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AT INFINITY OF FINITE-DIMENSIONAL CAT(0) SPACES

PIERRE-EMMANUEL CAPRACE* AND ALEXANDER LYTCHAK'

ABSTRACT. We show that any filtering family of closed convex subsets of a finite-
dimensional CAT(0) space X has a non-empty intersection in the visual bordifica-
tion X = X UOX. Using this fact, several results known for proper CAT(0) spaces
may be extended to finite-dimensional spaces, including the existence of canonical
fixed points at infinity for parabolic isometries, algebraic and geometric restrictions
on amenable group actions, and geometric superrigidity for non-elementary actions
of irreducible uniform lattices in products of locally compact groups.

1. INTRODUCTION

Several families of finite-dimensional CAT(0) spaces naturally include specimens
which are not locally compact; e.g. buildings of finite rank (Euclidean or not), finite-
dimensional CAT(0) cube complexes, or asymptotic cones of Hadamard manifolds or
of CAT(0) groups.

A major difficulty one encounters when dealing with non-proper spaces is that the
visual boundary may have a very pathological behaviour. For example, an unbounded
CAT(0) space may well have an empty visual boundary. The purpose of this paper
is to show that for finite-dimensional spaces, the visual boundary nevertheless enjoys
similarly nice properties as in the case of proper spaces.

Following B. Kleiner [[K1e99], we define the (geometric) dimension of a CAT(0)
space X to be the supremum over all compact subsets K C X of the topological
dimension of K. We refer to loc. cit. for more details and several characterizations
of this notion. A 0-dimensional CAT(0) space is reduced to a singleton, while 1-
dimensional CAT(0) spaces coincide with R-trees. We emphasize that the notion of
geometric dimension is local. It turns out that, for our purposes, it will be sufficient
to demand that the spaces have finite dimension at large scale. In order to define this
condition precisely, we shall say that a CAT(0) space X has telescopic dimension
< n if every asymptotic cone lim, (e, X, x,) has geometric dimension < n. A space
has telescopic dimension 0 if and only if it is bounded. It has telescopic dimension < 1
if and only if it is Gromov hyperbolic. A CAT(0) space of finite geometric dimension
has finite telescopic dimension. We refer to §2.1 below for more details and some
examples.

Theorem 1.1. Let X be a complete CAT(0) space of finite telescopic dimension and
{Xa}aea be a filtering family of closed convex subspaces. Then either the intersection
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Noca Xa s non-empty, or the intersection of the visual boundaries (e, 0Xa is a
non-empty subset of 0X of intrinsic radius at most w/2.

Recall that a family F of subsets of a given set is called filtering if for all £, F' € F
there exists D € F such that D C ENF'. In particular the preceding applies to nested
families of closed convex subsets, and provides a criterion ensuring that the visual
boundary 0X is non-empty. In the course of the proof, we shall establish a result
similar to Theorem 1.1 for finite-dimensional CAT(1) spaces (see Proposition 5.3
below). We remark however that Theorem 1.1 fails for complete CAT(0) spaces with
finite-dimensional Tits boundary, see Example 5.6 below.

Remark 1.2. Theorem 1.1 may be reformulated using the topology 7. introduced by
Nicolas Monod [Mon06, §3.7] on the set X = X UJX. It is defined as the coarsest
topology such that for any convex subset Y C X, the (usual) closure Y in X is
T.-closed. It is known that any bounded closed subset of X is .7.-quasi-compact
(see [Mon06, Theorem 14]) and that, if X is Gromov hyperbolic, then X is .7.-
quasi-compact (see Proposition 23 in loc. cit.). However, if X is infinite-dimensional
then X is generally not Z.-quasi-compact. Theorem 1.1 just means that, given a
complete CAT(0) space of finite telescopic dimension, the set X is quasi-compact for
the topology J.. This compactness property is thus shared by proper CAT(0) spaces,
Gromov hyperbolic CAT(0) spaces and finite-dimensional CAT(0) spaces.

A key idea in the proof of Theorem 1.1 is to obtain points at infinity by applying (a
very special case of) a result of A. Karlsson and G. Margulis [[XM99] to the gradient
flow of a convex function that is associated in a canonical way to the given filtering
family. This strategy requires to show that the velocity of escape of the gradient
flow in question is strictly positive. This is where the assumption on the telescopic
dimension of the ambient space is used; the main point in estimating that velocity
is the following natural generalisation to non-positively curved spaces of H. Jung’s
classical theorem [JunO1]. Another closely related generalisation was established in
|LS97].

Theorem 1.3. Let X be a CAT(0) space and n be a positive integer.
Then X has geometric dimension < n if and only if for each subset Y of X of

finite diameter we have radx(Y') < diam(Y).

n
2(n+1)
Similarly X has telescopic dimension < n if and only if for any & > 0 there exists
some constant D > 0 such that for any bounded subset Y C X of diameter > D, we

have radx (Y) < (5 + ﬁ)diam(y).

Recall that the circumradius radyx(Y) of a subset Y C X is defined as the
infimum of all positive real numbers r such that Y is contained in some closed ball
of radius r of X.

Remark 1.4. In the case of an n-dimensional regular FEuclidean simplex one has equal-
ity in the theorem above. For a short discussion of the case of equality as well as

analogous statements in other curvature bounds we refer to Section 3.
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It turns out that Theorem 1.1 provides a key property that allows one to extend to
finite-dimensional CAT(0) spaces several results which are known to hold for proper
spaces. We now proceed to describe a few of these applications.

Parabolic isometries. A first elementary consequence of Theorem 1.1 is the exis-
tence of canonical fixed points at infinity for parabolic isometries. This extends the
results obtained in ['NS06G, Theorem 1.1] and [CMO08, Corollary 2.3] in the locally
compact setting.

Corollary 1.5. Let g be a parabolic isometry of a CAT(0) space X of finite telescopic
dimension. Then the centraliser Zisx)(g) possesses a canonical fized point in 0X.

Amenable group actions. The next application provides obstructions to isometric
actions of amenable groups; in the locally compact case the corresponding statement
is due to S. Adams and W. Ballmann [AB98], and generalizes earlier results by
M. Burger and V. Schroeder [B587].

Theorem 1.6. Let X be a complete CAT(0) space of finite telescopic dimension.
Let GG be an amenable locally compact group acting continuously on X by isometries.
Then either G stabilises a flat subspace (possibly reduced to a point) or G fizes a point
in the ideal boundary 0X.

Combining this with the arguments of [Cap07], one obtains the following descrip-
tion of the algebraic structure of amenable groups acting on CAT(0) cell complexes.

Theorem 1.7. Let X be a CAT(0) cell complex with finitely many types of cells and
G be a locally compact group admitting an isometric action on X which is continuous,
cellular and metrically proper. Then a closed subgroup H < G is amenable if and
only if it is (topologically locally finite)-by-(virtually Abelian).

By definition, a subgroup H of a topological group G is topologically locally
finite if the closure of every finitely generated subgroup of H is compact. We refer
to [Cap07] for more details. The proof of Theorem 1.7 proceeds as in loc. cit. One
introduces the refined boundary 0Js,.X of the CAT(0) space and shows, using
Theorem 1.6, that any amenable subgroup of G virtually fixes a point in X U Ogpe X;
conversely any point of X U 0g,.X has an amenable stabilizer in G.

Minimal and reduced actions. A basic property of CAT(0) spaces with finite
telescopic dimension is that their Tits boundary has finite geometric dimension (see
Proposition 2.1 below). Given this observation, Theorem 1.1 may be used to extend
several results of |CMO8, Part I| to the finite-dimensional case. The following collects
a few of these statements.

Proposition 1.8. Let X be a complete CAT(0) space of finite telescopic dimension
and let G < 1s(X) be any group of isometries.

(i) If the G-action is evanescent, then G fizes a point in X U0X.
(ii) If G does not fiz a point in the ideal boundary, then there is a non-empty

closed conver G-invariant subset Y C X on which G acts minimally.
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(iii) Suppose that X is irreducible. If G acts minimally without fized point at
infinity on X, then so does every non-trivial normal subgroup of G; further-
more, the G-action is reduced.

(iv) If Is(X) acts minimally on X, then for each closed conver subset Y C X we
have 0Y C 0X.

Following Nicolas Monod [Mon06|, we say that the action of a group G on a CAT(0)
space X is evanescent if there is an unbounded subset 7" C X such that for every
compact set () C G the set {d(gz,x) : g € Q,x € T} is bounded. Recall further
that the G-action is said to be minimal if there is no non-empty closed convex
G-invariant subset Y C X. Finally, it is called reduced if there is no non-empty
closed convex subset Y C X such that for each ¢ € G, the sets Y and ¢.Y are
at bounded Hausdorff distance from one another. The relevance of the notions of
evanescent and reduced actions was first highlighted by Nicolas Monod [Mon06] in
the context of geometric superrigidity. In particular, the combination of [Mon06,
Theorem 6] with Proposition 1.8(iii) yields the following (see |CMO08, Theorem 9.4|
for the corresponding statement in the locally compact case).

Corollary 1.9. Let I' be an irreducible uniform (or square-integrable weakly cocom-
pact) lattice in a product G = Gy x -+ X Gy, of n > 2 locally compact o-compact
groups. Let X be a complete CAT(0) space of finite telescopic dimension without
FEuclidean factor. Then any minimal isometric I'-action on X without fixed point at
infinity extends to a continuous G-action by isometries.

On the other hand, combining Proposition 1.8 with Theorem 1.6 yields the follow-
ing extension of [CM08, Corollary 4.8].

Corollary 1.10. Let G be a locally compact group acting continuously and minimally
on a CAT(0) space X of finite telescopic dimension, without fizing any point at
infinity. Then the amenable radical R of G stabilizes the mazimal Fuclidean factor
of X. In particular, if X has no non-trivial Fuclidean factor, then R acts trivially.

Acknowledgements. We would like to thank Viktor Schroeder for fruitful conver-
sations on affine functions. We are grateful to Anton Petrunin for providing Exam-
ple 4.4. Finally we thank Nicolas Monod for numerous illuminating conversations
and for pointing out that no separability assumption on G is needed for Theorem 1.6
to hold.

2. PRELIMINARIES

2.1. Geometric and telescopic dimension. We recall some facts about dimen-
sions of spaces with upper curvature bounds. The geometric dimension (some-
times simply called dimension) of such spaces was defined inductively in [[K1e99],
by setting the dimension of a discrete space to be 0 and be defining dim(X) =
sup{dim(S,X) + 1|z € X}, where S, X denotes the space of directions at the point
x. It turns out that this notion of dimension is closely related to more topological
notions. Namely dim(X) < n if and only if for all open subsets V' C U of X the rela-

tive singular homology Hy (U, V') vanishes for all £ > n. Moreover, this is equivalent
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to the fact that the topological dimension of all compact subsets of X is bounded
above by n, see loc. cit.

By definition, a CAT(0) space X is said to have telescopic dimension < n if
every asymptotic cone lim, (¢, X, %,) has geometric dimension < n. Although this
will not play any role in the sequel, we remark that the telescopic dimension is a quasi-
isometry invariant. Moreover, it follows from [[K1c99, Th. C| that a locally compact
CAT(0) space with a cocompact isometry group has finite telescopic dimension.

Convex subsets inherit the geometric dimension bound from the ambient space.
Moreover, if (X, z;) is a sequence of pointed CAT (k) spaces of geometric dimension
< n, then their ultralimit lim, (X;, ;) with respect to some ultrafilter is a CAT (k)
space of dimension at most n, see [Lyt05h, Lemma 11.1]. In particular, it follows
that a CAT(0) space of geometric dimension < n has telescopic dimension < n.
Furthermore, we have the following.

Proposition 2.1. Let X be a CAT(0) space. If X has telescopic dimension < n,
then the visual boundary 0X endowed with Tits metric has geometric dimension at
most n — 1.

Proof. Let o € X be a base point and C_,X be the asymptotic cone limw(%X, 0). The
Euclidean cone C(0X) embeds isometrically into C,X, see [[Xlc99, Lemma 10.6|.
Thus dim(0X) = dim(C(90X)) — 1 < dim(C,X) < n. O

We emphasize that a CAT(0) space X may have finite-dimensional Tits boundary
without being of finite telescopic dimension, even if X is proper. Indeed, consider
for instance the positive real half-line and glue at each point n € N an n-dimensional
Euclidean ball of radius n. The resulting space is proper and CAT(0), its ideal
boundary consists of a single point, but each of its asymptotic cones contains an
infinite-dimensional Hilbert space.

We shall use a topological version Helly’s classical theorem that holds in much
greater generality (see |[Dug67| as well as |[Far08, §3| for a related discussion). The
following statement is an immediate consequence of |[K1¢99, Proposition 5.3| since
intersections of convex sets are either empty or contractible.

Lemma 2.2. Let X be a CAT(0) space of geometric dimension < n. Let {Uy}aca be
a finite family of open convex subsets of X . If for each subset B C A with at most n+1

elements the intersection ) U, is non-empty, then [ U, is non-empty. U

aeB acA

2.2. Inner points. Following [[.507], we shall say that a point o of a CAT(0) space
X is a topologically inner point if X'\ {o} is not contractible. For each topologically
inner point there is some € > 0 and a compact subset K of X with d(o, K) > ¢ with
the following property: For each x € X there is some z € K such that xoZ is a geo-
desic. Thus every geodesic segment which terminates at o may be locally prolonged
beyond o; in loose terms, the space X is geodesically complete at the point o. In a
CAT(0) space which is locally of finite geometric dimension, the set of topologically
inner points is dense, see [L.5S07, Theorem 1.5|. In particular it is non-empty.

3. JUNG’S THEOREM
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3.1. CAT(0) case. Throughout the paper, we shall adopt the following notational
convention. Given a subset ¥ C X we denote the distance to Y by dy, namely
dy : X — R : 2+ inf ey d(z,y). We further recall that the intrinsic radius of a
subset Z of a metric space X is defined as

rad(Z) = ing{r €ER.o| ZC B(z,1)}.
ze

This notion should not be confused with the circumradius (or relative radius),
defined as

rady (7) = ini{r €eR.o| Z C B(z,r)}.
Tre

Bounded closed convex subsets of non-positively curved spaces have the finite
intersection property (see [L597, Proof of Theorem B] or [Mon06, Theorem 14]).
This means that for any family { X, }aca of bounded closed convex subsets of a CAT(0)
space X the intersection (1),., Xo is non-empty whenever the intersection of each
finite sub-family is non-empty.

Lemma 3.1. Let X be a CAT(0) space of geometric dimension <n and Y C X be
a subset of finite diameter. If for all subsets Y' CY of cardinality |Y'| < n+1 we
have radx (Y") < r then radx(Y) <r.

Proof. Fix an arbitrary r* > r. For y € Y, denote by O, the open ball of radius
r’ around y. These balls are convex and, by assumption, the intersection of any
collection of at most (n 4 1) such balls is non-empty. By Lemma 2.2 the intersection
of any finite collection of such balls is non-empty. Since ' > r is arbitrary, this
implies that each finite subset Y’ of Y has radius at most . For y € Y, denote
now by B, the closed ball of radius 7 around y. Then the intersection of each finite
collection of B, is non-empty, hence the intersection of all B, is non-empty. For any
point z in this intersection, we get d(z,y) < r for all y € Y. Hence radx(Y) <r. O

Proof of Theorem 1.3. Theorem A from [L597| ensures that for any CAT(0) space
X and each subset Y C X of cardinality at most n + 1, the inequality radx(Y) <

ﬁdiam(}/) holds. In view of this, it follows from Lemma 3.1 that the inequality

radyx(Y) < %n—’fmdiam(Y) holds for any subset Y of a CAT(0) space X of geometric

dimension < n.

Assume conversely that X has geometric dimension > n. By [K1e99, Theorem 7.1],
there exist a sequence (\g) of positive real numbers such that lim; A\, = oo, and a
sequence (Y}, *x)r>0 of pointed subsets of X such that

hm()\kYk,*k) = Rn+1

for any non-principal ultrafilter w. We may then find n+2 sequences (y..)r>o of points
of Yy indexed by ¢ € {0, 1,...,n+1} such that the set A = {lim(y%) | ¢ =0,...,n+1}
coincides with the vertex set of a regular simplex of diameter 1 in R"*. Since the
equality case of the (n 4 1)-dimensional Jung inequality is achieved in the case of A,
we deduce that there exists some k > 0 such that the n-dimensional Jung inequality

fails for the subset A, = {y. |i=0,...,n+1} C X.
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Assume now that X has telescopic dimension < n and suppose for a contradiction
that for some fixed 6 > 0 and for each integer & > 0 there is a subset Y, C X such that

diam(Yy) > k and radx(Yy) > (| /sty + 0)diam(Y}). Let %4 be the circumcentre

of Yi. Setting A\ = radx(Y}), it then follows that the asymptotic cone 1imw()\ikX, *k)
possesses a subset lim,(Y}) which fails to satisfy the n-dimensional Jung inequality.
The contradicts the first part of the statement which has already been established.
Assume conversely that X has telescopic dimension > n. Then, by |99, The-
orem 7.1 there exists a sequence (Yj,*x)r>o of pointed subsets of X such that
lim,, (Y%, %) = R™!. In particular diam(Y}) tends to oo with k and we conclude
by the same argument as before. U

3.2. Rigidity and other curvature bounds. In this subsection, we briefly sketch
the analogues of Theorem 1.3 in the case of non-zero curvature bounds and address
the equality case. Since the results are not used in the sequel, we do not provide
complete proofs.

Following word by word the proof of Theorem 1.3 and using the results of |L.597]
for other curvature bounds, one obtains the following.

Proposition 3.2. Let X be a CAT(—1) space of geometric dimension at most n. Let
Y be a subset of X of diameter at most D. Then the radius of Y in X is bounded
above by r,(D), where r,(D) denote the radius of the reqular n-dimensional simplex
Ap in the n-dimensional real hyperbolic space H" of diameter D. 0

In the positively curved case one needs to assume a bound on the radius in order
for the balls in question to be convex. An additional technical difficulty arises from
the fact the the whole space may be non-contractible in this case, and the statement
of Lemma 2.2 has therefore to be slightly modified in that case. The resulting radius—
diameter estimate is the following.

Proposition 3.3. Let X be a CAT(1) space of dimension <n. LetY be a subset of
X of circumradius v < 3. Then the diameter of Y is at least s,(r), where s,(r) is
the diameter of the reqular simplex of radius r in the round S™.

Remark 3.4. In a similar way it can be shown, that the assumption r = radx(Y) <
is fulfilled as soon as diam(Y") < k,, = arccos(—1/(n + 1)).

s
2

It is shown in [L.597] that for a subset Y of cardinality < n + 1, the equality in
Theorem 1.3 holds if and only if the convex hull of these points is isometric to a
regular Euclidean simplex. Arguing as in the proof of Theorem 1.3 one obtains that
if X is locally compact, the inequality becomes an equality if and only if the convex
hull of Y contains a regular n-dimensional Euclidean simplex of diameter equal to the
diameter of Y. If X is not locally compact the same statement holds for the convex
hull of the ultraproduct Y C X*. Similarly, the analogous rigidity statements hold
for spaces with other curvature bounds for the same reasons.

4. CONVEX FUNCTIONS AND THEIR GRADIENT FLOW
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4.1. Gradient flow. We recall some basics about gradient flows associated to convex
functions. We refer to [May98| for the general case and to [Lyt05a] for the simpler
case of Lipschitz continuous functions; only the latter is relevant to our purposes.

Given a CAT(0) space X, amap f: X — R is called convex if its restriction fo-~y
to each geodesic 7y is convex. Basic examples of convex functions on CAT(0) spaces
are distance functions to points or to convex subsets, and Busemann functions, see
[BH99, I1.2 and I1.8].

Let f be a continuous convex function on a CAT(0) space X. For a point p € X,
the absolute gradient of the concave function (—f) at p is defined by the formula

_ : f(p) — f(=z) }

[Vp(=f)] = max {0,11?5;11) A I
The absolute gradient is a non-negative, possibly infinite function. It is bounded
above by the Lipschitz constant if f is Lipschitz continuous. A fundamental object
attached to the function f is the gradient flow which consists of a map ¢ : [0, 00) x
X — X which, loosely speaking, has the property that ¢g = Id and ¢,(z) follows for
each = the path of steepest descent of f from x. The gradient flow is indeed a flow
in the sense that it satisfies ¢ (2) = ¢5 0 ¢y(x) for all z € X. The most important
property of gradient flows, originally observed by Vladimir Sharafutdinov [Sar77] in
the Riemannian context, is that the flow ¢; is semi-contracting. In other words,
for each t > 0, the map ¢, : X — X is 1-Lipschitz (see [Lyt05a, Theorem 1.7]). We

refer to [May98| or [Lyt05a, §9] for more details and historical comments.

Remark 4.1. Originally, the gradient lines and flows were defined for concave functions
by Sharafutdinov [Sar77] in the case of manifolds; they are also commonly used
for semi-concave (but not semi-convex) functions. Moreover the gradient usually
represents the direction of the maximal growth of the function rather than its maximal
decay. This explains the slightly cumbersome notation |V, (—f)| that we use here.

For each x € X the gradient curve t — ¢,(z) of f has the following properties
(and is uniquely characterised by them).

(1) The curve t — ¢(x) has velocity [¢¢(z)'| = [V, @) (—f)| for almost all £ > 0.
(2) The restriction t — f(¢:(x)) of f to the gradient curve is convex. Further-
more it satisfies (f o ¢(x)) = — |V, (= )%

We define the velocity of escape of the flow ¢; at the point € X by
d(z, ¢y(x))
" .

lim sup

t—o0
Since the flow ¢; is semi-contracting, the lim sup in the above definition may be
replaced by a usual limit. Moreover, it does not depend on the starting point x. The
following statement is an application of the main result of [[{M99] (to a deterministic
setting).

Proposition 4.2. Let f be a conver Lipschitz function on a CAT(0) space X. If
e =infiex |Vu(—f)| > 0 then there is a unique point & € 0X such that for allxz € X
the gradient curve ¢i(x) defined by f converges to & for t — oo.

8



Remark 4.3. In particular, the existence of a function f as in Proposition 4.2 implies
that the ideal boundary of X is non-empty.

The following construction due to Anton Petrunin shows that the conclusion of
Proposition 4.2 fails without a uniform lower bound on the absolute gradient.

Ezample 4.4. Choose an acute angle in R? enclosed by two rays y=(t) = t - v*
emanating from the origin. Let f,(w) = (w, z,) be linear maps on R? such that the
following conditions hold. First, for all n, we require that (x,, v*) be positive. For odd
(resp. even) n, the direction vt (resp. v™) is between x,, and v~ (resp. x, and v™).
Moreover, the sequence (x,,) satisfies the recursive condition (x,,,v™) = (x,_1,v™") for
even n and (z,,v") = (z,_1,v”) for odd n. Finally, we require that the length ||z, ||
tends to 0 as n tends to infinity. It is easy to see that such a sequence (z,,) exists.

Now let p; = v~ and define inductively p,, on 4+ (resp. 7~) for n even (resp. odd)
to be the point such that p, — p,_; is parallel to x,,. This just means that p, arises
from p,,—1 by following the gradient flow of the affine (and hence concave) function
Ja
Define the numbers C,, by Cy = 0 and f,,(pry1) — frs1(Pns1) = Cpie1—C,. Consider
the concave function f(x) = inf(f,(x)+C,). One verifies that on the geodesic segment
(Pn, Pns1) the function f coincides with f,, (in fact on a neighbourhood of all points
except pny1). Hence the segment joining p, to p,41 is part of a gradient curve of
f. Therefore the appropriately parametrised piecewise infinite geodesic 7 running
through all p; is a gradient curve of f. It is clear that both v~ and v+ (and all unit
vectors between them) considered as points in the ideal boundary are accumulation
points of v at infinity.

Proof of Proposition 4.2. From the assumption that ¢ = inf.cx [V.(=f)| > 0, we
deduce that f(¢i(x)) — f(z) < —€%t for all x € X. In view of Property (2) of the
gradient curve recalled above and the fact that f is Lipschitz, we deduce that the
velocity of escape of the gradient curve is strictly positive.

An important consequence of [[XM99, Theorem 2.1| is that any semi-contracting
map F : X — X of a complete CAT(0) space X with strictly positive velocity
of escape limsup,,_, L) has the following convergence property: There is a
unique point {x in the ideal boundary 0X of X, such that for all p € X the sequence
pn = F™(p) converges to g in the cone topology. In view of the above discussion, we
are in a position to apply this result to F' = ¢, from which the desired conclusion
follows. U

4.2. Asymptotic slope and a radius estimate. Finally we recall an observation
of Eberlein ([EEbe96], Section 4.1) about the size of the set of points in the ideal
boundary with negative asymptotic slopes.

Let f : X — R be a continuous convex function. For each geodesic ray v : [0, 00) —
X one defines the asymptotic slope of f on v by lim; . (f o7/(¢)). This defines a
number in (—o0, 400} which depends only on the point at infinity vy(co) € 0X. Thus
one obtains a function slopes : 0X — (—o00,+00]. One says that a point £ € 90X is

f-monotone if slopes(£) < 0. This is equivalent to saying that the restriction of f
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to any ray asymptotic to ¢ is non-increasing. One denotes the set of all f-monotone
points by X(c0).

Lemma 4.5. Let f be a convexr Lipschitz function on a complete CAT(0) space X
such that inf,ex [V (—f)| > 0. Then for each point { € X;(00), we have dris(&, Ef) <

5, where g 1s the canonical point provided by Proposition 4.2.

Proof. Eberlein’s argument for the proof of [[Ehe96, Proposition 4.1.1] (which is also
reproduced in the proof of [F'NS06, Theorem 1.1]) shows, that for any p € X and
any sequence t;, such that ¢, (p) converges to some point £ € 90X, the Tits-distance
between § and any other point ¢ € X is at most 7. O

4.3. The space of convex functions. Pick a base point o € X. Denote by Cy the
set of all 1-Lipschitz convex functions f on X with f(0) = 0. We view it as subset of
the locally convex topological vector space B of all functions f on X with f(0) = 0,
where the latter is considered with the topology of pointwise convergence. The subset
Co may thus be considered as a closed subset of the infinite product [],. ¢ I, where
I, is the interval I, = [—d(o0,z),d(0,z)]. Since a convex combination of convex 1-
Lipschitz functions is convex and 1-Lipschitz, the set Cy is a convex compact subset
of B.

The isometry group G = Is(X) of X acts continuously on B by g - f : = —
f(gx) — f(go) and preserves the subset Cy. Consider the map i : X — Cy given by
i(z) := d,, where d, is the normalized distance function d,(y) = d(z,y) — d(z,0).
Note that the map i is G-equivariant. In particular, the subset C = i(X) C Cy as well
as its closure and closed convex hull are G-invariant. If X is locally compact, then C
consists precisely of normalized distance and Busemann functions on X, and is thus
nothing but the visual compactification of X. However, if X is not locally compact,
then C may be much larger, and the convergence in Cy may be rather strange.

Erample 4.6. Let X' be a separable Hilbert space with origin o and an orthonormal
base {en}n>0. Then the sequence d,., converges in Cy to the constant function.

Ezample 4.7. Let X" be a metric tree consisting of a single vertex o from which
emanate countably many infinite rays 7,. In other words X” is the Euclidean cone
over a discrete countably infinite set. Let b,, denote the Busemann function associated
with 7,,. Then b,, converge in Cy to the distance function d,.

We emphasize that the choice of the base point o does not play any role: any
change of base point amounts to adding an additive constant.

In some sense, the set C may serve in the non-locally compact case as a generalized
ideal boundary. It is therefore important to understand how “large” it really is. This
will be the purpose of the next subsection.

4.4. Affine functions on spaces of finite telescopic dimension. Recall that
a function f : X — R is called affine if its restriction to any geodesic is affine.
Equivalently, for all pairs 7,2~ € X with midpoint m we have f(a%) + f(x7) =
2f(m). A simple-minded but noteworthy observation is that affine functions are

precisely those convex functions f whose opposite (—f) is also convex. Clearly,
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constant functions are affine; thus any CAT(0) space admit affine functions. However,
the very existence of non-constant affine functions imposes very strong restrictions
on the underlying space, see [LS07]|. The following result also provides an illustration
of this phenomenon, which will be relevant to the proof of Theorem 1.6.

Proposition 4.8. Let X be a CAT(0) space of finite telescopic dimension which is
not reduced to a single point and such that Is(X) acts minimally. If C contains an
affine function, then there is a splitting X = R x X'.

Recall from [BH99, 11.6.15(6)] that any complete CAT(0) space X admits a canon-
ical splitting X = E x X’ preserved by all isometries, where E is a (maximal) Hilbert
space called the Euclidean factor of X. It is shown in [LS07, Corollary 4.8] that if
X is locally finite-dimensional and if Is(X) acts minimally, then X’ does not admit
any non-constant affine function. The main technical point in the proof of the latter
fact is the existence of inner points (see §2.2).

In order to deal with the case of asymptotic dimension bounds, we need to substi-
tute this by some coarse equivalent. This substitute is provided by Lemma 4.9, which
is of technical nature. In the special case of spaces of finite geometric dimension, it
follows quite easily from the existence of inner points ; therefore, the reader who is
only interested in those spaces may wish to skip it.

Lemma 4.9. Let X be an unbounded space of finite telescopic dimension and let C
be as above. Then there are sequences of positive numbers D; — oo, 0; — 0 and
sequences of points p; € X and of finite subsets Q; C X with the following two
properties.

(1) Q; is contained in the ball of radius D;(1+ ;) around p;.
(2) For all s € X, there is some q; € Q; with d(s,q;) — d(s,p;) > D;.

Proof. Consider X = lim,,(+ X, 0) and let p = (p,) be an inner point of X. Lete >0
and the compact subset K C X be chosen as in §2.2. Moving points of K towards
p we may assume that all point of K have distance € to p. Furthermore, there is no
loss of generality in assuming € < 1.

Since K is compact, there exist finite subsets @), € %X with lim, @), = K and
d(pn,q) < enforall ¢ € Q,.

In view of the defining property of K, we deduce that for all 6 € (0,¢) and all ng,
there is some n = n(d,ng) > ng such that for any s € X with d(s,p,) < n, there is
some g € Q, with d(s,q) > d(s,p,) + n(e —9).

Assume now ¢ € (0,5). Given 5 € X with d(5,p,) > n and choose the point s
between p, and § with d(p,,s) = n. Let ¢ € @, be such that d(s,q) > d(s,p,) +
n(e —¢). Using the law of cosines in a comparison triangle for A(3, p,, q), we deduce
from that CAT(0) inequality that

d(3,9)* = d(5,pn)* = d(pn, @)* _ n*(e = 0)(2+ ¢ =) — d(pn, q)2_

d(gvpn) _11 n



Since d(p,,q) < en and d(3,p,) = n + d(s, 5), we deduce

d(8,q)* — d(3,pn)? n*(e—0)2+e—0)+2n(e—d(1+¢)+ %)d(s, 3)
n?(e —20)(2+ ¢ — 20) + 2n(e — 28)d(s, 3)
n?(e — 28)* + 2n(e — 20)d(3, pn).
This implies that d(8,q) > d(5, p,) + n(e — 29).

It remains to define the desired sequences by making the appropriate choices of
indices. This may be done as follows. For each integer j > 0, we now set §; = 25—] and
n; = n(%‘j,j), where n : (0,¢) x N — N : (0,n9) — n(d,ng) is the map considered

v Iv

above. Finally we set p; = Dnj> Q; = an and D; = 5"j(1 - %J) O

Proof of Proposition /.8. Assume that the set A of affine functions contained in C is
nonempty. For each integer 7 > 0 we set

Ci={peX|VfeAIze X f(z) - f(p) = D; and d(p, ) < (1+6;)D;},
where (D;) and (¢;) are the sequences provided by Lemma 4.9.

We claim that C; is non-empty.

Indeed, by Lemma 4.9 for each j and all p,s € X, there exists ¢ € (); such that
ds(q) —ds(p) = D; and d(p, q) < (1+6;)D;, where dy denotes the normalised distance
function d,(-) = d(s,-) — d(o,s). Since Q; is finite, this existence property passes to
every limiting function f € A by definition of the topology on Cy.

We claim that C; is convex.

Indeed, let py,ps € C;, f € Aand 21, 25 such that for i = 1,2 we have f(z;)—f(p;) =
D; and d(p;, zi) < (146;)D;. Given p € [py, pa] at distance Ad(py, p2) from p;, where
A€ (0,1), let z € [21, 22] be the unique point at distance Ad(z1, z2) from z;. Since
the distance function is convex, we have d(p, z) < (1 + 0,)D,. Furthermore, since f
is affine we have f(z) — f(p) = D;. Hence p € Cj.

We claim that C; = X.

Since A is Is(X)-invariant, so is C;. In view of the assumption of minimality on
the Is(X)-action, it follows that C; is dense in X for all D;,d; > 0. Now the claim
follows from a routine continuity argument using the fact that f is 1-Lipschitz.

For each f € A and p € C}, we have |V,(f)| > ﬁéj since f is affine. By the
previous claim, the latter inequality holds for all p € X and all §; > 0. Since f is 1-
Lipschitz it follows that |V,(f)| = 1 for all p € X. Now Proposition 4.2 yields a point
¢ € 0X to which the gradient curve t — ¢;(p) converges as ¢ tends to infinity. Since
the gradient curve as velocity 1 (see §4.1) we deduce that it is a geodesic ray pointing
to . It follows that —f is a Busemann function associated with £. In particular
—f = lim,, d(¢,(p), ) belongs to C, hence to A since f is affine. This yields another
point £’ € 0X and a geodesic ray ¢}(p) pointing to &’. The concatenation of both
rays is a geodesic line v joining £ to & such that (f o) = 1. At this point, [LS07,
Lemma 4.1] yields the desired splitting. O

We conclude this section with a technical property of the space of functions C

valid for arbitrary CAT(0) spaces.
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Lemma 4.10. Let X be any CAT(0) space and Cy be as above. Given a compact
subset A C Cy, if A does not contain any affine function, then the closed convex hull
Conv(A) does not contain any affine function either.

Proof. For any f € A we find some pair of points x}r, z; € X with midpoint my, such
that ey = f(z7) + f(x}) — 2f(my) > 0. For each f € A, let Uy be the open subset
of A consisting of all h with h(x}L) + h(x}) — 2h(my) > e/2. Since A is compact,
finitely many Uy, cover A. Therefore, using the convexity of h, we deduce that

r(h) = (h(x}) + h(z}) — 2h(my,)) > inf{e} >0
for all h € A. Thus the continuous functional h — r(h) is strictly positive on A,
hence it is positive on the compact convex hull of A. Therefore each f € Conv(A) is
non-affine on at least one of the geodesics [:E;?, T U

5. FILTERING FAMILIES OF CONVEX SETS

The purpose of this section is to prove Theorem 1.1. We start by considering an
analogous property for finite-dimensional CAT(1) spaces.

5.1. CAT(1) case. We start with the following analogue of the finite intersection
property for bounded convex sets in CAT(0) spaces.

Lemma 5.1. Let X be a complete CAT(1) space of radius < 5. Then any filtering
family {X,}aeca of closed conver subspaces has a non-empty intersection.

Proof. Given |[BH99, 11.2.6(1) and IL1.2.7|, the proof is identical to that in [Mon06,
Theorem 14]. O

Lemma 5.2. Let X be a finite-dimensional CAT(1) space and {X;};>o be a decreasing
sequence of closed conver subsets such that rad(X;) < 5. Then the intersection (), X;
is a non-empty subset of intrinsic radius < 7/2.

Proof. Let z; be a centre of X; and Z = {z; | 1 > 0}. By assumption d(z;, z;) < 7 for
all 7, 7. Since any ball of radius < 7 is convex, it follows that the closed convex hull
C' of Z has intrinsic radius < 5

We claim that rad(C) < 7. Otherwise we have rad(C) = 7 and every z € Z is a
centre of C. Since the set of all centres is conver, it follows that every point of C' is
a centre. This implies diam(C) < rad(C'), which contradicts [B1.05, Proposition 1.2|
and thereby establishes the claim.

Let C; be the convex hull of {z; | j > i}. Then (C;);>0 is a decreasing sequence
of closed convex subsets in a CAT(1) space of radius < 7/2. By Lemma 5.2, the
intersection @ = (), C; is non-empty. Notice that C; C X; whence @ C (), X;. The
latter intersection is thus non-empty.

For each x € (), X; we have d(z, z;) < § for all j. Thus C} is contained in the ball
of radius § around x. Therefore d(x,q) < /2 for all x € (), X; and ¢ € Q. This
shows that (1), X; has radius at most 7. U

13



Proposition 5.3. Let X be a finite-dimensional CAT(1) space and {Xs}aca be a
filtering family of closed convex subsets such that rad(X,) < 3 for each o € A. Then
the intersection (),c 4 Xa 5 a non-empty subset of intrinsic radius < /2.

Proof. We proceed by induction on n = dim X. There is nothing to prove in dimen-
sion 0, hence the induction can start.

If dim(Xy) < n for some index 0 € A, then the induction hypothesis applied to the
filtering family {Xo N X, }aca yields the desired conclusion. We assume henceforth
that dim(X,) = n for each o € A.

For 3 € A, let 25 be a centre of Xp. If dx,(25) = § for some 8 € A, then the closed
convex hull of zg and X, coincides with the spherical suspension of z3 and X, (see
|Lyt05b, Lemma 4.1]) and hence has dimension 1 + dim(X,). This is absurd since
dim(X,) = dim(X). We deduce dx,(z3) < 5 for all a, 3 € A.

Assume now that sup,c 4 dx,(23) = 5. Then there is a countable sequence (X, )i>0
with a; € A such that lim; dx,, (23) = 5. Upon replacing X, by ﬂgzo X,, we may and
shall assume that the sequence (X,,);>o is decreasing. By Lemma 5.2 the intersection
Y = ()50 Xa; is a non-empty closed convex subset of X. Furthermore by definition
we haVe_dy(Zg) = 5. In particular, we deduce by the same argument as above that
dim(Y) < n.

Now for each o € A, we apply Lemma 5.2 to the nested family (X, N X,,)i>o,
which shows that Y, = [,5,(Xa N X,,) is a closed convex non-empty subset of ¥
with intrinsic radius at mosfg. Moreover, the family {Y, },c4 is filtering and we have
N, Yo =N, (Xa). It follows by induction that (), X, is non-empty and of intrinsic
radius at most 7, as desired.

It remains to consider the case when r = sup,dx,(z3) < 7/2. We are then
in a position to apply Lemma 5.1 to the filtering family {B(z3,7) N Xa}taca. We
deduce that Y = [, X, is non-empty. Moreover, since dy(z5) < r < 7, we deduce
by considering the nearest point projection of zz to Y (see |BH99, I1.2.6(1)]) that
rad(Y) < 3. O

5.2. CAT(0) case. We start with the special case of nested sequences of convex
sets.

Lemma 5.4. Let X be a complete CAT(0) space of telescopic dimension n < oo and
(Xi)i>0 be a nested sequence of closed convex subsets such that ﬂi>0 X, is empty. Let
0 € X be a base point and set f; 1 v — dx,(v) — dx,(0). Then the sequence (f;)
sub-converges to a 1-Lipschitz convex function f which satisfies inf,ex |V, (—f)]
1 n
2 (1= /7))
Proof. The functions f; are 1-Lipschitz and convex ([BH99, I1.2.5(1)]), hence they
are elements of the space Cy defined in Section 4.3. Since Cy is compact, the sequence
(f;) indeed sub-converges to a function f € Cy. It remains to estimate the absolute
gradient of f.

Pick a point p € X. By assumption the intersection (), X; is empty. Since bounded
closed convex sets enjoy the finite intersection property (see Section 3.1), it follows

that dx,(p) tends to infinity with 7. Thus for each ¢ > 0 there is some NV; such that
14
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dx,(p) >t for all © > N;. We may and shall assume without loss of generality that
N1 - 0

Let x; denote the nearest point projection of p to X; (see [BH99, Proposition I1.2.4])
and p; : [0,d(p, ;)] — X be the geodesic path joining p to z;. Set

Dy = diam{p;(t) | i > N:}.

We distinguish two cases.

Assume first that sup, D; < oco. It then follows that for all ¢ > 0, the sequence
(pi(t))i>n, is Cauchy. Denoting by p(t) its limit, the map p : ¢t — p(t) is a geodesic
ray emanating from p. Therefore f = lim; f; is a Busemann function and we have
|V,(—f)] = 1. Thus we are done in this case.

Assume now that sup, D; = co. Then D, tends to infinity with ¢. Choose § > 0
small enough so that v/20 < 1 — /27 and let D > 0 be the constant provided by
Theorem 1.3. We now pick ¢ large enough so that D; > D and set y; = p;(t) for all
i > N;. For j > i we have Z,,(p,z;) > 5 and considering a comparison triangle for
A(p, i, 7;) we deduce d(y;,y;) < tv/2. Set Y = {y; | i > 0}. By Theorem 1.3 we
have rad(Y) < #(v/20 + V)

Let z be the circumcentre of Y. We have dy.(2) < dx,(y;) + d(y;, z) and d(y;, z) <
rad(Y'). Since moreover dx,(p) = dx,(y;) + t, we deduce

fi(z) = filp) = dx,(2) — dx,(p)

d(ylv Z) —1

—t(1 — /35 — V20)

for each i > 0. Therefore f(p) — f(z) > 0't, where §' =1 — /25 — V26, On the

other hand, we have d(z,p) < d(p,y;) + d(y;, z) < 2t, thus % > §'/2.

Since the restriction of — f to the geodesic segment [p, 2] is concave by assumption,
we deduce

VAVANEI

IVp(=f)] = &'/2.
Finally, recalling that ¢/ =1 — , /5~ V20 and that 6 > 0 may be chosen arbitrary
small, the desired estimate follows. 0

Lemma 5.5. Let X be a complete CAT(0) space of finite telescopic dimension and
(Xi)izo be a mested sequence of closed convex subsets. If (N, Xi is empty, then
ﬂizo 0X; is a non-empty subset of the visual boundary 0X of intrinsic radius < 3.

Proof. Let ¢, : X — X denote the gradient flow associated to the convex function f
defined as in Lemma 5.4. Proposition 4.2 provides some point ¢ in the ideal boundary
0X such that the gradient line ¢ — ¢,(p) converges to & for any starting point p € X.

We claim that £ is contained in 0X; for each i. To this end, we fix an index ¢
and consider the restriction h of f to X;. This is a convex function on X; and it
is sufficient to prove that the gradient flow of h coincides with the gradient flow of
f starting at any point of X;. Hence it is enough to prove that for all p € X; the
equality |V,(—f)| = |V,(—h)| holds.

Pick a point x € X and let x; denote the nearest point projection of x to X;. We
have dx, (z) > dx,(z;) and d(p, x) > d(p, z;) for all p € X;. Hence for p € X; and all
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J > 1 we get the inequality
fip) — £(@) _ fi() — fi(x)
d(pa ZL’) N d(pa xl)
Hence the same is true for the limiting function f, which implies the desired equality

\V,o(=f)| = |V,p(—=h)|. This shows that £ is contained in the intersection (), 0X;,
which is thus non-empty.

For any geodesic ray n in X with endpoint in (), 0X;, the restriction of f; to 7 is
bounded from above, hence non-increasing. Therefore the same holds true for the
restriction of the limiting function f to the ray 7. In other words the endpoint of 7 is
f-monotone. From Lemma 4.5 we deduce that d(§,v) < /2 for all v € N0X,;. O

Proof of Theorem 1.1. Pick a base point o € X. If the set {dx,(0)}aca is bounded,
then [, X, has a non-empty intersection by the finite intersection property (see
Section 3.1). We assume henceforth that this is not the case. In particular there
exists a sequence of indices (o, )n>o such that lim, dx, (0) = co. Now for each
a € A, we may apply Lemma 5.5 to the nested sequence (X, N X, )n>0. This shows
that Y, = (1,50 9(Xa N X,,) is a non-empty subset of intrinsic radius < 7 of 0X.
Notice that {Y, }aca is a filtering family. Proposition 2.1 then allows one to appeal to
Proposition 5.3, which shows that (7, Y, is a non-empty subset of intrinsic radius < 7.
This provides the desired statement since (1, 0X, =), Ya- O

We end this section by an example illustrating that Theorem 1.1 fails if one assumes
only that the Tits boundary 0.X be finite-dimensional.

Ezample 5.6. Let ‘H be a separable (real) Hilbert space with orthonormal basis {e;}
and X C H be the subset consisting of all points ) a;e; with |a;| < ¢ for all 1.
Thus X is a closed convex subset of H with empty (hence finite-dimensional) ideal
boundary. Let now X, = {3 .ae; | a; > 1foralli < n}. Then {X,} is a nested
family of closed convex subsets with empty intersection.

6. APPLICATIONS
6.1. Parabolic isometries.

Proof of Corollary 1.5. By Proposition 2.1, the boundary 0X is finite-dimensional.
The sublevel sets of the displacement function of g define a Z5(x)(g)-invariant nested
sequence of closed convex subspace. The intersection of their boundaries is nonempty
by Theorem 1.1 and possesses a barycentre by [BLO05, Prop. 1.4], which is the desired
fixed point. 0

6.2. Minimal and reduced actions. We begin with a de Rham type decomposi-
tion property. It was shown by Foertsch-Lytchak [F'L08]| that any finite-dimensional
CAT(0) space (and more generally any geodesic metric space of finite affine rank)
admits a canonical isometric splitting into a flat factor and finitely many non-flat
irreducible factors. Building upon |FL08|, it was then shown by Caprace-Monod
|CMO8, Corollary 4.3(ii)| that the same conclusion holds for proper CAT(0) spaces
whose isometry group acts minimally, assuming that the Tits boundary is finite-

dimensional. We shall need the following ‘improper’ variation of this result.
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Proposition 6.1. Let X be a complete CAT(0) space of finite telescopic dimension,
such that I1s(X) acts minimally. Then there is a canonical mazimal isometric splitting

R"x X; x---x X,

where each X; s irreducible, unbounded and 2 R. FEvery isometry preserves this
decomposition upon permuting possibly isometric factors X;.

Proof. Let 'H be a separable Hilbert space with orthonormal basis {e; };~o and denote
by Cy the convex hull of the set {0}U{2%; | 0 < i < k}. Let now X be a CAT(0) space
such that for every isometric splitting X = X; x --- x X, with each X; unbounded,
some factor X; admits an isometric splitting X; = X/ x X/ with unbounded factors.
Then there is a point 0 € X and for each £ > 0 an isometric embedding ¢y : Cp, — X
with ¢(0) = o. Since for all k£ > 0 the set 2.C} embeds isometrically in Cj 1, it follows
that C} embeds isometrically in the asymptotic cone limw(%X ,0). In particular X
does not have finite telescopic dimension. This shows that any CAT(0) space of finite
telescopic dimension admits a mazimal isometric splitting into a product of finitely
many unbounded (necessarily irreducible) subspaces.

In view of the latter observation and given Proposition 2.1, the proof of [CMO8,
Corollary 4.3(ii)] applies verbatim and yields the desired conclusion. O

Proof of Proposition 1.8. (i) We claim that the statement of (i) follows from (ii) and
(iii). Indeed, if G has no fixed point at infinity, then there is a minimal non-empty
G-invariant subspace Y C X by (ii). Upon replacing G by a finite index subgroup,
this subspace Y admits a G-equivariant decomposition as in Proposition 6.1. The
induced action of G on each of these spaces is minimal without fixed point at infinity.
Therefore, it is non-evanescent by (iii), unless Y is bounded, in which case it is
reduced to a single point by G-minimality. This means that G fixes a point in X.

(ii) Assume that G has no minimal invariant subspace. By Zorn’s lemma this implies
that there is a chain of G-invariant subspaces with empty intersection. By Theo-
rem 1.1 the intersection of the boundaries at infinity of the subspaces in this chain
provide a closed convex G-invariant set ¥ C 90X of radius < 7. By Proposition 2.1,
the set Y is finite-dimensional. Hence it possesses a unique barycentre by [BLO5,
Prop. 1.4], which is thus fixed by G.

By Proposition 2.1 the boundary 0.X is finite-dimensional. Therefore, for (iii) and
(iv), Theorem 1.1 (in fact, Lemma 5.5 is sufficient) allows one to repeat verbatim the
proofs of the corresponding statements that are given in [CM08], namely Theorem 1.6
in loc. cit. for the fact that normal subgroups act minimally without fixed point
at infinity, Corollary 2.8 in loc. cit. for the fact that the G-action is reduced and
Proposition 1.3(i) in loc. cit. for the fact that X is boundary-minimal provided
Is(X) acts minimally. O

Proof of Corollary 1.9. By Proposition 6.1 the space X admits a canonical decompo-
sition as a product of finitely many irreducible factors. The lattice I' admits a finite
index normal subgroup I'* which acts componentwise on this decomposition (the fi-
nite quotient I'/I'™* acts by permuting possibly isometric irreducible factors). Let G}

be the closure of the projection of I'* to G; and set G* = G7 x --- x G};. Thus G* is
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a closed normal subgroup of finite index of G and we have G = I' - G*. In particular
it is sufficient to show that the [*-action extends to a continuous G*-action. To this
end, we work one irreducible factor at a time. Given Proposition 1.8(iii), the desired
continuous extension is provided by [Mon06, Theorem 6|. O

6.3. Isometric actions of amenable groups.

Proof of Theorem 1.6. Assume that G has no fixed point at infinity. Thus there is
a minimal closed convex invariant subset by Proposition 1.8(ii) and we may assume
that this subset coincides with X. In other words G acts minimally on X. Let
X =E x X’ be the maximal Euclidean decomposition (see [BH99, 11.6.15(6)]). Thus
G preserves the splitting X = E x X’ and the induced G-action on both E and X’ is
minimal and does not fix any point at infinity. We need to show that X' is reduced
to a single point. To this end, it is thus sufficient to establish the following claim.

If an amenable locally compact group G acts continuously, minimally and without
fized points at infinity on a CAT(0) space X of finite telescopic dimension without
Euclidean factor, then X s reduced to a single point.

Assume that this is not the case. Pick a base point o € X and consider the
spaces C C Cy defined in Subsection 4.3. Let A denote the closed convex hull of C
in the locally convex topological vector space B of all functions vanishing at o. By
Proposition 6.1 the subset C does not contain any affine function. It follows from
Lemma 4.10 that A does not contain any affine function either. The induced action
of G on B is continuous and preserves the compact convex set A. By the definition
of amenability G has a fixed point in A. Thus we have found some non-constant
1-Lipschitz convex function f which is quasi-invariant with respect to G in the
sense that, for each g € G, one has f(gz) = f(x) + f(go). (In other words, this
means that for each g, the map « — f(gz)— f(x) is constant.) The following lemma,
analogous to [AB98, Lemma 2.4|, implies that G has a fixed point at infinity, which
is absurd. U

Lemma 6.2. Let a group G act minimally by isometries on a complete CAT(0)
space X of finite telescopic dimension. There is a G-quasi-invariant continuous non-
constant convex function f on X if and only if G fives a point in 0X.

Proof. If G fixes a point in X, then the Busemann function of this point (that is
uniquely defined up to a positive constant) is quasi-invariant.

Assume that f is quasi-invariant and define a : G — R by a(g) = f(gz) — f(x).
By assumption a does not depend on x; furthermore a is a homomorphism. If a
were constant, then f would be G-invariant and, hence, so would be any sub-level
set of f. This contradicts the minimality assumption on the G-action. Therefore
a is non-constant; more precisely the image of a is unbounded and inf f = —o0.
For each r € R set X, := ¢~ '(—o0, —r]. Then (X,),.cr is a chain of closed convex
subspaces with empty intersection; furthermore every element of G permutes the sets
X,. It follows that C' = (), g 0X, is G-invariant. Theorem 1.1 now shows that C'
is nonempty of radius < 7, and [BLO5, Prop. 1.4] implies that G fixes a point in
C CoX. O
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Proof of Theorem 1.7. The proof mimicks the arguments given in [Cap07]; we do not
reproduce all the details. Asin loc. cit. the key point is to establish that every point of
the refined boundary Js,. X (defined in loc. cit., §4.2) has an amenable stabiliser in
GG and that, conversely, any amenable subgroup of G' possesses a finite index subgroup
which fixes a point in X U 0gpeX. The proof that amenable groups stabilise point in
X U 0OgpeX uses Theorem 1.6 together with an induction on the geometric dimension
(see the remark following Corollary 4.4 in loc. cit. showing that there is a uniform
upper-bound on the level of a point in the refined boundary). For the converse,
one shows directly that the G-stabiliser of a point in O, X is (topologically locally
finite)-by-(virtually Abelian); the cocompactness argument used in Proposition 4.5
of loc. cit. is replaced by a compactness argument relying on the hypothesis that X
has finitely many types of cells, all of which are compact. U

Proof of Corollary 1.10. By Proposition 6.1, the space X admits a canonical decom-
position as a product of a maximal Euclidean factor and a finite number of irreducible
non-Euclidean factors. The Euclidean factor is G-invariant and G possesses a closed
normal subgroup of finite index G* that acts componentwise on the above product.
By hypothesis, the G*-action on each non-Euclidean factor is minimal and does not
fix any point at infinity. Theorem 1.6 and Proposition 1.8(iii) therefore imply that
the amenable radical of G* acts trivially. This implies that the amenable radical of
G acts as a finite group on the product of all non-Euclidean factors of X. Thus this
action is trivial since G' acts minimally. O
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