (i.e. ψ(V ) ⊂ V ).

Then the map ϕy : G→ G has a non-identity periodic point.

Proof. Indeed, the cell U2 does not contain the identity matrix. �

Remark 4.4. In view of (26), the statement of Theorem 4.3 holds for any y = T (0, t).

5. Examples

In this section we want to demonstrate how the trace map works. In Subsection 5.1 we consider
the two-variable case and give a new proof of the main theorem of [BWW] characterizing finite
solvable groups. In Subsection 5.2 we compute the trace map for the three-variable sequence
from [BGGKPP1], [BGGKPP2] (that also characterizes finite solvable groups). In Subsection 5.3
we apply our method for finding a modified sequence having the same property. Subsection 5.4
contains an illustration of the method for a simple case where the word under consideration is
commutator.

5.1. The sequence of Bray–Wilson–Wilson. The sequence sn(x, y) of [BWW] is defined as
follows:

s1 = x, s2 = [y−1xy, x−1], . . . , sn = [y−1sn−1y, s
−1
n−1], . . . ,

Recall the main result of [BWW].

Theorem 5.1. ([BWW]) A finite group G is solvable if and only if

(∃ n ∈ N) (∀(x, y) ∈ G×G) sn(x, y) = 1.

The proof reduces to the following:

Theorem 5.2. ([BWW]) Let G = PSL(2,Fq), q > 3, or G = Sz(22m+1). Then there exists a pair
(x, y) ∈ G×G such that sn(x, y) 6= 1 for all n ∈ N.

We want to give another proof of Theorem 5.2 using the trace map and other geometric consid-
erations.

For technical reasons we will change notation and consider a sequence en(x, y) which differs
from sn(x, y) only by replacing y with y−1. Since in [BWW] the element y was supposed to be an
involution, this does not matter. We define

e1 = x, e2 = [yxy−1, x−1], . . . , en = [yen−1y
−1, e−1

n−1], . . . ,

i.e. in this example

ϕ(x, y) = ϕy(x) = [yxy−1, x−1]

(see Section 3).

Case of PSL As explained in Remark 3.22, we can freely apply the results of Subsection 3.1

obtained for G̃ = SL(2, q) to the case G = PSL(2, q).
We are going to compute the variety Φ of fixed points of the corresponding trace map ψ : A3 → A3

(see diagram (8)). We maintain the notation of Subsection 3.1. In particular, we denote s = tr(x),
u = tr(xy), t = tr(y), and r = u2 + s2 + t2 − ust. Then (see [CMS, Lemma 5.2.4]),

f1(s, u, t) = 2s2 + (tr(yxy−1x−1))2 − s2(tr(yxy−1x−1)) − 2,

tr[y, x] = r − 2.
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Direct computations give

f1(s, u, t) = 2s2 + (r − 2)2 − s2(r − 2) − 2 = s2(4 − r) + r2 − 4r + 2 = (r − 4)(r − s2) + 2, (28)

f2(s, u, t) = f1(s, u, t) · t+ s(st− u)(r − 4) − t(r − 3). (29)

The variety Φ ⊂ A4 is now defined by the following system:

Φ =





s =(r − 4)(r − s2) + 2,

u =st+ s(st− u)(r − 4) − t(r − 3),

r =u2 + t2 + s2 − ust.





(30)

This curve contains a trivial component L1:

s = 2, r = 4, u = t.

To eliminate this component, we consider a curve Φ̃ in the space A5 with coordinates (s, u, t, r, z)
which is isomorphic to Φ \ L1:

Φ̃ =





r = u2 + t2 + s2 − ust,

s = (r − 4)(r − s2) + 2,

u = st+ s(st− u)(r − 4) − t(r − 3),

z(r − 4) = 1.





(31)

Lemma 5.3. The plane curve A ⊂ A2 given by the equation (s− 2) = (r − 4)(r − s2) is a smooth
irreducible genus 1 curve with two punctures.

Proof. Assume the ground field is algebraically closed. Let Ã be the closure of A in the projective
space. One can check that Ã has no singular points.

As a plane smooth curve, Ã is irreducible. Moreover, it is a double cover of P1 and by Hurwitz’s
formula has genus 1. �

Magma computations show that the curve Φ̃ has two components:

W1 =





z + t+ s = 0,

u− t− s+ r − 1 = 0,

ts− 2t− 2s+ r = 0,

tr − 4t+ sr − 4s+ 1 = 0,

s2r − 4s2 + s− r2 + 4r − 2 = 0,





(32)

W2 =





z − t+ s = 0,

u− t+ s− r + 1 = 0,

ts− 2t+ 2s− r = 0,

tr − 4t− sr + 4s− 1 = 0,

s2r − 4s2 + s− r2 + 4r − 2 = 0,





(33)

both defined over the ground field and isomorphic to A\{r = 4, s = 2}, i.e. to a genus 1 irreducible
curve with 3 punctures. Therefore both W1 and W2 are absolutely irreducible.

From Theorem 3.6 it follows that if q is big enough, then there exists a pair (x, y) ∈ PSL(2, q)×
PSL(2, q) such that x is a periodic point of the map ϕy.

Remark 5.4. Since W1,W2 are curves of genus 1 with 3 punctures, they contain Fq-points for all
q ≥ 7. Since each fibre contains a rational curve with at most two punctures, q “big enough” means
q ≥ 7 in this example. Small fields have been handled in a straightforward manner.
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Case of Sz(2n)
We keep the notation of Section 4. We have to show that the map ϕy meets all the conditions

of Theorem 4.3. Condition (26) is obviously satisfied. Let us find an invariant set V of the map ψ
(see diagram (27)). A direct computation of f(0, b, k), g(0, b, k) and h(0, b, k) for x = T (0, b)D(k)w
and y = T (0, 1) gives

k(0, b, k) = k2β
2s

s+2 = k2(b+ 1)
2s

s+2 · k
(1+s)2s

s+2 = k4(b+ 1)
2s

s+2 ,

f(0, b, k) = 0,

g(0, b, k) = (β1−sk−1)1+s + (β + 1/β)k−(1+s)

= k−(1+s)(β1−s2 + β + 1/β) = k−(1+s)β = b+ 1.

Thus for b 6= 0, 1 the function g has period 2.
After the second iteration, we get

f(f(0, b, k), g(0, b, k), h(0, b, k)) = 0,

g(f(0, b, k), g(0, b, k), h(0, b, k)) = b,

h(f(0, b, k), g(0, b, k), h(0, b, k)) = k16(b+ 1)
8s

s+2 b
2s

s+2 .

Therefore, the set V = {x ∈ U2 : π1(x) = 0, π2(x) = b 6= 0, 1} is invariant under the second
iteration of ϕy and does not contain 1.

Theorem 5.2 is proved.

5.2. Three-variable sequence. In this subsection we consider another sequence characterizing
solvable groups which was introduced in [BGGKPP1], [BGGKPP2]:

u0 = x−2y−1x, . . . , un+1 = [xunx
−1, yuny

−1], . . .

In the notation of Subsection 3.2 we have

v(x, u, y) = [xux−1, yuy−1], w(x, y) = x−2y−1x,

and a stands for the point a = (a1, a2, a3, a12, a13, a23, a123) ∈ A7.
We need some additional notation:

a213 = tr(yxu) = a12a3 + a13a2 + a23a1 − a1a2a3,

b12 = tr(x−1y) = a1a2 − a12,

b13 = tr(x−1u) = a1a3 − a13,

b23 = tr(y−1u) = a2a3 − a23,

b123 = tr(x−1yu) = a1a23 − a123,

b213 = tr(y−1xu) = a2a13 − a213,

c12 = tr(xy2) = a12a2 − a1,

cm12 = tr(x−1y2) = b12a2 − a1,

d12 = tr(x2y) = a12a1 − a2,

dm12 = tr(x−2y) = b12a1 − a2,

g12 = tr(xu2) = a13a3 − a1,

fm23 = tr(u2y−1) = b23a3 − a2,

p1 = tr(ux−1yuy−1x) = a3b12b123 − b212 − b2123 + 2,

p2 = b23p1 − b13{a3b213 − b12} + a1b213 − b23,

p3 = b12(a2p1 − b13b213 + dm12) − b213a23 + cm12,

p4 = b212 + a2
3 + b2123 − b12a3b123 − 2,
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p5 = b212 + a2
3 + b2213 − b12a3b213 − 2,

l1(a) = 2a2
3 + p2

1 − p1a
2
3 − 2,

l2(a) = a1l1 − b213p2 + p3,

l3(a) = b213(b13p1 − (b123fm23 − b12b23 + b13))−
− b12(p1a1 − b123b23 + cm12) + a13b123 − dm12.

A direct computation shows that

tr([xux−1, yuy−1]) = l1(a), (34)

tr([xux−1, yuy−1]x) = l2(a), (35)

tr([xux−1, yuy−1]y) = l3(a). (36)

In the following paragraph we compute

tr([xux−1, yuy−1]xy) = l4(a) :

Y = b13b213−dm12, p6 = b212+a2
3+b2123−b12a3b123−2, G = b213b12a3−b212−b2213+2, U = a2G−Y ,

V = b213a23−cm12, E = b12U−V , Q = b213a1−b23, R = a3b213−b12, H = b13R−Q, D = b23G−H,
B = b123D − E, C = b12(p6 − 1), A = a2B − C, l4 = a12l1 −A.

Furthermore,

tr(u0) = tr(x−2y−1x) = tr(x−1y−1) = a12,

tr(u0x) = tr(x−2y−1x2) = tr(y) = a2,

tr(u0y) = tr(x−2y−1xy) = tr(x) tr([x, y]) − tr(y−1xy) = a1(a
2
1 + a2

2 + a2
12 − a1a2a12 − 3),

tr(u0xy) = tr(x−2y−1x2y) = tr([x2, y]) = (a1 − 2)2 + a2
2 + d2

12 − (a1 − 2)a2d12 − 2.

Therefore the variety C = Φ
⋂
W (w) is defined by equation (13) and the following system of

equations:

l1(a) = a3, (37)

l2(a) = a13, (38)

l3(a) = a23, (39)

l4(a) = a123, (40)

a3 = a12, (41)

a13 = a2, (42)

a23 = a1(a
2
1 + a2

2 + a2
12 − a1a2a12 − 3), (43)

a123 = (a1 − 2)2 + a2
2 + d2

12 − (a1 − 2)a2d12 − 2. (44)

Magma computations show that C contains two components, C1 and Φ: C1 corresponds to the
trivial solution u0 = 1, x = y−1, and Φ is an irreducible curve intersecting the set V (see Theorem
3.21 at a finite number of points (at most 31 as MAGMA computations give). Moreover, this curve
is a projection of the solution of the equation u0 = u1 computed in [BGGKPP2].
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5.3. A new sequence. In this subsection we produce a new sequence characterizing finite solvable
groups. It is a modification of the sequence en considered in Subsection 5.1. We keep the notation
of that subsection.

Let θn(x, y) = sn(x, y
2). Denote θ(x, y) = ϕ(x, y2), i.e.

θy(x) = [y2xy−2, x−1].

Theorem 5.5. The map θ(x, y) : SL(2, q) → SL(2, q) has nontrivial periodic points for all q.

Proof. For a pair (x, y) ∈ SL(2, q), let

s = tr(x), t1 = tr(y), u1 = tr(xy), t = tr(y2) = t21 − 2, u = tr(xy2) = u1t1 − s.

Consider the following maps:

κ : A3
s,u1,t1 −→ A3

s,u,t, κ(s, u1, t1) = (s, u1t1 − s, t21 − 2);

ψ : A3
s,u,t −→ A3

s,u,t, ψ(s, u, t) = (f1(s, u, t), f2(s, u, t), t),

where the functions f1 and f2 are defined in (28) and (29), respectively;

ψθ : A3
s,u1,t1 → A3

s,u1,t1 ,

ψθ(s, u1, t1) = (tr θy(x), tr(θy(x) · y), tr y).
We obtain the following commutative diagram:

SL(2) × SL(2)
(θ,id)−−−−→ SL(2) × SL(2)

π

y π

y

A3
s,u1,t1

ψθ−−−−→ A3
s,u1,t1

κ

y κ

y

A3
s,u,t

ψ−−−−→ A3
s,u,t

(45)

As shown above, the variety Φ of fixed points of ψ has three irreducible Fq-components L1, W1,
W2, all absolutely irreducible for any q.

Lemma 5.6. The curve Z2 := κ−1(W2) is absolutely irreducible.

Proof. Consider the curve B defined in P3 with homogeneous coordinates (s̃ : r̃ : t̃ : w̃) by the
equations:

s̃t̃− 2t̃w̃ + 2s̃w̃ − r̃w̃ = 0, (46)

t̃r̃ − 4t̃w̃ − s̃r̃ + 4s̃w̃ − w̃2 = 0, (47)

(s̃− 2w̃)w̃2 = (r̃w̃ − s̃2)(r̃ − 4w̃). (48)

Since equations (33) are linear in u and z, the curve B is isomorphic (or at least birational and
one-to-one) to the projective closure of W2.

The curve C ⊂ P4, isomorphic (or at least birational and one-to-one) to the closure of Z2, can
be defined in P4 with coordinates (t̃1 : s̃ : r̃ : t̃ : w̃) by the same system (46), (47), (48), together
with the additional equation

t̃21 = w̃(t̃+ 2w̃). (49)

The projection τ : C → B,

τ(t̃1 : s̃ : r̃ : t̃ : w̃) = (s̃ : r̃ : t̃ : w̃),

is a morphism which represents C as a ramified double cover of B (this can be checked by a direct
computation). Since B is absolutely irreducible, so is C. �
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From diagram (45) it follows that at least the second iteration of ψθ has a nontrivial absolutely
irreducible component in the variety of its fixed points. Formula (49) shows that C is a double
cover of B with at most three ramification points (all at infinity). It follows that the genus is at
most 2. Since B has 3 punctures and over at least one of them C is ramified, C has at most 5
punctures. Therefore for q ≥ 13 there are points in Z2 rational over Fq.

The case q < 13 was checked by straightforward computations. �

Corollary 5.7. A finite group G is solvable if and only if

(∃n ∈ N) (∀(x, y) ∈ G×G) θn(x, y) = 1.

Proof. We argue as in the proof of Theorem 5.1. Theorem 5.5 settles the PSL(2, q) case. In the case
Sz(2n) no new proof is needed because T (0, 1) = T (1, 1)2. Periodic points of ϕy with y = T (0, 1)
are periodic points of θy1 with y1 = T (1, 1). The case G = PSL(3, 3) is straightforward: for the
matrices

x =




2 0 0
0 0 1
0 1 2


 , y =




0 2 2
1 2 1
0 2 0




we have s1(x, y) = s4(x, y). �

Remark 5.8. The proof of [BWW] does not work for the sequence from Theorem 5.7. It is proved
in [BWW] that for

y0 =

(
0 −1
1 0

)

there exists a periodic point of ϕy0 in SL(2, q) for every q. But y0 6= z2 in SL(2, q) if 2 is not a
square in Fq.

Remark 5.9. We believe that the statement of Theorem 5.7 remains true if one takes yn, with
any n ≥ 2, instead of y2 (at least for even n) but this requires more subtle analysis.

5.4. Commutator. In the following example we want to show how useful the trace method can
be. We present a very simple proof of the following statement (which is a very special case of a
theorem of Borel [Bo], see also [La]):

Example 5.10. Let G = SL(2, q). Then the map F : G ×G → G defined by F (x, y) = [x, y] is a
dominant morphism of the underlying algebraic Fq-varieties.

Proof. In the notation of Subsection 3.1, consider the corresponding map ψ : A3
s,u,t → A3: if tr(x) =

s, tr(y) = t, tr(xy) = u, then

ψ(s, u, t) = (f1(s, u, t), f2(s, u, t), t).

Here f1(s, u, t) = tr(F (x, y)) = s2 + t2 + u2 − ust− 2, f2(s, u, t) = t.
Let z ∈ G, and suppose that a = tr(z) 6= ±2. We want to show that there exist x, y ∈ G with

[x, y] = z.
For any t ∈ Fq consider the inverse image Γa,t,t := ψ−1(a, t, t) ⊂ A3

s,u,t. We have

Γa,t,t = {(s, u, t) ∈ A3 : s2 + t2 + u2 − ust− 2 − a = 0}.
For a fixed value t0 6= ±2, this is a quadratic equation in (s, u) which has a solution (s0, u0) over

every finite field (cf. the proof of Theorem 3.4). Thus we have a point Q := (s0, u0, t0) ∈ Γa,t0,t0 .
By Theorem 3.4, π−1(Q) 6= ∅, so take (x, y) ∈ π−1(Q). We have tr(F (x, y)) = a = tr(z). If a 6=

±2 (i.e. z is semisimple), F (x, y) is conjugate to z, i.e. [x, y] = wzw−1. We get [w−1xw,w−1yw] =
z, as required. �



GEOMETRY AND ARITHMETIC OF VERBAL DYNAMICAL SYSTEMS ON SIMPLE GROUPS 23

The map F : G × G → G provides a dynamical system on SL(2, q) × SL(2, q) with φ̃(x, y) =
([x, y], y). It corresponds to the Engel sequence e1 = [x, y],. . . , en+1 = [en, y], . . .

Let us show that this dynamical system has nontrivial periodic points for every q. The cases
q = 2, 3 are treated by a direct computation, so assume q > 3. In view of Theorem 3.4, it is
sufficient to find a fixed point of the trace map

ψ(s, u, t) = (s2 + t2 + u2 − ust− 2, t, t)

with s2 6= 4, t2 6= 4. The point (s, t, t) is fixed if s = s2 + 2t2 − st2 − 2.If q = 2n, then any pair
(s = 1 + t2, t) is a needed solution of this equation. If q 6= 2n, then for a fixed t we get s1 = 2
(forbidden), s2 = t2 − 1. Thus, any pair (t2 − 1, t), t2 6= −1, 3, 4 provides a needed fixed point.

6. Possible generalizations

Here we present some more general problems arising from concrete calculations of the preceding
sections. In Subsection 6.1 we consider AG systems introduced in Section 1 making this notion more
precise. In particular, we want to distinguish between the cases when the underlying geometric
object is defined over a global field or its ring of integers. We define residually periodic dynamical
systems, propose some relevant conjectures and give several examples. In Subsection 6.2 we discuss
in more detail verbal dynamical systems defined in the introduction. By combining the notions of
AG dynamical system and verbal dynamical system, we define systems carrying both structures.

6.1. Residually periodic dynamical systems. We start with AG dynamical systems.
Let K be a global field, and let O stand for the ring of integers in K.

Definition 6.1. A triple D = (X,V, ϕ) is called a K-dynamical system if

• X is an algebraic K-variety;
• ϕ : X → X is a dominant K-morphism;
• V ⊂ X(K) is a ϕ-invariant subset.

Definition 6.2. A triple D = (X ,V,Φ) is called an O-dynamical system if

• X is an O-scheme of finite type;
• Φ: X → X is a dominant O-morphism;
• V ⊂ X (O) is a Φ-invariant subset.

We say that an O-dynamical system D = (X ,V,Φ) is an integral model of D = (X,V, ϕ) if

• X ×O K = X;
• the restriction of Φ to the generic fibre coincides with ϕ;
• R(V) = V, where R : X → X is the restriction to the generic fibre.

Consider a K-dynamical system D = (X,V, ϕ) and its integral model D = (X ,V,Φ). For a place
p of K let

• κp be the residue field of p;
• Xp the special fibre of X at p;
• Rp : X → Xp the reduction map (restriction to the special fibre);
• ϕp : Xp → Xp the reduction of Φ viewed as a morphism of κp-schemes;
• Xp = Xp(κp) the set of rational points;
• Vp = Rp(V) ⊂ Xp the reduction of V.

Assume that for all but finitely many places p the scheme Xp is integral. One can deduce
from [Gr, 9.6.1(ii)] that for all but finitely many p’s the reduced morphism ϕp is dominant. Let
z ∈ Xp \ Vp be a periodic point of ϕp. Let ℓ(z) be the number of distinct points in the orbit of z.
Set ℓp := min{ℓ(z)} where the minimum is taken over all z’s as above. If there are no periodic
points in Xp \ Vp, we set ℓp = ∞. Let M denote the collection of primes p such that ℓp = ∞. Let
N = {ℓp}p 6∈M .
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Definition 6.3. With the above notation, we say that a K-dynamical system D = (X,V, ϕ) or an
O-dynamical system D = (X ,V,Φ) is residually aperiodic if the set M is infinite, residually periodic
if M is finite, and strongly residually periodic if the sets M and N are both finite.

For example, in Subsection 5.1 for a map ψ : A3
Z → A3

Z we had X = A3, κp = Fp, V =
{(±2,±t, t)}, N = {1} and M = ∅.

We believe that the following special case is particularly interesting. Let V ⊂ X (O) be the set
of all preperiodic integer points (i.e. points having a finite orbit). Let Vp = Rp(V) ⊂ Xp be its
reduction mod p. Residual periodicity of D = (X ,V,Φ) means that ϕp has periodic points outside
Vp for all but finitely many p’s. In simple words, we are looking for periodic points of ϕp not
coming from preperiodic integer points of Φ. Note that according to [Si2], cycles coming from a
fixed nonperiodic integer point cannot be too short (their length, as a function of the cardinality
of the residue field, tends to infinity). Thus our approach to studying cycles of reduced systems is,
in a sense, complementary to [Si2].

As mentioned in the introduction, there may be different reasons for a dynamical system to be
residually periodic. For higher-dimensional systems one can look for geometric conditions. The
next notion captures the phenomenon of extra coordinates, or more generally invariant functions,
as in Example 1.8.

Definition 6.4. We say that a dynamical system D = (X,V, ϕ) is of fibred type if there exists a

regular function f on X such that f ◦ ϕ(n) = f for some iteration ϕ(n) of ϕ.

Question 6.5. Assume that a dynamical system D = (X,V, ϕ) is of fibred type. Assume that the
endomorphism ϕ is not birational. Under what conditions on ϕ is D strongly residually periodic?

Question 6.5 is essentially higher-dimensional. In one-dimensional situations the main role, of
course, belongs to arithmetic. To get a better feeling of the problem, it is useful to consider
one-dimensional examples which are, in a sense, opposite to Example 1.7 from the introduction.

Example 6.6. Let T = Gm,Z = Spec(Z[x, y]/(xy − 1)) be the trivial one-dimensional torus. Fix

a positive integer d, and let Φ: T → T denote the power map: t → td. The set of integer points
R = T (Z) consists of two points, 1 and −1, both fixed under Φ (i.e. periodic with period one). We
choose the forbidden set V = R. If d = 2, then ℓp = ∞ for every Fermat prime p = 2m + 1. Thus
the system is residually periodic or aperiodic depending on whether there are finitely or infinitely
many Fermat primes. Assume now that d is odd.

Proposition 6.7. The dynamical system (T ,R,Φ) of Example 6.6 is residually periodic but is not
strongly residually periodic.

Proof. We have Xp = F∗
p, and for any t ∈ F∗

p we have ϕ(n)(t) = td
n
. Assume (p, d) = 1. We are

looking for t 6= ±1 such that

td
n−1 ≡ 1 (mod p). (50)

To find such a t with minimal possible n, let us first introduce some notation. For any prime ℓ
such that (d, ℓ) = 1 denote by sℓ the order of d in F∗

ℓ . Denote by Q(p) = {qi} the set of all odd
primes appearing in the prime decomposition of p− 1 and coprime to d. Set a(p) := minq∈Q sq. If
p ≡ 1 (mod 4), we have ℓp ≤ 2. We claim that for p ≡ −1 (mod 4) we have ℓp = a(p). Indeed,
suppose that the minimum is achieved at some q ∈ Q, so dsq − 1 = qm for some integer m. If g is
a primitive element of Fp, one can take t = g(p−1)/q and n = sq to satisfy (50). On the other hand,
if n < sq, then by the definition of sq we have n < sℓ for all ℓ ∈ Q, and hence for all such ℓ we have

dn 6≡ 1 (mod ℓ).

The above also holds for all ℓ dividing d, so we conclude that (dn − 1, p − 1) = 2. If (50) holds for
some t, then the order of t must divide both dn − 1 and p− 1, hence it is equal to 2. Thus t = −1
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and belongs to the reduction of the forbidden set R. We conclude that (50) does not hold for any
n < sq. This means that sq = a(p) is the minimal possible length of the orbit of ϕp, i.e. ℓp = a(p).

To finish the proof of the proposition, it is enough to establish the following simple lemma (we
thank Z. Rudnick for an elementary proof):

Lemma 6.8. The set A = {a(p)}, where p runs over all prime numbers congruent to −1 modulo
4, is infinite.

Proof of the Lemma. Assume the contrary:

A = {sq1, . . . , sqt}. (51)

To get a contradiction, we wish to find p ≡ −1 (mod 4) with a(p) /∈ A.
First note that there are at most finitely primes q with a given value of sq, and denote by B the

set of all q such that sq ∈ A. It follows that B is finite. Thus we have to find a prime p such that
p − 1 is not divisible by any q ∈ B. We want to find a prime number p satisfying the system of
congruences

x ≡ −1 (mod 4),

x ≡ −1 (mod q)

for all q ∈ B. By the Chinese Remainder Theorem, the solutions of this system form an arithmetic
progression. By Dirichlet’s Prime Number Theorem, this progression contains infinitely many
primes. If now p is such a prime, we have p 6≡ 1 (mod q) for any q ∈ B. Thus the order of d in F∗

p

is not equal to any of sqi ’s, and so p /∈ A, contradiction.
This finishes the proof of the lemma and hence of Proposition 6.7. �

Example 6.9. Let now E be a CM elliptic curve defined over Q by the equation y2 = x3 − x, and
let E denote its minimal Weierstrass model. Let Φ: E → E be the multiplication-by-d map (d stands
for a positive odd integer). There are four 2-torsion points: (0,0), (1,0), (-1,0) and ∞, all belonging
to E(Z). Denote this collection by V. If p ≡ −1 (mod 4), the reduction of E is supersingular, i.e.
|E(Fp)| = p + 1. We can now denote by b(p) the smallest prime factor of the number |E(Fp)|/4
and by the argument similar to that of the previous example show that the set B = {b(p)}, where
p runs over all p ≡ −1 (mod 4), is infinite. This leads to

Proposition 6.10. The dynamical system D = (E ,V,Φ) is residually periodic but is not strongly
residually periodic. �

The interested reader is invited to complete the details of the proof as well as to develop more
examples of arithmetical interest.

To go beyond CM elliptic curves, one needs more efforts. A natural question to ask is the
following one:

Question 6.11. Let E be an elliptic curve over Q, and let D denote the order of its rational
torsion. For each place p of good reduction, denote by c(p) the smallest prime divisor of the
number |E(Fp)|/D. Can the set C = {c(p)}, where p runs over all places of good reduction of E,
be finite? Can the system (E , E(Q)tors,Φ) be strongly residually periodic?

At the first glance, the conjectures by Lang–Trotter [LT] and Koblitz [Ko], predicting (for most
elliptic curves) infinitely many p’s with |E(Fp)| of prime order, give little hope to find an example of
an elliptic curve such that the dynamical system defined by the multiplication-by-d map is strongly
residually periodic. However, the following example (due to N. Jones) prevents from making hasty
conclusions. Consider the curve E0 given over Q by the Weierstrass equation

y2 = x3 + 75x+ 125.

N. Jones proved that although E0 has no rational torsion, the order of E0(Fp) is divisible either by
2 or by 3 for all p > 5. The curve E0 is of Mordell–Weil rank 1, so the multiplication-by-d map
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Φ induces a nontrivial dynamical system D = (E0,∞,Φ). Taking, say, d = 7, we conclude that
D is strongly residually periodic in the strongest possible sense: it has no periodic points but the
residual system Dp has a fixed point for all p > 5 (compare with Example 1.7).

On the other hand, N. Jones proved (unconditionally on Koblitz’s conjectures) that for a “typical”
elliptic curve E over Q an analogue of Lemma 6.8 indeed holds which implies that the dynamical
system D is not strongly residually periodic for such an E, i.e. typically the answer to Question
6.11 is negative. See the Appendix for more details.

6.2. Verbal dynamical systems on group schemes. We view the calculations of Section 3 as
a first step in attacking one of the most important conceptual questions left open after discovery of
two-variable sequences characterizing finite solvable groups: for a sequence of words in the free group
on two generators, to what extent the property to characterize the class of finite solvable groups is a
property of general position, and what type of the dynamic behaviour is typical? Questions of such
“nonbinary” type, which do not admit an answer of type “yes-no”, have been considered by many
mathematicians, from Poincaré to Arnold, as the most interesting ones. Dynamics of word maps in
free group, in spirit of [LP], [La], [Sh], [LS], [GS], led to a breakthrough in some classical problems
of the theory of finite groups, and it may happen to play a crucial role in the above mentioned
problem as well. Namely, a possible goal is to prove (or disprove) that for a sufficiently wide class of
sequences the property to characterize the class of finite solvable groups holds in “general position”
and is determined by its dynamics in the free group. In what follows Fr stands for the free group
on r generators.

Question 6.12. Suppose that a sequence −→u = u1, u2, . . . , un, . . . of elements of F2 satisfies the
following conditions:

(i) un(a, 1) = un(1, g) = 1 for all sufficiently big n, every group G, and all elements a, g ∈ G;
(ii) if G is any group and a, g are elements of G such that un(a, g) = 1, then for every m > n we

have um(a, g) = 1;
(iii) no element of −→u equals 1 in F2;
(iv) there exists N such that for all n > N the word un(x, y) belongs to the n-th derived subgroup

F
(n)
2 of F2.
Is it true that if a finite group G satisfies an identity un(x, y) ≡ 1 for some n, then it is solvable?

In connection with Question 6.12, it is natural to pose

Problem 6.13. To describe the words in F2 satisfying conditions (i)–(iv) of Question 6.12.

Extensive MAGMA computations show strong numerical evidence of a positive answer to Ques-
tion 6.12, at least for the class of sequences −→u studied in [Ri]: u0 := f ,. . . , un := [gung

−1, hunh
−1], . . . ,

where f, g, h stand for some words from F2.

One can put Question 6.12 into somewhat more general context. Towards this end, we suggest
to combine the notions of verbal and AG dynamical systems defined in Section 1. For simplicity
we restrict ourselves to considering Z-dynamical systems.

Definition 6.14. A verbal dynamical Z-system consists of the following setup:

• positive integers r, s;
• an r-tuple W = (w1, . . . , wr) of words in the free group Fr+s;
• an r-tuple J = (f1, . . . , fs) of words in the free group Fs (optional);
• a group scheme G of finite type over Z;
• a set I ⊂ Gr+s(Z).

The following assumptions are to be satisfied.
(i) Let DW : Gr+s → Gr+s be a morphism of Z-schemes defined on the group G = Gr+s(A) of

A-points of Gr+s for every Z-algebra A by the formula

(g1, . . . , gs, v1, . . . , vr) 7→ (g1, . . . , gs, w1(g1, . . . , gs, v1, . . . , vr), . . . , wr(g1, . . . , gs, v1, . . . , vr).
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Then we assume that DW is dominant.
(ii) The set I is invariant, i.e. DW(I) ⊂ I.

Our earlier considerations (cf. Examples 1.2 and 1.4) naturally fit into this setting if G is a
semisimple Chevalley group scheme over Z (e.g., G = SL(2,Z) as in the present paper). Indeed,
in that case by a theorem of Borel ([Bo], see also [La]), the morphism DW is dominant, and we
arrive at a verbal dynamical Z-system in the sense of Definition 6.14. Remark 3.8 shows that the
dynamical systems on SL(2, p) relevant for our original problem, can be viewed as special fibres of
the original verbal Z-system.

Remark 6.15. It would be interesting to formulate a word-theoretic condition on W guaranteeing
that for any Chevalley group scheme G the morphism DW is dominant.

In connection with Question 6.5 one can pose

Problem 6.16. Given a verbal dynamical Z-system, that is not of fibred type, find conditions
under which it is (strongly) residually periodic.

In particular, it would be interesting to consider the system from Section 3.1 given by the map
ϕy : SL(2,Z) → SL(2,Z) (y fixed) with I = {1}. This system has an invariant rational function,
but it is not regular. It was proven in [BWW] that for

y =

(
0 −1
1 0

)

it is residually periodic. On the other hand, our numerical experiments give some evidence that it
is not strongly residually periodic.

We believe that verbal dynamical systems deserve more thorough study. To the best of our
knowledge, most arithmetically interesting questions, in spirit of the monograph [Si1] (boundedness
of periods, distributions of periods in reductions, various local-global problems), are widely open
(or even not yet posed at all).
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locale des schémas et des morphismes de schémas (troisième partie), Inst. Hautes Etudes Sci. Publ.

Math. 28 (1966).
[Ho] R. D. Horowitz, Characters of free groups represented in the two-dimensional special linear group,

Comm. Pure Appl. Math. 25 (1972), 635–649.
[Hr] E. Hrushovski, The elementary theory of the Frobenius automorphisms. Preprint

arXiv:math/LO/0406514.
[HB] B. Huppert and N. Blackburn, Finite groups, III, Springer-Verlag, Berlin–Heidelberg–New York 1982.
[Ko] N. Koblitz, Primality of the number of points on an elliptic curve over a finite field, Pacific J. Math.

131 (1988), 157–165.
[LT] S. Lang and H. Trotter, Frobenius distributions in GL2-extensions, Lecture Notes Math. 504, Springer-

Verlag, Berlin–New York 1976.
[LW] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827.
[La] M. Larsen, Word maps have large image, Israel J. Math. 139 (2004), 149–156.
[LP] M. Larsen and R. Pink, Finite subgroups of algebraic groups. Preprint, 1999.
[LS] M. Larsen and A. Shalev, Word maps and Waring type problems, J. Amer. Math. Soc. 22 (2009),

437–466.
[Ma1] W. Magnus, Rings of Fricke characters and automorphisms groups of free groups, Math. Z. 170 (1980),

91–102. In Collected papers, Springer-Verlag, New York, 1984, 687–699.
[Ma2] W. Magnus, The uses of 2 by 2 matrices in combinatorial group theory. A survey, Resultate Math. 4

(1981), 171–192. In Collected papers, Springer-Verlag, New York, 1984, 701–722.
[Na] R. Narkiewicz, Polynomial cycles in algebraic number fields, Colloq. Math. 58 (1989), 151–155.
[Pe1] J. Peyrière, On an article by W. Magnus on the Fricke characters of free groups, J. Algebra 228 (2000),

659–673.
[Pe2] J. Peyrière, Polynomial dynamical systems associated with substitutions. In Substitutions in dynamics,

arithmetic and combinatorics, Lecture Notes Math. 1794, Springer, Berlin 2002, 321–343.
[Ri] E. Ribnere, Sequences of words characterizing finite solvable groups, Monatshefte Math. 157 (2009),

387–401.
[Sh] A. Shalev, Word maps, conjugacy classes, and a non-commutative Waring-type theorem, Ann. Math.,

to appear.
[Si1] J. H. Silverman, The arithmetic of dynamical systems, Springer-Verlag, New York 2007.
[Si2] J. H. Silverman, Variation of periods modulo p in arithmetic dynamics, New York J. Math. 14 (2008),

601–616.
[So] J. Sonn, Polynomials with roots in Qp for all p, Proc. Amer. Math. Soc. 136 (2008), 1955–1960.
[Th] J. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math.

Soc. 74 (1968), 383–437.
[Vo] H. Vogt, Sur les invariants fundamentaux des equations différentielles linéaires du second ordre, Ann.
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Appendix. Primes p for which #E(Fp) has only large prime factors

Nathan Jones

A1. Introduction

Let E be an elliptic curve over Q of conductor NE. For each prime p of good reduction for E,
consider the group E(Fp) of Fp-points of E. In 1988, Koblitz [3] conjectured a precise asymptotic
formula for the number of good primes p up to x for which #E(Fp) is prime.

Conjecture A1. There exists a precise constant SE ≥ 0 so that

#{p ≤ x : p ∤ NE and #E(Fp) is prime} = SE · x

log2 x
+ o

(
x

log2 x

)
,

as x −→ ∞.

In particular, provided the constant SE > 0, Conjecture A1 implies that there are infinitely
many primes p for which #E(Fp) is prime. In case SE = 0, one can prove (as a consequence of the
Chebotarev density theorem) that #E(Fp) is prime for only finitely many primes p.

Based on the precise form of the predicted constant SE, Koblitz further noted that SE is positive
if and only if every other elliptic curve E′ over Q which is Q-isogenous to E has no non-trivial
rational torsion:

SE > 0 ⇐⇒
(
E′ ∼Q E ⇒ E′(Q)tors = {OE′}

)
. (A-1)

However, because of a technical error in the underlying heuristic, the constant SE appearing
in the original conjecture is incorrect. A refined conjecture, which in particular corrects SE , has
recently been given by D. Zywina [8]. In the interest of consistency, let us henceforth understand
the symbol SE appearing in Conjecture A1 to refer to the corrected constant CE,1 appearing in [8,
Conjecture 1.2] (we will describe this constant in more detail in Section A2). Having thus replaced
SE , the interpretation (A-1) of exactly when SE is positive is no longer valid. We will show this
in Section A4 by exhibiting an elliptic curve E over Q for which the right-hand side of (A-1) is
true, but for which SE = 0 nevertheless.

In spite of various partial results (see for instance [1] and the references therein), Conjecture A1
is still open. Our goal is to prove the following theorem, wherein we relax “is prime” to “has only
large prime factors.” Let us denote by

cE(p) := min{ℓ prime : ℓ | #E(Fp)}
the smallest prime divisor of #E(Fp).

Theorem A2. Suppose that
SE > 0,

where SE is the constant appearing in Conjecture A1. Then the set

{cE(p) : p ∤ NE}
is unbounded.

In other words, Theorem A2 asserts that, for each x > 0, there exists a prime number p = p(E, x)
such that for any prime number ℓ we have

ℓ | #E(Fp) =⇒ ℓ > x.

We remark that one could likely prove something stronger by employing the appropriate tools. In
the interest of brevity and simplicity, we content ourselves with Theorem A2.

We will begin by describing precisely the constant SE, from which it will be evident that the
converse of Theorem A2 holds, i.e. for any elliptic curve E over Q, one has

SE = 0 =⇒ {cE(p) : p ∤ NE} is bounded. (A-2)
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We will then prove Theorem A2. Finally, we will discuss the issue of exactly when one has SE > 0
and give an example of an elliptic curve E over Q for which SE = 0 (and for which {cE(p) : p ∤ NE}
is bounded, thus illustrating (A-2)). Throughout, ℓ and p will always denote prime numbers.

A2. The heuristic of Conjecture A1 and the constant SE

The heuristic leading to Conjecture A1 is analogous to the one which leads to the classical twin
prime conjecture (see [3] and [8] for more details), and changes slightly depending on whether or
not E has complex multiplication (CM). As usual, for p ∤ NE , define the integer aE(p) by the
formula

#E(Fp) =: p+ 1 − aE(p). (A-3)

By a theorem due originally to Hasse, we have that |aE(p)| ≤ 2
√
p, and so the size of #E(Fp) is

near the size of p. Thus, regarding p and #E(Fp) as two independently chosen random positive
integers of size x, the “probability” that they are both prime should satisfy

P(p is prime and #E(Fp) is prime) ≈ 1

(log x)2
, (A-4)

by the prime number theorem. However, this prediction fails to take into account arithmetic infor-
mation about the reductions of p and #E(Fp) modulo positive integers. In order to describe how
one corrects the situation, we begin by recalling the division fields attached to E and Chebotarev
density theorem.

A2.1. The division fields Q(E[n]) of E. For each positive integer n ≥ 1 denote by

E[n] := {P ∈ E(Q) : [n](P ) = OE}
the n-torsion of E and by Q(E[n]) the n-th division field of E, i.e. the field generated by the
x and y coordinates of each P ∈ E[n]. The field Q(E[n]) is a Galois extension of Q, and by
fixing a Z/nZ-basis of E[n], we may (and henceforth will) view Gal (Q(E[n])/Q) as a subgroup of
GL2(Z/nZ):

Gal (Q(E[n])/Q) ⊆ GL2(Z/nZ).

The following proposition, which relates p and aE(p) with Q(E[n]) is well-known. In its state-
ment σQ(E[n])/Q(p) ⊂ Gal (Q(E[n])/Q) ⊆ GL2(Z/nZ) denotes the conjugacy class of a Frobenius
automorphism at p, which we view as a subset of GL2(Z/nZ).

Proposition A3. For any positive integer n and any prime p of good reduction for E which does
not divide n, p is unramified in Q(E[n]). Furthermore,

tr(σQ(E[n])/Q(p)) ≡ aE(p) mod n

and
det(σQ(E[n])/Q(p)) ≡ p mod n.

A2.2. The Chebotarev density theorem. Recall the Chebotarev density theorem [7]. Let L/F
be a (finite) Galois extension of number fields and C ⊆ Gal (L/F ) any subset which is stable by
Gal (L/F )-conjugation. Denote by ΣF the set of prime ideals of F and

ΣF (x) := {p ∈ ΣF : NF/Q(p) ≤ x}.
For each prime ideal p ∈ ΣF which is unramified in L, let σL/F (p) ⊆ Gal (L/F ) denote the conjugacy
class of the Frobenius element attached to any prime P of L lying over p.

Theorem A4. (The Chebotarev density theorem) We have

lim
x→∞

#{p ∈ ΣF (x) : p unramified in L and σL/F (p) ⊆ C}
#ΣF (x)

=
#C

#Gal (L/F )
.

In probabilistic terms, Theorem A4 says that the probability that a randomly selected prime

ideal p satisfies σL/K(p) ⊆ C is #C
#Gal (L/F ) .
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A2.3. Correcting the naive heuristic (A-4). For any positive integer n and subgroup G ≤
GL2(Z/nZ), define the subset Ωn(G) ⊆ G by

Ωn(G) := {g ∈ G : det(g) + 1 − tr(g) /∈ (Z/nZ)∗}. (A-5)

The probability that a large randomly chosen integer is coprime to n is
#(Z/nZ)∗

#(Z/nZ)
. On the other

hand, by (A-3), Proposition A3 and Theorem A4, the probability that #E(Fp) is coprime with n
is

#(Gal (Q(E[n])/Q) − Ωn(Gal (Q(E[n])/Q)))

#(Gal (Q(E[n])/Q))
.

Thus, it is natural to multiply (A-4) by the correction factor

#(Gal (Q(E[n])/Q) − Ωn(Gal (Q(E[n])/Q)))

#(Gal (Q(E[n])/Q))

#(Z/nZ)∗

#(Z/nZ)

. (A-6)

Noting that

Ωn(Gal (Q(E[n])/Q)) = π−1
(
Ωδ(n) (Gal (Q(E[δ(n)])/Q))

)
,

where δ(n) :=
∏
ℓ|n ℓ denotes the square-free kernel of n and π : GL2(Z/nZ) ։ GL2(Z/δ(n)Z)

denotes the canonical projection, we see that (A-6) only depends on δ(n), and so it suffices to
consider square-free n. Defining

n = n(z) :=
∏

ℓ≤z

ℓ (A-7)

to be the square-free number supported on primes ℓ ≤ z, we multiply (A-4) by (A-6) and take the
limit as z → ∞, arriving at Conjecture 1 with

SE := lim
z→∞

(
1 −

#Ωn(z)(Gal (Q(E[n(z)])/Q))

#Gal (Q(E[n(z)])/Q)

)

∏

ℓ|n(z)

(1 − 1/ℓ)
. (A-8)

Our next proposition describes SE in more detail. In particular, it implies that the limit in
(A-8) converges to a finite positive limit, provided it is non-zero for each fixed z ≥ 2.

Proposition A5. Let E be an elliptic curve over Q and let SE be defined by (A-8). There exists
a positive square-free integer nE ≥ 1 and a real number λE > 0 so that

SE =

(
1 − #ΩnE

(Gal (Q(E[nE ])/Q))

#Gal (Q(E[nE ])/Q)

)

∏

ℓ|nE

(1 − 1/ℓ)
· λE .

Proof. In the CM case, this follows from [4, Corollaire, p. 302] and in the non-CM case from [4,
(2), p. 260]. For more details, see [8]. �

Although it won’t be necessary in what follows, we remark that

λE =





1

2
·
∏

ℓ∤nE

(
1 − χ(ℓ)

ℓ2 − ℓ− 1

(ℓ− χ(ℓ))(ℓ− 1)2

)
if E has CM by K,

∏

ℓ∤nE

(
1 − ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
if E has no CM,
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where in the CM case, χ(ℓ) ∈ {±1} denotes the Kronecker symbol giving the splitting of ℓ in the
imaginary quadratic field K.

Corollary A6. We have

SE = 0 ⇐⇒ (∃ square-free n0, Ωn0(Gal (Q(E[n0])/Q)) = Gal (Q(E[n0])/Q)) .

In particular, if SE = 0, then by (A-3), Proposition A3 and Theorem A4, we have

p ∤ n0 ·NE =⇒ gcd(#E(Fp), n0) > 1. (A-9)

Since this in turn causes {cE(p) : p ∤ NE} to be bounded, we have verified (A-2).

A3. Proof of Theorem A2

To prove Theorem A2, we will apply Theorem A4 with F = Q, L = Q(E[n]), and

C = (Gal (Q(E[n])/Q) − Ωn(Gal (Q(E[n])/Q))) ,

with Ωn(G) as in (A-5) and n = n(z) as in (A-7). Fix any prime p > z which doesn’t divide NE. By
Proposition A3, p is unramified in Q(E[n(z)]) and furthermore we have the following equivalence:

(∀ℓ ≤ z, ℓ ∤ #E(Fp)) ⇐⇒ σQ(E[n(z)])/Q(p) * Ωn(z)(Gal (Q(E[n(z)])/Q)). (A-10)

Now consider the Chebotarev factor

Dz :=
#(Gal (Q(E[n(z)])/Q) − Ωn(z)(Gal (Q(E[n(z)])/Q)))

#(Gal (Q(E[n(z)])/Q))
.

By Corollary A6, we see that
SE > 0 =⇒ Dz > 0.

Thus, provided SE > 0, Theorem A4 implies the existence of a prime number p1 = p1(E, z) for
which

σQ(E[n(z)])/Q(p1) * Ωn(z)(Gal (Q(E[n(z)])/Q)).

By (A-10), we see that for each ℓ ≤ z, ℓ does not divide #E(Fp1), and so cE(p1) ≥ z. Since z was
arbitrary, Theorem A2 follows.

A4. The positivity of SE

It is now natural to ask: under what conditions is the constant SE positive? Because of the
Weil Pairing (see [6], for example), for any level n, we have that the determinant map restricts to
a surjection

det : Gal (Q(E[n(z)])/Q) ։ (Z/n(z)Z)∗.

By Corollary A6, we are thus led to ask the following question.

Question A7. Let n ≥ 1 be a positive square-free integer, and let G ≤ GL2(Z/nZ) be a subgroup
for which the determinant map restricts to a surjection:

det : G ։ (Z/nZ)∗.

Under which circumstances do we have Ωn(G) = G?

It is clear from the definitions that, for any ℓ dividing n we have

Ωℓ(G mod ℓ) = G mod ℓ =⇒ Ωn(G) = G.

We join Serre [4, I-2] in leaving the following exercise up to the reader.

Exercise A8. Prove that, for any subgroup Gℓ ≤ GL2(Z/ℓZ), Ω(Gℓ) = Gℓ if and only if either

Gℓ ⊆
{(

1 ∗
0 ∗

)}
or Gℓ ⊆

{(
∗ ∗
0 1

)}
.
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Furthermore, Gal (Q(E[ℓ])/Q) = Gℓ as above if and only if E is isogenous over Q to some elliptic
curve E′ over Q satisfying E′[ℓ](Q) 6= {OE′} (in the first case, E′ is simply E). We record this as

Remark A9. If E is Q-isogenous to some elliptic curve E′ over Q for which E′(Q)tors 6= {OE′},
then SE = 0.

It is tempting to expect (as Koblitz did) that the converse of Remark A9 also holds, but the
following example shows that this is not the case. Let ℓ 6= 2 be any prime and consider the subgroup
G ≤ GL2(Z/2Z) ×GL2(Z/ℓZ) defined by

G = {(g2, gℓ) ∈ GL2(Z/2Z) ×G1(Z/ℓZ) : χ2(g2) = χℓ(gℓ)}, (A-11)

where

G1(Z/ℓZ) :=

{(
±1 ∗
0 ∗

)}
≤ GL2(Z/ℓZ) (A-12)

and the characters χ2 and χℓ are defined by

χ2 : GL2(Z/2Z) −→ GL2(Z/2Z)/[GL2(Z/2Z), GL2(Z/2Z)] ≃ {±1}
and

χℓ

((
±1 ∗
0 ∗

))
= ±1. (A-13)

Notice that, even though

Ω2(G mod 2) ( G mod 2 and Ωℓ(G mod ℓ) ( G mod ℓ,

we have Ω2ℓ(G) = G. Provided we can find an elliptic curve E over Q with Gal (Q(E[2ℓ])/Q) ≤ G,
then #E(Fp) will only be prime finitely often because whenever it is not divisible by 2, it must be
divisible by ℓ, and vice versa.

A4.1. A counterexample to (A-1).

Proposition A10. Let E be the elliptic curve defined by the Weierstrass equation

y2 = x3 + 75x+ 125.

For any elliptic curve E′ over Q which is Q-isogenous to E, one has E′(Q)tors = {OE′}. Never-
theless, SE = 0. Furthermore, the Mordell–Weil group attached to E is infinite:

#E(Q) = ∞.

Proof. Since NE = 22 · 33 · 52, we see that E has good reduction away from p ∈ {2, 3, 5}. One
calculates that #E(F7) = 4 and #E(F17) = 21, from which it follows that, for any E′ over
Q which is Q-isogenous to E, we have E′(Q)tors = {OE′}. On the other hand, recall that
Q(E[2]) = Q(the roots of x3 + 75x + 125), so that

√
∆E = 22 · 3 · 53

√
−15 ∈ Q(E[2]). Also,

the point (−5, 5
√
−15) ∈ E[3](Q(

√
−15)) shows that

Q(
√

∆E) = Q(
√
−15) ⊆ Q(E[2])

⋂
Q(E[3]).

It follows that, taking ℓ = 3 in (A-11), we have Gal (Q(E[6])/Q) ≤ G, where χ2 and χℓ correspond
to the restriction map

Gal (Q(E[6])/Q) −→ Gal (Q(
√

∆E)/Q) ≃ {±1}.
Taking n0 = 6 in Corollary A6, we see that SE = 0.

Finally, the point (5, 25) ∈ E(Q) is of infinite order, and so #E(Q) = ∞, as claimed. �
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Furthermore, one can readily verify (A-9) with n0 = 6 and E as in Proposition A10, as follows.
For any rational prime p ≥ 7 and choice of Frobenius automorphism σ6(p) ∈ σQ(E[6])/Q(p), we have
that

σ6(p)(
√

∆E) =
√

∆E ⇒ σQ(E[3])/Q(p) ⊆ Ω3(Gal (Q(E[3])/Q)) ⇒ 3 | #E(Fp)

and

σ6(p)(
√

∆E) = −
√

∆E ⇒ σQ(E[2])/Q(p) ⊆ Ω2(Gal (Q(E[2])/Q)) ⇒ 2 | #E(Fp).

Since
√

∆E = 22 · 3 · 53
√
−15, it follows that for p ∤ 30, we have

(−15

p

)
= 1 ⇒ 3 | #E(Fp)

and (−15

p

)
= −1 ⇒ 2 | #E(Fp).

This verifies (A-9) and shows that

{cE(p) : p ∤ NE} = {2, 3}.

More generally, we have

Remark A11. If E is Q-isogenous to some elliptic curve E′ over Q for which E′(Q(
√

∆E′))tors 6=
{OE′}, then SE = 0.

Have we covered all possible cases where SE = 0? We will now give an example of a subgroup
G ≤ GL2(Z/3ℓZ) satisfying Ω3ℓ(G) = G, where ℓ ≥ 5 is some prime. Let

N3 :=

{
±

(
1 0
0 1

)
,±

(
0 −1
1 0

)}
⊔

{
±

(
1 0
0 −1

)
,±

(
0 1
1 0

)}
≤ GL2(Z/3Z),

and define

G := {(g3, gℓ) ∈ N3 ×G1(Z/ℓZ) : det g3 = χℓ(gℓ)},
where G1(Z/ℓZ) and χℓ are as in (A-12) and (A-13), respectively, and we are regarding det(g3) ∈
F∗

3 = {±1}. As before, we have

Ω3(G mod 3) ( G mod 3 and Ωℓ(G modℓ) ( G modℓ,

but Ω3ℓ(G) = G. Perhaps there may also be an elliptic curve E over Q with Gal (Q(E[3ℓ])/Q) ≤ G,
though we haven’t explicitly exhibited one.

A4.2. Serre curves. A Serre curve is an elliptic curve E over Q for which

∀n ≥ 1, [GL2(Z/nZ) : GE(n)] ≤ 2.

(Intuitively, a Serre curve is an elliptic curve for which Gal (Q(E[n])/Q) is “as large as possible”
for each n ≥ 1.) We remark that, as shown in [8, Proposition 4.2], we have

E is a Serre curve =⇒ SE > 0.

When ordered according to naive height, almost all elliptic curves are Serre curves (see [2]). Thus,
for a “typical” elliptic curve E over Q one has SE > 0.
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A5. Concluding remarks

As mentioned in the introduction, one can likely prove stronger forms of Theorem A2. For
instance, one could probably use an effective version of the Chebotarev density theorem to obtain
a quantitative upper bound for the smallest prime p for which cE(p) > x.

Since we have not completely resolved it, we record here

Question A12. Under what conditions do we have SE > 0?

The examples discussed in Section A4 seem to indicate that this question is more delicate than
it first may seem. Conjecture A1 has also been generalized to the context where E is defined over
a general number field K (see [8]), in which case the answer to Question A12 may become even
more delicate.
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