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Abstract. The real-analytic Jacobi forms of Zwegers’ Ph.D. thesis play an important
role in the study of mock theta functions and related topics, but have not been part of
a rigorous theory yet. In this paper, we introduce harmonic Maass-Jacobi forms, which
include the classical Jacobi forms as well as Zwegers’ functions as examples. Maass-Jacobi-
Poincaré series also provide prime examples. We compute their Fourier expansions, which
yield Zagier-type dualities and also yield a lift to skew-holomorphic Jacobi-Poincaré series.
Finally, we link harmonic Maass-Jacobi forms to different kinds of automorphic forms via
a commutative diagram.

1. Introduction and statement of results

Ramanujan’s last letter to Hardy in 1920 (see [17]) features a list of 17 functions such as

f(q) := 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This was the birth of mock theta functions, which have been the source of many important
works since then. However, for a long time, the subject remained quite mysterious, since no
rigorous definition of mock theta functions was known. In 2002, Zwegers [24] succeeded in
giving such a definition by discovering a crucial link between mock theta functions and real-
analytic vector-valued modular forms, which are now part of the theory of harmonic Maass
forms. His significant discovery has led to major applications in different areas of mathe-
matics and physics, such as Bringmann and Ono’s [6, 7] solutions of well-known conjectures
in combinatorics and the theory of q-series.

Zwegers [24] also explored certain real-analytic Jacobi forms, which are valuable tools in
understanding mock theta functions. Coefficients of such Jacobi forms encode combinato-
rial statistics such as Dyson’s [12] famous rank of partitions. Moreover, such Jacobi forms
are vital to the theory of higher weight harmonic Maass forms. For example, the func-
tions in Bringmann and Lovejoy [5], which associate overpartitions to class numbers, may
be viewed as derivatives of Jacobi forms with respect to the Jacobi variable. Bringmann
[3] and Bringmann, Garvan, and Mahlburg [4] examined quasiharmonic Maass forms, i.e.,
linear combinations of derivatives of harmonic Maass forms, which are also closely related to
derivatives of Jacobi forms. A main tool in understanding these higher weight Maass forms
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is a certain partial differential equation connecting the rank and the crank of partitions (see
Atkin and Garvan [1]). This differential equation may be regarded as the action of the heat
operator on Jacobi forms in this context (see Bringmann and Zwegers [10]). Furthermore,
the Jacobi forms in [24] appear also as key players in the recent paper of Malmendier and
Ono [15], where the authors confirmed an important conjecture by Moore and Witten on
SO(3)-Donaldson invariants of CP2.

In this paper, we seek a better understanding of real-analytic Jacobi forms, which should
provide new insight on mock theta functions and related topics. More precisely, we propose
the study of harmonic Maass-Jacobi forms (see Definition 3). In addition to the usual Jacobi
forms, our theory includes the real-analytic Jacobi forms in [24] as well as certain Poincaré
series, the main focus of our work here. We introduce a differential operator ξk,m (see
Equation (15)), whose action on harmonic Maass-Jacobi forms is central to our work. The
operator ξk,m is an analog of Bruinier’s and Funke’s [11] operator ξk, which maps harmonic
Maass forms of weight k to weakly holomorphic modular forms of weight 2−k, and which has
played a major role in the development of harmonic Maass forms. However, in contrast to
the action of ξk on harmonic Maass forms, the image of ξk,m does not consist of holomorphic
functions. Specifically, we prove in this paper:

Proposition 1. We have

ξk,m : Ĵk,m → Jsk!
3−k,m.

Here Ĵk,m denotes the subspace of harmonic Maass-Jacobi forms of weight k and index m

which are holomorphic in the Jacobi variable z ∈ C (see Section 4 for details), and Jsk!
k,m

stands for the space of Skoruppa’s [20, 21] (weak) skew-holomorphic Jacobi forms of weight

k and index m, which are reviewed in Section 3. Moreover, we write Ĵcuspk,m for the pre-image

of Jsk,cusp3−k,m under ξk,m, where Jsk,cuspk,m denotes the space of cusp forms in Jsk!
k,m.

We now turn our attention to Maass-Jacobi-Poincaré series, which are key examples of

Ĵcuspk,m . We consider normalized Maass-Jacobi-Poincaré series P(n,r)
k,m (see Equation (22)),

which have Fourier expansions of the form

P(n,r)
k,m (τ, z) = qnMs,k− 1

2

(
−πDy

m

)
e

(
iDy

4m

)
ϑ

(r)
k,m(τ, z) + c(τ, z)

+
∑

n′,r′∈Z
c(k)
n,r(n

′, r′)e

(
iD′y

4m

)
Ws,k− 1

2

(
−πD

′y

m

)
qn
′
ζr
′
,

where here and throughout the paper τ = x+ iy ∈ H (the usual complex upper half plane),
z = u + iv ∈ C, e(w) := e2πiw, q := e(τ), ζ := e(z), D := r2 − 4nm, D′ := r′2 − 4n′m,
and where Ms,κ and Ws,κ are modified Whittaker functions defined in Equations (17) and

(19), respectively, and where s ∈
{
k
2 −

1
4 ,

5
4 −

k
2

}
. Moreover, c(τ, z) is a sum over n′, r′ with

D′ = 0 defined in Equation (21) and ϑ
(r)
k,m is a theta function defined in Equation (10). We

write

(1) c(k)
n,r(n

′, r′) = b(k)
n,r(n

′, r′) + (−1)kb(k)
n,r(n

′,−r′).
Zagier [22] established a striking duality for Fourier coefficients of weakly holomorphic

modular forms. Bringmann and Ono [8] generalized Zagier’s results and showed that the
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duality arises from properties of Fourier coefficients of Maass-Poincaré series. Such a duality

cannot hold for the coefficients c
(k)
n,r(n′, r′) of P(n,r)

k,m due to the appearance of (−1)k in Equa-

tion (1) and the fact that the weights k and 3− k are “dual” under the action of ξk,m (see
Proposition 1). Nevertheless, our first theorem gives Zagier-type dualities for the coefficients

b
(k)
n,r(n′, r′). The half-integral weight Maass-Poincaré series in [8] depend also on some integer

and the duality in [8] involves only such series attached to negative integers. The situation
here is much more complicated than in the modular case: The Maass-Jacobi-Poincaré series

P(n,r)
k,m depend on the discriminant D and one might expect that a duality for P(n,r)

k,m would

involve only series corresponding to negative discriminants. However, this is not the case,

and our first theorem shows that the dualities for the b
(k)
n,r(n′, r′) feature Poincaré series with

positive and negative discriminants.

Theorem 1. The following dualities hold for the coefficients b
(k)
n,r(n′, r′) of P(n,r)

k,m :

(1) If D = r2 − 4nm < 0 and D′ = r′2 − 4n′m < 0, then

b(k)
n,r(n

′, r′) = −b(3−k)
n′,r′ (n, r).

(2) If D = r2 − 4nm > 0, D′ = r′2 − 4n′m < 0, and k > 3, then

b(k)
n,r(n

′, r′) = −b(3−k)
n′,r′ (n, r).

Remark: Statement (1) in Theorem 1 is a duality between holomorphic parts of Jacobi-
Poincaré series analogous to the duality in [8]. However, Statement (2) establishes a duality

between holomorphic and non-holomorphic parts: b
(k)
n,r(n′, r′) belongs to the holomorphic part

of P(n,r)
k,m , while −b(3−k)

n′,r′ (n, r) belongs to the non-holomorphic part of −P(n′,r′)
3−k,m.

Our second Theorem asserts that ξk,m maps the Maass-Jacobi-Poincaré series P(n,r)
k,m (with

D > 0) to the skew-holomorphic Jacobi-Poincaré series P
(n,r) sk
3−k,m , which is defined in Equation

(8).

Theorem 2. If D = r2 − 4nm > 0, then we have

ξk,m

(
P(n,r)
k,m

)
= P

(n,r) sk
3−k,m .

Remark: The skew-holomorphic Jacobi-Poincaré series P
(n,r) sk
k,m form a basis of Jsk,cuspk,m .

With the help of Theorem 2, we see that the map ξk,m : Ĵcuspk,m → Jsk,cusp3−k,m is surjective.

Finally, we explore lifts between different spaces of automorphic forms. Let S+
5
2
−k denote

the usual plus space of cuspidal holomorphic modular forms of weight 5
2 − k and write Ŝ+

k− 1
2

for its pre-image under ξk− 1
2
. We prove that the following diagram is commutative:



4 KATHRIN BRINGMANN AND OLAV K. RICHTER

(2)

Ŝ+
k− 1

2

ξ
k− 1

2−−−−→ S+
5
2
−k

Fθ
y yFθ

Ĵcuspk,1

ξk,1−−−−→ Jsk,cusp3−k,1

where Fθ and Fθ are lifts given in terms of theta functions (see Section 6 for details).

The paper is organized as follows. In Section 2, we recall the notion of harmonic Maass
forms. In Section 3, we briefly discuss skew-holomorphic Jacobi forms. In Section 4, we
present harmonic Maass-Jacobi forms. In Section 5, we come to the heart of the paper.
Here we determine the Fourier expansions of Maass-Jacobi-Poincaré series, which allow us
to prove Theorem 1 and Theorem 2. In Section 6, we show that Diagram (2) is commutative.

2. Harmonic Maass forms

Zwegers showed in his Ph.D. thesis [24] that mock theta functions appear as holomorphic
parts of harmonic Maass forms of weights 1/2, a fact that has inspired many recent results.
We will now introduce some standard notation to briefly review the definition of half-integral
weight harmonic Maass forms. For more details, see Fay [14], Bruinier and Funke [11], and
also Ono [?], who gives a good overview of the recent development of harmonic Maass forms
and its applications to number theory. For a variable w, set ∂w := ∂

∂w and let

∆k := (τ − τ)2∂ττ + k(τ − τ)∂τ

be the weight k hyperbolic Laplacian. Let Γ0 (4) :=
{

( ∗ ∗c ∗ ) ∈ SL2(Z)
∣∣ c ≡ 0 (mod 4)

}
.

Definition 1. A harmonic Maass form of weight k ∈ 1
2 +Z on Γ0(4) is a smooth function

g : H→ C satisfying the following:

(1) For all
(
a b
c d

)
∈ Γ0(4), we have

g

(
aτ + b

cτ + d

)
=

(
c

d

)2k

ε−2k
d (cτ + d)k g(τ).

Here
(
c
d

)
denotes the Jacobi symbol, εd = 1 for d ≡ 1 (mod 4) and εd = i for d ≡ 3

(mod 4), and
√
τ is the principal branch of the holomorphic square root.

(2) We have that ∆k(g) = 0.
(3) The function g has at most linear exponential growth at all the cusps of Γ0(4).

Let M̂k denote the space of harmonic Maass forms of weight k.

The above definition can be extended to other groups in the usual way.
Note that harmonic Maass forms have Fourier expansions of the form

(3) g(τ) = c−g y
1−k +

∑
n�−∞

c+
g (n)qn +

∑
n�∞

c−g (n)H(2πny)e(nx).

Here c+
g +
∑

n�−∞ c
+
g (n)qn is the holomorphic part of g, c−g y

1−k+
∑

n�∞ c
−
g (n)H(2πny)e(nx)

is the non-holomorphic part of g, and the function H (defined on page 55 of [11]) is a solution
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to the second order linear differential equation

∂2

∂w2
f(w)− f(w) +

k

w

(
∂

∂w
f(w) + f(w)

)
= 0.

The function H(t) has the asymptotic behavior

H(t) ∼
{

(2|t|)−ke−|t| for t→ −∞,
(−2t)−ket for t→∞.

Moreover, in the case that t < 0, we have

(4) H(t) = e−t Γ(1− k,−2t),

where Γ(α, t) :=
∫∞
t e−wwα−1 dw is the incomplete Gamma-function. Let M̂+

k be the plus-

space of harmonic Maass forms, i.e, the space of forms in M̂k whose Fourier expansions in

Equation (3) are only over integers n satisfying (−1)k−
1
2n ≡ 0, 1 (mod 4).

Furthermore, if g ∈ M̂k is holomorphic on H, then g is a weakly holomorphic modular
form of weight k, i.e., a meromorphic modular form of weight k whose poles (if there are
any) are supported at the cusps. We write M !

k for the space of weakly holomorphic modular

forms of weight k and M !+
k for its plus-space.

Bruinier and Funke [11] introduced the differential operator

(5) ξk := 2i

(
τ − τ

2i

)k
∂τ

and showed that
ξk : M̂k →M !

2−k.

This map plays a significant role in theory of harmonic Maass forms and has led to important
applications; see for example the work of Bringmann and Ono on Maass-Poincaré series [8, 9].

Finally, note that if g ∈ Ŝk, the pre-image of S2−k (the space of cusp forms of weight 2− k)
under ξk, then g has a Fourier expansion of the form

(6) g(τ) =
∑

n�−∞
c+
g (n)qn +

∑
n<0

c−g (n)Γ(1− k, 4π|n|y)qn.

3. Skew-holomorphic Jacobi forms

In 1985, Eichler and Zagier [13] systematically developed a theory of (holomorphic) Jacobi
forms. Skoruppa [20, 21] introduced skew-holomorphic Jacobi forms, which play a crucial
role in understanding liftings of modular forms and Jacobi forms. The theory of Jacobi forms
has grown enormously since then with deep connections to modular forms and many other
areas of mathematics and physics, for example, the theory of Heegner points, the theory of
elliptic genera, string theory, and more recently, mock theta functions.

We will now briefly discuss the definition of skew-holomorphic Jacobi forms. Let ΓJ :=
SL2(Z) n Z2 be the Jacobi group. For fixed integers k and m, define the following slash
operator on functions φ : H× C→ C :(
φ
∣∣sk
k,m

A
)

(τ, z) := φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(cτ+d)1−k |cτ+d|−1 e

2πim

(
− c(z+λτ+µ)

2

cτ+d
+λ2τ+2λz

)
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for all A =
[(

a b
c d

)
, (λ, µ)

]
∈ ΓJ . The following definition of weak skew-holomorphic Jacobi

forms (slightly) extends the definitions in [20, 21].

Definition 2. A function φ : H × C → C is a weak skew-holomorphic Jacobi form of
weight k and index m if φ is real-analytic in τ ∈ H, is holomorphic in z ∈ C, and satisfies
the following conditions:

(1) For all A ∈ ΓJ ,
(
φ
∣∣sk
k,m

A
)

= φ.

(2) The Fourier expansion of φ is of the form

(7) φ(τ, z) =
∑
n,r∈Z
D�−∞

c(n, r)e

(
iDy

2m

)
qnζr.

If the Fourier expansion in Equation (7) is only over D ≥ 0, then φ is a skew-holomorphic
Jacobi form of weight k and index m as in [20, 21]. If the Fourier expansion in Equation (7)
is only over D > 0, then φ is a skew-holomorphic Jacobi cusp form of weight k and index
m. We denote the spaces of weak skew-holomorphic Jacobi forms, skew-holomorphic Jacobi
forms, and skew-holomorphic Jacobi cusp forms, each of weight k and index m, by Jsk!

k,m,

Jskk,m, and Jsk,cuspk,m , respectively.

Remark: Note that the Fourier expansion (7) implies that Lm(φ) = 0, where Lm :=
8πim∂τ − ∂zz is the heat operator.

We will next recall the skew-holomorphic Jacobi-Poincaré series in Skoruppa [19]. Let
D = r2 − 4nm > 0 with r, n ∈ Z. Set

Ψn,r
k,m(τ, z) := e(nτ + rz)e

(
iDy

2m

)
,

and for k ≥ 3, define

(8) P
(n,r) sk
k,m (τ, z) :=

∑
A∈ΓJ∞\ΓJ

(
Ψn,r
k,m

∣∣sk
k,m

A
)
(τ, z),

where ΓJ∞ :=
{[(

1 η
0 1

)
, (0, n)

]
| η, n ∈ Z

}
. The Fourier expansion of P

(n,r) sk
k,m features the

Kloosterman sum Kc(n, r, n
′, r′) and certain theta series ϑ

(r)
κ,m, which we now define: Let

(9) Kc(n, r, n
′, r′) := e2mc(−rr′)

∑
d (mod c)∗

λ (mod c)

ec
(
d̄mλ2 + n′d− r′λ+ d̄n+ d̄rλ

)
,

where ec(x) := e
2πix
c , the sum over d runs through the primitive residue classes modulo c,

and d̄ is the inverse of d modulo c. Finally, set

(10) ϑ(r)
κ,m(τ, z) :=

∑
λ∈Z

qλ
2mζ2mλ

(
qrλζr + (−1)κq−rλζ−r

)
.

The following theorem of [19] states that P
(n,r) sk
k,m is a skew-holomorphic Jacobi cusp form

of weight k and index m and, in particular, gives the Fourier expansion of P
(n,r) sk
k,m .
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Theorem 3. The Poincaré series P
(n,r) sk
k,m are elements of Jsk,cuspk,m . Moreover,

P
(n,r) sk
k,m (τ, z) = qne

(
iDy

2m

)
ϑ

(r)
k−1,m(τ, z) +

∑
n′,r′∈Z
D′>0

c(n′, r′)e

(
iD′y

2m

)
qn
′
ζr
′

(recall D′ = r′ 2 − 4n′m), where

c(n′, r′) := b(n′, r′) + (−1)k+1b(n′,−r′).
Here

b(n′, r′) =
√

2πi−k+1

(
D′

D

) k
2
− 3

4

m−
1
2

∑
c>0

c−
3
2Kc(n, r, n

′,−r′)Jk− 3
2

(
π
√
DD′

mc

)
,

where J is the usual J-Bessel function.

4. Harmonic Maass-Jacobi forms

Maass-Jacobi forms were first introduced by Bernd and Schmidt [2]. Recently, Pitale [16]
has used ideas of [2] to give a new and more thorough approach to Maass-Jacobi forms.
Nevertheless, there are important types of real-analytic Jacobi forms — such as the Jacobi
forms in Section 1.4 of Zwegers [24] as well as the Maass-Jacobi-Poincaré series studied in
Section 5 — which have not been part of a theory yet and which do not fit into the framework
of [16]. In this section, we suggest a theory of harmonic Maass-Jacobi forms which includes
the holomorphic Jacobi forms of Eichler and Zagier [13] as well as the real-analytic Jacobi
forms in Section 1.4 of [24] and the Poincaré series in Section 5 as explicit examples.

For fixed integers k and m, define the following slash operator on functions φ : H×C→ C :

(11)
(
φ
∣∣
k,m

A
)

(τ, z) := φ

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(cτ + d)−k e

2πim

(
− c(z+λτ+µ)

2

cτ+d
+λ2τ+2λz

)

for all A =
[(

a b
c d

)
, (λ, µ)

]
∈ ΓJ . It is well known that Equation (11) can be extended

to an action |Rk,m of the real Jacobi group on C∞ (H× C). The center of the universal
enveloping algebra of the real Jacobi group is generated by a linear element and a cubic
element, the Casimir element. The linear element acts by scalars under |Rk,m and the action

of the Casimir element under |Rk,m is given (up to the constant 5
8 + 3k−k2

2 ) by the following
differential operator:

Ck,m :=− 2(τ − τ)2∂ττ − (2k − 1)(τ − τ)∂τ +
(τ − τ)2

4πim
∂τzz

+
k(τ − τ)

4πim
∂zz +

(τ − τ)(z − z)
4πim

∂zzz − 2(τ − τ)(z − z)∂τz + k(z − z)∂z

+
(τ − τ)2

4πim
∂τzz +

(
(z − z)2

2
+
k(τ − τ)

4πim

)
∂zz +

(τ − τ)(z − z)
4πim

∂zzz .

In particular, Ck,m commutes with the action in Equation (11), i.e., if A ∈ ΓJ , then

(12)
(
Ck,mφ

) ∣∣
k,m

A = Ck,m
(
φ
∣∣
k,m

A
)
.
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Definition 3. A function φ : H × C → C is a harmonic Maass-Jacobi form of weight k
and index m if φ is real-analytic in τ ∈ H and z ∈ C, and satisfies the following conditions:

(1) For all A ∈ ΓJ ,
(
φ
∣∣
k,m

A
)

= φ.

(2) We have that Ck,m(φ) = 0.

(3) We have that φ(τ, z) = O
(
eaye2πmv2/y

)
as y →∞ for some a > 0.

We are particularly interested in harmonic Maass-Jacobi forms, which are holomorphic in

z; we denote the space of such forms by Ĵk,m.

Remarks:

(1) It is not hard to see that every φ ∈ Ĵk,m has a Fourier expansion of the form

(13)

y
3
2
−k
∑
n,r∈Z
D=0

c0(n, r)qnζr +
∑
n,r∈Z
D�∞

c+(n, r)qnζr +
∑
n,r∈Z
D�−∞

c−(n, r)H

(
−πDy

2m

)
e

(
iDy

4m

)
qnζr,

where the H here differs by the H defined on page 55 of [11] in that k is replaced by

k − 1
2 . We call

∑
D�−∞ c

−(n, r)H
(
−πDy

2m

)
e
(
iDy
2m

)
qnζr the non-holomorphic part

of φ and
∑

D�∞ c
+(n, r)qnζr the holomorphic part of φ.

(2) If φ is a holomorphic Jacobi form of weight k and index m, then φ ∈ Ĵk,m. The
definition of harmonic Maass-Jacobi forms can easily be extended to forms of half-
integral weights and indices. Each real-analytic Jacobi form µ̂ in Section 1.4 of
Zwegers [24] has a decomposition of the form µ̂ = µ1+µ̂2, where µ1 is a meromorphic
Jacobi form on H × C2 and where µ̂2 is a real analytic Jacobi form on H × C (see
also the footnote (1) on page 7 of Zagier [23]). It can be verified using MAPLE that

µ̂2 is annihilated by C1/2,−1/2 and hence is a harmonic Maass-Jacobi form of weight
1/2 and index −1/2. Further examples of harmonic Maass-Jacobi forms and their
properties are discussed in Section 5.

(3) The Maass-Jacobi forms in [16] are real-analytic functions φ : H × C → C which

are eigenfunctions of C̃k,m := yk/2Ck,my−k/2 + 5
8 + 3k−k2

2 , invariant under a slash-

operator as in Equation (11), except that (cτ + d)−k in Equation (11) is replaced by(
cτ+d
|cτ+d|

)−k
, and which satisfy the growth condition φ(τ, z) = O

(
yN
)

as y → ∞ for

some N > 0. Note that the choice of this growth condition is somewhat unfortunate,
since, in general, even a holomorphic Jacobi form φ does not satisfy φ(τ, z) = O

(
yN
)

as y →∞ (independently of z) for some N > 0. In fact, the identity (see Skoruppa
[18])

|qnζr| e−
2πmv2

y = e
− πy

2m

((
r+ 2mv

y

)2
−D

)

applied to the Fourier expansion of a holomorphic Jacobi form shows that such a
Jacobi form satisfies Condition (3) of Definition 3.
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A direct computation reveals that

D
(m)
− :=

(
τ − τ

2i

)(
−(τ − τ)∂τ − (z − z)∂z +

1

4πm

(
τ − τ

2i

)
∂zz

)
is a “lowering” operator, i.e., if φ is a smooth function on H× C and if A ∈ ΓJ , then

(14)
(
D

(m)
− φ

) ∣∣
k−2,m

A = D
(m)
−

(
φ
∣∣
k,m

A
)
.

In the spirit of the definition of ξk in Equation (5), we introduce the differential operator

(15) ξk,m :=

(
τ − τ

2i

)k−5/2

D
(m)
− .

We will now prove Proposition 1, which gives the action of ξk,m on Ĵk,m. If φ ∈ Ĵk,m, then

Equation (14) implies that (ξk,mφ)
∣∣sk
3−k,mA = ξk,mφ for all A ∈ ΓJ . Moreover, applying

ξk,m to a Fourier expansion of the form (13) yields a Fourier expansion of a weak skew-
holomorphic Jacobi form, which completes the proof of Proposition 1.

We end this section with two remarks.

Remarks:

(1) In the introduction, we define Ĵcuspk,m as the pre-image of Jsk,cusp3−k,m under ξk,m. Note

that elements in Ĵcuspk,m have a Fourier expansion of the form

φ(τ, z) =
∑
n,r∈Z
D�∞

c+(n, r)qnζr +
∑
n,r∈Z
D>0

c−(n, r)Γ

(
3

2
− k, πDy

m

)
qnζr .

(2) As in the previous remark, write each function µ̂ in [24] as µ̂ = µ1 + µ̂2. Then
µ̂2(τ, z) is a harmonic Maass-Jacobi form of weight 1/2 and index −1/2, which is not
holomorphic in z (where z = u− v with the variables u and v in [24]). Nevertheless,
one can determine its image under ξ 1

2
,− 1

2
. One finds that

ξ 1
2
,− 1

2
(µ̂2) =

√
2
√
y
e−2πv2/y

∑
n∈ 1

2
+Z

(−1)n−
1
2

(
n+

v

y

)
e−πin

2τe2πinz,

which satisfies the transformation law of a skew-holomorphic Jacobi form of weight
3/2 and index −1/2 and is also in the kernel of the heat operator 4πi∂τ + ∂zz.
However, ξ 1

2
,− 1

2
(µ̂2) is not holomorphic in z and hence it is not a skew-holomorphic

Jacobi form in the sense of Definition 2.

5. Maass-Jacobi-Poincaré series and the proofs of Theorem 1 and Theorem 2

In this section, we present Maass-Jacobi-Poincaré series. We determine their Fourier
expansions, which allow us to prove Theorem 1 and Theorem 2.
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First, we construct an eigenfunction of the differential operator Ck,m in order to define
the Maass-Jacobi-Poincaré series in Equation (18). Let Mν,µ be the usual M -Whittaker
function, which is a solution to the differential equation

(16)
∂2

∂w2
f(w) +

(
−1

4
+
ν

w
+

1
4 − µ

2

w2

)
f(w) = 0.

Let D = r2 − 4nm 6= 0, and for s ∈ C, κ ∈ 1
2Z, and t ∈ R \ {0}, define

(17) Ms,κ(t) := |t|−
κ
2 Msgn(t)κ

2
,s− 1

2
(|t|)

and

φ
(n,r)
k,m,s(τ, z) :=Ms,k− 1

2

(
−πDy

m

)
e

(
rz +

ir2y

4m
+ nx

)
.

Lemma 1. The function φ
(n,r)
k,m,s is an eigenfunction of the operator Ck,m with eigenvalue

−2s(1− s)− 1
2

(
k2 − 3k + 5

4

)
.

Proof: If ` is an integer, then one can verify that (see also [8])

ϕk,−`,s(τ) :=Ms,k(−4π`y)e(−`x)

is an eigenfunction of ∆k with eigenvalue s(1 − s) + 1
4

(
k2 − 2k

)
. It is easy to see that the

action of Ck,m on functions in Ĵk,m agrees with that of

−2(τ − τ)2∂ττ − (2k − 1)(τ − τ)∂τ +
(τ − τ)2

4πim
∂τzz = −2 ·∆k− 1

2
+

(τ − τ)2

4πim
∂τzz.

We write

φ
(n,r)
k,m,s(τ, z) = e

(
r2

4m
τ + rz

)
ϕk,− D

4m
,s(τ)

to find that

Ck,m
(
φ

(n,r)
k,m,s

)
= e

(
r2

4m
τ + rz

)(
−2∆k− 1

2

(
ϕk,−D

4
,s

))
=

(
−2s(1− s)− 1

2

(
k2 − 3k +

5

4

))
φ

(n,r)
k,m,s.

�

We consider the Poincaré series

(18) P
(n,r)
k,m,s(τ, z) :=

∑
A∈ΓJ∞\ΓJ

(
φ

(n,r)
k,m,s

∣∣
k,m

A
)
(τ, z).

The estimate

Ms,k− 1
2
(y)� yRe(s)− 2k−1

4 (y → 0)

yields that P
(n,r)
k,m,s is absolutely and uniformly convergent for Re(s) > 5

4 . Of particular

interest are the cases s ∈
{
k
2 −

1
4 ,

5
4 −

k
2

}
, for which the P

(n,r)
k,m,s are annihilated by Ck,m and
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thus provide elements of Ĵk,m. We give the Fourier expansion of P
(n,r)
k,m,s in the next theorem

after introducing a modified W -Whittaker function. For s ∈ C, κ ∈ 1
2Z, and t ∈ R \ {0}, set

(19) Ws,κ(t) := |t|−
κ
2Wsgn(t)κ

2
, s− 1

2
(|t|),

where Wν,µ denotes the usual W -Whittaker function, which is also a solution to the Differ-
ential Equation (16).

Theorem 4. We have

(20) P
(n,r)
k,m,s(τ, z) = qnMs,k− 1

2

(
−πDy

m

)
e

(
iDy

4m

)
ϑ

(r)
k,m(τ, z) +

∑
n′,r′∈Z

cy,s(n
′, r′)qn

′
ζr
′
,

where

cy,s(n
′, r′) := by,s(n

′, r′) + (−1)kby,s(n
′,−r′)

and where by,s(n
′, r′) is given as follows (recall D′ = r′2 − 4n′m):

(1) If DD′ > 0, then by,s(n
′, r′) equals

√
2πi−km−

1
2

Γ(2s)

Γ
(
s− sgn(D′)2k−1

4

) (D′
D

) k
2
− 3

4

e

(
iD′y

4m

)
Ws,k− 1

2

(
−πD

′y

m

)

×
∑
c>0

c−
3
2Kc(n, r, n

′, r′)J2s−1

(
π
√
D′D

mc

)
,

where Γ is the usual Gamma-function.
(2) If D′ = 0, then by,s(n

′, r′) equals

y
5−2k

4
−s 1

Γ
(
s+ 2k−1

4

)
Γ
(
s− 2k−1

4

)as(n′r′),
where as(n

′, r′) is holomorphic for σ > 5
4 .

(3) If DD′ < 0, then by,s(n
′, r′) equals

√
2πi−km−

1
2

Γ(2s)

Γ
(
s− sgn(D′)2k−1

4

) ( |D′|
|D|

) k
2
− 3

4

e

(
iD′y

4m

)
Ws,k− 1

2

(
−πD′y
m

)

×
∑
c>0

c−
3
2Kc(n, r, n

′, r′)I2s−1

(
π
√
|D′D|
mc

)
,

where I is the usual I-Bessel-function.

Proof: A set of representatives of ΓJ∞\ΓJ is given by
{[(

a b
c d

)
, (aλ, bλ)

]}
, where c, d ∈ Z

with (c, d) = 1, λ ∈ Z, and where for each pair (c, d), the integers a, b are chosen such that
ad − bc = 1. It is easy to see that the contribution from c = 0 yields the first term on the
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right hand side of Equation (20). We now only consider the contribution from c > 0, since
the case c < 0 is similar. We use the identities

aτ + b

cτ + d
=

a

c
− 1

c(cτ + d)
,

mλ2aτ + b

cτ + d
+

2λmz

cτ + d
− cmz2

cτ + d
= − c

cτ + d
m

(
z − λ

c

)2

+
a

c
mλ2,

z

cτ + d
+ λ

aτ + b

cτ + d
=

z − λ
c

cτ + d
+
aλ

c

to verify that the contribution from c > 0 is given by

∑
c>0

d (mod c)∗

λ (mod c)
α,β∈Z

c−k
(
τ +

d

c
+ α

)−k
e

(
− 1

τ + d
c + α

m

(
z − λ

c
− β

)2

+
a

c
mλ2

)

× φ(n,r)
k,m,s

(
a

c
− 1

c2
(
τ + d

c + α
) , z − λ

c − β
c
(
τ + d

c + α
) +

aλ

c

)
.

The next task is to compute the Fourier expansion of

F (τ, z) :=
∑
α,β∈Z

(τ + α)−ke

(
− 1

τ + α
m (z − β)2

)
φ

(n,r)
k,m,s

(
a

c
− 1

c2 (τ + α)
,
z − β

c (τ + α)
+
aλ

c

)
.

Poisson summation shows that

F (τ, z) =
∑

n′,r′∈Z
ay(n

′, r′)e(n′x+ r′z)

with

ay(n
′, r′) =

∫
R2

t−ke

(
−mw

2

t

)
φ

(n,r)
k,m,s

(
a

c
− 1

c2t
,
w

ct
+
aλ

c

)
e
(
−n′x′ + r′w

)
dx′du′,

where w = u′ + iv′ with v′ arbitrary and t = x′ + iy. We employ the identities

Re

(
a

c
− 1

c2t

)
=

a

c
− x′

c2|t|2
,

Im

(
a

c
− 1

c2t

)
=

y

c2|t|2
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to find that

ay(n
′, r′) = e

(
na

c
+
raλ

c

)∫
R
t−kMs,k− 1

2

(
− πDy

mc2|t|2

)
e

(
−n′x′ + ir2y

4mc2|t|2
− nx′

c2|t|2

)
×
∫
R
e

(
−r′w − w2m

t
+
rw

ct

)
du′dx′

= e

(
na

c
+
raλ

c
− rr′

2mc

)
m−

1
2 (2i)−

1
2 e

(
ir′2y

4m

)
×
∫
R
t−(k− 1

2)Ms,k− 1
2

(
− πDy

mc2|t|2

)
e

(
−D

′x′

4m
+

Dx′

4mc2|t|2

)
dx′.

We omit further details and only point out that the evaluations of the Bessel function integral
on p. 176 of Fay [14] will finish the proof. �

We now restrict to the cases s ∈
{
k
2 −

1
4 ,

5
4 −

k
2

}
. We observe that the Gamma function

has poles at non-positive integers to see that Theorem 4 reduces to the following Corollary.

Corollary 1. For s ∈
{
k
2 −

1
4 ,

5
4 −

k
2

}
the functions P

(n,r)
k,m,s are in Ĵk,m and have Fourier

expansions of the form:

P
(n,r)
k,m,s(τ, z) = qnMs,k− 1

2

(
−πDy

m

)
e

(
iDy

4m

)
ϑ

(r)
k,m(τ, z) + c(τ, z)

+
∑

n′,r′∈Z
c(k)
n,r(n

′, r′)e

(
iD′y

4m

)
Ws,k− 1

2

(
−πD

′y

m

)
qn
′
ζr
′
,

where

(21) c(τ, z) :=
∑

n′,r′∈Z
D′=0

c(k)
n,r(n

′, r′)qn
′
ζr
′

only occurs for k < 0. As stated in Equation (1) of the introduction,

c(k)
n,r(n

′, r′) := b(k)
n,r(n

′, r′) + (−1)kb(k)
n,r(n

′,−r′).

We have (recall D′ = r′2 − 4n′m):

(1) If D > 0 and k > 3, then b
(k)
n,r(n′, r′) = 0 unless D′ < 0, in which case it equals

√
2πi−km−

1
2

(
|D′|
D

) k
2
− 3

4 ∑
c>0

c−
3
2Kc(n, r, n

′, r′)Ik− 3
2

(
π
√
|D′|D
mc

)
.

(2) If D > 0 and k < 0, then b
(k)
n,r(n′, r′) is given by

√
2πi−km−

1
2

(
D′

D

) k
2
− 3

4 (3
2 − k

)∑
c>0

c−
3
2Kc(n, r, n

′, r′)J 3
2
−k

(
π
√
D′D
mc

)
if D′ > 0,

√
2πi−km−

1
2

(
|D′|
D

) k
2
− 3

4
Γ
(

5
2 − k

)∑
c>0

c−
3
2Kc(n, r, n

′, r′)I 3
2
−k

(
π
√
|D′|D
mc

)
if D′ < 0.
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(3) If D < 0 and k > 3, then b
(k)
n,r(n′, r′) = 0 unless D′ < 0, in which case it equals

√
2πi−km−

1
2

(
D′

D

) k
2
− 3

4 ∑
c>0

c−
3
2Kc(n, r, n

′, r′)Jk− 3
2

(
π
√
D′D

mc

)
.

(4) If D < 0 and k < 0, then b
(k)
n,r(n′, r′) is given by

√
2πi−km−

1
2

(
D′

|D|

) k
2
− 3

4 (3
2 − k

)∑
c>0

c−
3
2Kc(n, r, n

′, r′)I 3
2
−k

(
π
√
D′|D|
mc

)
if D′ > 0,

√
2πi−km−

1
2

(
D′

D

) k
2
− 3

4
Γ
(

5
2 − k

)∑
c>0

c−
3
2Kc(n, r, n

′, r′)J 3
2
−k

(
π
√
D′D
mc

)
if D′ < 0.

We normalize the Poincaré series for s ∈
{
k
2 −

1
4 ,

5
4 −

k
2

}
as follows:

(22) P(n,r)
k,m (τ, z) :=



i2k−1
(

3
2 − k

)
P

(n,r)

k,m, k
2
− 1

4

(τ, z) if D > 0, k > 0,

−
(
πD
m

)k− 3
2 1
k− 3

2

P
(n,r)

k,m, 5
4
− k

2

(τ, z) if D > 0, k < 0,

Γ
(
k − 1

2

)
i2k−3P

(n,r)

k,m, k
2
− 1

4

(τ, z) if D < 0, k > 0,

P
(n,r)

k,m, 5
4
− k

2

(τ, z) if D < 0, k < 0.

An inspection of the Fourier expansions of P(n,r)
k,m reveals that Theorem 1 follows from the

identity

(23) Kc(n, r, n
′, r′) = Kc(n

′, r′, n, r),

which is proved by replacing first d 7→ d̄ and then λ 7→ −λd̄ in Equation (9).

Now we turn to the proof of Theorem 2. Note that the differential operator ξk,m annihilates
meromorphic functions. For k > 0 the Poincaré series are meromorphic and hence we may

assume that k < 0. We decompose P(n,r)
k,m (for D > 0) into holomorphic and non-holomorphic

parts. The identities

W 5
4
− k

2
,k− 1

2
(y) = W 2k−1

4
,k− 1

2
(y) = e−

y
2 ,

W 5
4
− k

2
,k− 1

2
(−y) = W 2k−1

4
,k− 1

2
(−y) = e

y
2 Γ

(
3

2
− k, y

)
,

M 2k−1
4

,k− 1
2
(−y) = e

y
2 ,

M 5
4
− k

2
,k− 1

2
(−y) =

(
k − 3

2

)
e
y
2 Γ

(
3

2
− k, y

)
−
(
k − 3

2

)
e
y
2 Γ

(
3

2
− k
)
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give that

P(n,r)
k,m (τ, z) =− qn

(
πD

m

)k− 3
2

Γ

(
3

2
− k, πDy

m

)
ϑ

(r)
k,m(τ, z) +

∑
n′,r′∈Z

c(k)
n,r(n

′, r′)qn
′
ζr
′

− 1

k − 3
2

(
πD

m

)k− 3
2 ∑
n′,r′∈Z
D′>0

c(k)
n,r(n

′, r′)Γ

(
3

2
− k, πD

′y

m

)
qn
′
ζr
′
.

It is easy to check that

(24) ξk,m

(
Γ

(
3

2
− k, ay

))
= −a

3
2
−k e−ay,

which yields the Fourier expansion of ξk,m

(
P(n,r)
k,m

)
. A comparison with the Fourier expan-

sion of P
(n,r) sk
3−k,m in Theorem 3 (where we may replace r′ 7→ −r′) then leads to Theorem 2.

Finally, we remark that Theorem 2 shows that P(n,r)
k,m ∈ Ĵcuspk,m .

6. Lifting maps

In this section, we will show that Diagram (2) is commutative. Note that Jsk,cusp3−k,1 = {0}
if 3− k is negative or even and hence we assume that k is a negative and even. First recall

that f ∈ Ŝ+
k− 1

2

has a Fourier expansion of the form:

f(τ) =
∑

n�−∞
(−1)k−1n≡0,1 (mod 4)

c+(n)qn +
∑
n<0

(−1)k−1n≡0,1 (mod 4)

c−(n)Γ

(
3

2
− k, 4π|n|y

)
qn.

A direct computation shows that

h(τ) := ξk− 1
2
(f) = −(4π)

3
2
−k

∑
n>0

(−1)kn≡0,1 (mod 4)

c−(−n)n
3
2
−kqn ∈ S+

5
2
−k.

By setting

h0(τ) :=
1

4

3∑
j=0

h

(
τ + j

4

)
and h1(τ) :=

1

4

3∑
j=0

(−i)jh
(
τ + j

4

)
,

we find that

(25) Fθ(τ, z) := h0(τ)θ1,0(τ, z) + h1(τ)θ1,1(τ, z) ∈ Jsk,cusp3−k,1 ,

where for µ = 0, 1,

θ1,µ(τ, z) :=
∑
r∈Z

r≡µ (mod 2)

q
r2

4 ζr.
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On the other hand, for f ∈ Ŝ+
k− 1

2

, set

H0(τ) :=
1

4

3∑
j=0

f

(
τ + j

4

)
and H1(τ) :=

1

4

3∑
j=0

ijf

(
τ + j

4

)
.

One can verify then that (see also Theorem 4.4 of [16])

(26) Fθ(τ, z) := H0(τ)θ1,0(τ, z) +H1(τ)θ1,1(τ, z) ∈ Ĵcuspk,1

and Equation (24) then yields that ξk,1(Fθ) = Fθ. We conclude that Diagram (2) is commu-
tative.

Acknowledgments: The authors thank Charles Conley, Don Zagier, and Sander Zwegers for
useful discussions.
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