ROOT-CLASS RESIDUALITY OF SOME FREE CONSTRUCTIONS

D. Tieudjo

ABSTRACT. This is a survey of some recent results obtained on root-class residuality. First, we review and extend some properties of root-class residuality of generalized free products and HNN-extensions. Then conditions such that, by adjoining roots to a root-class residual groups, the resulting group is again root-class residual are derived. These results are extended to generalized free product of infinitely many groups amalgamating a common subgroup and also to multiple HNN-extensions. Further, they are applied to study root-class residuality of some one-relator groups.

2000 Mathematics Subject Classification: primary 20E26, 20E06; secondary 20F19, 20F05.

1. Introduction

Let K denotes an abstract non-empty class of groups. Then K is called a *root-class* if the following conditions are satisfied:

- 1. \mathcal{K} is closed under taking subgroups i.e. if $A \in \mathcal{K}$ and $B \leq A$, then $B \in \mathcal{K}$.
- 2. \mathcal{K} is closed under taking direct products i.e. If $A \in \mathcal{K}$ and $B \in \mathcal{K}$, then $A \times B \in \mathcal{K}$.
- 3. If $1 \leqslant C \leqslant B \leqslant A$ is a subnormal sequence and A/B, $B/C \in \mathcal{K}$, then there exists a normal subgroup D in group A such that $D \leqslant C$ and $A/D \in \mathcal{K}$. See [6], for more details about root properties.

We recall that a group G is root-class residual (or K-residual, for a root-class K) if, for every non-identity element $g \in G$, there exists a homomorphism φ from G to some group G' of root-class K such that $g\varphi \neq 1$. Equivalently, G is K-residual if, for every non-identity element $g \in G$, there exists a normal subgroup N of G such that $G/N \in K$ and $g \notin N$.

Famous examples of root-classes are the class of all finite groups, the class of all finite p-groups, the class of all soluble groups, the class of all finitely generated nilpotent groups. For these examples, root-class residuality is just residual finiteness, finite p-groups residuality, residual solvability, finitely generated nilpotent residuality respectively. Thus, root-class residuality is more general. Residual finiteness, finite p-groups residuality, residual solvability are the most investigated residual properties of groups. See for example [2, 3, 14, 15, 16].

Key words and phrases. root-class, root-class residuality, root-class separability, generalized free product, HNN-extensions.

In this paper, we present some results on root-class residuality of generalized free products and HNN-extensions. In [1], some properties of root-class residuality of amalgamated free products were obtained. Analogous results for HNN-extensions were proved in [19]. Here, we review and extend these results. We first recall with proofs, root-class residuality of free groups and free products of root-class residual groups. Then, sufficient conditions for root-class residuality of generalized free product $G = (A * B; H = K, \varphi)$ of root-class residual groups A and B amalgamating subgroups H and H through the isomorphism H and for root-class residuality of HNN-extensions H are derived; for some particular cases, necessary and sufficient conditions (criteria) are given. Further, conditions for adjoining roots to root-class residual groups to be root-class residual are stated. The results are extended to generalized free product of infinitely many groups amalgamating a common subgroup and also to multiple HNN-extensions. Finally, we apply these results to study root-class residuality of some one-relator groups.

2. Root-class residuality of free groups and free products

In this section, we present root-class residuality of free groups and free products of root-class residual groups.

Let K be a root-class of groups. The following properties are easily verified.

Lemma. Let K be a root-class of groups. Then

- 1. If a group G has a subnormal sequence with factors belonging to class K, then $G \in K$.
 - 2. If $F \subseteq G$, $G/F \in \mathcal{K}$ and $F \in \mathcal{K}$, then group $G \in \mathcal{K}$.
 - 3. If $A \subseteq G$, $B \subseteq G$, $G/A \in \mathcal{K}$ and $G/B \in \mathcal{K}$, then $G/(A \cap B) \in \mathcal{K}$.

Indeed, root-class is closed for extensions. This follows from the definition of root-class. So the first property of Lemma is satisfied. The second and third properties are easily verified by the definition of root-class.

In [6] Theorem 6.2, Gruenberg states that:

Free product of root-class residual groups is root-class residual if and only if every free group is root-class residual.

However, it happens that the given above condition is necessary and sufficient for every root-class \mathcal{K} .

Theorem 2.1. Every free group is K-residual, for every root-class K.

Proof. We see that every root-class K contains a non trivial cyclic group (Property 1 of the definition of root-class). If K contains an infinite cyclic group then, by Lemma, K contains any group possessing subnormal sequence with infinite cyclic factors; thus all finitely generated nilpotent torsion-free groups belong to class K. Also, if K contains a finite non trivial cyclic group, then K contains group of prime order p and consequently, by Lemma, K contains all groups possessing subnormal sequence with factors of order p; hence all finite p-groups belong to K. So any root-class contains all finitely generated

nilpotent torsion-free groups or all finite p-groups for some prime p. But free groups are residually finitely generated nilpotent torsion-free ([13] p. 347) and also residually p-finite ([8] p. 121). Therefore, free groups are \mathcal{K} -residual, for every root-class \mathcal{K} and this ends the proof of Theorem 2.1.

Now, from the proof of Theorem 2.1 and the Grunberg's result formulated above, Theorem 2.2 directly follows.

Theorem 2.2. Free product of root-class residual groups is root-class residual. \Box

3. Root-class residuality of generalized free products

This section is focussed on the study of root-class residuality of generalized free products.

We first give some useful properties of the construction of free product of groups with amalgamated subgroups.

Let A and B be two groups, each of which is given by the presentation:

$$A = \langle a_1, a_2, \dots, a_m; W \rangle,$$

$$B = \langle b_1, b_2, \dots, b_n; V \rangle.$$

Let also H and K be subgroups of group A and B respectively and let φ be an isomorphism of group H onto group K. By free product of groups A and B, amalgamating subgroups H and K through the isomorphism φ , we mean the group denoted $G = (A * B; H = K, \varphi)$, which is given by the presentation

$$G = \langle a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n; W, V, h = h\varphi (h \in H) \rangle.$$

Thus, the set of generators of group G is the disjoint union of the sets of generators of groups A and B; and the set of the defining relations of group G consists of the defining relations of groups A and B and every possible relation of the form $h = h\varphi$, where h is an element of H in the generators a_1, a_2, \ldots, a_m , and $h\varphi$ is an element of K in the generators b_1, b_2, \ldots, b_n , which is the corresponding image by the mapping φ of h.

To point out the fact that groups A and B are identified with the indicated subgroups of group G, we denote this group by G = (A * B; H) and call it the free product of groups A and B amalgamating subgroup H (considering that isomorphism φ is given).

A reduced form of an element $g \in G$ is the representation of this element as product

$$g = x_1 x_2 \cdots x_s,$$

where components x_1, x_2, \ldots, x_s belong, in turn, to subgroups A and B, and if s > 1, then any of these components does not belong to subgroup H.

In general, an element g of group G = (A * B; H) can have more than one reduced form. In this case, components of the same index lie in the same subgroup A or B and

the number of components in these forms is the same. We call this number the length of element g and denote l(g).

Thus if element $g = x_1 x_2 \cdots x_s$ of group G = (A * B; H) is reduced and s > 1, then $g \neq 1$. If s = 1, then $g \in A$ or $g \in B$.

From theorem 2.2 and H. Neumann's theorem ([12], p. 212), the following result is easily established:

Theorem 3.1. Let K be a root-class. The generalized free product G = (A * B; H) of groups A and B amalgamating subgroup H is K-residual if groups A and B are K-residual and there exists a homomorphism σ from G to a group G' of root-class K, such that σ is injective on H.

Proof. Let \mathcal{K} be a root-class. Let G=(A*B;H) be the generalized free product of groups A and B amalgamating subgroup H and let groups A and B be \mathcal{K} -residual. Suppose there exists a homomorphism σ of G to a group of class \mathcal{K} , which is injective on H. Let N be the kernel of the homomorphism σ . Then $G/N \in \mathcal{K}$ and $N \cap H = 1$. Now, by H. Neumann's theorem ([12], p. 212) N is the the free product of a free group F and some subgroups of group G of the form

$$g^{-1}Ag \cap N, \quad g^{-1}Bg \cap N, \tag{1}$$

where $g \in G$. The subgroups of the form (1) are K-residual since are groups A and B. By theorem 2.1, free group F is also K-residual. Thus N is a free product of root-class residual groups. Therefore, by theorem 2.2, N is root-class residual. Moreover, since $G/N \in K$, by property 2 of Lemma, it follows that group G is root-class residual. Theorem 3.1 is proven.

Remark that theorem 2.2 can be considered as a particular case of theorem 3.1. We also see that, if the amalgamated subgroup H is finite, then the formulated above sufficient condition of root-class residuality of group G will be as well necessary.

Another restriction permitting to obtain simple criteria of root-class residuality of generalized free product of groups A and B amalgamating subgroup H is the equality of the free factors A and B.

More precisely, let G be the generalized free product of groups A and B amalgamating subgroups H and K through the isomorphism φ . If A = B, H = K and φ is the identity map, we denote group G by $G = A \star A$. This construction is sometimes called the generalized free square of group A over subgroup H (see [9]). Then for the generalized free square of group A over subgroup H we prove the following criterium:

Theorem 3.2. Let K be a root-class. The group $G = A \underset{H}{\star} A$ is K-residual if and only if group A is K-residual and the subgroup H of A is K-separable.

We recall that subgroup H of a group A is root-class separable (or K-separable, for a root-class K) if, for any element a of A and $a \notin H$, there exists a homomorphism φ from

A to a group of root-class \mathcal{K} such that $a\varphi \notin H\varphi$. This means that, for each $a \in A \setminus H$, there exists a normal subgroup N of A such that $A/N \in \mathcal{K}$ and $a \notin NH$.

Let's now prove theorem 3.2.

Proof. Let \mathcal{K} be a root-class. Let G = A * A. For any normal subgroup N of group A one can define the generalized free square

$$G_N = A/N \underset{HN/N}{*} A/N$$

of group A/N over subgroup HN/N and the homomorphism $\varepsilon_N: G \longrightarrow G_N$, extending the canonical homomorphism $A \longrightarrow A/N$. It is evident that group G_N is an extension of free group with group A/N. So, if A/N belongs to root-class \mathcal{K} then, by Lemma and theorem 2.1, G_N is \mathcal{K} -residual. Thus, to prove that G is \mathcal{K} -residual, it is enough to show that G is residually a group of the form G_N such that $A/N \in \mathcal{K}$.

Suppose group A is K-residual and subgroup H of A is K-separable. Let $g \in G$ such that $g \neq 1$. And let $g = a_1 \cdots a_s$ be the reduced form of element g. Two cases arise:

1. s > 1. In this case $a_i \in A \setminus H$ for all i = 1, ..., s. From \mathcal{K} -separability of H, it follows that, for every i = 1, ..., s, there exits a normal subgroup N_i of group A such that $A/N_i \in \mathcal{K}$ and $a_i \notin HN_i$. Let $N = N_1 \cap \cdots \cap N_s$. By Lemma, $A/N \in \mathcal{K}$ and, it is clear that, for all i = 1, ..., s, $a_i \notin HN$ i.e. $a_i N \notin HN/N$. So, for all i = 1, ..., s, $a_i \in M$ in M in M

$$g\varepsilon_N = a_1\varepsilon_N \cdots a_s\varepsilon_N$$

is reduced and has length s > 1. Consequently $g\varepsilon_N \neq 1$.

2. s=1 i.e. $g \in A$. As group A is K-residual, there exists a normal subgroup N of A such that $A/N \in \mathcal{K}$ and $g \notin N$, i.e. $gN \neq N$. Hence $g\varepsilon_N \neq 1$.

Thus, in any case, for an element $g \neq 1$ in group A, there exists a normal subgroup N such that $A/N \in \mathcal{K}$ and the homomorphism $\varepsilon_N : G \longrightarrow G_N$ transforms g to a non-identity element. Hence group G is residually a group G_N where $A/N \in \mathcal{K}$. Therefore G is \mathcal{K} -residual.

Conversely, suppose group G is K-residual. Evidently his subgroup A has the same property. Let's prove that H is a K-separable subgroup of group A. Let γ be an automorphism of group G canonically permuting the free factor. Let $a \in A \setminus H$. Then $a\gamma \neq a$. Since G is K-residual, there exists a normal subgroup N of G such that $G/N \in K$ and $aN \neq a\gamma N$. Let $M = N \cap N\gamma$. Then

$$M\gamma = N\gamma \cap N\gamma^2 = N\gamma \cap N = M.$$

Consequently, in the quotient-group G/M, it is possible to consider the automorphism $\overline{\gamma}$, induced by γ . Since $aN \neq a\gamma N$ and $M \leq N$, $aM \neq a\gamma M$. On the other hand, $a\gamma M = (aM)\overline{\gamma}$. Thus $aM \neq (aM)\overline{\gamma}$. Since γ acts identically on H then $\overline{\gamma}$ also acts identically on HM/M. So and since $aM \neq (aM)\overline{\gamma}$, it follows that $aM \notin HM/M$ i.e.

 $a\varepsilon \notin H\varepsilon$, where ε is the canonical homomorphism of group G onto G/M. Consequently, $G/M \in \mathcal{K}$ and the \mathcal{K} -separability of subgroup H of group A is demonstrated. \square

In [11] the above result is obtained for the particular case of the class of all finite p-groups.

We also remark that the necessary condition for theorem 3.2 takes place even at more gentle restriction on class \mathcal{K} , namely when \mathcal{K} satisfies only properties 1 and 2 of the definition of root-class.

Further, the generalized free product of infinitely many groups amalgamating subgroup is introduced in [17]. Some results on residual properties of this construction are shown in [5]. We extend theorems 3.1 and 3.2 above to generalized free products of every family $(G_{\lambda})_{{\lambda} \in \Lambda}$ of groups G_{λ} amalgamating a common subgroup H (theorems 3.3 and 3.4).

Let $(G_{\lambda})_{\lambda \in \Lambda}$ be a family of groups, where the set Λ can be infinite. Let $H_{\lambda} \leq G_{\lambda}$, for every $\lambda \in \Lambda$. Suppose also that, for every $\lambda, \mu \in \Lambda$, there exists an isomorphism $\varphi_{\lambda\mu}: H_{\lambda} \longrightarrow H_{\mu}$ such that, for all $\lambda, \mu, \nu \in \Lambda$, the following conditions are satisfied: $\varphi_{\lambda\lambda} = id_{H_{\lambda}}, \ \varphi_{\lambda\mu}^{-1} = \varphi_{\mu\lambda}, \ \varphi_{\lambda\mu}\varphi_{\mu\nu} = \varphi_{\lambda\nu}$. Let now

$$G = \left(\underset{\lambda \in \Lambda}{\star} G_{\lambda} \; ; \; h \varphi_{\lambda \mu} = h \; (h \in H_{\lambda}, \; \lambda, \mu \in \Lambda) \right)$$

be the group generated by groups G_{λ} ($\lambda \in \Lambda$) and defined by all the relators of these groups and moreover by all possible relations of the form $h\varphi_{\lambda\mu} = h$, where $h \in H_{\lambda}$, $\lambda, \mu \in \Lambda$. It is evident that every G_{λ} can be canonically embedded in group G and if we consider $G_{\lambda} \leq G$ then, for all different $\lambda, \mu \in \Lambda$,

$$G_{\lambda} \cap G_{\mu} = H_{\lambda} = H_{\mu}.$$

Let's denote by H the subgroup of group G that equals to the common subgroups H_{λ} . Then G is the generalized free product of the family $(G_{\lambda})_{\lambda \in \Lambda}$ of groups G_{λ} ($\lambda \in \Lambda$) amalgamating subgroup H. We will consider, as well, that $G_{\lambda} \leq G$, for all $\lambda \in \Lambda$. See for example [5] or [17] for details about the generalized free product of a family of groups.

Theorem 3.3. Let K be a root class. The generalized free product G of the family $(G_{\lambda})_{\lambda \in \Lambda}$ of groups G_{λ} amalgamating subgroup H is K-residual if every group G_{λ} is K-residual and there exists a homomorphism σ from G to a group G' of class K such that σ is injective on H.

Proof. The proof is the same as that of theorem 3.1.

In fact, let groups G_{λ} be \mathcal{K} -residual, for all $\lambda \in \Lambda$. Suppose there exists a homomorphism σ of G to a group of class \mathcal{K} , which is one-to-one on H and let $N = ker\sigma$. Then

 $G/N \in \mathcal{K}$ and $N \cap H = 1$. But N is the free product of a free group F and some subgroups of group G of the form

$$g^{-1}G_{\lambda}g\cap N$$
,

(where $g \in G$ and $\lambda \in \Lambda$) which are root-class residual. Since F is also root-class residual by theorem 2.1, then N is a free product of root-class residual groups. Thus, by theorem 2.2, N is root-class residual. Moreover, since $G/N \in \mathcal{K}$, by property 2 of Lemma, it follows that group G is root-class residual and the theorem is proven. \square

Suppose now that, for all $\lambda \in \Lambda$, $G_{\lambda} = A$. Then, in this case, the generalized free product of the family $(G_{\lambda})_{\lambda \in \Lambda}$ of groups G_{λ} amalgamating subgroup H is called the generalized free power of group A over subgroup H. It is denoted P and written $P = A \star \cdots \star A$. For such group P we have the following criterium:

Theorem 3.4. Let K be a root-class. The group $P = A \underset{H}{\star} \cdots \underset{H}{\star} A$ is K-residual if and only if group A is K-residual and the subgroup H of A is K-separable.

The proof is similar to that of theorem 3.2.

4. Root class residuality of HNN-extensions

In this section, we study root-class residuality of HNN-extensions. Let's recall the construction of HNN-extensions.

Let A be a group, H and K two subgroups of group A and let $\varphi: H \longrightarrow K$ be an isomorphism. Then the HNN-extension with base group A, stable letter t and associated subgroups H and K denoted by

$$G = \langle A, t; \ t^{-1}ht = \varphi(h), \ h \in H \rangle$$

is the group generated by all the generators of the group A and one more element t and defined by all the relators of group A and all possible relations of form $t^{-1}ht = \varphi(h), h \in H$.

For this construction, every element $q \in G$ can be written as

$$g = x_0 t^{\epsilon_1} \cdots t^{\epsilon_r} x_r \tag{2}$$

where for any i = 0, 1, ..., r element x_i belongs to the subgroup A, $\epsilon_i = \pm 1$ and if r > 1, there is no consecutive subwords of type $t^{-1}x_it$ or tx_jt^{-1} with $x_i \in H$ or $x_j \in K$ in script (2).

Such form of element g is called *reduced* and r – its *length*.

By Britton's Lemma ([12], p. 181), if $g = x_0 t^{\epsilon_1} \cdots t^{\epsilon_r} x_r$ is reduced and $r \ge 1$, then $g \ne 1$ in group G.

The HNN-extension with base group A, stable letter t and associated subgroups H and K can also be denoted

$$G = \langle A, t; \ t^{-1}Ht = K, \ \varphi \rangle.$$

We prove:

Theorem 4.1. The HNN-extension $G = \langle A, t; t^{-1}Ht = K, \varphi \rangle$ is K-residual for a given root-class K if the base group A is K-residual and there exists a homomorphism σ of G onto some group of root-class K such that σ is one-to-one on H.

We establish Theorem 4.1 from Theorem 2.2 and H. Neumann's theorem ([12], p. 212):

Proof. Let K be a root-class. Let $G = \langle A, t; t^{-1}Ht = K, \varphi \rangle$ be the HNN-extension with base group A, stable letter t and associated subgroups H and K via φ . Assume that the group A is K-residual. Suppose there exists a homomorphism σ of G onto some group of class K, such that σ is one-to-one on H. Denote by N the kernel of the homomorphism σ . Then $G/N \in K$ and $N \cap H = 1$. By H. Neumann's theorem ([12], p. 212) or by [7], N is the free product of a free group F and some subgroups of group G of the form

$$g^{-1}Ag \cap N, \tag{3}$$

where $g \in G$. Since group A is K-residual, the subgroups of form (3) are also K-residual. Therefore N is K-residual as a free product of K-residual groups (Theorem 2.2), since free group F is K-residual (Theorem 2.1). Moreover, since $G/N \in K$, then by property 2 of Lemma, it follows that G is K-residual and Theorem 4.1 is proven.

It is evident that if H = K = 1 or if H is finite, then the above sufficient condition of root-class residuality of group G will be necessary as well.

Another restriction permitting to obtain criteria for root-class residuality of HNN-extension with base group A, stable letter t and associated subgroups H and K is the equality of the associated subgroups. We prove:

Theorem 4.2. Let K be a given root-class. Let $G = \langle A, t; t^{-1}Ht = K, \varphi \rangle$ be the HNN-extension with base group A, stable letter t and associated subgroups H and K via φ such that H = K and φ is the identity map on H. Then G is K-residual if and only if group A is K-residual and subgroup H is K-separable in A.

Proof. So let K be a root-class. Let $G = \langle A, t; t^{-1}Ht = K, \varphi \rangle$ be the HNN-extension with base group A, stable letter t and associated subgroups H and K such that H = K and φ is the identity map on H. For any normal subgroup N of group A one can define the HNN-extension

$$G_N = \langle A/N, t; t^{-1}HN/Nt = HN/N, \varphi_N \rangle$$

where φ_N is the identity map on subgroup HN/N of group G_N , and the homomorphism $\rho_N: G \longrightarrow G_N$, extending the canonical homomorphism $A \longrightarrow A/N$ and $t \longmapsto t$. Consider the homomorphism $\sigma: G_N \longrightarrow A$ which is the identity map on A and which maps $t \longmapsto 1$. Then $\ker \sigma = \langle t \rangle^{G_N}$ is free by [12], Theorem 6.6 p.212. So, $G_N/\langle t \rangle^{G_N} \cong A/N$ and G_N is an extension of a free group by group A/N. Therefore, if A/N belongs to root-class K then, G_N is K-residual. Thus, to prove K-residuality of G, it is enough to show that G is residually a group of kind G_N , where $A/N \in K$.

Suppose the group A is K-residual and the subgroup H is K-separable in A. Let $1 \neq g \in G$. Assume that element g has a reduced form $g = a_0 t^{\epsilon_1} \cdots t^{\epsilon_s} a_s$. Two cases arise:

1. $s \geqslant 1$. In this case, for every $i = 0, \ldots, s, \ a_i \in A, \ \epsilon_i = \pm 1$ and there is no consecutive sequences of type t^{-1}, a_i, t or t, a_j, t^{-1} with $a_i, a_j \in H$. From \mathcal{K} -separability of H, it follows that, for every $i = 0, \ldots, s$, there exists a normal subgroup N_i of A such that $A/N_i \in \mathcal{K}$ and $a_i \notin HN_i$. Thus, there will be no consecutive sequences of type t^{-1}, a_iN_i, t or t, a_jN_i, t^{-1} with $a_i, a_j \in H$. So let $N = N_0 \cap \cdots \cap N_s$. By Lemma, $A/N \in \mathcal{K}$ and, it is clear that, for every $i = 0, \ldots, s, \ a_i \notin HN$ and there is no consecutive subwords of type t^{-1}, a_iN, t or t, a_jN, t^{-1} with $a_i, a_j \in H$. Therefore the form

$$g\rho_N = a_0 \rho_N t^{\epsilon_1} \cdots t^{\epsilon_s} a_s \rho_N$$

is reduced and has length $s \ge 1$. Consequently $g\rho_N \ne 1$.

2. s = 0 i.e. $g \in A$. Since A is K-residual, there exists a normal subgroup N of A such that $A/N \in \mathcal{K}$ and $g \notin N$, i.e. $gN \neq N$. So, $g\rho_N \neq 1$.

Hence, for any element $g \neq 1$, there exists a normal subgroup N in A, such that $A/N \in \mathcal{K}$ and the homomorphism $\rho_N : G \longrightarrow G_N$ maps element g to a non identity element. Consequently, G is residually a group G_N , where $A/N \in \mathcal{K}$. Therefore G is \mathcal{K} -residual.

Conversely, suppose G is K-residual. Evidently, its subgroup A is K-residual. It remains to show that H is K-separable in group A. If H is not K-separable in A, we choose element $a \in A \setminus H$ such that $a \in NH$, for all normal subgroup N of A where $A/N \in K$. Let $g = t^{-1}ata^{-1}$. Then g has length greater than 1. By Britton's lemma, $g \neq 1$. Let M be a normal subgroup of G with $G/M \in K$ and $g \notin M$, since G is K-residual. So let $R = M \cap A$. R is a normal subgroup of A and furthermore $A/R \in K$. Consequently the canonical homomorphism $A \longrightarrow A/R$ extends to an epimorphism $\pi: G \longrightarrow G_R$, where $G_R = \langle A/R, t; t^{-1}HR/R t = HR/R$, $\varphi_R \rangle$. Hence $A \in RH$ by the choice of $A \in RH$ by the choice of $A \in RH$ such that $A \in RH$ such that $A \in RH$ by the choice of $A \in RH$ such that $A \in RH$ such that $A \in RH$ is a contradiction. $A \in RH$ such that $A \in RH$ and this is a contradiction.

Remark 1. We remark that this result generalizes for example Lemma 3.1 in [10] where analogous result is proven for the particular case of the class of all finite p-groups. We also see that, if A = H = K, then A is a normal subgroup of G and $G/A \cong \langle t \rangle$. Therefore G is an extension of a group of class K by a free group; and thus is K-residual. We remark also that, the necessary condition for Theorem 4.2 will also holds when K satisfies only Properties 1 and 2 of the definition of root-class.

Remark 2. We further remark that theorem 4.2 can be strengthened. Indeed, if we consider that the base group A is finitely generated and H=K via a isomorphism φ , where φ is induced by an automorphism of A, then the criterium of the theorem 4.2 also holds.

Although HNN-extensions are basically defined with multiple stable letters and multiple associated subgroups, mostly HNN-extensions with only one stable letter have been studied. However M. Shirvani in [18] examined residual finiteness of HNN-extensions with multiple stable letters and associated subgroups (multiple HNN-extensions). We also study root-class residuality of multiple HNN-extensions. We will generalize Theorems 4.1 and 4.2 above to multiple HNN-extensions.

Let A be a group and let I be an index set. Let H_i and K_i , $i \in I$ be families of subgroups of group A with $(\varphi_i)_{i \in I}$ a family of maps such that $\varphi_i : H_i \longrightarrow K_i$ is an isomorphism. Then the HNN-extension with base group A, stable letters t_i , $i \in I$, and associated subgroups H_i and K_i , $i \in I$, denoted by

$$G = \langle A, t_i \ (i \in I); \ t_i^{-1} h_i t_i = \varphi_i(h_i), h_i \in H_i \rangle$$

is the group generated by all the generators of A and elements t_i , $(i \in I)$ and defined by all the relators of A and all possible relations of form $t_i^{-1}h_it_i = \varphi_i(h_i)$, $h_i \in H_i$ for all $i \in I$.

The group G defined above will be called the *multiple HNN-extension* of base group A, stable letters t_i , $i \in I$, and associated subgroups H_i and K_i , $i \in I$.

In fact, let $G_0 = A$ and

$$G_1 = \langle A, t_1; \ t_1^{-1} H_1 t_1 = K_1, \ \varphi_1 \rangle;$$

we see that the double HNN-extension

$$G_2 = \langle A, t_1, t_2; \ t_1^{-1} H_1 t_1 = K_1, t_2^{-1} H_2 t_2 = K_2, \ \varphi_1, \varphi_2 \rangle$$

is the HNN-extension with base group G_1 , stable letter t_2 , and associated subgroups H_2 and K_2 via φ_2 ; i.e.

$$G_2 = \langle G_1, t_2; \ t_2^{-1} H_2 t_2 = K_2, \ \varphi_2 \rangle.$$

Thus, for j of an index set I, G_j is the HNN-extension with base group G_{j-1} , stable letter t_j and associated subgroups H_j and K_j via φ_j i.e.

$$G_{j} = \langle A, t_{1}, \dots, t_{j}; \ t_{1}^{-1} H_{1} t_{1} = K_{1}, \dots, t_{j}^{-1} H_{j} t_{j} = K_{j}, \ \varphi_{1}, \dots, \varphi_{j} \rangle$$
$$= \langle G_{j-1}, t_{j}; \ t_{j}^{-1} H_{j} t_{j} = K_{j}, \ \varphi_{j} \rangle$$

For this construction, we have the following results.

Theorem 4.3. Let K be a root-class. For any index set I, the multiple HNN-extension

$$G = \langle A, t_i \ (i \in I); \ t_i^{-1} h_i t_i = \varphi_i(h_i), \ h_i \in H_i \rangle$$

with base group A, stable letters t_i , and associated subgroups H_i and K_i via φ_i ($i \in I$), is K-residual if A is K-residual and there exists a sequence $(\sigma_i)_{i \in I}$ of homomorphisms

of group G_i onto some group X_i of root-class K, such that σ_i is one-to-one on subgroup H_i for all $i \in I$.

The proof is similar to the proof of Theorem 4.1.

For other criteria of root-class residuality of multiple HNN-extensions with base group A, stable letters t_i and associated subgroups H_i and K_i ($i \in I$), we may assume the equality of the associated subgroups H_i and K_i for all $i \in I$.

So, suppose $H_i = K_i$ and φ_i is the identity map on H_i for all $i \in I$. Then for such group we have the following criterium which generalizes Theorem 4.2 and the proof is just a repetition of its.

Theorem 4.4. The multiple HNN-extension

$$G = \langle A, t_i \ (i \in I); \ t_i^{-1} h_i t_i = \varphi_i(h_i), \ h_i \in H_i \rangle$$

with base group A, stable letters t_i , $i \in I$, and associated subgroups H_i and K_i via φ_i such that $H_i = K_i$ and φ_i is the identity map on H_i for all $i \in I$, is K-residual if and only if A is K-residual and subgroup H_i is K-separable in G_i for all $i \in I$.

5. Adjoining roots to root-class residual groups

Let A be a group and let $a \in A$. Let n be a non-negative integer. The group $G = \langle A, x; a = x^n \rangle$ denoted by $A \underset{a=x^n}{\star} \langle x \rangle$ is obtained by adjoining roots to group A.

Let A be a group of a root class K. By adjoining roots to group A we need not obtain a group of root class K. For this purpose, we have the following criteria.

Theorem 5.1. Let A be a group with element a of infinite order. Let A be K-residual for a root class K and for some given integer n > 1 class K contains the cycle of order n. Then group $G = \langle A, x; a = x^n \rangle = A \underset{a=x^n}{\star} \langle x \rangle$ is K-residual if and only if the infinite cycle $\langle a \rangle$, generated by element a, is K-separable in A.

Proof. Suppose that subgroup $\langle a \rangle$ is not \mathcal{K} -separable in group A. Then there exits an element $g \in A \setminus \langle a \rangle$ such that $g\varphi \in \langle a \rangle \varphi$, for any homomorphism φ of group G onto a group of class \mathcal{K} . Since $a = x^n$, then $g\varphi \in \langle x \rangle \varphi$ and thus $[g, x]\varphi = 1$. But element $[g, x] = gxg^{-1}x^{-1}$ is reduced since n > 1 and its length is greater than 1. Therefore $[g, x] \neq 1$ and hence, group G is not \mathcal{K} -residual.

Conversely, let subgroup $\langle a \rangle$ be \mathcal{K} -separable in group A. By theorem 3.4, the normal closure A^G of subgroup A in group G is \mathcal{K} -residual, since it is the generalized free power of group A over subgroup $\langle a \rangle$ with index $I = \{1, ..., n\}$ i.e.

$$A^G = A \underset{\langle a \rangle}{\star} \cdots \underset{\langle a \rangle}{\star} A \quad (n \text{ times}).$$

Since $G/A^G = \langle x, x^n = 1 \rangle \in \mathcal{K}$, Then Lemma in section 2 implies now that G is \mathcal{K} -residual.

We can now apply this result to study root-class residuality of any group given by the presentation $G_{mn} = \langle a, b; [a^m, b^n] = 1 \rangle$, $(m, n \ge 1)$. Observe that

$$G_{mn} = \langle a \rangle \underset{a^m = x}{\star} H \underset{v = b^n}{\star} \langle b \rangle.$$

We have the following result.

Theorem 5.2. Let K be a root-class. Let $G_{mn} = \langle a, b; [a^m, b^n] = 1 \rangle$, where $m, n \geq 1$. Group G_{mn} is K-residual if class K contains cyclic subgroups of order m and n.

Proof. Let \mathcal{K} be a root-class. Let m, n > 1. Assume that the cyclic subgroups of order m and n belong to \mathcal{K} . Let $H = \langle x, y; [x, y] = 1 \rangle$ be the free abelian group of rank 2. Clearly, H is \mathcal{K} -residual and its subgroups $\langle x \rangle$ and $\langle y \rangle$ are \mathcal{K} -separable.

Let $A = H \underset{y=b^n}{\star} \langle b \rangle = \langle x, b; [x, b^n] = 1 \rangle$. By Theorem 5.1, A is K-residual.

We claim that $\langle x \rangle$ is \mathcal{K} -separable in A. Indeed, one can easily verify that $H = C_A(\langle x \rangle)$, the centralizer of subgroup $\langle x \rangle$ in group A. Therefore, if $g \in A \setminus H$ then $[x,g] \neq 1$; so there exists a homomorphism φ of group A onto a group of class \mathcal{K} such that $[x,g]\varphi \neq 1$, i.e. in particular, $g\varphi \notin \langle x \rangle \varphi$.

Let now $g \in H \setminus \langle x \rangle$ i.e. $g = x^k y^l$, where $l \neq 0$. Then $g = x^k b^{nl}$. Let $\sigma : A \longrightarrow \langle b \rangle$ such that $x \mapsto 1$ and $b \mapsto b$. Then $g\sigma = b^{nl} \neq 1$ and $\langle x \rangle \sigma = 1$. Let σ_0 be a homomorphism of group $\langle b \rangle$ onto a group of class \mathcal{K} . Then $g\sigma\sigma_0 \neq 1$. Hence, subgroup $\langle x \rangle$ is \mathcal{K} -separable in A.

Then applying again Theorem 5.1, we show that group $G_{mn} = \langle a \rangle \underset{a^m = x}{\star} A$ is \mathcal{K} -residual

Now, if m = 1 or n = 1, then G_{mn} is isomorphic to one of the groups A or H above and thus, is \mathcal{K} -residual.

Remark 3. We remark in summary that the converse of Theorem 5.2 is not true. For example, let \mathcal{K} be the class of all torsion-free groups; then $G_{mn} \in \mathcal{K}$, when cyclic subgroups of finite orders do not belong to \mathcal{K} . But there exits a partial converse which holds for some additional condition on class \mathcal{K} , namely if \mathcal{K} is closed under quotient groups.

In fact, suppose in addition that \mathcal{K} contains any quotient group of its group, i.e. \mathcal{K} is closed under taking homomorphic images. Let G_{mn} be \mathcal{K} -residual. Assume for example, that the cyclic subgroup of order m does not belong to \mathcal{K} . Then there exists a prime divisor p of integer m, such that the cyclic subgroup of order p does not belong to \mathcal{K} . Further, it is evident that, every element x of a group X of a root-class \mathcal{K} has a finite order, relatively prime with p. Indeed, let |f| be the order of an element f. If $|x| = \infty$ then $\langle x \rangle \in \mathcal{K}$, and since \mathcal{K} is closed under quotient groups, the cyclic subgroup of order

p would belong to \mathcal{K} . Hence, $|x| < \infty$ and $\gcd(|x|, p) = 1$, since the cyclic subgroup of order p does not belong to \mathcal{K} . So let $c = [a^{m/p}, b^n]$. Obviously $c \neq 1$. Then there exists a homomorphism φ of group G_{mn} onto a group X of class \mathcal{K} such that $c\varphi \neq 1$. Let $k = |(a^{m/p}\varphi)|$. Then $k < \infty$ and $\gcd(k, p) = 1$. Hence $((a\varphi)^{m/p})^k = 1$ and this implies that

$$[((a\varphi)^{m/p})^k, b^n \varphi] = 1. \tag{*}$$

On the order hand,

$$[((a\varphi)^{m/p})^p, b^n \varphi] = 1. \tag{**}$$

Now, from (\star) and $(\star\star)$ and since integers k and p are relatively prime, it follows that

$$c\varphi = [(a\varphi)^{m/p}), b^n\varphi] = 1$$

and this is a contradiction.

Corollary. Any group $G_{mn} = \langle a, b; [a^m, b^n] = 1 \rangle$, where $m, n \geq 1$ is residually a finite p-group if and only if integers m and n are p-numbers, for some prime p.

Acknowlegment:

The author would like to thank the Max-Planck-Institute for Mathematics for the hospitality. The travel grant by the International Mathematical Union (IMU) CDE Exchange programme is also gratefully acknowledged.

References

- 1. D. N. Azarov, D. Tieudjo, On root class residuality of amalgamated free product, Naouch. Trudy IvGU 5 (2002), 6–10. (Russian.)
- 2. G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201..
- 3. B. Baumslag and M. Tretkoff, *Residually finite HNN extensions*, Comm. in Algebra **6** (1978), no. 2, 179–194..
- 4. A. M. Brunner, On a class of one-relator groups, Can. J. Math. 50 (1980), 6 10...
- 5. D. Doniz, Residual properties of free products of infinitely many nilpotent groups amalgamating cycles, J. Algebra 179 (1996), 930–935...
- 6. K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London. Math. Soc. 3 (1957), no. 7, 29–62..
- A. Karrass and D. Solitar, Subgroups of HNN-groups and groups with one defining relator, Can. J. Math. 23 (1971), no. 4, 627–643..
- 8. M. I. Kargapolov, I. I. Merzliakov, Elements of group theory, M., Naouka, 1972.. (Russian)
- 9. G. Kim and J. McCarron, On amalgamated free products of residually p-finite groups, J. Algebra, 162 (1993), 1–11...
- 10. G. Kim and J. McCarron, Some residually p-finite one relator groups, J. Algebra, 169 (1994), 817–826..
- 11. G. Kim and C. Y. Tang, On generalized free products of residually finite p-groups, J. Algebra, **201** (1998), 317–327.

- 12. R. Lyndon and P. Schupp, Combinatorial group theory, Springer Verlag, 1977..
- 13. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, M., Naouka, 1974. (Russian)
- 14. S. Meskin, Nonresidually finite one relator groups, Trans. Amer. Math. Soc. 164 (1972), 105–114...
- 15. D. I. Moldavanskii, p-finite residuality of HNN-extensions, Viesnik Ivanov. Gos. Univ. **3** (2000), 129–140. (Russian.)
- 16. E. Raptis and D. Varsos, Residual properties of HNN-extensions with base group an abelian group, J. Pure and Applied Algebra **59** (1989), 285–290..
- 17. M. Shirvani, A converse to a residual finiteness theorem of G. Baumslag, Proc. Amer. Math. Soc. 104 (1988), no. 3, 703–706.
- 18. M. Shirvani, On residually finite HNN-extensions, Arch. Math. 44 (1985), 110-114...
- 19. D. Tieudjo, On root class residuality of HNN-extensions, IMHOTEP J. Afr. Math. Pures Appl. 6 (2005), no. 1, 18–23.

Max-Planck-Institute for mathematics, Vivagasse 7, 53111 Bonn, Germany E-mail: tieudjo@mpim-bonn.mpg.de

University of Ngaoundere, P. O. BOX 454, Ngaoundere, Cameroon. E-mail: tieudjo@yahoo.com