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ON ABSTRACT COMMENSURATORS OF GROUPS

L. BARTHOLDI AND O. BOGOPOLSKI

Abstract. We prove that the abstract commensurator of a nonabelian free
group, an infinite surface group, or more generally of a group that splits ap-
propriately over a cyclic subgroup, is not finitely generated.

This applies in particular to all torsion-free word-hyperbolic groups with infi-
nite outer automorphism group and abelianization of rank at least 2.

We also construct a finitely generated, torsion-free group which can be mapped
onto Z and which has a finitely generated commensurator.

1. Introduction

Let G be a group. Consider the set Ω(G) of all isomorphisms between subgroups
of finite index of G. Two such isomorphisms ϕ1 : H1 → H ′

1 and ϕ2 : H2 → H ′

2 are
called equivalent, written ϕ1 ∼ ϕ2, if there exists a subgroup H of finite index in G
such that both ϕ1 and ϕ2 are defined on H and ϕ1 ⇃H= ϕ2 ⇃H .

For any two isomorphisms α : G1 → G′

1 and β : G2 → G′

2 in Ω(G), we define their
product αβ : α−1(G′

1 ∩ G2) → β(G′

1 ∩ G2) in Ω(G). The factor-set Ω(G)/∼ inherits
the multiplication [α][β] = [αβ] and is a group, called the abstract commensurator of
G and denoted Comm(G).

Comm(G) is in general much larger than Aut(G). For example Aut(Zn) ∼= GL(n,Z)
whereas Comm(Zn) ∼= GL(n,Q). Margulis proved that an irreducible lattice Λ in a
semisimple Lie group G is arithmetic if and only if it has infinite index in its relative
commensurator in G,

CommG(Λ) := {g ∈ G : gΛg−1 ∩ Λ has finite index in both Λ and gΛg−1}.

‘Mostow-Prasad-Margulis strong rigidity’ for irreducible lattices Λ in G 6= SL(2,R)
implies that the abstract commensurator Comm(Λ) is isomorphic to the commensu-
rator of Λ in G, which in turn is computed concretely by Margulis and Borel-Harish-
Chandra; see e.g. [7, 14]. Analogously, for many groups acting on rooted trees, their
abstract commensurator equals their relative commensurator in the automorphism
group of the tree [11].

Few abstract commensurators were explicitly computed. The group Comm(MCGg)
was computed for surface mapping class groups MCGg by Ivanov [4]. Farb and
Handel proved in [3] that Comm(Out(Fn)) ∼= Out(Fn) for n ≥ 4. Leininger and
Margalit [5] computed the abstract commensurator of the braid group Bn on n ≥ 4
strings: Comm(Bn) ∼= (Q∞⋊Q∗)⋊MCG0,n+1, where MCG0,n+1 is the mapping class
group of the sphere with n+ 1 punctures.

Clearly, if G is finitely generated, then Comm(G) is countable. We show that,
in many cases, it may be ‘large’ in the sense that it is not finitely generated. The
cases we consider are groups G which split into an amalgamated product or an HNN
extension over 1 or Z, and satisfy some technical assumptions (see Theorems 3.2, 4.2
and 4.4). We deduce for example
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2 L. BARTHOLDI AND O. BOGOPOLSKI

Corollary A. Let G be either a non-Abelian free group, or a surface group π1(S)
where S is a closed surface of negative Euler characteristic. Then Comm(G) is not
finitely generated.

Using a result by Paulin [10], we deduce the more general

Corollary B. Let G be a torsion-free word-hyperbolic group with infinite Out(G);
suppose that G can be homomorphically mapped onto Z × Z. Then Comm(G) is not
finitely generated.

We then consider some possible relaxations of the hypotheses (in particular (2)
in Theorem 4.4), and show that in each case there are G with finitely generated
commensurator:

Theorem C. (1) There exist word-hyperbolic groups with finitely generated commen-
surator.

(2) There exists a finitely generated group which has the unique root property (so
in particular is torsion-free), can be mapped onto Z, and whose commensurator is
finitely generated.

It is a fundamental open question as whether all word-hyperbolic groups are resid-
ually finite; this is actually equivalent to asking whether all word-hyperbolic groups
have arbitrarily large quotients [9, Theorem 2]. Of course, a group with no non-trivial
finite quotient has identical automorphism group and abstract commensurator.

We start, in the next section, by a sufficient condition to ensure that an abstract
commensurator cannot be finitely generated.

2. Infinitely generated abstract commensurators

Two groups G,H are abstractly commensurable if there exist finite index subgroups
G1 6 G and H1 6 H , such that G1

∼= H1. The following useful lemma is well-known;
for completeness we give its proof.

Lemma 2.1. If G and H are abstractly commensurable groups, then Comm(G) ∼=
Comm(H).

Proof. Without loss of generality we can assume that H is a subgroup of finite index in
G. The embedding of H in G induces a canonical map Ψ : Comm(H) → Comm(G).
Now we define a map Φ : Comm(G) → Comm(H) by the rule: for α : G1 → G2

from Comm(G) we set Φ(α) = α ⇃H1
: H1 → H2, where H1 = α−1(G2 ∩H) ∩H and

H2 = α(G1 ∩H) ∩H . Clearly Φ(α) belongs to Comm(H). We leave it to the reader
to check that Ψ and Φ are homomorphisms, and that both compositions Ψ ◦ Φ and
Φ ◦ Ψ are the identity. �

A group G has the unique root property if for any x, y ∈ G and any positive integer
n, the equality xn = yn implies x = y. Groups with the unique root property are
torsion-free. It is well known that, in torsion-free word-hyperbolic groups, nontrivial
elements have cyclic centralizers [1, pages 462–463]; so they have the unique root
property, by the following standard

Lemma 2.2. Let G be a torsion-free group with cyclic centralizers of nontrivial ele-
ments. Then G has the unique root property.

Proof. Let x, y be nontrivial elements of G. If xn = yn, then Z(xn) > 〈x, y〉. But
Z(xn) = 〈z〉 for some z, so there are p, q ∈ Z with x = zp and y = zq. Then xn = yn

gives zpn = zqn, so p = q and x = y. �

The usefulness of the unique root property can be seen immediately in the following
two lemmas.
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Lemma 2.3. Let G be a group with the unique root property. Then Aut(G) naturally
embeds in Comm(G).

Proof. There is a natural homomorphism Aut(G) → Comm(G). Suppose that some
α ∈ Aut(G) lies in its kernel. Then α ⇃H= id for some subgroup H of finite index in
G. If m is this index, then gm! ∈ H for every g ∈ G. Then α(gm!) = gm!. Extracting
roots, we get α(g) = g, that is α = id. �

Lemma 2.4. Let G be a group with the unique root property. Let ϕ1 : H1 → H ′

1 and
ϕ2 : H2 → H ′

2 be two isomorphisms between subgroups of finite index in G. Suppose
that [ϕ1] = [ϕ2] in Comm(G). Then ϕ1 ⇃H1∩H2

= ϕ2 ⇃H1∩H2
.

Proof. The equality [ϕ1] = [ϕ2] means that there exists a subgroupH of finite index in
G such that both ϕ1 and ϕ2 are defined on H and ϕ1 ⇃H= ϕ2 ⇃H . ClearlyH 6 H1∩H2.
Denote m = |(H1∩H2) : H |. Let h be an arbitrary element of H1∩H2. Then hm! ∈ H
and so ϕ1(h

m!) = ϕ2(h
m!). Since G is a group with the unique root property, we get

ϕ1(h) = ϕ2(h). �

Let us call the subindex of a finite-index subgroup H 6 G the minimal n, denoted
|G : : H |, such that there exists a sequence of subgroups H = G0 6 G1 6 · · · 6 Gk =
G with |Gi : Gi−1| ≤ n for all i ∈ {1, . . . , k}. Observe that given F 6 H 6 G, we
have |G : : F | ≤ max{|G : : H |, |H : : F |}.

Lemma 2.5. Let G be a group and let αi : Hi → H ′

i, for i = 1, . . . , r be isomorphisms
between subgroups of finite index of G. Assume that |G : : Hi| ≤ n and |G : : H ′

i| ≤ n
for all i. Then any finite product of [αi]’s can be realized by an isomorphism β : H →
H ′, where H,H ′ are subgroups of finite index and subindex at most n.

Proof. By induction, it suffices to consider α1 : H1 → H ′

1 and α2 : H2 → H ′

2, and
their product β = α1α2. Set K = H ′

1 ∩H2, H = α−1
1 (K) and H ′ = α2(K), so that

β : H → H ′. Let H2 = G0 6 G1 6 · · · 6 Gk = G be a sequence of subgroups with
|Gi : : Gi−1| ≤ n. The sequence K = G0 ∩ H ′

1 6 G1 ∩ H ′

1 6 · · · 6 Gk ∩ H ′

1 = H ′

1

shows that |H ′

1 : : K| ≤ n. Then

|G : : H | ≤ max{|G : : H1|, |H1 : : H |} = max{|G : : H1|, |H
′

1 : : K|} ≤ n;

and similarly |G : : H ′| ≤ n. �

Lemma 2.6. Let G be a group with the unique root property. Let ϕ1 : H1 → H ′

1 and
ϕ2 : H2 → H ′

2 be two isomorphisms between subgroups of finite index in G. Suppose
that

(1) H2 is a normal subgroup of G;
(2) ϕ1 ⇃H1∩H2

= ϕ2 ⇃H1∩H2
.

Then ϕ1, ϕ2 have a common extension, that is there exists an isomorphism ϕ :
H1H2 → H ′

1H
′

2, such that ϕ⇃Hi
= ϕi for i = 1, 2.

Proof. We define ϕ : H1H2 → H ′

1H
′

2 by ϕ(h1h2) = ϕ1(h1)ϕ2(h2) for any h1 ∈ H1

and h2 ∈ H2. This definition is unambiguous because of Property (2). We prove first
that ϕ is a homomorphism.

Take x ∈ H1H2 and y ∈ H1H2. Then x = g1g2 and y = h1h2 for some g1, h1 ∈ H1

and g2, h2 ∈ H2. Since xy = g1h1 · h
−1
1 g2h1h2, where h−1

1 g2h1 ∈ H2 by Property (1),
we have

ϕ(xy) = ϕ1(g1)ϕ1(h1) · ϕ2(h
−1
1 g2h1)ϕ2(h2).

On the other hand we have

ϕ(x)ϕ(y) = ϕ1(g1)ϕ2(g2)ϕ1(h1)ϕ2(h2).
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Thus it is enough to verify that

(*) ϕ2(h
−1
1 g2h1) = ϕ1(h1)

−1ϕ2(g2)ϕ1(h1).

Since H1 ∩H2 has finite index in H2, we have gm
2 ∈ H1 ∩H2 for some positive integer

m. Then h−1
1 gm

2 h1 ∈ H1 ∩H2 and so

ϕ2(h
−1
1 gm

2 h1) = ϕ1(h
−1
1 gm

2 h1) = ϕ1(h
−1
1 )ϕ1(g

m
2 )ϕ1(h1) = ϕ1(h1)

−1ϕ2(g2)
mϕ1(h1).

Since G is a group with the unique root property, we can extract m-th roots from
both sides of the last equation and get (*).

Clearly ϕ maps onto H ′

1H
′

2. Assume for contradiction that ϕ is not injective;
then, since G is torsion-free, kerϕ is infinite. Since H1 has finite index, kerϕ ∩H1 is
non-trivial, so ϕ1 is not injective, a contradiction. �

Theorem 2.7. Let G be a group with the unique root property. Suppose that, for
infinitely many primes p, there exists a normal subgroup H of index p in G and an
automorphism of H that cannot be extended to an automorphism of G.

Then the commensurator of G is not finitely generated.

Proof. Suppose that Comm(G) is generated by a finite number of classes of isomor-
phisms αi : Hi → H ′

i, for i = 1, . . . , k, where Hi, H
′

i are subgroups of finite index in
G. Set n = max{|G : : Hi|, |G : : H ′

i| : i = 1, . . . , k}.
Now take a prime number p > n. By assumption, there exists a normal subgroup

H of index p in G and an automorphism β of H , which cannot be extended to an
automorphism of G.

Clearly [β] ∈ Comm(G). By Lemma 2.5, the class [β] can be realized by an
isomorphism α : A→ B, where A,B are subgroups of finite index in G and subindex
at most n. By Lemma 2.4, the automorphisms β and α coincide on the subgroup
H ∩A.

By Lemma 2.6, the automorphism β can be extended to an isomorphism ϕ : AH →
BH . Note that AH = BH = G because the indices of A and H are coprime and the
indices of B and H are coprime. We have reached a contradiction. �

We shall also need a variant of the previous result:

Proposition 2.8. Let G be a group with the unique root property. Suppose that, for
infinitely many primes p, there exists a subgroup H of index p which is isomorphic to
G.

Then the commensurator of G is not finitely generated.

Proof. Suppose as above that Comm(G) is generated by a finite number of classes of
isomorphisms αi : Hi → H ′

i , for i = 1, . . . , k, where Hi, H
′

i are subgroups of finite
index in G. Set n = max{|G : : Hi|, |G : : H ′

i| : i = 1, . . . , k}.
Now take a prime number p > n. By assumption, there exists a subgroup H of

index p in G and an isomorphism β : G→ H .
Clearly [β] ∈ Comm(G). By Lemma 2.5, the class [β] can be realized by an

isomorphism α : A→ B, where A,B are subgroups of finite index in G and subindex
at most n. By Lemma 2.4, the automorphisms β and α coincide on A.

By Lemma 2.6, the automorphism β can be extended to an isomorphism ϕ : G→
BH . Note that BH = G because the indices of B and H are coprime. We have
reached a contradiction. �

Proof of Corollary A. It is well known that G has the unique root property (e.g.
because G is a torsion-free hyperbolic group, see Lemma 2.2; or more directly because
G is a group of diagonalizable 2 × 2 matrices).

First consider the case in which G is a free group with basis X = {x, y, . . . }.
Given an integer p > 1, let G → Z/pZ be the homomorphism which sends x to
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1 and all other elements of X to 0. The kernel H of this homomorphism is free
on Y = {xp, y, x−1yx, . . . , x1−pyxp−1, . . . }. Clearly, the automorphism of H which
exchanges y and xp and fixes all other elements of Y cannot be extended to an
automorphism of G, because xp is primitive in H but not in G. By Theorem 2.7,
Comm(G) is not finitely generated.

It is convenient to translate this argument to topological language. The group
G is the fundamental group of a rose R, with petals indexed by the elements of X .

Consider the regular degree-p cover R̃ of R, in which a petal (say x) has been unfolded
p times to a “gynoecium” (central circle) x̃. Consider another petal y of R, and its lift

ỹ. The graph R̃ is homotopy equivalent to a rose, so admits a homotopy equivalence
ϕ that exchanges x̃ and ỹ while fixing (up to homotopy) the other petals. Then ϕ
cannot be induced by a homotopy equivalence of R, because it fixes (up to homotopy)
some lift of y while moves another.

Consider now the case in which G = π1(S) where S is a compact closed surface
of negative Euler characteristic. By Lemma 2.1 we may assume that S is orientable.

Given an integer p > 1, let S̃ → S a regular degree-p cover of S. Clearly S̃ is of
strictly more negative Euler characteristic.

Consider two handles x, x′ of S̃ covering the same handle of S, and a handle y
that covers a different handle of S. Let T be a neighbourhood of x, y and a path
connecting x to y that is homeomorphic to a punctured 2-handlebody. Let ϕ be the

homeomorphism of S̃ that exchanges x and y and is homotopic to the identity outside
of T . Again, ϕ is not induced by a homeomorphism of S, since it moves x while it

fixes its conjugate x′ . Therefore, the automorphism induced by ϕ on π1(S̃) cannot
be extended to an automorphism of π1(S). As above, Theorem 2.7 completes the
proof. �

3. Free products of groups

We prove in this section that many free products have infinitely generated com-
mensurator.

Lemma 3.1. Let H be a finite-index subgroup of G; assume G is generated by the
union of two subgroups A,B and has the unique root property; let ϕ : H → H be an
automorphism. If ϕ 6= id, but ϕ⇃H∩A= id, ϕ⇃H∩B= id, then ϕ does not extend to an
automorphism of G.

Proof. Write n = |G : H |, and let ψ : G→ G be an extension of ϕ. Take an arbitrary
element a ∈ A. Then an! ∈ H ∩ A, and so ψ(an!) = an!. Since G has the unique
root property, we get ψ(a) = a, that is ψ is the identity on A. Analogously ψ is the
identity on B, and hence ψ = id, a contradiction. �

Theorem 3.2. Suppose that two nontrivial groups A and B have the unique root
property, and at least one of them has finite quotients of arbitrarily large prime order.
Then Comm(A ∗B) is not finitely generated.

Proof. Write G = A ∗B, and assume without loss of generality that A has arbitrarily
large quotients. Consider a normal subgroupH⊳G of finite index n > 1 and containing
B, e.g. the kernel of the map A ∗B → Q ∗ 1 for a finite quotient Q of A. By Kurosh’s
theorem, there exists a nontrivial splitting of the form H = (H∩A)∗(H ∩B)∗C with
C 6= 1. Let b be a nontrivial element of H ∩B; there is some, because H ∩B = B is
nontrivial. Consider the automorphism ϕ of H , which is the identity on H ∩ A and
on H ∩B and is conjugation by b on C.

By Lemma 3.1, this ϕ does not extend to G. We conclude by Theorem 2.7. �
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This gives another proof of Corollary A for free groups of rank n ≥ 2: if G = Fn,
take A = Z and B = Fn−1 and apply Theorem 3.2. Another proof of Corollary A for
surface groups follows from Theorem 4.2 or 4.4.

Note that the abstract commensurator of a free group admits an elegant description
through automata, see [6]. Lemma 2.5 essentially says that, given a finite collection
of elements in the commensurator of Fm, there exists a finite alphabet (with n letters
in the lemma’s notation) such that these elements are represented by automata on
that alphabet.

4. Groups splitting over Z

Following on Theorem 3.2, we now apply Theorem 2.7 to free products with amal-
gamation and HNN extensions. In the proof we will use certain automorphisms of G,
called Dehn twists.

Lemma 4.1. Let k be an integer, and consider the Baumslag-Solitar group

G = 〈a, t | tat−1 = ak〉.

Then Comm(G) is not finitely generated.

Proof. If k = 0, then G is infinite cyclic and the statement obviously holds; so assume
k 6= 0. Let p be a prime > k. Consider the endomorphism ψ : G → G sending t to
t and a to ap. We prove that ψ is injective, and that ψ(G) has index p in G; the
conclusion then follows from Proposition 2.8.

We have G = Z[1/k] ⋊ 〈t〉, and ψ is given by ψ(x, ti) = (px, ti); so ψ is an injective
endomorphism. Its image is pZ[1/k] ⋊ 〈t〉, which has index p because p and k are
coprime. �

Theorem 4.2. Let G = A∗C , where C is an infinite cyclic group. If G has the unique
root property, then Comm(G) is not finitely generated.

Proof. The group G has the presentation 〈A, t | t−1Ct = D〉, where t is stable letter
and C = 〈c〉, D = 〈d〉 are associated subgroups of A.

Consider n ≥ 3 and let Hn be the kernel of the homomorphism G→ Z/nZ sending
A to 0 and t to 1. Then Hn is also an HNN extension, which has the following
presentation:

Hn =
〈
K, s

∣∣ s−1(tn−1Ct1−n)s = D
〉
, where

K = A ∗
C=tDt−1

tAt−1 ∗
tCt−1

=t2Dt−2

t2At−2 ∗ . . . ∗
tn−2Ct2−n

=tn−1Dt1−n
tn−1At1−n

and the stable letter s corresponds to tn in G. Consider the automorphism ϕ of
Hn which fixes the base K of the HNN extension and sends s to sd. Suppose that
ϕ can be extended to an automorphism ψ of G. Then, since tAt−1 6 K, for any
a ∈ A, we have tat−1 = ϕ(tat−1) = ψ(tat−1) = ψ(t)ψ(a)ψ(t−1) = ψ(t)aψ(t)−1, and
so t−1ψ(t) ∈ CG(A).

Now either the HNN extension is ascending (C = A), in which case G is a
Baumslag-Solitar group, and we are done by Lemma 4.1; or CG(A) = Z(A), and we
get ψ(t) = ta for some a ∈ Z(A)\{1}. We then have tnd = sd = ϕ(s) = ψ(tn) = (ta)n;
hence

(†) t−1(t−1(. . . (t−1(t−1

︸ ︷︷ ︸
n−1

(a)ta)ta) . . . )ta)tad−1 = 1.

Another cyclic form of this equation is

(‡) tata . . . tat(ad−1) t−1t−1 . . . t−1t−1
︸ ︷︷ ︸

n−1

a = 1.
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Using normal form in HNN extensions we deduce from (†) that a ∈ C, and from (‡)
that ad−1 ∈ D. Thus, a = cp = dq for some nonzero p, q. Since a ∈ Z(A) and Z(A)
is closed under taking roots (since G has unique root property), we get c, d ∈ Z(A).
In particular, 〈c, d〉 is a torsion-free Abelian group satisfying cp = dq. Therefore this
group is cyclic, that is c = zl and d = zr for some z ∈ Z(A) and l, r ∈ Z. Thus, we
have

(§) a = zpl and t−1zlt = zr.

We now analyze Equation (†) deeper. Using (§), we successively deduce

a = zpl,

t−1(a)ta = zpl(1+(r/l)),

t−1(t−1(a)ta)ta = zpl(1+(r/l)+(r/l)2),
...

t−1(. . . (t−1(t−1

︸ ︷︷ ︸
n−2

(a)ta)ta) . . . )ta = zpl(1+(r/l)+···+(r/l)n−2),

Finally, we obtain from (†) that

1 = t−1(t−1(. . . (t−1(t−1(a)ta)ta) . . . )ta)tad−1 = zpl(1+(r/l)+···+(r/l)n−1)−r,

so

pl(1 + (r/l) + · · · + (r/l)n−1) = r.

Equivalently,

p(ln−1 + rln−2 + · · · + rn−1) = rln−1.

Note that gcd(r, l) = 1, otherwise, using the unique root property of G, we could
extract a root from tzlt−1 = zr and get a wrong equation. Hence (ln−1 + rln−2 +
· · · + rn−1) has no nontrivial common divisor neither with r, nor with l. Therefore
(ln−1 + rln−2 + · · · + rn−1) = ±1. Since n ≥ 3, this is possible only if l = 1, r = −1
or l = −1, r = 1. In that last case, G has the presentation G = 〈A, t | t−1zt = z−1〉.
Then its index 2 subgroup H2 has the presentation

H2 =
〈(
A ∗

z=tz−1t−1

tAt−1
)
, s | s−1zs = z

〉
,

where s corresponds to t2 in G. Thus, if we replace G by H2 we will have l = r = 1.
Thus, after possible replacement, ϕ cannot be extended to an automorphism of G
and we conclude by Theorem 2.7. �

Lemma 4.3. Consider G = G1 ∗C G2, where C is infinite cyclic. If G2 is Abelian,
assume furthermore that G2 = K ⊕ L with C 6 K and |L| > 2.

Then G has a nontrivial automorphism ϕ which fixes G1.

Proof. It is enough to define a nontrivial automorphism ψ : G2 → G2, such that
ψ ⇃C= id. Then such ψ can be obviously extended to the desired ϕ.

If C does not lie in Z(G2), we define ψ as conjugation by a generator of C. If C
lies in Z(G2) and G2 is not Abelian, we take an element g ∈ G2 \ Z(G2) and define
ψ as conjugation by g. Consider finally G2 Abelian, with G2 = K ⊕ L. If 2L 6= 0,
define ψ : G2 → G2 by ψ(x, y) = (x,−y) for x ∈ K, y ∈ L; while if 2L = 0 then L is
an F2-vector space of dimension > 1, so admits a non-trivial automorphism ψ′. Set
then ψ(x, y) = (x, ψ′(y)). �

Theorem 4.4. Let G be A ∗C B, where C is an infinite cyclic subgroup distinct from
A and B. Suppose that
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(1) G has the unique root property;
(2) A/CA maps homomorphically onto Z;
(3) if B is Abelian, then B maps homomorphically onto Z.

Then Comm(G) is not finitely generated.

Note that (2) is satisfied as soon as G maps onto Z×Z, and (3) is satisfied as soon
as B is finitely generated.

Proof. We first show that we may assume additionally that the following condition is
satisfied:

(4) |B : C| is infinite.

Suppose that the index |B : C| is finite, so B is virtually cyclic. Since G is torsion-
free, B is infinite cyclic. Let 1, b, b2, . . . , bn−1 be representatives of B modulo C.
Note that n ≥ 2, since B 6= C. Let ϕ : A ∗C B → Z/nZ send A onto Z/nZ and
B to 0. The kernel G1 of ϕ can be presented as the free product of groups b−iAbi

for i ∈ {0, 1, . . . , n − 1}, amalgamated over the common subgroup C. Therefore

G1 = A∗CB1, where B1 is the free product of Abi

for i ∈ {1, . . . , n−1}, amalgamated
over C. Then B1 = Ab∗CV = Ab∗CbV for some group V . It follows B1/V

B1 ∼= A/CA

and so B1 satisfies Condition (3). Moreover, B1 satisfies Condition (4), since B1

contains Ab and |Ab : C| = |A : C| is infinite. Since G1 has finite index in G, we have
Comm(G) ∼= Comm(G1). Therefore, replacing G by G1 if necessary, we may assume
that Conditions (1–4) are satisfied.

We then show that we may assume additionally that the following condition, which
in required in Lemma 4.3, is satisfied:

(5) if B is Abelian, then B = K ⊕ L, with C 6 K and |L| > 2.

Suppose that B is Abelian. By Condition (3), there is an epimorphism ψ : B → Z.
Thus, B = kerψ ⊕ Z. If C 6 kerψ, we are done. If C 66 kerψ, then ψ(C) has
finite index in ψ(B). Since C is infinite cyclic, we have kerψ ∩ C = {0}. Denote
B1 = 〈kerψ,C〉. Then B1 = kerψ ⊕ C and the index n = |B : B1| is finite. Hence
B1 satisfies Conditions (3–4). In particular, kerψ is infinite. Therefore, B1 satisfies
Condition (5).

If n = 1, then B = B1, and so B satisfies Conditions (3–5). Suppose then n ≥ 2
and let T = {b1, . . . , bn} be a transversal of B1 in B. Consider H = 〈A,B1〉

G. Then
H has index n in G; hence Comm(G) ∼= Comm(H). Moreover, T is a transversal of H
in G. Consider the induced decomposition of H as the fundamental group of a graph
of groups (see [12]): it has the shape of a star; there is a central vertex with vertex
group B1 and n outer vertices with vertex groups Ab for b ∈ T . All edge groups are C.
We can rewrite this decomposition in the form H = B1 ∗C A1, where A1 = A∗C V for
some V . The group A1/C

A1 can be mapped homomorphically onto A1/V
A1 = A/CA

and so Condition (2) is satisfied by A1.
In summary, without loss of generality we assume that Conditions (1–5) are satis-

fied for the original G.
We now show that for any prime number p > 1, there exists a normal subgroup H

of index p in G, and an automorphism of H that does not extend to an automorphism
of G. Then Theorem 2.7 will complete this proof.

By (2), the quotient group A/CA can be homomorphically mapped onto Z and
further onto Z/pZ. Let N ⊳A be the kernel of the composition of these epimorphisms,
and set H = 〈N,B〉G. Then C 6 H ⊳ G and |G : H | = p. Consider the induced
decomposition of H as the fundamental group of a graph of groups: it has the shape
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of a star; there is a central vertex with the vertex group N and p outer vertices with
the vertex groups Ba for a in a transversal of N in A.

In particular, H = U ∗Ca Ba for some a /∈ A and some subgroup U containing B
and N . By Lemma 4.3, there is a non-trivial automorphism ϕ of H fixing U . We
conclude by Lemma 3.1 that ϕ cannot be extended to an automorphism of G. �

To prove Corollary B, we recall a theorem by Paulin:

Theorem 4.5 ([10]). Suppose G is a word-hyperbolic group with infinite Out(G).
Then G splits over a virtually cyclic group.

Proof of Corollary B. By Theorem 4.5, G splits over a virtually cyclic subgroup, that
is G = A∗C B or G = A∗C , where C is virtually cyclic. Since G is torsion-free, C = 1
or C = Z. If C = 1, we apply Theorem 3.2. If G is an HNN extension, we apply
Theorem 4.2.

If C = Z then, since G maps onto Z2, its quotient G/CG maps onto Z. Since
G/CG = A/CA ∗ B/CB, one of the groups A/CA or B/CB maps onto Z. If A or
B is Abelian, it is cyclic, since G is a torsion-free hyperbolic group. We conclude by
Theorem 4.4. �

5. Examples

We conclude in this section with a few examples showing that additional conditions
are required on a hyperbolic group or on a free product with amalgamation to ensure
that its commensurator is infinitely generated.

The following construction was generously indicated to us by Marc Lackenby. Con-
sider a complicated-enough knot K ⊂ S2 × S1; namely, the mapping torus of a
complicated-enough braid K̃ ⊂ S2 × [0, 1]. Let µ be a small loop in S2 × S1 \ K
around K.

Set ∆ = π1(S
2×S1\K). Then, for n large enough, Γ := ∆/〈µn〉∆ is hyperbolic [2],

and is a non-arithmetic lattice in G := PSL2(C). By rigidity (see the Introduction),
Comm(Γ) = CommG(Γ); and by [7, Theorem IX.1.B], Γ has finite index in Comm(Γ),
so in particular Comm(Γ) is finitely generated. We deduce:

Theorem 5.1 (=Theorem C(1)). There exist word-hyperbolic groups with finitely
generated commensurator.

(Note of course that Γ is not torsion-free).
Recall that a group G is called complete if it has trivial center and no outer au-

tomorphisms. A group is called perfect if it equals its own commutator subgroup. A
subgroup C of a group G is called malnormal if C∩g−1Cg = 1 for every g ∈ G\C. We
will use the following result of V.N. Obraztsov (see Corollary 3 in [8] and its proof).

Theorem 5.2 ([8]). There exists a 2-generated simple complete torsion-free group G
in which every proper subgroup is infinite cyclic.

We note that such a group G has maximal cyclic subgroups; indeed otherwise it
would contain an infinite ascending sequence of cyclic subgroups; its union cannot be
cyclic, and so it must coincide with G. This is impossible since G is finitely generated.

Lemma 5.3. Let G be a group as in Theorem 5.2. Then every maximal cyclic
subgroup of G is malnormal. Moreover, G has the unique root property.

Proof. Let 〈z〉 be a maximal cyclic subgroup in G and suppose that it is not mal-
normal, that is 〈z〉 ∩ g−1〈z〉g 6= 1 for some g ∈ G \ 〈z〉. Then zs = g−1ztg for some
nonzero s, t. Moreover, the subgroup 〈g, z〉 is larger than 〈z〉, so it is noncyclic and
therefore equals G.
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If g−1zg /∈ 〈z〉, then 〈g−1zg, z〉 = G and hence zs lies in the center of G, a
contradiction.

If g−1zg ∈ 〈z〉, then g−1zg = zk for some k. If |k| ≥ 2, then 〈z〉 is not maximal, a
contradiction. If |k| = 1, then g2 lies in the center of G = 〈g, z〉, again a contradiction.

Now we prove that G has the unique root property. Suppose that for some x, y ∈ G
holds xn = yn, n 6= 0. If x, y generate a cyclic group, then clearly x = y. If they
generate a noncyclic group, then 〈x, y〉 = G. But then xn lies in the center of G, so
xn = 1, and so x = 1. Similarly y = 1. �

Theorem 5.4 (=Theorem C(2)). There exists a 3-generated group G = G1 ∗
u1=u2

G2

such that

(1) G is torsion-free;
(2) G/[G,G] = Z and ui /∈ [G,G];
(3) G has the unique root property;
(4) Comm(G) = Aut(G);
(5) Aut(G) is generated by inner automorphisms, a Dehn twist along 〈ui〉 and

possibly one extra automorphism which interchanges G1 and G2. In particu-
lar, Aut(G) is finitely generated.

Proof. Let H1, H2 be two groups as in Theorem 5.2. In each Hi we choose an element
hi, generating a maximal cyclic subgroup. We set Gi = Hi × Ai, where Ai = 〈ai〉 is
an infinite cyclic group, take ui = hiai and define G = G1 ∗

u1=u2

G2.

We denote by u the image of ui in G. Note that the centralizer of the subgroup
〈u〉 in G has the following structure: CG(u) = 〈u〉 × Z, where Z = 〈A1, A2〉. Since
Ai ∩ 〈ui〉 = 1, we have Z = A1 ∗A2

∼= F2.
Remark. Using Lemma 5.3 one can prove the following important property: if

for some g ∈ G we have that g−1usg = ut for some nonzero s, t, then s = t and
g ∈ CG(u).

We are now ready to prove the statements. (1) is weaker than (3).

(2) This statement follows from the fact that H1, H2 are perfect.

(3) Assume the converse: there are two different elements x, y ∈ G such that
xn = yn. We will analyze the action of x and y on the Bass-Serre tree T associated
with the decomposition G = G1 ∗

u1=u2

G2. Clearly, x, y are either both elliptic or both

hyperbolic. For any edge e of T let α(e) and ω(e) denote the initial and the terminal
vertices of e respectively.

Case 1. Suppose that x, y are both elliptic. If they stabilize the same vertex of T ,
then (after conjugation) we may assume that x, y ∈ Gi for some i = 1, 2. Then, using
Lemma 5.3, we conclude x = y.

Suppose that x and y do not stabilize the same vertices of T . We choose the shortest
path p = e1e2 . . . em in T such that x ∈ Stab(α(e1)) and y ∈ Stab(ω(em)). Then this
path is stabilized by xn(= yn), in particular, e1 is stabilized by xn. By conjugating
and renaming the factors, we can assume that Stab(α(e1)) = G1, Stab(ω(e1)) = G2

and Stab(e1) = G1∩G2 = 〈u〉. Since x ∈ G1, we have x = zak
1 for some z ∈ H1, k ∈ Z.

And since xn ∈ G1∩G2, we have xn = znakn
1 = ukn = hkn

1 akn
1 . In particular, zn = hkn

1

and so z = hk
1 by Lemma 5.3. This implies that x = hk

1a
k
1 = uk

1 ∈ G1∩G2 = Stab(e1),
a contradiction to the minimality of the path p.

Case 2. Suppose that x, y are both hyperbolic. Since xn = yn, the axes of x and y
coincide and x−1y and x−2y2 stabilize this axis. By conjugating we may assume that
x−1y and x−2y2 lie inG1∩G2. Thus y = xuk for some k ∈ Z and so y2 = x2·x−1ukxuk.
Hence x−1ukx ∈ G1 ∩G2. By the remark at the beginning of this proof, we conclude
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that x ∈ CG(u). Similarly, y ∈ CG(u). Since CG(u) = 〈u〉 × Z ∼= 〈u〉 × F2 has the
unique root property, we conclude from xn = yn that x = y.

(4,5) First we describe finite index subgroups of G. Let B be a subgroup of finite
index m in G, and let N be a normal subgroup of finite index in G such that N 6 B.
Since Hi does not contain proper finite index subgroups, we have Gi ∩ N = (Hi ×
〈ai〉) ∩ N = Hi × 〈ami

i 〉 for some mi ∈ Z. Then N contains the normal closure of
〈H1, H2〉 in G. The factor group of G by this normal closure is isomorphic to Z.
Therefore B is normal and coincides with the preimage of mZ.

We claim that B = (H1 × 〈am
1 〉) ∗

um
1

=um
2

(H2 × 〈am
2 〉). Simplifying notations we

write Gi,m = Hi × 〈am
i 〉 and G(m) = G1,m ∗

um
1

=um
2

G2,m. Thus we want to prove that

B = G(m).
It is enough to prove that G(m) is normal in G (then clearly G/G(m) ∼= Z/mZ

and so B = G(m)). Note that G(m) = 〈am
1 , a

m
2 , H1, H2〉 and G = 〈a1, a2, H1, H2〉.

Preparing to conjugate, we deduce from the equations h1a1 = h2a2 and [hi, ai] = 1
the following:

a1a
−1
2 = h−1

1 h2 ∈ H1H2 6 G(m),

a−1
1 a2 = h1h

−1
2 ∈ H1H2 6 G(m).

Then for ε ∈ {−1, 1} we have

aε
1a

m
2 a

−ε
1 = (aε

1a
−ε
2 )am

2 (aε
1a

−ε
2 )−1 ∈ G(m),

aε
1H2a

−ε
1 = (aε

1a
−ε
2 )aε

2H2a
−ε
2 (aε

1a
−ε
2 )−1 = (aε

1a
−ε
2 )H2(a

ε
1a

−ε
2 )−1 6 G(m).

By symmetry we get aε
2a

m
1 a

−ε
2 ∈ G(m) and aε

2H1a
−ε
2 6 G(m). This completes the

proof that G(m) is normal in G and so B = G(m). Thus, for every natural m there
is a unique subgroup of index m in G; it has the form

(#) G(m) = G1,m ∗
um
1

=um
2

G2,m.

We now investigate which isomorphisms can appear in Comm(G). Let n,m be two
natural numbers and let α : G(n) → G(m) be an isomorphism. We claim that Gi,n

is nonsplittable over a cyclic subgroup. Indeed, suppose Gi,n = K ∗L M , where L is
a cyclic group. If one of the indices |K : L| or |M : L| is larger than 2, then Gi,n

and hence its direct factor Hi would contain a noncyclic free group, contradicting
the properties of Hi. If |K : L| = |M : L| = 2, then Gi,n

∼= Z/2Z ∗ Z/2Z or
Gi,n

∼= Z ∗2Z=2Z Z, again absurd in regard of Theorem 5.2. An analogous reasoning
shows that Gi,n cannot be a nontrivial HNN extension over a cyclic group.

This implies that α(Gi,n) is also nonsplittable over a cyclic subgroup and so is
conjugate to G1,m or to G2,m.

Case 1. Suppose that α(G1,n) is conjugate to G1,m and α(G2,n) is conjugate to
G2,m. Composing α with an appropriate conjugation, we can assume that α(G1,n) 6

G1,m and α(G2,n) 6 gG2,mg
−1 for some g ∈ G(m). We prove that α(G2,n) 6 G2,m.

We can assume that g, written in reduced form with respect to the amalgamated
product (#), is either empty or starts with an element of G2,m \ 〈um〉 and ends with
an element of G1,m \ 〈um〉.

Suppose that g is nonempty and write it in reduced form: g = g1g2 . . . g2k−1g2k,
where gi ∈ G1,m \ 〈um〉 if i is even and gi ∈ G2,m \ 〈um〉 if i is odd. The element
α(un) lies in α(G1,n) ∩ α(G2,n) = G1,m ∩ gG2,mg

−1, hence it can be written as

α(un) = g1g2 . . . g2k−1g2kvg
−1
2k g

−1
2k−1 . . . g

−1
2 g−1

1 for some v ∈ G2,m and the reduced
form of this product consists of only one factor which lies in G1,m. Therefore v ∈ 〈um〉
and gi ∈ CG2,m

(um)\〈um〉 for odd i and gi ∈ CG1,m
(um)\〈um〉 for even i. This implies

(a) gumg−1 = um;
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(b) α(G1,m) ∩ α(G2,m) = 〈um〉;
(c) if w ∈ 〈um〉, then the reduced form of gwg−1 with respect to (#) is w;
(d) if w ∈ G2,m\〈um〉, then the reduced form of gwg−1 is g1g2 . . . g2k−1g2kwg

−1
2k g

−1
2k−1 . . . g

−1
2 g−1

1 ;
it starts and ends with elements from G2,m \ 〈um〉 and contains at least one element
from G1,m \ 〈um〉.

Using this we prove that the group generated by G1,m and gG2,mg
−1 does not

contain elements of G2,m \ 〈um〉, and that will contradict the surjectivity of α. Let z
be an arbitrary element of 〈α(G1,n), α(G2,n)〉. We write z as z = z1z2 . . . zl, so that
zi lie alternately in α(G1,n) or in α(G2,n) and l is minimal. First suppose that l > 1.
Then zi /∈ 〈um〉, otherwise one can unify two consecutive factors of z1z2 . . . zl and
decrease l. Therefore the following hold:

(i) If zi ∈ α(G1,n), then zi ∈ G1,n \ 〈um〉.
(ii) If zi ∈ α(G2,n), then zi ∈ g(G2,n \ 〈um〉)g−1 by (a). By (c–d) the reduced form

of zi with respect to (#) starts and ends with elements from G2,m \〈um〉 and contains
at least one element from G1,m \ 〈um〉.

Therefore the normal form of z is the product of normal forms of zi’s, and so
z /∈ G2,m \ 〈um〉.

If l = 1, then either z ∈ 〈um〉, or as above z /∈ G2,m \ 〈um〉. In both cases
z /∈ G2,m \ 〈um〉.

We have reached a contradiction. Thus g is empty and so α(Gi,n) 6 Gi,m for
i = 1, 2.

Case 2. Suppose that α(G1,n) is conjugate to G1,m and α(G2,n) is also conjugate
to G1,m. Composing α with an appropriate conjugation, we can assume that, say,
α(G1,n) 6 G1,m and α(G2,n) 6 gG1,mg

−1 for some g ∈ G(m). Then arguing as in
Case 1 we obtain a contradiction independently of whether g is empty or not.

All other possible cases can be considered similarly. Thus (after an appropriate
conjugation), we may assume that α(G1,n) = G1,m and α(G2,n) = G2,m or α(G1,n) =
G2,m and α(G2,n) = G1,m. In particular, α(un) = uεm for some ε ∈ {−1, 1}. We
consider the first case (the second case is similar).

Since Hi has no infinite cyclic quotients, we obtain α(Hi) = Hi. Since α carries
the center of Gi,n to the center of Gi,m, we have α(an

i ) = aσm
i for some σ ∈ {−1, 1}.

Since Hi is complete, α⇃Hi
is conjugation by an element wi ∈ Hi. Therefore, α(un) =

α(hn
i a

n
i ) = wih

n
i w

−1
i aσm

i . On the other hand α(un) = uεm = hεm
i aεm

i . Thus, we have

wih
n
i w

−1
i = hεm

i and σ = ε. By Lemma 5.3, wi = hki

i for some ki and so n = εm,
which implies n = m and σ = ε = 1 since m,n ∈ N. Then α ⇃Gi,m

is conjugation by

wi, which is the same as conjugation by hki

i a
ki

i = uki

i . Thus, α is a product of two
Dehn twists.

All inner automorphisms and Dehn twists, and the (possible) permutation of factors
of G(n) can be lifted to the corresponding automorphisms of G. Thus properties (3)
and (4) are proven.

Finally we prove that G is 3-generated. Recall that hi generates a maximal cyclic
subgroup in Hi. First we choose an element yi ∈ Hi \ 〈hi〉, i = 1, 2, and then take a
generator xi of a maximal cyclic subgroup of Hi containing yi. Clearly, xi ∈ Hi \ 〈hi〉
and also hi ∈ Hi \ 〈xi〉.

We claim that the subgroup F = 〈x1, x2, u1〉 coincides with G. In the proof we will
use the equations h1a1 = u1 = u2 = h2a2. We have [xi, ui] = [xi, hiai] = [xi, hi] ∈ Hi.
By Lemma 5.3, the subgroup 〈xi〉 is malnormal in Hi and so [xi, hi] /∈ 〈xi〉. Then, by
Theorem 5.2, 〈xi, [xi, ui]〉 = Hi. In particular, Hi 6 F . Then Ai = 〈ai〉 = 〈h−1

i ui〉 6

F and hence G = 〈H1, H2, A1, A2〉 = F . �
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Note that G from the proof of Theorem 5.4 cannot be generated by 2 elements.
Indeed, if G were 2-generated, then its homomorphic image H1 ∗

h1=h2

H2 would be also

2-generated. But this is impossible in view of [13, Corollary 1], which states that if B

is an amalgamated product of type
n
∗C
i=1
Bi where C 6= 1, C 6= Bi, and C is malnormal

in B, then rank(B) ≥ n+ 1.
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