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AT INFINITY OF FINITE-DIMENSIONAL CAT(0) SPACESPIERRE-EMMANUEL CAPRACE* AND ALEXANDER LYTCHAK†Abstra
t. We show that any �ltering family of 
losed 
onvex subsets of a �nite-dimensional CAT(0) spa
e X has a non-empty interse
tion in the visual bordi�
a-tion X = X ∪ ∂X . Using this fa
t, several results known for proper CAT(0) spa
esmay be extended to �nite-dimensional spa
es, in
luding the existen
e of 
anoni
al�xed points at in�nity for paraboli
 isometries, algebrai
 and geometri
 restri
tionson amenable group a
tions, and geometri
 superrigidity for non-elementary a
tionsof irredu
ible uniform latti
es in produ
ts of lo
ally 
ompa
t groups.1. Introdu
tionSeveral families of �nite-dimensional CAT(0) spa
es naturally in
lude spe
imenswhi
h are not lo
ally 
ompa
t; e.g. buildings of �nite rank (Eu
lidean or not), �nite-dimensional CAT(0) 
ube 
omplexes, or asymptoti
 
ones of Hadamard manifolds orof CAT(0) groups.A major di�
ulty one en
ounters when dealing with non-proper spa
es is that thevisual boundary may have a very pathologi
al behaviour. For example, an unboundedCAT(0) spa
e may well have an empty visual boundary. The purpose of this paperis to show that for �nite-dimensional spa
es, the visual boundary nevertheless enjoyssimilarly ni
e properties as in the 
ase of proper spa
es.Following B. Kleiner [Kle99℄, we de�ne the (geometri
) dimension of a CAT(0)spa
e X to be the supremum over all 
ompa
t subsets K ⊂ X of the topologi
aldimension of K. We refer to lo
. 
it. for more details and several 
hara
terizationsof this notion. A 0-dimensional CAT(0) spa
e is redu
ed to a singleton, while 1-dimensional CAT(0) spa
es 
oin
ide with R-trees. We emphasize that the notion ofgeometri
 dimension is lo
al. It turns out that, for our purposes, it will be su�
ientto demand that the spa
es have �nite dimension at large s
ale. In order to de�ne this
ondition pre
isely, we shall say that a CAT(0) spa
e X has teles
opi
 dimension
≤ n if every asymptoti
 
one limω(εnX, ⋆n) has geometri
 dimension ≤ n. A spa
ehas teles
opi
 dimension 0 if and only if it is bounded. It has teles
opi
 dimension≤ 1if and only if it is Gromov hyperboli
. A CAT(0) spa
e of �nite geometri
 dimensionhas �nite teles
opi
 dimension. We refer to �2.1 below for more details and someexamples.Theorem 1.1. Let X be a 
omplete CAT(0) spa
e of �nite teles
opi
 dimension and
{Xα}α∈A be a �ltering family of 
losed 
onvex subspa
es. Then either the interse
tionDate: O
tober 9, 2008.1991 Mathemati
s Subje
t Classi�
ation. 53C20, 20F65.*F.N.R.S. Resear
h Asso
iate.
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α∈AXα is non-empty, or the interse
tion of the visual boundaries ⋂

α∈A ∂Xα is anon-empty subset of ∂X of intrinsi
 radius at most π/2.Re
all that a family F of subsets of a given set is 
alled �ltering if for all E,F ∈ Fthere exists D ∈ F su
h thatD ⊆ E∩F . In parti
ular the pre
eding applies to nestedfamilies of 
losed 
onvex subsets, and provides a 
riterion ensuring that the visualboundary ∂X is non-empty. In the 
ourse of the proof, we shall establish a resultsimilar to Theorem 1.1 for �nite-dimensional CAT(1) spa
es (see Proposition 5.3below). We remark however that Theorem 1.1 fails for 
omplete CAT(0) spa
es with�nite-dimensional Tits boundary, see Example 5.6 below.Remark 1.2. Theorem 1.1 may be reformulated using the topology Tc introdu
ed byNi
olas Monod [Mon06, �3.7℄ on the set X = X ∪ ∂X. It is de�ned as the 
oarsesttopology su
h that for any 
onvex subset Y ⊆ X, the (usual) 
losure Y in X is
Tc-
losed. It is known that any bounded 
losed subset of X is Tc-quasi-
ompa
t(see [Mon06, Theorem 14℄) and that, if X is Gromov hyperboli
, then X is Tc-quasi-
ompa
t (see Proposition 23 in lo
. 
it.). However, if X is in�nite-dimensionalthen X is generally not Tc-quasi-
ompa
t. Theorem 1.1 just means that, given a
omplete CAT(0) spa
e of �nite teles
opi
 dimension, the set X is quasi-
ompa
t forthe topology Tc. This 
ompa
tness property is thus shared by proper CAT(0) spa
es,Gromov hyperboli
 CAT(0) spa
es and �nite-dimensional CAT(0) spa
es.A key idea in the proof of Theorem 1.1 is to obtain points at in�nity by applying (avery spe
ial 
ase of) a result of A. Karlsson and G. Margulis [KM99℄ to the gradient�ow of a 
onvex fun
tion that is asso
iated in a 
anoni
al way to the given �lteringfamily. This strategy requires to show that the velo
ity of es
ape of the gradient�ow in question is stri
tly positive. This is where the assumption on the teles
opi
dimension of the ambient spa
e is used; the main point in estimating that velo
ityis the following natural generalisation to non-positively 
urved spa
es of H. Jung's
lassi
al theorem [Jun01℄. Another 
losely related generalisation was established in[LS97℄.Theorem 1.3. Let X be a CAT(0) spa
e and n be a positive integer.Then X has geometri
 dimension ≤ n if and only if for ea
h subset Y of X of�nite diameter we have radX(Y ) ≤

√

n

2(n+ 1)
diam(Y ).Similarly X has teles
opi
 dimension ≤ n if and only if for any δ > 0 there existssome 
onstant D > 0 su
h that for any bounded subset Y ⊂ X of diameter > D, wehave radX(Y ) ≤

(

δ +

√

n

2(n+ 1)

)

diam(Y ).Re
all that the 
ir
umradius radX(Y ) of a subset Y ⊆ X is de�ned as thein�mum of all positive real numbers r su
h that Y is 
ontained in some 
losed ballof radius r of X.Remark 1.4. In the 
ase of an n-dimensional regular Eu
lidean simplex one has equal-ity in the theorem above. For a short dis
ussion of the 
ase of equality as well asanalogous statements in other 
urvature bounds we refer to Se
tion 3.2



It turns out that Theorem 1.1 provides a key property that allows one to extend to�nite-dimensional CAT(0) spa
es several results whi
h are known to hold for properspa
es. We now pro
eed to des
ribe a few of these appli
ations.Paraboli
 isometries. A �rst elementary 
onsequen
e of Theorem 1.1 is the exis-ten
e of 
anoni
al �xed points at in�nity for paraboli
 isometries. This extends theresults obtained in [FNS06, Theorem 1.1℄ and [CM08, Corollary 2.3℄ in the lo
ally
ompa
t setting.Corollary 1.5. Let g be a paraboli
 isometry of a CAT(0) spa
e X of �nite teles
opi
dimension. Then the 
entraliser ZIs(X)(g) possesses a 
anoni
al �xed point in ∂X.Amenable group a
tions. The next appli
ation provides obstru
tions to isometri
a
tions of amenable groups; in the lo
ally 
ompa
t 
ase the 
orresponding statementis due to S. Adams and W. Ballmann [AB98℄, and generalizes earlier results byM. Burger and V. S
hroeder [BS87℄.Theorem 1.6. Let X be a 
omplete CAT(0) spa
e of �nite teles
opi
 dimension.Let G be an amenable lo
ally 
ompa
t group a
ting 
ontinuously on X by isometries.Then either G stabilises a �at subspa
e (possibly redu
ed to a point) or G �xes a pointin the ideal boundary ∂X.Combining this with the arguments of [Cap07℄, one obtains the following des
rip-tion of the algebrai
 stru
ture of amenable groups a
ting on CAT(0) 
ell 
omplexes.Theorem 1.7. Let X be a CAT(0) 
ell 
omplex with �nitely many types of 
ells and
G be a lo
ally 
ompa
t group admitting an isometri
 a
tion on X whi
h is 
ontinuous,
ellular and metri
ally proper. Then a 
losed subgroup H < G is amenable if andonly if it is (topologi
ally lo
ally �nite)-by-(virtually Abelian).By de�nition, a subgroup H of a topologi
al group G is topologi
ally lo
ally�nite if the 
losure of every �nitely generated subgroup of H is 
ompa
t. We referto [Cap07℄ for more details. The proof of Theorem 1.7 pro
eeds as in lo
. 
it. Oneintrodu
es the re�ned boundary ∂fineX of the CAT(0) spa
e and shows, usingTheorem 1.6, that any amenable subgroup of G virtually �xes a point in X ∪ ∂fineX;
onversely any point of X ∪ ∂fineX has an amenable stabilizer in G.Minimal and redu
ed a
tions. A basi
 property of CAT(0) spa
es with �niteteles
opi
 dimension is that their Tits boundary has �nite geometri
 dimension (seeProposition 2.1 below). Given this observation, Theorem 1.1 may be used to extendseveral results of [CM08, Part I℄ to the �nite-dimensional 
ase. The following 
olle
tsa few of these statements.Proposition 1.8. Let X be a 
omplete CAT(0) spa
e of �nite teles
opi
 dimensionand let G < Is(X) be any group of isometries.(i) If the G-a
tion is evanes
ent, then G �xes a point in X ∪ ∂X.(ii) If G does not �x a point in the ideal boundary, then there is a non-empty
losed 
onvex G-invariant subset Y ⊆ X on whi
h G a
ts minimally.3



(iii) Suppose that X is irredu
ible. If G a
ts minimally without �xed point atin�nity on X, then so does every non-trivial normal subgroup of G; further-more, the G-a
tion is redu
ed.(iv) If Is(X) a
ts minimally on X, then for ea
h 
losed 
onvex subset Y ( X wehave ∂Y ( ∂X.Following Ni
olas Monod [Mon06℄, we say that the a
tion of a groupG on a CAT(0)spa
e X is evanes
ent if there is an unbounded subset T ⊆ X su
h that for every
ompa
t set Q ⊂ G the set {d(gx, x) : g ∈ Q, x ∈ T} is bounded. Re
all furtherthat the G-a
tion is said to be minimal if there is no non-empty 
losed 
onvex
G-invariant subset Y ( X. Finally, it is 
alled redu
ed if there is no non-empty
losed 
onvex subset Y ( X su
h that for ea
h g ∈ G, the sets Y and g.Y areat bounded Hausdor� distan
e from one another. The relevan
e of the notions ofevanes
ent and redu
ed a
tions was �rst highlighted by Ni
olas Monod [Mon06℄ inthe 
ontext of geometri
 superrigidity. In parti
ular, the 
ombination of [Mon06,Theorem 6℄ with Proposition 1.8(iii) yields the following (see [CM08, Theorem 9.4℄for the 
orresponding statement in the lo
ally 
ompa
t 
ase).Corollary 1.9. Let Γ be an irredu
ible uniform (or square-integrable weakly 
o
om-pa
t) latti
e in a produ
t G = G1 × · · · × Gn of n ≥ 2 lo
ally 
ompa
t σ-
ompa
tgroups. Let X be a 
omplete CAT(0) spa
e of �nite teles
opi
 dimension withoutEu
lidean fa
tor. Then any minimal isometri
 Γ-a
tion on X without �xed point atin�nity extends to a 
ontinuous G-a
tion by isometries.On the other hand, 
ombining Proposition 1.8 with Theorem 1.6 yields the follow-ing extension of [CM08, Corollary 4.8℄.Corollary 1.10. Let G be a lo
ally 
ompa
t group a
ting 
ontinuously and minimallyon a CAT(0) spa
e X of �nite teles
opi
 dimension, without �xing any point atin�nity. Then the amenable radi
al R of G stabilizes the maximal Eu
lidean fa
torof X. In parti
ular, if X has no non-trivial Eu
lidean fa
tor, then R a
ts trivially.A
knowledgements. We would like to thank Viktor S
hroeder for fruitful 
onver-sations on a�ne fun
tions. We are grateful to Anton Petrunin for providing Exam-ple 4.4. Finally we thank Ni
olas Monod for numerous illuminating 
onversationsand for pointing out that no separability assumption on G is needed for Theorem 1.6to hold. 2. Preliminaries2.1. Geometri
 and teles
opi
 dimension. We re
all some fa
ts about dimen-sions of spa
es with upper 
urvature bounds. The geometri
 dimension (some-times simply 
alled dimension) of su
h spa
es was de�ned indu
tively in [Kle99℄,by setting the dimension of a dis
rete spa
e to be 0 and be de�ning dim(X) =
sup{dim(SxX) + 1|x ∈ X}, where SxX denotes the spa
e of dire
tions at the point
x. It turns out that this notion of dimension is 
losely related to more topologi
alnotions. Namely dim(X) ≤ n if and only if for all open subsets V ⊂ U of X the rela-tive singular homology Hk(U, V ) vanishes for all k > n. Moreover, this is equivalent4



to the fa
t that the topologi
al dimension of all 
ompa
t subsets of X is boundedabove by n, see lo
. 
it.By de�nition, a CAT(0) spa
e X is said to have teles
opi
 dimension ≤ n ifevery asymptoti
 
one limω(εnX, ⋆n) has geometri
 dimension ≤ n. Although thiswill not play any role in the sequel, we remark that the teles
opi
 dimension is a quasi-isometry invariant. Moreover, it follows from [Kle99, Th. C℄ that a lo
ally 
ompa
tCAT(0) spa
e with a 
o
ompa
t isometry group has �nite teles
opi
 dimension.Convex subsets inherit the geometri
 dimension bound from the ambient spa
e.Moreover, if (Xi, xi) is a sequen
e of pointed CAT(κ) spa
es of geometri
 dimension
≤ n, then their ultralimit limω(Xi, xi) with respe
t to some ultra�lter is a CAT(κ)spa
e of dimension at most n, see [Lyt05b, Lemma 11.1℄. In parti
ular, it followsthat a CAT(0) spa
e of geometri
 dimension ≤ n has teles
opi
 dimension ≤ n.Furthermore, we have the following.Proposition 2.1. Let X be a CAT(0) spa
e. If X has teles
opi
 dimension ≤ n,then the visual boundary ∂X endowed with Tits metri
 has geometri
 dimension atmost n− 1.Proof. Let o ∈ X be a base point and CωX be the asymptoti
 
one limω( 1

n
X, o). TheEu
lidean 
one C(∂X) embeds isometri
ally into CωX, see [Kle99, Lemma 10.6℄.Thus dim(∂X) = dim(C(∂X)) − 1 ≤ dim(CωX) ≤ n. �We emphasize that a CAT(0) spa
e X may have �nite-dimensional Tits boundarywithout being of �nite teles
opi
 dimension, even if X is proper. Indeed, 
onsiderfor instan
e the positive real half-line and glue at ea
h point n ∈ N an n-dimensionalEu
lidean ball of radius n. The resulting spa
e is proper and CAT(0), its idealboundary 
onsists of a single point, but ea
h of its asymptoti
 
ones 
ontains anin�nite-dimensional Hilbert spa
e.We shall use a topologi
al version Helly's 
lassi
al theorem that holds in mu
hgreater generality (see [Dug67℄ as well as [Far08, �3℄ for a related dis
ussion). Thefollowing statement is an immediate 
onsequen
e of [Kle99, Proposition 5.3℄ sin
einterse
tions of 
onvex sets are either empty or 
ontra
tible.Lemma 2.2. Let X be a CAT(0) spa
e of geometri
 dimension ≤ n. Let {Uα}α∈A bea �nite family of open 
onvex subsets of X. If for ea
h subset B ⊂ A with at most n+1elements the interse
tion ⋂

α∈B Uα is non-empty, then ⋂

α∈A Uα is non-empty. �2.2. Inner points. Following [LS07℄, we shall say that a point o of a CAT(0) spa
e
X is a topologi
ally inner point ifX\{o} is not 
ontra
tible. For ea
h topologi
allyinner point there is some ε > 0 and a 
ompa
t subset K of X with d(o,K) ≥ ε withthe following property: For ea
h x ∈ X there is some x̄ ∈ K su
h that xox̄ is a geo-desi
. Thus every geodesi
 segment whi
h terminates at o may be lo
ally prolongedbeyond o; in loose terms, the spa
e X is geodesi
ally 
omplete at the point o. In aCAT(0) spa
e whi
h is lo
ally of �nite geometri
 dimension, the set of topologi
allyinner points is dense, see [LS07, Theorem 1.5℄. In parti
ular it is non-empty.3. Jung's theorem5



3.1. CAT(0) 
ase. Throughout the paper, we shall adopt the following notational
onvention. Given a subset Y ⊆ X we denote the distan
e to Y by dY , namely
dY : X → R : x 7→ infy∈Y d(x, y). We further re
all that the intrinsi
 radius of asubset Z of a metri
 spa
e X is de�ned as

rad(Z) = inf
z∈Z

{r ∈ R>0 | Z ⊆ B(z, r)}.This notion should not be 
onfused with the 
ir
umradius (or relative radius),de�ned as
radX(Z) = inf

x∈X
{r ∈ R>0 | Z ⊆ B(x, r)}.Bounded 
losed 
onvex subsets of non-positively 
urved spa
es have the �niteinterse
tion property (see [LS97, Proof of Theorem B℄ or [Mon06, Theorem 14℄).This means that for any family {Xα}α∈A of bounded 
losed 
onvex subsets of a CAT(0)spa
e X the interse
tion ⋂

α∈AXα is non-empty whenever the interse
tion of ea
h�nite sub-family is non-empty.Lemma 3.1. Let X be a CAT(0) spa
e of geometri
 dimension ≤ n and Y ⊆ X bea subset of �nite diameter. If for all subsets Y ′ ⊆ Y of 
ardinality |Y ′| ≤ n + 1 wehave radX(Y ′) ≤ r then radX(Y ) ≤ r.Proof. Fix an arbitrary r′ > r. For y ∈ Y , denote by Oy the open ball of radius
r′ around y. These balls are 
onvex and, by assumption, the interse
tion of any
olle
tion of at most (n+ 1) su
h balls is non-empty. By Lemma 2.2 the interse
tionof any �nite 
olle
tion of su
h balls is non-empty. Sin
e r′ > r is arbitrary, thisimplies that ea
h �nite subset Y ′ of Y has radius at most r. For y ∈ Y , denotenow by By the 
losed ball of radius r around y. Then the interse
tion of ea
h �nite
olle
tion of By is non-empty, hen
e the interse
tion of all By is non-empty. For anypoint x in this interse
tion, we get d(x, y) ≤ r for all y ∈ Y . Hen
e radX(Y ) ≤ r. �Proof of Theorem 1.3. Theorem A from [LS97℄ ensures that for any CAT(0) spa
e
X and ea
h subset Y ⊂ X of 
ardinality at most n + 1, the inequality radX(Y ) ≤
√

n
2(n+1)

diam(Y ) holds. In view of this, it follows from Lemma 3.1 that the inequality
radX(Y ) ≤

√

n
2(n+1)

diam(Y ) holds for any subset Y of a CAT(0) spa
e X of geometri
dimension ≤ n.Assume 
onversely that X has geometri
 dimension > n. By [Kle99, Theorem 7.1℄,there exist a sequen
e (λk) of positive real numbers su
h that limk λk = ∞, and asequen
e (Yk, ⋆k)k≥0 of pointed subsets of X su
h that
lim

ω
(λkYk, ⋆k) = R

n+1for any non-prin
ipal ultra�lter ω. We may then �nd n+2 sequen
es (yi
k)k≥0 of pointsof Yk indexed by i ∈ {0, 1, . . . , n+1} su
h that the set ∆ = {limω(yi

k) | i = 0, . . . , n+1}
oin
ides with the vertex set of a regular simplex of diameter 1 in R
n+1. Sin
e theequality 
ase of the (n+ 1)-dimensional Jung inequality is a
hieved in the 
ase of ∆,we dedu
e that there exists some k ≥ 0 su
h that the n-dimensional Jung inequalityfails for the subset ∆k = {yi

k | i = 0, . . . , n+ 1} ⊂ X.6



Assume now that X has teles
opi
 dimension ≤ n and suppose for a 
ontradi
tionthat for some �xed δ > 0 and for ea
h integer k > 0 there is a subset Yk ⊂ X su
h that
diam(Yk) > k and radX(Yk) ≥ (

√

n
2(n+1)

+ δ)diam(Yk). Let ⋆k be the 
ir
um
entreof Yk. Setting λk = radX(Yk), it then follows that the asymptoti
 
one limω( 1
λk
X, ⋆k)possesses a subset limω(Yk) whi
h fails to satisfy the n-dimensional Jung inequality.The 
ontradi
ts the �rst part of the statement whi
h has already been established.Assume 
onversely that X has teles
opi
 dimension > n. Then, by [Kle99, The-orem 7.1℄ there exists a sequen
e (Yk, ⋆k)k≥0 of pointed subsets of X su
h that

limω(Yk, ⋆k) = R
n+1. In parti
ular diam(Yk) tends to ∞ with k and we 
on
ludeby the same argument as before. �3.2. Rigidity and other 
urvature bounds. In this subse
tion, we brie�y sket
hthe analogues of Theorem 1.3 in the 
ase of non-zero 
urvature bounds and addressthe equality 
ase. Sin
e the results are not used in the sequel, we do not provide
omplete proofs.Following word by word the proof of Theorem 1.3 and using the results of [LS97℄for other 
urvature bounds, one obtains the following.Proposition 3.2. Let X be a CAT(−1) spa
e of geometri
 dimension at most n. Let

Y be a subset of X of diameter at most D. Then the radius of Y in X is boundedabove by rn(D), where rn(D) denote the radius of the regular n-dimensional simplex
∆D in the n-dimensional real hyperboli
 spa
e Hn of diameter D. �In the positively 
urved 
ase one needs to assume a bound on the radius in orderfor the balls in question to be 
onvex. An additional te
hni
al di�
ulty arises fromthe fa
t the the whole spa
e may be non-
ontra
tible in this 
ase, and the statementof Lemma 2.2 has therefore to be slightly modi�ed in that 
ase. The resulting radius�diameter estimate is the following.Proposition 3.3. Let X be a CAT(1) spa
e of dimension ≤ n. Let Y be a subset of
X of 
ir
umradius r < π

2
. Then the diameter of Y is at least sn(r), where sn(r) isthe diameter of the regular simplex of radius r in the round Sn.Remark 3.4. In a similar way it 
an be shown, that the assumption r = radX(Y ) < π

2is ful�lled as soon as diam(Y ) < kn = arccos(−1/(n+ 1)).It is shown in [LS97℄ that for a subset Y of 
ardinality ≤ n + 1, the equality inTheorem 1.3 holds if and only if the 
onvex hull of these points is isometri
 to aregular Eu
lidean simplex. Arguing as in the proof of Theorem 1.3 one obtains thatif X is lo
ally 
ompa
t, the inequality be
omes an equality if and only if the 
onvexhull of Y 
ontains a regular n-dimensional Eu
lidean simplex of diameter equal to thediameter of Y . If X is not lo
ally 
ompa
t the same statement holds for the 
onvexhull of the ultraprodu
t Y ω ⊂ Xω. Similarly, the analogous rigidity statements holdfor spa
es with other 
urvature bounds for the same reasons.4. Convex fun
tions and their gradient flow7



4.1. Gradient �ow. We re
all some basi
s about gradient �ows asso
iated to 
onvexfun
tions. We refer to [May98℄ for the general 
ase and to [Lyt05a℄ for the simpler
ase of Lips
hitz 
ontinuous fun
tions; only the latter is relevant to our purposes.Given a CAT(0) spa
e X, a map f : X → R is 
alled 
onvex if its restri
tion f ◦γto ea
h geodesi
 γ is 
onvex. Basi
 examples of 
onvex fun
tions on CAT(0) spa
esare distan
e fun
tions to points or to 
onvex subsets, and Busemann fun
tions, see[BH99, II.2 and II.8℄.Let f be a 
ontinuous 
onvex fun
tion on a CAT(0) spa
e X. For a point p ∈ X,the absolute gradient of the 
on
ave fun
tion (−f) at p is de�ned by the formula
|∇p(−f)| = max

{

0, lim sup
x→p

f(p) − f(x)

d(p, x)

}

.The absolute gradient is a non-negative, possibly in�nite fun
tion. It is boundedabove by the Lips
hitz 
onstant if f is Lips
hitz 
ontinuous. A fundamental obje
tatta
hed to the fun
tion f is the gradient �ow whi
h 
onsists of a map φ : [0,∞)×
X → X whi
h, loosely speaking, has the property that φ0 = Id and φt(x) follows forea
h x the path of steepest des
ent of f from x. The gradient �ow is indeed a �owin the sense that it satis�es φs+t(x) = φs ◦ φt(x) for all x ∈ X. The most importantproperty of gradient �ows, originally observed by Vladimir Sharafutdinov [�ar77℄ inthe Riemannian 
ontext, is that the �ow φt is semi-
ontra
ting. In other words,for ea
h t ≥ 0, the map φt : X → X is 1-Lips
hitz (see [Lyt05a, Theorem 1.7℄). Werefer to [May98℄ or [Lyt05a, �9℄ for more details and histori
al 
omments.Remark 4.1. Originally, the gradient lines and �ows were de�ned for 
on
ave fun
tionsby Sharafutdinov [�ar77℄ in the 
ase of manifolds; they are also 
ommonly usedfor semi-
on
ave (but not semi-
onvex) fun
tions. Moreover the gradient usuallyrepresents the dire
tion of the maximal growth of the fun
tion rather than its maximalde
ay. This explains the slightly 
umbersome notation |∇x(−f)| that we use here.For ea
h x ∈ X the gradient 
urve t 7→ φt(x) of f has the following properties(and is uniquely 
hara
terised by them).(1) The 
urve t 7→ φt(x) has velo
ity |φt(x)

′| = |∇φt(x)(−f)| for almost all t ≥ 0.(2) The restri
tion t 7→ f(φt(x)) of f to the gradient 
urve is 
onvex. Further-more it satis�es (f ◦ φt(x))
′ = −|∇φt(x)(−f)|2.We de�ne the velo
ity of es
ape of the �ow φt at the point x ∈ X by

lim sup
t→∞

d(x, φt(x))

t
.Sin
e the �ow φt is semi-
ontra
ting, the lim sup in the above de�nition may berepla
ed by a usual limit. Moreover, it does not depend on the starting point x. Thefollowing statement is an appli
ation of the main result of [KM99℄ (to a deterministi
setting).Proposition 4.2. Let f be a 
onvex Lips
hitz fun
tion on a CAT(0) spa
e X. If

ε = infx∈X |∇x(−f)| > 0 then there is a unique point ξf ∈ ∂X su
h that for all x ∈ Xthe gradient 
urve φt(x) de�ned by f 
onverges to ξf for t→ ∞.8



Remark 4.3. In parti
ular, the existen
e of a fun
tion f as in Proposition 4.2 impliesthat the ideal boundary of X is non-empty.The following 
onstru
tion due to Anton Petrunin shows that the 
on
lusion ofProposition 4.2 fails without a uniform lower bound on the absolute gradient.Example 4.4. Choose an a
ute angle in R
2 en
losed by two rays γ±(t) = t · v±emanating from the origin. Let fn(w) = 〈w, xn〉 be linear maps on R

2 su
h that thefollowing 
onditions hold. First, for all n, we require that 〈xn, v
±〉 be positive. For odd(resp. even) n, the dire
tion v+ (resp. v−) is between xn and v− (resp. xn and v+).Moreover, the sequen
e (xn) satis�es the re
ursive 
ondition 〈xn, v

−〉 = 〈xn−1, v
+〉 foreven n and 〈xn, v

+〉 = 〈xn−1, v
−〉 for odd n. Finally, we require that the length ‖xn‖tends to 0 as n tends to in�nity. It is easy to see that su
h a sequen
e (xn) exists.Now let p1 = v− and de�ne indu
tively pn on γ+ (resp. γ−) for n even (resp. odd)to be the point su
h that pn − pn−1 is parallel to xn. This just means that pn arisesfrom pn−1 by following the gradient �ow of the a�ne (and hen
e 
on
ave) fun
tion

fn.De�ne the numbers Cn by C0 = 0 and fn(pn+1)−fn+1(pn+1) = Cn+1−Cn. Considerthe 
on
ave fun
tion f(x) = inf(fn(x)+Cn). One veri�es that on the geodesi
 segment
(pn, pn+1) the fun
tion f 
oin
ides with fn (in fa
t on a neighbourhood of all pointsex
ept pn+1). Hen
e the segment joining pn to pn+1 is part of a gradient 
urve of
f . Therefore the appropriately parametrised pie
ewise in�nite geodesi
 γ runningthrough all pi is a gradient 
urve of f . It is 
lear that both v− and v+ (and all unitve
tors between them) 
onsidered as points in the ideal boundary are a

umulationpoints of γ at in�nity.Proof of Proposition 4.2. From the assumption that ε = infx∈X |∇x(−f)| > 0, wededu
e that f(φt(x)) − f(x) ≤ −ε2t for all x ∈ X. In view of Property (2) of thegradient 
urve re
alled above and the fa
t that f is Lips
hitz, we dedu
e that thevelo
ity of es
ape of the gradient 
urve is stri
tly positive.An important 
onsequen
e of [KM99, Theorem 2.1℄ is that any semi-
ontra
tingmap F : X → X of a 
omplete CAT(0) spa
e X with stri
tly positive velo
ityof es
ape lim supn→∞

d(p,F n(p))
n

has the following 
onvergen
e property: There is aunique point ξF in the ideal boundary ∂X of X, su
h that for all p ∈ X the sequen
e
pn = F n(p) 
onverges to ξF in the 
one topology. In view of the above dis
ussion, weare in a position to apply this result to F = φ1, from whi
h the desired 
on
lusionfollows. �4.2. Asymptoti
 slope and a radius estimate. Finally we re
all an observationof Eberlein ([Ebe96℄, Se
tion 4.1) about the size of the set of points in the idealboundary with negative asymptoti
 slopes.Let f : X → R be a 
ontinuous 
onvex fun
tion. For ea
h geodesi
 ray γ : [0,∞) →
X one de�nes the asymptoti
 slope of f on γ by limt→∞(f ◦ γ′(t)). This de�nes anumber in (−∞,+∞] whi
h depends only on the point at in�nity γ(∞) ∈ ∂X. Thusone obtains a fun
tion slopef : ∂X → (−∞,+∞]. One says that a point ξ ∈ ∂X is
f-monotone if slopef (ξ) ≤ 0. This is equivalent to saying that the restri
tion of f9



to any ray asymptoti
 to ξ is non-in
reasing. One denotes the set of all f -monotonepoints by Xf (∞).Lemma 4.5. Let f be a 
onvex Lips
hitz fun
tion on a 
omplete CAT(0) spa
e Xsu
h that infx∈X |∇x(−f)| > 0. Then for ea
h point ξ ∈ Xf(∞), we have dTits(ξ, ξf) ≤
π
2
, where ξf is the 
anoni
al point provided by Proposition 4.2.Proof. Eberlein's argument for the proof of [Ebe96, Proposition 4.1.1℄ (whi
h is alsoreprodu
ed in the proof of [FNS06, Theorem 1.1℄) shows, that for any p ∈ X andany sequen
e ti, su
h that φti(p) 
onverges to some point ξ ∈ ∂X, the Tits-distan
ebetween ξ and any other point ψ ∈ X is at most π

2
. �4.3. The spa
e of 
onvex fun
tions. Pi
k a base point o ∈ X. Denote by C0 theset of all 1-Lips
hitz 
onvex fun
tions f on X with f(o) = 0. We view it as subset ofthe lo
ally 
onvex topologi
al ve
tor spa
e B of all fun
tions f on X with f(o) = 0,where the latter is 
onsidered with the topology of pointwise 
onvergen
e. The subset

C0 may thus be 
onsidered as a 
losed subset of the in�nite produ
t ∏

x∈X Ix, where
Ix is the interval Ix = [−d(o, x), d(o, x)]. Sin
e a 
onvex 
ombination of 
onvex 1-Lips
hitz fun
tions is 
onvex and 1-Lips
hitz, the set C0 is a 
onvex 
ompa
t subsetof B.The isometry group G = Is(X) of X a
ts 
ontinuously on B by g · f : x 7→
f(gx) − f(go) and preserves the subset C0. Consider the map i : X → C0 given by
i(x) := d̄x, where d̄x is the normalized distan
e fun
tion d̄x(y) = d(x, y) − d(x, o).Note that the map i is G-equivariant. In parti
ular, the subset C = i(X) ⊂ C0 as wellas its 
losure and 
losed 
onvex hull are G-invariant. If X is lo
ally 
ompa
t, then C
onsists pre
isely of normalized distan
e and Busemann fun
tions on X, and is thusnothing but the visual 
ompa
ti�
ation of X. However, if X is not lo
ally 
ompa
t,then C̄ may be mu
h larger, and the 
onvergen
e in C0 may be rather strange.Example 4.6. Let X ′ be a separable Hilbert spa
e with origin o and an orthonormalbase {en}n≥0. Then the sequen
e d̄nen


onverges in C0 to the 
onstant fun
tion.Example 4.7. Let X ′′ be a metri
 tree 
onsisting of a single vertex o from whi
hemanate 
ountably many in�nite rays ηn. In other words X ′′ is the Eu
lidean 
�neover a dis
rete 
ountably in�nite set. Let bn denote the Busemann fun
tion asso
iatedwith ηn. Then bn 
onverge in C0 to the distan
e fun
tion do.We emphasize that the 
hoi
e of the base point o does not play any role: any
hange of base point amounts to adding an additive 
onstant.In some sense, the set C may serve in the non-lo
ally 
ompa
t 
ase as a generalizedideal boundary. It is therefore important to understand how �large� it really is. Thiswill be the purpose of the next subse
tion.4.4. A�ne fun
tions on spa
es of �nite teles
opi
 dimension. Re
all thata fun
tion f : X → R is 
alled a�ne if its restri
tion to any geodesi
 is a�ne.Equivalently, for all pairs x+, x− ∈ X with midpoint m we have f(x+) + f(x−) =
2f(m). A simple-minded but noteworthy observation is that a�ne fun
tions arepre
isely those 
onvex fun
tions f whose opposite (−f) is also 
onvex. Clearly,10




onstant fun
tions are a�ne; thus any CAT(0) spa
e admit a�ne fun
tions. However,the very existen
e of non-
onstant a�ne fun
tions imposes very strong restri
tionson the underlying spa
e, see [LS07℄. The following result also provides an illustrationof this phenomenon, whi
h will be relevant to the proof of Theorem 1.6.Proposition 4.8. Let X be a CAT(0) spa
e of �nite teles
opi
 dimension whi
h isnot redu
ed to a single point and su
h that Is(X) a
ts minimally. If C 
ontains ana�ne fun
tion, then there is a splitting X = R×X ′.Re
all from [BH99, II.6.15(6)℄ that any 
omplete CAT(0) spa
e X admits a 
anon-i
al splitting X = E×X ′ preserved by all isometries, where E is a (maximal) Hilbertspa
e 
alled the Eu
lidean fa
tor of X. It is shown in [LS07, Corollary 4.8℄ that if
X is lo
ally �nite-dimensional and if Is(X) a
ts minimally, then X ′ does not admitany non-
onstant a�ne fun
tion. The main te
hni
al point in the proof of the latterfa
t is the existen
e of inner points (see �2.2).In order to deal with the 
ase of asymptoti
 dimension bounds, we need to substi-tute this by some 
oarse equivalent. This substitute is provided by Lemma 4.9, whi
his of te
hni
al nature. In the spe
ial 
ase of spa
es of �nite geometri
 dimension, itfollows quite easily from the existen
e of inner points ; therefore, the reader who isonly interested in those spa
es may wish to skip it.Lemma 4.9. Let X be an unbounded spa
e of �nite teles
opi
 dimension and let Cbe as above. Then there are sequen
es of positive numbers Dj → ∞, δj → 0 andsequen
es of points pj ∈ X and of �nite subsets Qj ⊂ X with the following twoproperties.(1) Qj is 
ontained in the ball of radius Dj(1 + δj) around pj.(2) For all s ∈ X, there is some qj ∈ Qj with d(s, qj) − d(s, pj) ≥ Dj.Proof. Consider X̃ = limω( 1

n
X, o) and let p̃ = (pn) be an inner point of X̃. Let ε > 0and the 
ompa
t subset K ⊂ X̃ be 
hosen as in �2.2. Moving points of K towards

p̃ we may assume that all point of K have distan
e ε to p̃. Furthermore, there is noloss of generality in assuming ε < 1.Sin
e K is 
ompa
t, there exist �nite subsets Qn ∈ 1
n
X with limω Qn = K and

d(pn, q) ≤ εn for all q ∈ Qn.In view of the de�ning property of K, we dedu
e that for all δ ∈ (0, ε) and all n0,there is some n = n(δ, n0) > n0 su
h that for any s ∈ X with d(s, pn) ≤ n, there issome q ∈ Qn with d(s, q) ≥ d(s, pn) + n(ε− δ).Assume now δ ∈ (0, ε
2
). Given s̃ ∈ X with d(s̃, pn) ≥ n and 
hoose the point sbetween pn and s̃ with d(pn, s) = n. Let q ∈ Qn be su
h that d(s, q) ≥ d(s, pn) +

n(ε− δ). Using the law of 
osines in a 
omparison triangle for ∆(s̃, pn, q), we dedu
efrom that CAT(0) inequality that
d(s̃, q)2 − d(s̃, pn)2 − d(pn, q)

2

d(s̃, pn)
≥ n2(ε− δ)(2 + ε− δ) − d(pn, q)

2

n
.11



Sin
e d(pn, q) ≤ εn and d(s̃, pn) = n+ d(s, s̃), we dedu
e
d(s̃, q)2 − d(s̃, pn)2 ≥ n2(ε− δ)(2 + ε− δ) + 2n(ε− δ(1 + ε) + δ2

2
)d(s, s̃)

≥ n2(ε− 2δ)(2 + ε− 2δ) + 2n(ε− 2δ)d(s, s̃)
= n2(ε− 2δ)2 + 2n(ε− 2δ)d(s̃, pn).This implies that d(s̃, q) ≥ d(s̃, pn) + n(ε− 2δ).It remains to de�ne the desired sequen
es by making the appropriate 
hoi
es ofindi
es. This may be done as follows. For ea
h integer j > 0, we now set δj = ε

2j
and

nj = n(
εδj

4
, j), where n : (0, ε) × N → N : (δ, n0) 7→ n(δ, n0) is the map 
onsideredabove. Finally we set pj = pnj

, Qj = Qnj
and Dj = εnj(1 − δj

2
). �Proof of Proposition 4.8. Assume that the set A of a�ne fun
tions 
ontained in C isnonempty. For ea
h integer j > 0 we set

Cj = {p ∈ X | ∀f ∈ A ∃z ∈ X, f(z) − f(p) = Dj and d(p, z) ≤ (1 + δj)Dj},where (Dj) and (δj) are the sequen
es provided by Lemma 4.9.We 
laim that Cj is non-empty.Indeed, by Lemma 4.9 for ea
h j and all p, s ∈ X, there exists q ∈ Qj su
h that
d̄s(q)− d̄s(p) = Dj and d(p, q) ≤ (1+δj)Dj, where d̄s denotes the normalised distan
efun
tion d̄s(·) = d(s, ·) − d(o, s). Sin
e Qj is �nite, this existen
e property passes toevery limiting fun
tion f ∈ A by de�nition of the topology on C0.We 
laim that Cj is 
onvex.Indeed, let p1, p2 ∈ Cj, f ∈ A and z1, z2 su
h that for i = 1, 2 we have f(zi)−f(pi) =
Dj and d(pi, zi) ≤ (1+ δj)Dj. Given p ∈ [p1, p2] at distan
e λd(p1, p2) from p1, where
λ ∈ (0, 1), let z ∈ [z1, z2] be the unique point at distan
e λd(z1, z2) from z1. Sin
ethe distan
e fun
tion is 
onvex, we have d(p, z) ≤ (1 + δj)Dj . Furthermore, sin
e fis a�ne we have f(z) − f(p) = Dj . Hen
e p ∈ Cj.We 
laim that Cj = X.Sin
e A is Is(X)-invariant, so is Cj . In view of the assumption of minimality onthe Is(X)-a
tion, it follows that Cj is dense in X for all Dj, δj > 0. Now the 
laimfollows from a routine 
ontinuity argument using the fa
t that f is 1-Lips
hitz.For ea
h f ∈ A and p ∈ Cj, we have |∇p(f)| ≥ 1

1+δj
sin
e f is a�ne. By theprevious 
laim, the latter inequality holds for all p ∈ X and all δj > 0. Sin
e f is 1-Lips
hitz it follows that |∇p(f)| = 1 for all p ∈ X. Now Proposition 4.2 yields a point

ξ ∈ ∂X to whi
h the gradient 
urve t 7→ φt(p) 
onverges as t tends to in�nity. Sin
ethe gradient 
urve as velo
ity 1 (see �4.1) we dedu
e that it is a geodesi
 ray pointingto ξ. It follows that −f is a Busemann fun
tion asso
iated with ξ. In parti
ular
−f = limn d̄(φn(p), ·) belongs to C, hen
e to A sin
e f is a�ne. This yields anotherpoint ξ′ ∈ ∂X and a geodesi
 ray φ′

t(p) pointing to ξ′. The 
on
atenation of bothrays is a geodesi
 line γ joining ξ′ to ξ su
h that (f ◦ γ)′ = 1. At this point, [LS07,Lemma 4.1℄ yields the desired splitting. �We 
on
lude this se
tion with a te
hni
al property of the spa
e of fun
tions C0valid for arbitrary CAT(0) spa
es. 12



Lemma 4.10. Let X be any CAT(0) spa
e and C0 be as above. Given a 
ompa
tsubset A ⊂ C0, if A does not 
ontain any a�ne fun
tion, then the 
losed 
onvex hull
Conv(A) does not 
ontain any a�ne fun
tion either.Proof. For any f ∈ A we �nd some pair of points x+

f , x
−
f ∈ X with midpointmf , su
hthat εf = f(x+

f ) + f(x−f ) − 2f(mf) > 0. For ea
h f ∈ A, let Uf be the open subsetof A 
onsisting of all h with h(x+
f ) + h(x−f ) − 2h(mf ) > εf/2. Sin
e A is 
ompa
t,�nitely many Ufi


over A. Therefore, using the 
onvexity of h, we dedu
e that
r(h) :=

∑

i

(

h(x+
fi

) + h(x−fi
) − 2h(mfi

)
)

≥ inf{εfi
} > 0for all h ∈ A. Thus the 
ontinuous fun
tional h 7→ r(h) is stri
tly positive on A,hen
e it is positive on the 
ompa
t 
onvex hull of A. Therefore ea
h f ∈ Conv(A) isnon-a�ne on at least one of the geodesi
s [x+

fi
, x−fi

]. �5. Filtering families of 
onvex setsThe purpose of this se
tion is to prove Theorem 1.1. We start by 
onsidering ananalogous property for �nite-dimensional CAT(1) spa
es.5.1. CAT(1) 
ase. We start with the following analogue of the �nite interse
tionproperty for bounded 
onvex sets in CAT(0) spa
es.Lemma 5.1. Let X be a 
omplete CAT(1) spa
e of radius < π
2
. Then any �lteringfamily {Xα}α∈A of 
losed 
onvex subspa
es has a non-empty interse
tion.Proof. Given [BH99, II.2.6(1) and II.2.7℄, the proof is identi
al to that in [Mon06,Theorem 14℄. �Lemma 5.2. Let X be a �nite-dimensional CAT(1) spa
e and {Xi}i≥0 be a de
reasingsequen
e of 
losed 
onvex subsets su
h that rad(Xi) ≤ π

2
. Then the interse
tion ⋂

iXiis a non-empty subset of intrinsi
 radius ≤ π/2.Proof. Let zi be a 
entre of Xi and Z = {zi | i ≥ 0}. By assumption d(zi, zj) ≤ π
2
forall i, j. Sin
e any ball of radius ≤ π

2
is 
onvex, it follows that the 
losed 
onvex hull

C of Z has intrinsi
 radius ≤ π
2
.We 
laim that rad(C) < π

2
. Otherwise we have rad(C) = π

2
and every z ∈ Z is a
entre of C. Sin
e the set of all 
entres is 
onvex, it follows that every point of C isa 
entre. This implies diam(C) ≤ rad(C), whi
h 
ontradi
ts [BL05, Proposition 1.2℄and thereby establishes the 
laim.Let Ci be the 
onvex hull of {zj | j ≥ i}. Then (Ci)i≥0 is a de
reasing sequen
eof 
losed 
onvex subsets in a CAT(1) spa
e of radius < π/2. By Lemma 5.2, theinterse
tion Q =

⋂

i Ci is non-empty. Noti
e that Ci ⊆ Xi when
e Q ⊆
⋂

iXi. Thelatter interse
tion is thus non-empty.For ea
h x ∈ ⋂

iXi we have d(x, zj) ≤ π
2
for all j. Thus Cj is 
ontained in the ballof radius π

2
around x. Therefore d(x, q) ≤ π/2 for all x ∈

⋂

iXi and q ∈ Q. Thisshows that ⋂

iXi has radius at most π
2
. �13



Proposition 5.3. Let X be a �nite-dimensional CAT(1) spa
e and {Xα}α∈A be a�ltering family of 
losed 
onvex subsets su
h that rad(Xα) ≤ π
2
for ea
h α ∈ A. Thenthe interse
tion ⋂

α∈AXα is a non-empty subset of intrinsi
 radius ≤ π/2.Proof. We pro
eed by indu
tion on n = dimX. There is nothing to prove in dimen-sion 0, hen
e the indu
tion 
an start.If dim(X0) < n for some index 0 ∈ A, then the indu
tion hypothesis applied to the�ltering family {X0 ∩ Xα}α∈A yields the desired 
on
lusion. We assume hen
eforththat dim(Xα) = n for ea
h α ∈ A.For β ∈ A, let zβ be a 
entre of Xβ. If dXα
(zβ) = π

2
for some β ∈ A, then the 
losed
onvex hull of zβ and Xα 
oin
ides with the spheri
al suspension of zβ and Xα (see[Lyt05b, Lemma 4.1℄) and hen
e has dimension 1 + dim(Xα). This is absurd sin
e

dim(Xα) = dim(X). We dedu
e dXα
(zβ) < π

2
for all α, β ∈ A.Assume now that supα∈A dXα

(zβ) = π
2
. Then there is a 
ountable sequen
e (Xαi

)i≥0with αi ∈ A su
h that limi dXαi
(zβ) = π

2
. Upon repla
ingXαj

by ⋂j

i=0Xαi
we may andshall assume that the sequen
e (Xαi

)i≥0 is de
reasing. By Lemma 5.2 the interse
tion
Y =

⋂

i≥0Xαi
is a non-empty 
losed 
onvex subset of X. Furthermore by de�nitionwe have dY (zβ) = π

2
. In parti
ular, we dedu
e by the same argument as above that

dim(Y ) < n.Now for ea
h α ∈ A, we apply Lemma 5.2 to the nested family (Xα ∩ Xαi
)i≥0,whi
h shows that Yα =

⋂

i≥0(Xα ∩ Xαi
) is a 
losed 
onvex non-empty subset of Ywith intrinsi
 radius at most π

2
. Moreover, the family {Yα}α∈A is �ltering and we have

⋂

α Yα =
⋂

α(Xα). It follows by indu
tion that ⋂

αXα is non-empty and of intrinsi
radius at most π
2
, as desired.It remains to 
onsider the 
ase when r = supα dXα

(zβ) < π/2. We are thenin a position to apply Lemma 5.1 to the �ltering family {B(zβ, r) ∩ Xα}α∈A. Wededu
e that Y =
⋂

αXα is non-empty. Moreover, sin
e dY (zβ) ≤ r < π
2
, we dedu
eby 
onsidering the nearest point proje
tion of zβ to Y (see [BH99, II.2.6(1)℄) that

rad(Y ) < π
2
. �5.2. CAT(0) 
ase. We start with the spe
ial 
ase of nested sequen
es of 
onvexsets.Lemma 5.4. Let X be a 
omplete CAT(0) spa
e of teles
opi
 dimension n <∞ and

(Xi)i≥0 be a nested sequen
e of 
losed 
onvex subsets su
h that ⋂

i≥0Xi is empty. Let
o ∈ X be a base point and set fi : x 7→ dXi

(x) − dXi
(o). Then the sequen
e (fi)i≥0sub-
onverges to a 1-Lips
hitz 
onvex fun
tion f whi
h satis�es infp∈X |∇p(−f)| ≥

1
2

(

1 − √

n
n+1

).Proof. The fun
tions fi are 1-Lips
hitz and 
onvex ([BH99, II.2.5(1)℄), hen
e theyare elements of the spa
e C0 de�ned in Se
tion 4.3. Sin
e C0 is 
ompa
t, the sequen
e
(fi) indeed sub-
onverges to a fun
tion f ∈ C0. It remains to estimate the absolutegradient of f .Pi
k a point p ∈ X. By assumption the interse
tion ⋂

iXi is empty. Sin
e bounded
losed 
onvex sets enjoy the �nite interse
tion property (see Se
tion 3.1), it followsthat dXi
(p) tends to in�nity with i. Thus for ea
h t > 0 there is some Nt su
h that14



dXi
(p) > t for all i ≥ Nt. We may and shall assume without loss of generality that

N1 = 0.Let xi denote the nearest point proje
tion of p toXi (see [BH99, Proposition II.2.4℄)and ρi : [0, d(p, xi)] → X be the geodesi
 path joining p to xi. Set
Dt = diam{ρi(t) | i ≥ Nt}.We distinguish two 
ases.Assume �rst that suptDt < ∞. It then follows that for all t > 0, the sequen
e

(ρi(t))i≥Nt
is Cau
hy. Denoting by ρ(t) its limit, the map ρ : t 7→ ρ(t) is a geodesi
ray emanating from p. Therefore f = limi fi is a Busemann fun
tion and we have

|∇p(−f)| = 1. Thus we are done in this 
ase.Assume now that supt Dt = ∞. Then Dt tends to in�nity with t. Choose δ > 0small enough so that √2δ < 1 − √

n
n+1

and let D > 0 be the 
onstant provided byTheorem 1.3. We now pi
k t large enough so that Dt > D and set yi = ρi(t) for all
i ≥ Nt. For j > i we have ∠xi

(p, xj) ≥ π
2
and 
onsidering a 
omparison triangle for

∆(p, xi, xj) we dedu
e d(yi, yj) ≤ t
√

2. Set Y = {yi | i ≥ 0}. By Theorem 1.3 wehave rad(Y ) ≤ t(
√

2δ +
√

n
n+1

).Let z be the 
ir
um
entre of Y . We have dXi
(z) ≤ dXi

(yi) + d(yi, z) and d(yi, z) ≤
rad(Y ). Sin
e moreover dXi

(p) = dXi
(yi) + t, we dedu
e

fi(z) − fi(p) = dXi
(z) − dXi

(p)
≤ d(yi, z) − t

≤ −t(1 − √

n
n+1

−
√

2δ)for ea
h i ≥ 0. Therefore f(p) − f(z) ≥ δ′t, where δ′ = 1 − √

n
n+1

−
√

2δ. On theother hand, we have d(z, p) ≤ d(p, yi) + d(yi, z) ≤ 2t, thus f(p)−f(z)
d(p,z)

≥ δ′/2.Sin
e the restri
tion of −f to the geodesi
 segment [p, z] is 
on
ave by assumption,we dedu
e
|∇p(−f)| ≥ δ′/2.Finally, re
alling that δ′ = 1−√

n
n+1

−
√

2δ and that δ > 0 may be 
hosen arbitrarysmall, the desired estimate follows. �Lemma 5.5. Let X be a 
omplete CAT(0) spa
e of �nite teles
opi
 dimension and
(Xi)i≥0 be a nested sequen
e of 
losed 
onvex subsets. If ⋂

i≥0Xi is empty, then
⋂

i≥0 ∂Xi is a non-empty subset of the visual boundary ∂X of intrinsi
 radius ≤ π
2
.Proof. Let φt : X → X denote the gradient �ow asso
iated to the 
onvex fun
tion fde�ned as in Lemma 5.4. Proposition 4.2 provides some point ξ in the ideal boundary

∂X su
h that the gradient line t 7→ φt(p) 
onverges to ξ for any starting point p ∈ X.We 
laim that ξ is 
ontained in ∂Xi for ea
h i. To this end, we �x an index iand 
onsider the restri
tion h of f to Xi. This is a 
onvex fun
tion on Xi and itis su�
ient to prove that the gradient �ow of h 
oin
ides with the gradient �ow of
f starting at any point of Xi. Hen
e it is enough to prove that for all p ∈ Xi theequality |∇p(−f)| = |∇p(−h)| holds.Pi
k a point x ∈ X and let xi denote the nearest point proje
tion of x to Xi. Wehave dXj

(x) ≥ dXj
(xi) and d(p, x) ≥ d(p, xi) for all p ∈ Xi. Hen
e for p ∈ Xi and all15



j ≥ i we get the inequality
fj(p) − fj(x)

d(p, x)
≤ fj(p) − fj(xi)

d(p, xi)
.Hen
e the same is true for the limiting fun
tion f , whi
h implies the desired equality

|∇p(−f)| = |∇p(−h)|. This shows that ξ is 
ontained in the interse
tion ⋂

i ∂Xi,whi
h is thus non-empty.For any geodesi
 ray η in X with endpoint in ⋂

i ∂Xi, the restri
tion of fi to η isbounded from above, hen
e non-in
reasing. Therefore the same holds true for therestri
tion of the limiting fun
tion f to the ray η. In other words the endpoint of η is
f -monotone. From Lemma 4.5 we dedu
e that d(ξ, ψ) ≤ π/2 for all ψ ∈ ∩∂Xi. �Proof of Theorem 1.1. Pi
k a base point o ∈ X. If the set {dXα

(o)}α∈A is bounded,then ⋂

αXα has a non-empty interse
tion by the �nite interse
tion property (seeSe
tion 3.1). We assume hen
eforth that this is not the 
ase. In parti
ular thereexists a sequen
e of indi
es (αn)n≥0 su
h that limn dXαn
(o) = ∞. Now for ea
h

α ∈ A, we may apply Lemma 5.5 to the nested sequen
e (Xα ∩Xαn
)n≥0. This showsthat Yα =

⋂

n≥0 ∂(Xα ∩ Xαn
) is a non-empty subset of intrinsi
 radius ≤ π

2
of ∂X.Noti
e that {Yα}α∈A is a �ltering family. Proposition 2.1 then allows one to appeal toProposition 5.3, whi
h shows that ⋂

α Yα is a non-empty subset of intrinsi
 radius≤ π
2
.This provides the desired statement sin
e ⋂

α ∂Xα =
⋂

α Yα. �We end this se
tion by an example illustrating that Theorem 1.1 fails if one assumesonly that the Tits boundary ∂X be �nite-dimensional.Example 5.6. Let H be a separable (real) Hilbert spa
e with orthonormal basis {ei}and X ⊂ H be the subset 
onsisting of all points ∑

i aiei with |ai| ≤ i for all i.Thus X is a 
losed 
onvex subset of H with empty (hen
e �nite-dimensional) idealboundary. Let now Xn = {∑i aiei | ai ≥ 1 for all i ≤ n}. Then {Xn} is a nestedfamily of 
losed 
onvex subsets with empty interse
tion.6. Appli
ations6.1. Paraboli
 isometries.Proof of Corollary 1.5. By Proposition 2.1, the boundary ∂X is �nite-dimensional.The sublevel sets of the displa
ement fun
tion of g de�ne a ZIs(X)(g)-invariant nestedsequen
e of 
losed 
onvex subspa
e. The interse
tion of their boundaries is nonemptyby Theorem 1.1 and possesses a bary
entre by [BL05, Prop. 1.4℄, whi
h is the desired�xed point. �6.2. Minimal and redu
ed a
tions. We begin with a de Rham type de
omposi-tion property. It was shown by Foerts
h�Lyt
hak [FL08℄ that any �nite-dimensionalCAT(0) spa
e (and more generally any geodesi
 metri
 spa
e of �nite a�ne rank)admits a 
anoni
al isometri
 splitting into a �at fa
tor and �nitely many non-�atirredu
ible fa
tors. Building upon [FL08℄, it was then shown by Capra
e�Monod[CM08, Corollary 4.3(ii)℄ that the same 
on
lusion holds for proper CAT(0) spa
eswhose isometry group a
ts minimally, assuming that the Tits boundary is �nite-dimensional. We shall need the following `improper' variation of this result.16



Proposition 6.1. Let X be a 
omplete CAT(0) spa
e of �nite teles
opi
 dimension,su
h that Is(X) a
ts minimally. Then there is a 
anoni
al maximal isometri
 splitting
R

n ×X1 × · · · ×Xmwhere ea
h Xi is irredu
ible, unbounded and 6∼= R. Every isometry preserves thisde
omposition upon permuting possibly isometri
 fa
tors Xi.Proof. Let H be a separable Hilbert spa
e with orthonormal basis {ei}i>0 and denoteby Ck the 
onvex hull of the set {0}∪{2iei | 0 < i ≤ k}. Let nowX be a CAT(0) spa
esu
h that for every isometri
 splitting X = X1 × · · · ×Xp with ea
h Xi unbounded,some fa
tor Xi admits an isometri
 splitting Xi = X ′
i ×X ′′

i with unbounded fa
tors.Then there is a point o ∈ X and for ea
h k > 0 an isometri
 embedding ϕk : Ck → Xwith ϕ(0) = o. Sin
e for all k > 0 the set 2.Ck embeds isometri
ally in Ck+1, it followsthat Ck embeds isometri
ally in the asymptoti
 
one limω( 1
n
X, o). In parti
ular Xdoes not have �nite teles
opi
 dimension. This shows that any CAT(0) spa
e of �niteteles
opi
 dimension admits a maximal isometri
 splitting into a produ
t of �nitelymany unbounded (ne
essarily irredu
ible) subspa
es.In view of the latter observation and given Proposition 2.1, the proof of [CM08,Corollary 4.3(ii)℄ applies verbatim and yields the desired 
on
lusion. �Proof of Proposition 1.8. (i) We 
laim that the statement of (i) follows from (ii) and(iii). Indeed, if G has no �xed point at in�nity, then there is a minimal non-empty

G-invariant subspa
e Y ⊆ X by (ii). Upon repla
ing G by a �nite index subgroup,this subspa
e Y admits a G-equivariant de
omposition as in Proposition 6.1. Theindu
ed a
tion of G on ea
h of these spa
es is minimal without �xed point at in�nity.Therefore, it is non-evanes
ent by (iii), unless Y is bounded, in whi
h 
ase it isredu
ed to a single point by G-minimality. This means that G �xes a point in X.(ii) Assume that G has no minimal invariant subspa
e. By Zorn's lemma this impliesthat there is a 
hain of G-invariant subspa
es with empty interse
tion. By Theo-rem 1.1 the interse
tion of the boundaries at in�nity of the subspa
es in this 
hainprovide a 
losed 
onvex G-invariant set Y ⊆ ∂X of radius ≤ π
2
. By Proposition 2.1,the set Y is �nite-dimensional. Hen
e it possesses a unique bary
entre by [BL05,Prop. 1.4℄, whi
h is thus �xed by G.By Proposition 2.1 the boundary ∂X is �nite-dimensional. Therefore, for (iii) and(iv), Theorem 1.1 (in fa
t, Lemma 5.5 is su�
ient) allows one to repeat verbatim theproofs of the 
orresponding statements that are given in [CM08℄, namely Theorem 1.6in lo
. 
it. for the fa
t that normal subgroups a
t minimally without �xed pointat in�nity, Corollary 2.8 in lo
. 
it. for the fa
t that the G-a
tion is redu
ed andProposition 1.3(i) in lo
. 
it. for the fa
t that X is boundary-minimal provided

Is(X) a
ts minimally. �Proof of Corollary 1.9. By Proposition 6.1 the spa
e X admits a 
anoni
al de
ompo-sition as a produ
t of �nitely many irredu
ible fa
tors. The latti
e Γ admits a �niteindex normal subgroup Γ∗ whi
h a
ts 
omponentwise on this de
omposition (the �-nite quotient Γ/Γ∗ a
ts by permuting possibly isometri
 irredu
ible fa
tors). Let G∗
ibe the 
losure of the proje
tion of Γ∗ to Gi and set G∗ = G∗

1 × · · · ×G∗
n. Thus G∗ is17



a 
losed normal subgroup of �nite index of G and we have G = Γ ·G∗. In parti
ularit is su�
ient to show that the Γ∗-a
tion extends to a 
ontinuous G∗-a
tion. To thisend, we work one irredu
ible fa
tor at a time. Given Proposition 1.8(iii), the desired
ontinuous extension is provided by [Mon06, Theorem 6℄. �6.3. Isometri
 a
tions of amenable groups.Proof of Theorem 1.6. Assume that G has no �xed point at in�nity. Thus there isa minimal 
losed 
onvex invariant subset by Proposition 1.8(ii) and we may assumethat this subset 
oin
ides with X. In other words G a
ts minimally on X. Let
X = E×X ′ be the maximal Eu
lidean de
omposition (see [BH99, II.6.15(6)℄). Thus
G preserves the splitting X = E×X ′ and the indu
ed G-a
tion on both E and X ′ isminimal and does not �x any point at in�nity. We need to show that X ′ is redu
edto a single point. To this end, it is thus su�
ient to establish the following 
laim.If an amenable lo
ally 
ompa
t group G a
ts 
ontinuously, minimally and without�xed points at in�nity on a CAT(0) spa
e X of �nite teles
opi
 dimension withoutEu
lidean fa
tor, then X is redu
ed to a single point.Assume that this is not the 
ase. Pi
k a base point o ∈ X and 
onsider thespa
es C ⊂ C0 de�ned in Subse
tion 4.3. Let A denote the 
losed 
onvex hull of Cin the lo
ally 
onvex topologi
al ve
tor spa
e B of all fun
tions vanishing at o. ByProposition 6.1 the subset C does not 
ontain any a�ne fun
tion. It follows fromLemma 4.10 that A does not 
ontain any a�ne fun
tion either. The indu
ed a
tionof G on B is 
ontinuous and preserves the 
ompa
t 
onvex set A. By the de�nitionof amenability G has a �xed point in A. Thus we have found some non-
onstant
1-Lips
hitz 
onvex fun
tion f whi
h is quasi-invariant with respe
t to G in thesense that, for ea
h g ∈ G, one has f(gx) = f(x) + f(go). (In other words, thismeans that for ea
h g, the map x 7→ f(gx)−f(x) is 
onstant.) The following lemma,analogous to [AB98, Lemma 2.4℄, implies that G has a �xed point at in�nity, whi
his absurd. �Lemma 6.2. Let a group G a
t minimally by isometries on a 
omplete CAT(0)spa
e X of �nite teles
opi
 dimension. There is a G-quasi-invariant 
ontinuous non-
onstant 
onvex fun
tion f on X if and only if G �xes a point in ∂X.Proof. If G �xes a point in ∂X, then the Busemann fun
tion of this point (that isuniquely de�ned up to a positive 
onstant) is quasi-invariant.Assume that f is quasi-invariant and de�ne a : G → R by a(g) = f(gx) − f(x).By assumption a does not depend on x; furthermore a is a homomorphism. If awere 
onstant, then f would be G-invariant and, hen
e, so would be any sub-levelset of f . This 
ontradi
ts the minimality assumption on the G-a
tion. Therefore
a is non-
onstant; more pre
isely the image of a is unbounded and inf f = −∞.For ea
h r ∈ R set Xr := φ−1(−∞,−r]. Then (Xr)r∈R is a 
hain of 
losed 
onvexsubspa
es with empty interse
tion; furthermore every element of G permutes the sets
Xr. It follows that C =

⋂

r∈R
∂Xr is G-invariant. Theorem 1.1 now shows that Cis nonempty of radius ≤ π

2
, and [BL05, Prop. 1.4℄ implies that G �xes a point in

C ⊂ ∂X. �18



Proof of Theorem 1.7. The proof mimi
ks the arguments given in [Cap07℄; we do notreprodu
e all the details. As in lo
. 
it. the key point is to establish that every point ofthe re�ned boundary ∂fineX (de�ned in lo
. 
it., �4.2) has an amenable stabiliser in
G and that, 
onversely, any amenable subgroup of G possesses a �nite index subgroupwhi
h �xes a point in X ∪ ∂fineX. The proof that amenable groups stabilise point in
X ∪ ∂fineX uses Theorem 1.6 together with an indu
tion on the geometri
 dimension(see the remark following Corollary 4.4 in lo
. 
it. showing that there is a uniformupper-bound on the level of a point in the re�ned boundary). For the 
onverse,one shows dire
tly that the G-stabiliser of a point in ∂fineX is (topologi
ally lo
ally�nite)-by-(virtually Abelian); the 
o
ompa
tness argument used in Proposition 4.5of lo
. 
it. is repla
ed by a 
ompa
tness argument relying on the hypothesis that Xhas �nitely many types of 
ells, all of whi
h are 
ompa
t. �Proof of Corollary 1.10. By Proposition 6.1, the spa
e X admits a 
anoni
al de
om-position as a produ
t of a maximal Eu
lidean fa
tor and a �nite number of irredu
iblenon-Eu
lidean fa
tors. The Eu
lidean fa
tor is G-invariant and G possesses a 
losednormal subgroup of �nite index G∗ that a
ts 
omponentwise on the above produ
t.By hypothesis, the G∗-a
tion on ea
h non-Eu
lidean fa
tor is minimal and does not�x any point at in�nity. Theorem 1.6 and Proposition 1.8(iii) therefore imply thatthe amenable radi
al of G∗ a
ts trivially. This implies that the amenable radi
al of
G a
ts as a �nite group on the produ
t of all non-Eu
lidean fa
tors of X. Thus thisa
tion is trivial sin
e G a
ts minimally. �
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