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Abstract. This is a survey of some recent results obtained on root-class residuality.
First, we review and extend some properties of root-class residuality of generalized free
products and HNN-extensions. Then conditions such that, by adjoining roots to a root-
class residual groups, the resulting group is again root-class residual are derived. These
results are extended to generalized free product of infinitely many groups amalgamating
a common subgroup and also to multiple HNN-extensions. Further, they are applied to
study root-class residuality of some one-relator groups.
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1. Introduction

Let K denotes an abstract non-empty class of groups. Then K is called a root-class
if the following conditions are satisfied:

1. K is closed under taking subgroups i.e. if A ∈ K and B 6 A, then B ∈ K.
2. K is closed under taking direct products i.e. If A ∈ K and B ∈ K, then A×B ∈ K.
3. If 1 6 C 6 B 6 A is a subnormal sequence and A/B, B/C ∈ K, then there

exists a normal subgroup D in group A such that D 6 C and A/D ∈ K. See [6], for
more details about root properties.

We recall that a group G is root-class residual (or K-residual, for a root-class K) if,
for every non-identity element g ∈ G, there exists a homomorphism ϕ from G to some
group G′ of root-class K such that gϕ 6= 1. Equivalently, G is K-residual if, for every
non-identity element g ∈ G, there exists a normal subgroup N of G such that G/N ∈ K
and g /∈ N .

Famous examples of root-classes are the class of all finite groups, the class of all
finite p-groups, the class of all soluble groups, the class of all finitely generated nilpo-
tent groups. For these examples, root-class residuality is just residual finiteness, finite
p-groups residuality, residual solvability, finitely generated nilpotent residuality respec-
tively. Thus, root-class residuality is more general. Residual finiteness, finite p-groups
residuality, residual solvability are the most investigated residual properties of groups.
See for example [2, 3, 14, 15, 16].

Key words and phrases. root-class, root-class residuality, root-class separability, generalized free
product, HNN-extensions.
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In this paper, we present some results on root-class residuality of generalized free
products and HNN-extensions. In [1], some properties of root-class residuality of amal-
gamated free products were obtained. Analogous results for HNN-extensions were
proved in [19]. Here, we review and extend these results. We first recall with proofs,
root-class residuality of free groups and free products of root-class residual groups.
Then, sufficient conditions for root-class residuality of generalized free product G =
(A ∗ B; H = K,ϕ) of root-class residual groups A and B amalgamating subgroups H
and K through the isomorphism ϕ, and for root-class residuality of HNN-extensions
G = 〈A, t; t−1ht = ϕ(h), h ∈ H〉 with root-class residual base group A are derived; for
some particular cases, necessary and sufficient conditions (criteria) are given. Further,
conditions for adjoining roots to root-class residual groups to be root-class residual are
stated. The results are extended to generalized free product of infinitely many groups
amalgamating a common subgroup and also to multiple HNN-extensions. Finally, we
apply these results to study root-class residuality of some one-relator groups.

2. Root-class residuality of free groups and free products

In this section, we present root-class residuality of free groups and free products of
root-class residual groups.

Let K be a root-class of groups. The following properties are easily verified.

Lemma. Let K be a root-class of groups. Then
1. If a group G has a subnormal sequence with factors belonging to class K, then

G ∈ K.
2. If F E G, G/F ∈ K and F ∈ K, then group G ∈ K.
3. If A E G, B E G, G/A ∈ K and G/B ∈ K, then G/(A ∩B) ∈ K.

Indeed, root-class is closed for extensions. This follows from the definition of root-class.
So the first property of Lemma is satisfied. The second and third properties are easily
verified by the definition of root-class.

In [6] Theorem 6.2, Gruenberg states that:
Free product of root-class residual groups is root-class residual if and only if every

free group is root-class residual.
However, it happens that the given above condition is necessary and sufficient for every
root-class K.

Theorem 2.1. Every free group is K-residual, for every root-class K.

Proof. We see that every root-class K contains a non trivial cyclic group (Property 1 of
the definition of root-class). If K contains an infinite cyclic group then, by Lemma, K
contains any group possessing subnormal sequence with infinite cyclic factors; thus all
finitely generated nilpotent torsion-free groups belong to class K. Also, if K contains a
finite non trivial cyclic group, then K contains group of prime order p and consequently,
by Lemma, K contains all groups possessing subnormal sequence with factors of order
p; hence all finite p-groups belong to K. So any root-class contains all finitely generated
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nilpotent torsion-free groups or all finite p-groups for some prime p. But free groups
are residually finitely generated nilpotent torsion-free ([13] p. 347) and also residually
p-finite ([8] p. 121). Therefore, free groups are K-residual, for every root-class K and
this ends the proof of Theorem 2.1. ¤

Now, from the proof of Theorem 2.1 and the Grunberg’s result formulated above,
Theorem 2.2 directly follows.

Theorem 2.2. Free product of root-class residual groups is root-class residual. ¤

3. Root-class residuality of generalized free products

This section is focussed on the study of root-class residuality of generalized free
products.
We first give some useful properties of the construction of free product of groups with
amalgamated subgroups.

Let A and B be two groups, each of which is given by the presentation:

A =〈a1, a2, . . . , am; W 〉,
B =〈b1, b2, . . . , bn; V 〉.

Let also H and K be subgroups of group A and B respectively and let ϕ be an iso-
morphism of group H onto group K. By free product of groups A and B, amalga-
mating subgroups H and K through the isomorphism ϕ, we mean the group denoted
G = (A ∗B; H = K, ϕ), which is given by the presentation

G = 〈a1, a2, . . . , am, b1, b2, . . . , bn; W, V, h = hϕ (h ∈ H)〉.

Thus, the set of generators of group G is the disjoint union of the sets of generators of
groups A and B; and the set of the defining relations of group G consists of the defining
relations of groups A and B and every possible relation of the form h = hϕ, where h
is an element of H in the generators a1, a2, . . . , am, and hϕ is an element of K in the
generators b1, b2, . . . , bn, which is the corresponding image by the mapping ϕ of h.

To point out the fact that groups A and B are identified with the indicated subgroups
of group G, we denote this group by G = (A ∗ B; H) and call it the free product of
groups A and B amalgamating subgroup H (considering that isomorphism ϕ is given).

A reduced form of an element g ∈ G is the representation of this element as product

g = x1x2 · · ·xs,

where components x1, x2, . . . , xs belong, in turn, to subgroups A and B, and if s > 1,
then any of these components does not belong to subgroup H.

In general, an element g of group G = (A ∗ B; H) can have more than one reduced
form. In this case, components of the same index lie in the same subgroup A or B and
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the number of components in these forms is the same. We call this number the length
of element g and denote l(g).

Thus if element g = x1x2 · · ·xs of group G = (A ∗B; H) is reduced and s > 1, then
g 6= 1. If s = 1, then g ∈ A or g ∈ B.

From theorem 2.2 and H. Neumann’s theorem ([12], p. 212), the following result is
easily established:

Theorem 3.1. Let K be a root-class. The generalized free product G = (A ∗B; H)
of groups A and B amalgamating subgroup H is K-residual if groups A and B are K-
residual and there exists a homomorphism σ from G to a group G′ of root-class K, such
that σ is injective on H.

Proof. Let K be a root-class. Let G = (A ∗ B; H) be the generalized free product
of groups A and B amalgamating subgroup H and let groups A and B be K-residual.
Suppose there exists a homomorphism σ of G to a group of class K, which is injective
on H. Let N be the kernel of the homomorphism σ. Then G/N ∈ K and N ∩H = 1.
Now, by H. Neumann’s theorem ([12], p. 212) N is the the free product of a free group
F and some subgroups of group G of the form

g−1Ag ∩N, g−1Bg ∩N, (1)

where g ∈ G. The subgroups of the form (1) are K-residual since are groups A and
B. By theorem 2.1, free group F is also K-residual. Thus N is a free product of root-
class residual groups. Therefore, by theorem 2.2, N is root-class residual. Moreover,
since G/N ∈ K, by property 2 of Lemma, it follows that group G is root-class residual.
Theorem 3.1 is proven. ¤

Remark that theorem 2.2 can be considered as a particular case of theorem 3.1.
We also see that, if the amalgamated subgroup H is finite, then the formulated above
sufficient condition of root-class residuality of group G will be as well necessary.

Another restriction permitting to obtain simple criteria of root-class residuality of
generalized free product of groups A and B amalgamating subgroup H is the equality
of the free factors A and B.
More precisely, let G be the generalized free product of groups A and B amalgamating
subgroups H and K through the isomorphism ϕ. If A = B, H = K and ϕ is the
identity map, we denote group G by G = A ?

H
A. This construction is sometimes called

the generalized free square of group A over subgroup H (see [9]). Then for the generalized
free square of group A over subgroup H we prove the following criterium:

Theorem 3.2. Let K be a root-class. The group G = A ?
H

A is K-residual if and

only if group A is K-residual and the subgroup H of A is K-separable.

We recall that subgroup H of a group A is root-class separable (or K-separable, for a
root-class K) if, for any element a of A and a /∈ H, there exists a homomorphism ϕ from
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A to a group of root-class K such that aϕ /∈ Hϕ. This means that, for each a ∈ A \H,
there exists a normal subgroup N of A such that A/N ∈ K and a /∈ NH.

Let’s now prove theorem 3.2.

Proof. Let K be a root-class. Let G = A ∗
H

A. For any normal subgroup N of group A

one can define the generalized free square

GN = A/N ∗
HN/N

A/N

of group A/N over subgroup HN/N and the homomorphism εN : G −→ GN , extending
the canonical homomorphism A −→ A/N . It is evident that group GN is an extension
of free group with group A/N . So, if A/N belongs to root-class K then, by Lemma
and theorem 2.1, GN is K-residual. Thus, to prove that G is K-residual, it is enough to
show that G is residually a group of the form GN such that A/N ∈ K.

Suppose group A is K-residual and subgroup H of A is K-separable. Let g ∈ G such
that g 6= 1. And let g = a1 · · · as be the reduced form of element g. Two cases arise:

1. s > 1. In this case ai ∈ A \H for all i = 1, . . . , s. From K-separability of H, it
follows that, for every i = 1, · · · , s, there exits a normal subgroup Ni of group A such
that A/Ni ∈ K and ai /∈ HNi. Let N = N1 ∩ · · · ∩ Ns. By Lemma, A/N ∈ K and, it
is clear that, for all i = 1, · · · , s, ai /∈ HN i.e. aiN /∈ HN/N . So, for all i = 1, · · · , s,
aiεN /∈ HεN . Therefore the form

gεN = a1εN · · · asεN

is reduced and has length s > 1.
Consequently gεN 6= 1.

2. s = 1 i.e. g ∈ A. As group A is K-residual, there exists a normal subgroup N of
A such that A/N ∈ K and g /∈ N , i.e. gN 6= N . Hence gεN 6= 1.

Thus, in any case, for an element g 6= 1 in group A, there exists a normal subgroup
N such that A/N ∈ K and the homomorphism εN : G −→ GN transforms g to a non-
identity element. Hence group G is residually a group GN where A/N ∈ K. Therefore
G is K-residual.

Conversely, suppose group G is K-residual. Evidently his subgroup A has the same
property. Let’s prove that H is a K-separable subgroup of group A. Let γ be an
automorphism of group G canonically permuting the free factor. Let a ∈ A \H. Then
aγ 6= a. Since G is K-residual, there exists a normal subgroup N of G such that
G/N ∈ K and aN 6= aγN . Let M = N ∩Nγ. Then

Mγ = Nγ ∩Nγ2 = Nγ ∩N = M.

Consequently, in the quotient-group G/M , it is possible to consider the automorphism
γ, induced by γ. Since aN 6= aγN and M 6 N , aM 6= aγM . On the other hand,
aγM = (aM)γ. Thus aM 6= (aM)γ. Since γ acts identically on H then γ also acts
identically on HM/M . So and since aM 6= (aM)γ, it follows that aM /∈ HM/M i.e.
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aε /∈ Hε, where ε is the canonical homomorphism of group G onto G/M . Consequently,
G/M ∈ K and the K-separability of subgroup H of group A is demonstrated. ¤

In [11] the above result is obtained for the particular case of the class of all finite
p-groups.
We also remark that the necessary condition for theorem 3.2 takes place even at more
gentle restriction on class K, namely when K satisfies only properties 1 and 2 of the
definition of root-class.

Further, the generalized free product of infinitely many groups amalgamating sub-
group is introduced in [17]. Some results on residual properties of this construction are
shown in [5]. We extend theorems 3.1 and 3.2 above to generalized free products of
every family (Gλ)λ∈Λ of groups Gλ amalgamating a common subgroup H (theorems
3.3 and 3.4).

Let (Gλ)λ∈Λ be a family of groups, where the set Λ can be infinite. Let Hλ 6 Gλ,
for every λ ∈ Λ. Suppose also that, for every λ, µ ∈ Λ, there exists an isomorphism
ϕλµ : Hλ −→ Hµ such that, for all λ, µ, ν ∈ Λ, the following conditions are satisfied:
ϕλλ = idHλ

, ϕ−1
λµ = ϕµλ, ϕλµϕµν = ϕλν . Let now

G =
(

?
λ∈Λ

Gλ ; hϕλµ = h (h ∈ Hλ, λ, µ ∈ Λ)
)

be the group generated by groups Gλ (λ ∈ Λ) and defined by all the relators of
these groups and moreover by all possible relations of the form hϕλµ = h, where
h ∈ Hλ, λ, µ ∈ Λ. It is evident that every Gλ can be canonically embedded in group G
and if we consider Gλ 6 G then, for all different λ, µ ∈ Λ,

Gλ ∩Gµ = Hλ = Hµ.

Let’s denote by H the subgroup of group G that equals to the common subgroups Hλ.
Then G is the generalized free product of the family (Gλ)λ∈Λ of groups Gλ (λ ∈ Λ)
amalgamating subgroup H. We will consider, as well, that Gλ 6 G, for all λ ∈ Λ.
See for example [5] or [17] for details about the generalized free product of a family of
groups.

Theorem 3.3. Let K be a root class. The generalized free product G of the family
(Gλ)λ∈Λ of groups Gλ amalgamating subgroup H is K-residual if every group Gλ is
K-residual and there exists a homomorphism σ from G to a group G′ of class K such
that σ is injective on H.

Proof. The proof is the same as that of theorem 3.1.
In fact, let groups Gλ be K-residual, for all λ ∈ Λ. Suppose there exists a homomor-

phism σ of G to a group of class K, which is one-to-one on H and let N = kerσ. Then
6



G/N ∈ K and N ∩H = 1. But N is the the free product of a free group F and some
subgroups of group G of the form

g−1Gλg ∩N,

(where g ∈ G and λ ∈ Λ) which are root-class residual. Since F is also root-class
residual by theorem 2.1, then N is a free product of root-class residual groups. Thus,
by theorem 2.2, N is root-class residual. Moreover, since G/N ∈ K, by property 2 of
Lemma, it follows that group G is root-class residual and the theorem is proven. ¤

Suppose now that, for all λ ∈ Λ, Gλ = A. Then, in this case, the generalized
free product of the family (Gλ)λ∈Λ of groups Gλ amalgamating subgroup H is called
the generalized free power of group A over subgroup H. It is denoted P and written
P = A ?

H
· · · ?

H
A. For such group P we have the following criterium:

Theorem 3.4. Let K be a root-class. The group P = A ?
H
· · · ?

H
A is K-residual if

and only if group A is K-residual and the subgroup H of A is K-separable.

The proof is similar to that of theorem 3.2. ¤

4. Root class residuality of HNN-extensions

In this section, we study root-class residuality of HNN-extensions. Let’s recall the
construction of HNN-extensions.

Let A be a group, H and K two subgroups of group A and let ϕ : H −→ K be an
isomorphism. Then the HNN-extension with base group A, stable letter t and associated
subgroups H and K denoted by

G = 〈A, t; t−1ht = ϕ(h), h ∈ H〉
is the group generated by all the generators of the group A and one more element t
and defined by all the relators of group A and all possible relations of form t−1ht =
ϕ(h), h ∈ H.

For this construction, every element g ∈ G can be written as

g = x0t
ε1 · · · tεrxr (2)

where for any i = 0, 1, . . . , r element xi belongs to the subgroup A, εi = ±1 and if r > 1,
there is no consecutive subwords of type t−1xit or txjt

−1 with xi ∈ H or xj ∈ K in
script (2).

Such form of element g is called reduced and r – its length.

By Britton’s Lemma ([12], p. 181), if g = x0t
ε1 · · · tεrxr is reduced and r > 1, then

g 6= 1 in group G.

The HNN-extension with base group A, stable letter t and associated subgroups H
and K can also be denoted

G = 〈A, t; t−1Ht = K, ϕ〉.
We prove:
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Theorem 4.1. The HNN-extension G = 〈A, t; t−1Ht = K, ϕ〉 is K-residual for a given
root-class K if the base group A is K-residual and there exists a homomorphism σ of G
onto some group of root-class K such that σ is one-to-one on H.

We establish Theorem 4.1 from Theorem 2.2 and H. Neumann’s theorem ([12], p.
212):

Proof. Let K be a root-class. Let G = 〈A, t; t−1Ht = K,ϕ〉 be the HNN-extension
with base group A, stable letter t and associated subgroups H and K via ϕ. Assume
that the group A is K-residual. Suppose there exists a homomorphism σ of G onto
some group of class K, such that σ is one-to-one on H. Denote by N the kernel of the
homomorphism σ. Then G/N ∈ K and N ∩H = 1. By H. Neumann’s theorem ([12],
p. 212) or by [7], N is the free product of a free group F and some subgroups of group
G of the form

g−1Ag ∩N, (3)

where g ∈ G. Since group A is K-residual, the subgroups of form (3) are also K-residual.
Therefore N is K-residual as a free product of K-residual groups (Theorem 2.2), since
free group F is K-residual (Theorem 2.1). Moreover, since G/N ∈ K, then by property
2 of Lemma, it follows that G is K-residual and Theorem 4.1 is proven. ¤

It is evident that if H = K = 1 or if H is finite, then the above sufficient condition
of root-class residuality of group G will be necessary as well.

Another restriction permitting to obtain criteria for root-class residuality of HNN-
extension with base group A, stable letter t and associated subgroups H and K is the
equality of the associated subgroups. We prove:

Theorem 4.2. Let K be a given root-class. Let G = 〈A, t; t−1Ht = K, ϕ〉 be the HNN-
extension with base group A, stable letter t and associated subgroups H and K via ϕ
such that H = K and ϕ is the identity map on H. Then G is K-residual if and only if
group A is K-residual and subgroup H is K-separable in A.

Proof. So let K be a root-class. Let G = 〈A, t; t−1Ht = K,ϕ〉 be the HNN-extension
with base group A, stable letter t and associated subgroups H and K such that H = K
and ϕ is the identity map on H. For any normal subgroup N of group A one can define
the HNN-extension

GN = 〈A/N, t; t−1HN/Nt = HN/N, ϕN 〉

where ϕN is the identity map on subgroup HN/N of group GN , and the homomorphism
ρN : G −→ GN , extending the canonical homomorphism A −→ A/N and t 7−→ t.
Consider the homomorphism σ : GN −→ A which is the identity map on A and which
maps t 7−→ 1. Then kerσ = 〈t〉GN is free by [12], Theorem 6.6 p.212. So, GN/〈t〉GN ∼=
A/N and GN is an extension of a free group by group A/N . Therefore, if A/N belongs
to root-class K then, GN is K-residual. Thus, to prove K-residuality of G, it is enough
to show that G is residually a group of kind GN , where A/N ∈ K.
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Suppose the group A is K-residual and the subgroup H is K-separable in A. Let
1 6= g ∈ G. Assume that element g has a reduced form g = a0t

ε1 · · · tεsas. Two cases
arise:

1. s > 1. In this case, for every i = 0, . . . , s, ai ∈ A, εi = ±1 and there is no
consecutive sequences of type t−1, ai, t or t, aj , t

−1 with ai, aj ∈ H. From K-separability
of H, it follows that, for every i = 0, . . . , s, there exists a normal subgroup Ni of A
such that A/Ni ∈ K and ai /∈ HNi. Thus, there will be no consecutive sequences
of type t−1, aiNi, t or t, ajNi, t

−1 with ai, aj ∈ H. So let N = N0 ∩ · · · ∩ Ns. By
Lemma, A/N ∈ K and, it is clear that, for every i = 0, . . . , s, ai /∈ HN and there is no
consecutive subwords of type t−1, aiN, t or t, ajN, t−1 with ai, aj ∈ H. Therefore the
form

gρN = a0ρN tε1 · · · tεsasρN

is reduced and has length s > 1. Consequently gρN 6= 1.
2. s = 0 i.e. g ∈ A. Since A is K-residual, there exists a normal subgroup N of A

such that A/N ∈ K and g /∈ N , i.e. gN 6= N . So, gρN 6= 1.
Hence, for any element g 6= 1, there exists a normal subgroup N in A, such that

A/N ∈ K and the homomorphism ρN : G −→ GN maps element g to a non identity
element. Consequently, G is residually a group GN , where A/N ∈ K. Therefore G is
K-residual.

Conversely, suppose G is K-residual. Evidently, its subgroup A is K-residual. It
remains to show that H is K-separable in group A. If H is not K-separable in A,
we choose element a ∈ A \ H such that a ∈ NH, for all normal subgroup N of A
where A/N ∈ K. Let g = t−1ata−1. Then g has length greater than 1. By Britton’s
lemma, g 6= 1. Let M be a normal subgroup of G with G/M ∈ K and g /∈ M , since
G is K-residual. So let R = M ∩ A. R is a normal subgroup of A and furthermore
A/R ∈ K. Consequently the canonical homomorphism A −→ A/R extends to an
epimorphism π : G −→ GR, where GR = 〈A/R, t; t−1HR/R t = HR/R, ϕR〉. Hence
a ∈ RH by the choice of a. Thus, there exists h ∈ H such that π(a) = h̄. Then
π(g) = π(t−1ata−1) = t−1h̄th̄−1 = 1. Hence, g ∈ Ker(π) = 〈R〉G ≤ M and this is a
contradiction. ¤

Remark 1. We remark that this result generalizes for example Lemma 3.1 in [10] where
analogous result is proven for the particular case of the class of all finite p-groups.
We also see that, if A = H = K, then A is a normal subgroup of G and G/A ∼= 〈t〉.
Therefore G is an extension of a group of class K by a free group; and thus is K-residual.
We remark also that, the necessary condition for Theorem 4.2 will also holds when K
satisfies only Properties 1 and 2 of the definition of root-class.

Remark 2. We further remark that theorem 4.2 can be strengthened. Indeed, if we
consider that the base group A is finitely generated and H = K via a isomorphism ϕ,
where ϕ is induced by an automorphism of A, then the criterium of the theorem 4.2
also holds.

9



Although HNN-extensions are basically defined with multiple stable letters and mul-
tiple associated subgroups, mostly HNN-extensions with only one stable letter have been
studied. However M. Shirvani in [18] examined residual finiteness of HNN-extensions
with multiple stable letters and associated subgroups (multiple HNN-extensions). We
also study root-class residuality of multiple HNN-extensions. We will generalize Theo-
rems 4.1 and 4.2 above to multiple HNN-extensions.

Let A be a group and let I be an index set. Let Hi and Ki, i ∈ I be families of
subgroups of group A with (ϕi)i∈I a family of maps such that ϕi : Hi −→ Ki is an
isomorphism. Then the HNN-extension with base group A, stable letters ti, i ∈ I, and
associated subgroups Hi and Ki, i ∈ I, denoted by

G = 〈A, ti (i ∈ I); t−1
i hiti = ϕi(hi), hi ∈ Hi〉

is the group generated by all the generators of A and elements ti, (i ∈ I) and defined
by all the relators of A and all possible relations of form t−1

i hiti = ϕi(hi), hi ∈ Hi for
all i ∈ I.

The group G defined above will be called the multiple HNN-extension of base group
A, stable letters ti, i ∈ I, and associated subgroups Hi and Ki, i ∈ I.

In fact, let G0 = A and

G1 = 〈A, t1; t−1
1 H1t1 = K1, ϕ1〉;

we see that the double HNN-extension

G2 = 〈A, t1, t2; t−1
1 H1t1 = K1, t

−1
2 H2t2 = K2, ϕ1, ϕ2〉

is the HNN-extension with base group G1, stable letter t2, and associated subgroups
H2 and K2 via ϕ2; i.e.

G2 = 〈G1, t2; t−1
2 H2t2 = K2, ϕ2〉.

Thus, for j of an index set I, Gj is the HNN-extension with base group Gj−1, stable
letter tj and associated subgroups Hj and Kj via ϕj i.e.

Gj = 〈A, t1, . . . , tj ; t−1
1 H1t1 = K1, . . . , t−1

j Hjtj = Kj , ϕ1, . . . , ϕj〉
= 〈Gj−1, tj ; t−1

j Hjtj = Kj , ϕj〉

For this construction, we have the following results.

Theorem 4.3. Let K be a root-class. For any index set I, the multiple HNN-extension

G = 〈A, ti (i ∈ I); t−1
i hiti = ϕi(hi), hi ∈ Hi〉

with base group A, stable letters ti, and associated subgroups Hi and Ki via ϕi (i ∈ I),
is K-residual if A is K-residual and there exists a sequence (σi)i∈I of homomorphisms
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of group Gi onto some group Xi of root-class K, such that σi is one-to-one on subgroup
Hi for all i ∈ I.

The proof is similar to the proof of Theorem 4.1. ¤

For other criteria of root-class residuality of multiple HNN-extensions with base group
A, stable letters ti and associated subgroups Hi and Ki (i ∈ I), we may assume the
equality of the associated subgroups Hi and Ki for all i ∈ I.
So, suppose Hi = Ki and ϕi is the identity map on Hi for all i ∈ I. Then for such
group we have the following criterium which generalizes Theorem 4.2 and the proof is
just a repetition of its.

Theorem 4.4. The multiple HNN-extension

G = 〈A, ti (i ∈ I); t−1
i hiti = ϕi(hi), hi ∈ Hi〉

with base group A, stable letters ti, i ∈ I, and associated subgroups Hi and Ki via ϕi

such that Hi = Ki and ϕi is the identity map on Hi for all i ∈ I, is K-residual if and
only if A is K-residual and subgroup Hi is K-separable in Gi for all i ∈ I. ¤

5. Adjoining roots to root-class residual groups

Let A be a group and let a ∈ A. Let n be a non-negative integer. The group
G = 〈A, x; a = xn〉 denoted by A ?

a=xn
〈x〉 is obtained by adjoining roots to group A.

Let A be a group of a root class K. By adjoining roots to group A we need not obtain
a group of root class K. For this purpose, we have the following criteria.

Theorem 5.1. Let A be a group with element a of infinite order. Let A be K-residual
for a root class K and for some given integer n > 1 class K contains the cycle of order
n. Then group G = 〈A, x; a = xn〉 = A ?

a=xn
〈x〉 is K-residual if and only if the infinite

cycle 〈a〉, generated by element a, is K-separable in A.

Proof. Suppose that subgroup 〈a〉 is not K-separable in group A. Then there exits an
element g ∈ A \ 〈a〉 such that gϕ ∈ 〈a〉ϕ, for any homomorphism ϕ of group G onto
a group of class K. Since a = xn, then gϕ ∈ 〈x〉ϕ and thus [g, x]ϕ = 1. But element
[g, x] = gxg−1x−1 is reduced since n > 1 and its length is greater than 1. Therefore
[g, x] 6= 1 and hence, group G is not K-residual.

Conversely, let subgroup 〈a〉 be K-separable in group A. By theorem 3.4, the normal
closure AG of subgroup A in group G is K-residual, since it is the generalized free power
of group A over subgroup 〈a〉 with index I = {1, ..., n} i.e.

AG = A ?
〈a〉
· · · ?

〈a〉
A (n times).

11



Since G/AG = 〈x, xn = 1〉 ∈ K, Then Lemma in section 2 implies now that G is
K-residual. ¤

We can now apply this result to study root-class residuality of any group given by
the presentation Gmn = 〈a, b; [am, bn] = 1〉, (m,n ≥ 1). Observe that

Gmn = 〈a〉 ?
am=x

H ?
y=bn

〈b〉.

We have the following result.

Theorem 5.2. Let K be a root-class. Let Gmn = 〈a, b; [am, bn] = 1〉, where m,n ≥ 1.
Group Gmn is K-residual if class K contains cyclic subgroups of order m and n.

Proof. Let K be a root-class. Let m, n > 1. Assume that the cyclic subgroups of order
m and n belong to K. Let H = 〈x, y; [x, y] = 1〉 be the free abelian group of rank 2.
Clearly, H is K-residual and its subgroups 〈x〉 and 〈y〉 are K-separable.

Let A = H ?
y=bn

〈b〉 = 〈x, b; [x, bn] = 1〉. By Theorem 5.1, A is K-residual.

We claim that 〈x〉 is K-separable in A. Indeed, one can easily verify that H =
CA(〈x〉), the centralizer of subgroup 〈x〉 in group A. Therefore, if g ∈ A \ H then
[x, g] 6= 1; so there exists a homomorphism ϕ of group A onto a group of class K such
that [x, g]ϕ 6= 1, i.e. in particular, gϕ /∈ 〈x〉ϕ.
Let now g ∈ H \ 〈x〉 i.e. g = xkyl, where l 6= 0. Then g = xkbnl. Let σ : A −→ 〈b〉 such
that x 7→ 1 and b 7→ b. Then gσ = bnl 6= 1 and 〈x〉σ = 1. Let σ0 be a homomorphism of
group 〈b〉 onto a group of class K. Then gσσ0 6= 1. Hence, subgroup 〈x〉 is K-separable
in A.

Then applying again Theorem 5.1, we show that group Gmn = 〈a〉 ?
am=x

A is K-
residual.

Now, if m = 1 or n = 1, then Gmn is isomorphic to one of the groups A or H above
and thus, is K-residual. ¤

Remark 3. We remark in summary that the converse of Theorem 5.2 is not true. For
example, let K be the class of all torsion-free groups; then Gmn ∈ K, when cyclic
subgroups of finite orders do not belong to K. But there exits a partial converse which
holds for some additional condition on class K, namely if K is closed under quotient
groups.

In fact, suppose in addition that K contains any quotient group of its group, i.e. K is
closed under taking homomorphic images. Let Gmn be K-residual. Assume for example,
that the cyclic subgroup of order m does not belong to K. Then there exists a prime
divisor p of integer m, such that the cyclic subgroup of order p does not belong to K.
Further, it is evident that, every element x of a group X of a root-class K has a finite
order, relatively prime with p. Indeed, let |f | be the order of an element f . If |x| = ∞
then 〈x〉 ∈ K, and since K is closed under quotient groups, the cyclic subgroup of order
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p would belong to K. Hence, |x| < ∞ and gcd(|x|, p) = 1, since the cyclic subgroup of
order p does not belong to K. So let c = [am/p, bn]. Obviously c 6= 1. Then there exists
a homomorphism ϕ of group Gmn onto a group X of class K such that cϕ 6= 1. Let
k = |(am/pϕ)|. Then k < ∞ and gcd(k, p) = 1. Hence ((aϕ)m/p)k = 1 and this implies
that

[((aϕ)m/p)k, bnϕ] = 1. (?)

On the order hand,
[((aϕ)m/p)p, bnϕ] = 1. (??)

Now, from (?) and (??) and since integers k and p are relatively prime, it follows that

cϕ = [(aϕ)m/p), bnϕ] = 1

and this is a contradiction.

Corollary. Any group Gmn = 〈a, b; [am, bn] = 1〉, where m,n ≥ 1 is residually a finite
p-group if and only if integers m and n are p-numbers, for some prime p.
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