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DIMENSIONS OF AFFINE DELIGNE-LUSZTIG
VARIETIES IN AFFINE FLAG VARIETIES

ULRICH GÖRTZ AND XUHUA HE

Abstract. Affine Deligne-Lusztig varieties are analogs of Deligne-
Lusztig varieties in the context of an affine root system. We
prove a conjecture stated in the paper [5] by Haines, Kottwitz,
Reuman, and the first named author, about the question which
affine Deligne-Lusztig varieties (for a split group and a basic σ-
conjugacy class) in the Iwahori case are non-empty. If the un-
derlying algebraic group is a classical group and the chosen basic
σ-conjugacy class is the class of b = 1, we also prove the dimension
formula predicted in op. cit. in almost all cases.

1. Introduction

1.1. Affine Deligne-Lusztig varieties, which are analogs of usual Deli-
gne-Lusztig varieties [3] in the context of an affine root system, have
been studied by several people, mainly because they encode interest-
ing information about the reduction of Shimura varieties and specifi-
cally about the relation between the “Newton stratification” and the
“Kottwitz-Rapoport stratification”. Their definition is purely group-
theoretical. To recall it, we fix a split connected reductive group over
the finite field Fq with q elements. Let k be an algebraic closure of Fq,
let L = k((ǫ)) be the field of formal Laurent series over k, and let σ
be the automorphism of L defined by σ(

∑
anǫ

n) =
∑

aqnǫ
n. We also

denote the induced automorphism on the loop group G(L) by σ. Let
T ⊂ G be a split maximal torus, and denote by W the corresponding
Weyl group. Furthermore, let I ⊂ G(k[[ǫ]]) be an Iwahori subgroup

containing T (k[[ǫ]]), and let W̃ be the extended affine Weyl group at-
tached to these data. See Section 2.1 for details.
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For x ∈ W̃ and b ∈ G(L) the locally closed subscheme

Xx(b) = {g ∈ G(L)/I; g−1bσ(g) ∈ IxI}

of the affine flag variety G(L)/I is called the affine Deligne-Lusztig va-
riety attached to b and x. TheXx(b) are known to be finite-dimensional
varieties (locally of finite type over k), but are possibly empty, and it
is not in general easy to check whether Xx(b) = ∅ for a given pair x, b.

In [5, Conjecture 9.5.1 (a)] , Haines, Kottwitz, Reuman and the first
named author have stated the following conjecture, which extends a
conjecture formulated earlier by Reuman. For simplicity, let us assume
that G is quasi-simple of adjoint type.

We denote by W̃ ′ the lowest two-sided cell in the sense of Kazhdan
and Lusztig. In the terminology of [5], this is the union of the shrunken
Weyl chambers. See Section 2.3. The notion of basic σ-conjugacy class
can be characterized by saying that it contains an element of N(T )(L)

which gives rise to a length 0 element of W̃ = N(T )(L)/T (k[[ǫ]]).
Equivalently, a σ-conjugacy class is basic if and only if its Newton
vector is central. See [5, Lemma 7.2.1]. The σ-conjugacy class of b = 1
is always basic.

Conjecture 1.1.1. Suppose that the σ-conjugacy class of b is basic,
and that x ∈ W̃ ′. If b and x are in the same connected component of
G(L) and

η(x) ∈ W \
⋃

T(S

WT ,

then Xx(b) 6= ∅ and

dimXx(b) =
1

2
(ℓ(x) + ℓ(η(x))− defG(b)) .

Here S is the set of simple reflections, and for any T ⊂ S, WT denotes
the subgroup ofW generated by T . Furthermore, η is the map W̃ → W
given as follows: If x = vtµw with v, w ∈ W and such that the alcove
tµw lies in the dominant chamber, then η(x) = wv. See Section 3.1.
Finally, defG(b) is the defect of b, see [11].

A strengthened version of the converse of the non-emptiness state-
ment was proved in [5, Proposition 9.5.4]. Here we prove

Theorem 1.1.2. Suppose that the σ-conjugacy class of b is basic, and
that x ∈ W̃ ′. Write x = vtµw as above. Assume that b and x are in
the same connected component of G(L) and that

η(x) ∈ W \
⋃

T(S

WT .
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(1) Then Xx(b) 6= ∅.
(2) If v = w0 or µ is regular, then

dimXx(b) 6
1

2
(ℓ(x) + ℓ(η(x))− defG(b)) .

(3) If G is a classical group and b = 1, or of type An and b arbitrary
basic, then

dimXx(b) >
1

2
(ℓ(x) + ℓ(η(x))− defG(b)) .

See Section 3.1 for more detailed statements and an outline of the
proof. Roughly speaking, our methods are combinatorial (whereas in
[5] the theory of ǫ-adic groups was used). Important ingredients are a
refinement of the reduction method of Deligne and Lusztig (Section 2),
and the results of the second named author about conjugacy classes in
affine Weyl groups, see [9].

In [1], E. Beazley obtained similar results for groups of type An,
C2 or G2 using a similar method, but using only results on conjugacy
classes in finite Weyl groups.

In Section 4, we briefly consider the case that x ∈ W̃ \ W̃ ′, but
all in all this case remains unclear. Note however that the relation
to stratifications of the wonderful compactification of G might provide
further insight in this case, see [10]. Finally, a careful study of the
reduction method also shows that affine Deligne-Lusztig varieties in
the affine flag varieties are not equidimensional in general; we give
a specific example in Section 5. Note that for affine Deligne-Lusztig
varieties in the affine Grassmannian, equidimensionality if known if b is
in the torus T (L) ([4, Proposition 2.17.1]) and if b is basic ([6, Theorem
1.2]); in the intermediate cases, it is still an open question.

2. Preliminaries

2.1. Notation. Let G be a split connected reductive group over Fq.
We assume that G is quasi-simple of adjoint type. As explained in
[4, 5.9], all problems about the dimension of affine Deligne-Lusztig
varieties easily reduce to this case.

Let L = k((ǫ)) be the field of formal Laurent series over k, and let σ
be the automorphism on L defined by σ(

∑
anǫ

n) =
∑

aqnǫ
n. We also

denote the induced automorphism on the loop group G(L) by σ.

Let T be a maximal torus of G, let B ⊃ T be a Borel subgroup of G,
and let B− be the opposite Borel subgroup so that T = B ∩ B−. Let
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Φ be the set of roots and Y be the coweight lattice. We denote by Y+

the set of dominant coweights. Let (αi)i∈S be the set of simple roots
determined by (B, T ). We denote by W the Weyl group N(T )/T . For
i ∈ S, we denote by si the simple reflection corresponding to i.

For w ∈ W , we denote by supp(w) the set of simple reflections
occurring in a reduced expression of w. So the condition w ∈ W \⋃

T(S WT is equivalent to supp(w) = S.

For w ∈ W , we choose a representative in N(T ) and also write it as
w. For any J ⊂ S, let Φ+

J (resp. Φ−
J ) be the positive (resp. negative)

roots spanned by (αj)j∈J .

Let I be the inverse image ofB− under the projection mapG(k[[ǫ]]) 7→
G sending ǫ to 0. Let W̃ = N(T (L))/(T (L) ∩ I) be the extended

affine Weyl group of G(L). Then it is known that W̃ = W ⋉ Y =
{wǫχ;w ∈ W,χ ∈ Y }. Let ℓ : W̃ → N ∪ {0} be the length func-

tion. For x = wǫχ ∈ W̃ , we also write x for the representative wǫχ in
N(T (L)).

Let X be the coroot lattice, and let Wa = W ⋉ X ⊂ W̃ be the
affine Weyl group. Set S̃ = S ∪ {0} and s0 = ǫθ

∨

sθ, where θ is the

largest positive root of G. Then (Wa, S̃) is a Coxeter system. Let
κ : W̃ → W̃/Wa be the natural projection.

For any J ⊂ S̃, let WJ be the subgroup of Wa generated by J and
W̃ J (resp. JW̃ ) be the set of minimal length coset representative of

W̃/WJ (resp. WJ\W̃ ). For example, SW̃ is the set of all elements for
which the corresponding alcove is contained in the dominant chamber.
In the case where J ⊂ S, we writeW J for W̃ J∩W and JW for JW̃∩W .

Let λ be a dominant coweight. Set I(λ) = {i ∈ S; 〈λ, αi〉 = 0}, the
“set of walls” that λ lies on. For J ⊂ S, let ρ∨J ∈ Y+ with

〈ρ∨J , αi〉 =

{
1, if j ∈ J

0, if j /∈ J
.

We simply write ρ∨ for ρ∨S .

For any root α ∈ Φ, set δα =

{
1, if α ∈ Φ−

0, if α ∈ Φ+
.

2.2. Following [9, 1.4], we use the following notation: For x, x′ ∈ W̃

and i ∈ S̃, we write x
si−→ x′ if x′ = sixsi and ℓ(x′) 6 ℓ(x). We write

x→̃x′ if there is a sequence x = x0, x1, · · · , xn = x′ of elements in W̃
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such that for all k, xk = τxk−1τ
−1 for some τ ∈ W̃ with ℓ(τ) = 0 or

w̃k−1
si−→δ w̃k for some i ∈ S̃. We write x≈̃x′ if x→̃x′ and x′→̃x.

2.3. Any element in W̃ can be written in a unique way as vtµw for
µ ∈ Y+, v ∈ W and w ∈ I(µ)W . Note that in this case tµw ∈ SW̃ , and
ℓ(vτµw) = ℓ(v) + ℓ(tµ)− ℓ(w). Set

W̃ ′ = {vtµw; µ ∈ Y+, w ∈ I(µ)W, 〈µ, αi〉+ δvαi
− δw−1αi

6= 0 ∀i ∈ S}.

It is proved by Lusztig [12], Shi [13] and Bédard [2] that W̃ ′ ∩ C is
a two-sided cell for each Wa-coset C in W̃ . It is called the lowest two-
sided cell. It is also called the union of the shrunken Weyl chambers in
[4] and [5].

2.4. We introduce a convenient notation for varieties of tuples of el-
ements in Flag = G(L)/I (i.e., the affine flag variety of G over k).
Instead of giving a rigorous definition, it is more useful to explain the
notation by examples. We denote by Ow ⊂ Flag×Flag the locally
closed subvariety of pairs (g, g′) such that the relative position of g and
g′ is w. Then we set

{ g w // g′′
w′

// g′ } :=

{(g, g′, g′′) ∈ (Flag)3; (g, g′′) ∈ Ow, (g′′, g′) ∈ Ow′}.

Similarly,

{ g w //

w′′

>>
g′′

w′

// g′ } :=

{(g, g′, g′′) ∈ (Flag)3; (g, g′′) ∈ Ow, (g′′, g′) ∈ Ow′ , (g, g′) ∈ Ow′′}.

Finally, we need conditions on relative positions where elements g and
bσ(g) occur both—the simplest case being the affine Deligne-Lusztig
varieties themselves:

Xx(b) = { g x // bσ(g) }.

In all these cases, we do not distinguish between the sets given by the
conditions on the relative position, and the corresponding locally closed
sub-ind-schemes of the product of affine flag varieties.

The following properties are easy to prove.
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(1) Let x, y ∈ W̃ . If l(xy) = l(x) + l(y), then the map (g, g′, g′′) 7→
(g, g′) gives an isomorphism

{ g x //

xy

>>
g′′

y
// g′ } → { g

xy
// g′ }.

(2) Let w ∈ W̃ and s ∈ S̃. If ws < w, then

{ g w // g′′
s // g′ } = { g w //

ws

>>
g′′

s // g′ } ⊔ { g w //

w

>>
g′′

s // g′ },

where the first set on the right hand side of the equation is open, and
the second one is closed. The projections (g, g′, g′′) 7→ (g, g′) give rise
to Zariski-locally trivial fiber bundles

{ g w //

ws

>>
g′′

s // g′ } → { g ws // g′ };

{ g w //

w

>>
g′′

s // g′ } → { g w // g′ }.

with fibers isomorphic to A1 in the first case, and isomorphic to A1\{0}
in the second case.

2.5. The reduction method of Deligne and Lusztig.

Lemma 2.5.1 (He [7], Lemma 1). Let w,w′ ∈ W̃ . Then the set
{uu′; u 6 w, u′ 6 w′} has a unique maximal element, which we
denote by w ∗ w′. We have ℓ(w ∗ w′) = ℓ(w) + ℓ(w−1(w ∗ w′)) =
ℓ((w ∗ w′)(w′)−1) + ℓ(w′), and supp(w ∗ w′) = supp(w) ∪ supp(w′).

Note that the operation ∗ is associative.

Proposition 2.5.2. Let w,w′ ∈ W̃ , and let w′′ ∈ {ww′, w ∗ w′}. All
fibers of the projection

π : { g w //

w′′

>>
g′′

w′

// g′ } −→ { g w′′

// g′ }

which maps (g, g′, g′′) to (g, g′) have dimension

dim π−1((g, g′)) >

{
ℓ(w) + ℓ(w′)− ℓ(w ∗ w′) if w′′ = w ∗ w′,
1
2
(ℓ(w) + ℓ(w′)− ℓ(ww′)) if w′′ = ww′.
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Proof. We proceed by induction on ℓ(w′). If w′ = 1, then the statement

is obvious. Now assume that l(w′) > 0. Then w′ = sw′
1 for some s ∈ S̃

and w′
1 ∈ W̃ with ℓ(w′) = ℓ(w′

1) + 1. Then

{ g w //

w′′

::g′′
s // g′′′

w′

1 // g′ } ∼= { g w //

w′′

>>
g′′

w′

// g′ }

If ws > w, then

{ g w //

w′′

::g′′
s // g′′′

w′

1 // g′ } ∼= { g ws //

w′′

>>
g′′′

w′

1 // g′ .}

We also have that ℓ(ws)+ ℓ(w′
1) = ℓ(w)+ 1+ ℓ(w′)− 1 = ℓ(w)+ ℓ(w′),

wsw′
1 = ww′ and (ws) ∗ w′

1 = w ∗ s ∗ w′
1 = w ∗ w′. Now the statement

follows from inductive hypothesis on w′
1.

If ws < w, then

{ g w //

w′′

::g′′
s // g′′′

w′

1 // g′ } = X1 ⊔X2,

where

X1 = { g w //

w′′

::

ws

  
g′′

s // g′′′
w′

1 // g′ }

X2 = { g w //

w′′

::

w

  
g′′

s // g′′′
w′

1 // g′ }.

The projection from X1 to { g w′′

// g′ } factors through

X1 → { g

w′′

>>
ws // g′′′

w′

1 // g′ } → { g w′′

// g′ },
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where the first map is a bundle map whose fibers are all of dimension
1. If w′′ = ww′, then by induction hypothesis on w′

1, the fibers of the
second map all have dimension > 1

2
(ℓ(ws)+ℓ(w′

1)−l(ww′)). Notice that
ℓ(ws)+ℓ(w′

1) = ℓ(w)−1+ℓ(w′)−1 = ℓ(w)+ℓ(w′)−2. So the fibers of the

map X1 → { g w′′

// g′ } all have dimension > 1
2
(ℓ(w)+ℓ(w′)− l(ww′)),

which gives us the desired lower bound on the fiber dimension.

The projection from X2 to { g w′′

// g′ } factors through

X2 → { g

w′′

>>
w // g′′′

w′

1 // g′ } → { g w′′

// g′ },

where the first map is a bundle map whose fibers are all of dimension
1. If w′′ = w∗w′ = w∗s∗w′

1 = w∗w′
1, then by induction hypothesis on

w′
1, the fibers of the second map all have dimension > (ℓ(w) + ℓ(w′

1)−
ℓ(w ∗ w′)). Notice that ℓ(w) + ℓ(w′

1) = ℓ(w) + ℓ(w′)− 1. So the fibers

of the map X2 → { g w′′

// g′ } all have dimension > (ℓ(w) + ℓ(w′) −

ℓ(w ∗ (w′)). �

As a corollary, we can prove the analog, in the affine context, of the
“reduction method” of Deligne and Lusztig (see [3, proof of Theorem
1.6]). This result can of course be proved directly, along the lines of
the proof of the proposition above, and was also worked out before by
Haines at the suggestion of Lusztig.

Corollary 2.5.3. Let x ∈ W̃ , and let s ∈ S̃ be a simple affine reflec-
tion.

(1) If ℓ(sxs) = ℓ(x), then there exists a universal homeomorphism
Xx(b) → Xsxs(b).

(2) If ℓ(sxs) = ℓ(x) − 2, then Xx(b) can be written as a disjoint
union Xx(b) = X1⊔X2 where X1 is closed and X2 is open, and
such that there exist morphismsX1 → Xsxs(b) andX2 → Xsx(b)
which are compositions of a Zariski-locally trivial fiber bundle
with one-dimensional fibers and a universal homeomorphism.
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Proof. By possibly exchanging, in case (1), x and sxs, we may assume
that sx < x. By the proposition, the projection

X ′ :=





g

s

��

x // bσ(g)

s

��
g1

sx

<<
y

y
y

y
y

y
y

y
y

bσ(g1)





−→ { g x // bσ(g) } = Xx(b).

is an isomorphism, so we may replace Xx(b) by X ′. We write X ′ as the
disjoint union

X ′ = X1 ⊔X2 :=





g

s

��

x // bσ(g)

s

��
g1

sx

<<
y

y
y

y
y

y
y

y
y

sxs
// bσ(g1)





⊔





g

s

��

x // bσ(g)

s

��
g1

sx

<<
y

y
y

y
y

y
y

y
y

sx
// bσ(g1)





Since we have ℓ(sx) < ℓ(x), the natural morphism

X1 → X ′
1 = { g1

sx //

sxs

<<
g2

s // bσ(g1) }

is a universal homeomorphism (note that the composition of X1 → X ′
1

with the projection to g2 is the map g 7→ bσ(g)).

Now we distinguish between the two cases. In case (1), X2 = ∅,
and applying the proposition once more, we find that in this case the
projection

X ′
1 = { g1

sx //

sxs

<<
g2

s // bσ(g1) } −→ { g1
sxs // bσ(g1) } = Xsxs(b)

is an isomorphism.

Next we come to case (2). The projection

X ′
1 = { g1

sx //

sxs

<<
g2

s // bσ(g1) } −→ { g1
sxs // bσ(g1) } = Xsxs(b)

has fibers of dimension 1
2
(ℓ(sx) + ℓ(s)− ℓ(sxs)) = 1, which proves the

claim about X1. Furthermore X2 can be replaced with

X ′
2 = { g1

sx //

sx

<<
g2

s // bσ(g1) }
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up to a universal homeomorphism, and X ′
2 projects to Xsx(b) with

1-dimensional fibers. The corollary is proved. �

With slightly more care, one can show that in case (2) of the lemma,
the fibers of the projection X1 → Xsxs(b) are all isomorphic to A1,
whereas the fibers of X2 → Xsx(b) are A1 \ {0}. This reflects the
properties discussed at the end of subsection 2.4.

Lemma 2.5.4. Let x, τ ∈ W̃ with ℓ(τ) = 0. Then for any b ∈ G(L),
Xx(b) is isomorphic to Xτxτ−1(b).

Proof. Notice that Xx(b) = {gI; g−1bσ(g) ∈ IxI}. Thus the isomor-
phism G(L)/I → G(L)/I, gI 7→ gIτ−1 = gτ−1I gives an isomor-
phism from Xx(b) to {gI; (gτ)−1bσ(gτ) ∈ IxI} = {gI; g−1bσ(g) ∈
τIxIσ(τ)−1 = Iτxτ−1I} = Xτxτ−1(b). �

Applying this lemma and the conjugation steps in the reduction
method of Deligne and Lusztig, we obtain:

Corollary 2.5.5. Let x, x′ ∈ W̃ , b ∈ G(L). If x → x′, and Xx′(b) 6= ∅,
then Xx(b) 6= ∅ and dim(Xx(b))− dim(Xx′(b)) > 1

2
(ℓ(x)− ℓ(x′)).

2.6. In the sequel, we often use the following property of the Bruhat
order: if α ∈ Φ+ with corresponding reflection sα, and w ∈ W , then

wsα > w if and only if wα > 0.

Lemma 2.6.1. Let w, y ∈ W such that wα < 0 for every α ∈ Φ+ with
y−1α < 0. Then ℓ(wy) = ℓ(w)− ℓ(y).

Proof. We proceed by induction on ℓ(y), the case ℓ(y) = 0 being clear.
Write y = sy′, where s is a simple reflection and ℓ(y′) < ℓ(y). Let α
denote the simple root corresponding to s. One easily checks, using
the above-mentioned property, that the pair w′ = ws, y′ satisfies the
induction hypothesis. Since sy < y we have y−1α < 0, so wα < 0 by
assumption, and we obtain w′ = ws < w. Altogether we have

ℓ(wy) = ℓ(w′y′) = ℓ(w′)− ℓ(y′) = ℓ(w)− 1− ℓ(y′) = ℓ(w)− ℓ(y).

�

3. Proof of Reuman’s conjecture

3.1. Outline of the proof. We first state the result and give an out-
line of our strategy. Throughout this chapter, we fix b ∈ G(L), and we
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assume that whenever we consider Xx(b), then x and b are in the same
connected component of G(L).

We consider the following maps from the extended affine Weyl group

W̃ to the finite Weyl group W :

η1 : W̃ = X∗(T )⋊W → W, the projection

(3.1.1)

η2, where η2(x) is the unique element v such that v−1x ∈ SW̃

(3.1.2)

η(x) = η2(x)
−1η1(x)η2(x).

(3.1.3)

So if x = vtµw with µ dominant, v ∈ W , w ∈ I(µ)W , then η1(x) =

vw, η2(x) = v, and η(x) = wv. Furthermore, for x ∈ W̃ (as always, in
the same “connected component” as the fixed b ∈ G(L)) we define the
virtual dimension:

d(x) =
1

2

(
ℓ(x) + ℓ(η(x))− def(b)

)
.

As discussed above, it is conjectured in [5] that dimXx(b) = d(x) for b

basic, x ∈ W̃ ′ with Xx(b) 6= ∅.

Theorem 3.1.1. Let x ∈ W̃ and assume that η2(x) = w0 or that the
translation part of x is given by a regular coweight. Then dim(Xx(b)) 6
d(x).

Theorem 3.1.2. Assume that b is basic. Let x ∈ W̃ ′ such that
supp(η(x)) = S. Then Xx(b) 6= ∅.

This proves the non-emptiness statement in Conjecture 9.5.1 (a) of
[5]. Together with op. cit., Proposition 9.5.4, which states that the con-
verse of the theorem holds as well, this completely settles the emptiness
versus non-emptiness question for basic b and x in the shrunken Weyl
chambers W̃ ′. The next theorem proves that the dimension of Xx(b)

is at least as large as predicted by the conjecture if x ∈ W̃ ′, and G is
a classical group and b = 1 or G is of type An:

Theorem 3.1.3. (1) Let G be a classical group, x ∈ Wa such that

supp(η(x)) = S. If moreover, x ∈ W̃ ′ or η(x) is a Coxeter element of
W , then dimXx(1) > d(x).

(2) Let G = PGLn and τ ∈ W̃ with ℓ(τ) = 0. Let x ∈ Waτ such
that supp(η(x)). If moreover, x ∈ W̃ ′ or η(x) is a Coxeter element of
W , then dimXx(τ) > d(x).
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The idea of the proofs of these theorems is to relate the given el-
ement x to other elements for which non-emptiness, a lower bound
on the dimension, or an upper bound on the dimension, respectively,
are known. These relations will mainly be shown using the reduction
method of Deligne and Lusztig. To this end, we introduce the following
notation:

Definition 3.1.4. Let x, y ∈ W̃ such that x, y are in the same Wa-
coset. We write x ⇒ y if for every b,

dimXx(b)− d(x) > dimXy(b)− d(y).

Here by convention, we set the dimension of the empty set to be
−∞. If the right hand side is −∞ then the inequality holds regardless
of the left hand side. In the definition (and in the theorem below) we
do not assume that b is basic. This is consistent with the expectation
that whenever x ∈ W̃ ′ and Xx(b) 6= ∅, the difference dimXx(b)− d(x)
is a constant depending only on b, but not on x.

Note that this relation is transitive: If x ⇒ y, y ⇒ z, then x ⇒ z.
By definition, if x ⇒ y and Xy(b) 6= ∅, then Xx(b) 6= ∅. In this case,
the lower bound dimXy(b) > d(y) implies the analogous bound for
x, while the validity of the upper bound dimXx(b) 6 d(x) implies
the corresponding statement for y. We prove the following statements
about the relation ⇒:

Theorem 3.1.5. (1) Let µ be a dominant coweight, v ∈ W and
w ∈ I(µ)W . Assume that v = w0 or that µ is regular. Then

w0t
µ ⇒ vtµw.

(2) Let a ∈ W with supp(a) = S, and let µ 6= 0 be a dominant
coweight. Then there exists a Coxeter element c ∈ W such that

atµ ⇒ tµc.

(3) Assume that x ∈ W̃ ′, and that supp(η(x)). Then there exist a
dominant coweight λ and a ∈ W with supp(a) = S such that

x ⇒ atλ.

(4) Assume that G is a classical group and x ∈ Wa with η(x) a
Coxeter element of W , then

x ⇒ η(x).

Now the non-emptiness statement in Theorem 3.1.2 follows from
Theorem 3.1.5 (2) & (3) and the following lemma (Lemma 9.3.3 in [5]),
because Coxeter elements obviously are cuspidal.
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Lemma 3.1.6. Let µ ∈ Y , and let w ∈ W be a cuspidal element
(i. e. the conjugacy class of w does not meet any standard parabolic
subgroup), let x = tµw, and let b be basic with κG(b) = κG(x). Then x
is σ-conjugate to b, and in particular Xx(b) 6= ∅.

The upper bound on the dimension stated in Theorem 3.1.1 follows
from Theorem 3.1.5 (1) and the following lemma:

Lemma 3.1.7. Let x = w0t
µ, where µ is a dominant coweight, and w0

is the longest element in W . Then dimXx(b) 6 d(x).

Proof. By the dimension formula for affine Deligne-Lusztig varieties in
the affine Grassmannian (see [4], [14]), we have

dimXµ(b) = 〈ρ, µ− νb〉 −
1

2
def(b),

where Xµ(b) denotes the affine Deligne-Lusztig variety in the affine
Grassmannian, and νb denotes the (dominant) Newton vector of b.
Since b is basic, its Newton vector is central and hence does not actually
contribute anything. On the other hand, denoting by π : Flag → Grass
the projection, we have

π−1(Xµ(b)) =
⋃

x∈WtµW

Xx(b).

Therefore, for all w1, w2 ∈ W

dimXw1tµw2
(b) 6 dimXµ(b) + dim(G/B) = 〈ρ, µ〉 −

1

2
def(b) + ℓ(w0)

=
1

2
(ℓ(w0t

µ) + ℓ(w0)− def(b)) = d(w0t
µ).

�

To prove the lower bound under the additional assumptions in The-
orem 3.1.3 (1), we reduce to an element of the finite Weyl group. In
fact, the following lemma (for τ = id) shows that it suffices to prove
that x ⇒ c for some element c ∈ W . If η(x) is a Coxeter element, then
this follows immediately from Theorem 3.1.5 (4). On the other hand,
suppose x ∈ W̃ ′ and supp(η(x)) = S. We apply Theorem 3.1.5 (3).
If the coweight λ is = 0, then we are done. Otherwise, we can use
Theorem 3.1.5 (2) to see that there exists a dominant coweight λ and
a Coxeter element c ∈ W such that x ⇒ tλc. Writing tλc = v1t

νv2
with tνv2 ∈

SW̃ , i. e. η2(t
λc) = v1, we have c = v1v2 and η(tλc) = v2v1.

Since c = v1v2 is simply the decomposition into an element of WI(µ)

and an element of I(µ)W , we have ℓ(v1) + ℓ(v2) = ℓ(c) and since c is
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a Coxeter element, v2v1 is also a Coxeter element of W . Therefore
x ⇒ tλc ⇒ v2v1 (using Theorem 3.1.5 (4)).

Lemma 3.1.8. Let τ ∈ W̃ with ℓ(τ) = 0. Let J ⊂ S with τ(J) = J .
Then for any w ∈ WJ , dimXwτ (τ) = ℓ(w).

Proof. By [9, Lemma 9.7], dimXwτ(τ) = dimXτ (τ) + ℓ(w). By [9,
Prop 10.3], dimXτ (τ) = 0. So dimXwτ (τ) = ℓ(w). �

Under the assumption in Theorem 3.1.3 (2), we have that τ = 1 or
0 < r < n and that τ is the length 0-element that corresponds to the
r-th fundamental coweight of G. The case that τ = 1 is included in
Theorem 3.1.3 (1). So we only need to consider the latter case. Simi-
larly to the proof above, we have that x ⇒ tλc for some Coxeter element
c of W . Let m = gcd(n, r). Then by [9, Prop 6.7 (2)], tλc→̃(12 · · ·m)τ .
Hence by Corollary 2.5.5 and the Lemma above,

dimXtλc(τ) > dimX(12···m)τ (τ) +
1

2
(ℓ(tλc)− ℓ((12 · · ·m)τ))

=
1

2
(ℓ(tλc) +m− 1).

Since c is a Coxeter element, η(tλc) is also a Coxeter element of
W . We also have that def(τ) = n − m. Thus d(tλc) = 1

2
(ℓ(tλc) +

n − 1 − def(τ)) = 1
2
(ℓ(tλc) + m − 1) 6 dimXtλc(τ). So we obtain

d(x) 6 dimXx(τ).

Therefore it remains to prove Theorem 3.1.5. This is the goal of the
following sections.

3.2. Reduction of virtual dimension.

Lemma 3.2.1. If x, x′ ∈ W̃ such that x → x′ and ℓ(η(x)) = ℓ(η(x′)),
then x ⇒ x′.

Proof. Since ℓ(η(x)) = ℓ(η(x′)), we have d(x)− d(x′) = 1
2
(ℓ(x)− ℓ(x′)).

The Lemma now follows immediately from Corollary 2.5.5. �

Lemma 3.2.2. Let x ∈ W̃ . Let s ∈ S be a simple reflection such that
ℓ(sxs) = ℓ(x)− 2. Then

d(x) > d(sx) + 1,

and equality holds if and only if ℓ(η(sx)) = ℓ(η(x))− 1.
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Proof. We write x as vtµw with v, w ∈ W and µ a dominant coweight
such that tµw ∈ SW̃ . Then η(x) = wv.

Since sx < x, we must have that sv < v. If ws < w, then tµws ∈ SW̃
and xs > x, which is a contradiction. Therefore ws > w. Let α denote
the simple root corresponding to s, and write β = v−1(−α), which is
a positive root because sv < v. We then have wv(β) = w(−α) < 0
(since ws > w), and obtain

η(sx) = wsv = wvsβ < wv,

as desired. �

Similarly,

Lemma 3.2.3. Let x = vtµw with v, w ∈ W and µ a dominant
coweight such that tµw ∈ SW̃ . Let s ∈ S be a simple reflection such
that ℓ(sxs) = ℓ(x)− 2 and suppose that tµws ∈ SW̃ or w = 1. Then

d(x) > d(xs) + 1,

and equality holds if and only if ℓ(η(xs)) = ℓ(η(x))− 1.

These results about the virtual dimension imply

Lemma 3.2.4. Let x ∈ W̃ , s ∈ S such that ℓ(sxs) < ℓ(x). Then

(1) If ℓ(η(sx)) = ℓ(η(x))− 1, then x ⇒ sx.
(2) If ℓ(η(xs)) = ℓ(η(x))− 1, then x ⇒ xs.

Proof. For (1), we simply use the Deligne-Lusztig reduction (where we
consider X2 in Corollary 2.5.3 (2)), and Lemma 3.2.2. For part (2),
we first use the Deligne-Lusztig reduction from x to sx as in the first
case. Then we use Corollary 2.5.3 (1) to reduce to xs = s(sx)s which
has the same length as sx. Altogether we see that if Xxs(b) 6= ∅, then
Xx(b) 6= ∅, and then dimXx(b)− dimXxs(b) > 1 = d(x)− d(xs). �

3.3. Proof of Theorem 3.1.5 (1). We write x = vtµw. First consider
the case v = η2(x) = w0. Then we have that w0t

µ ⇒ x = w0t
µw

because we can successively apply Lemma 3.2.4 (2).

Now we consider the case that µ is regular. Since µ is regular,
tµwvw0 ∈ SW̃ , so we can apply the “η2 = w0”-case to the element
w0t

µwvw0 and obtain that w0t
µ ⇒ w0t

µwvw0. Because µ is regular,
Lemma 3.2.1 shows that

w0t
µwvw0 = w0v

−1(vtµw)vw0 ⇒ vtµw = x.
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3.4. Proof of Theorem 3.1.5 (2). We prove the following stronger
result:

Let J ⊂ S and x = vtµw with v, w ∈ W , supp(v) = J , w is a Coxeter

element in WS−J , µ 6= 0 and tµw ∈ SW̃ . Then there exists a Coxeter
element c of W such that vtµw ⇒ tµc.

We proceed by induction on |J |. Suppose that the statement is true
for all J ′ ( J , but not true for J . We may also assume that the claim
of the proposition is true for all v′ with support supp(v′) = J and
ℓ(v′) < ℓ(v). Let v = si1 · · · sik be a reduced expression.

If tµwsi1 ∈
SW̃ , then ℓ(tµwsi1) = ℓ(tµ)−ℓ(wsi1) = ℓ(tµ)−ℓ(w)−1 =

ℓ(tµw)−1 and ℓ(si1vt
µwsi1) = ℓ(si1v)+ℓ(tµwsi1) = ℓ(si1v)+ℓ(tµw)−1 =

ℓ(vtµw)− 2. By Lemma 3.2.4 (1), vtµw ⇒ si1vt
µw. If supp(si1v) = J ,

then by induction, there exists a Coxeter element c of W such that
si1vt

µw ⇒ tµc. Hence vtµw ⇒ tµc. That is a contradiction.

Now suppose that tµwsi1 ∈ SW̃ , but supp(si1v) ( J . In that
case, we have ℓ(si1vt

µwsi1) = ℓ(vtµw) − 2. So vtµw ⇒ si1vt
µwsi1

by Lemma 3.2.1. That is also a contradiction by induction hypothesis.

Now we can assume that tµwsi1 /∈ SW̃ . Then we have that tµwsi1 =
si′

1
tµw for some i′1 ∈ S. So wsi1w

−1 = t−µsi′
1
tµ is a reflection in W .

So tµ commutes with si′
1
and wsi1w

−1 = si′
1
is a simple reflection. By

our assumptions on w, it follows that i′1 = i1 and tµw commutes with
si1. In this case, if ℓ(si1vsi1) < ℓ(v), then supp(si1v) = J and using
Lemma 3.2.4 (1) and the induction hypothesis as in the first case, we
again have that vtµw ⇒ tµc for some Coxeter element c of W , which is
a contradiction.

Therefore we must have that si1 commutes with tµw and ℓ(si1vsi1) =
ℓ(v). In this case, vtµw ≈ si1vsi1t

µw. So dimXvtµw(b) = dimXsi1vsi1 t
µw(b)

by Corollary 2.5.3 (1). We also have d(vtµw) = d(si1vsi1t
µw), be-

cause η(si1vsi1t
µw) = wsi1vsi1 has length ℓ(w) + ℓ(si1vsi1) (use that

w is a Coxeter element in WS−J). Applying the same argument to
si1vsi1t

µw instead of vtµw, we have that si2 commutes with tµw. Re-
peating the same procedure, one can show that sij commutes with tµw
for all 1 6 j 6 k. In particular, sk commutes with w for all k ∈ J .
Since G is quasi-simple, this is only possible if J = ∅ or J = S. If
J = ∅, then v = 1 and w is a Coxeter element of W and the statement
automatically holds. If J = S, then si commutes with tµ for all i ∈ S.
Thus µ = 0, which contradicts our assumption.
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3.5. Proof of Theorem 3.1.5 (3). Let x = vtµw ∈ W̃ ′ with µ ∈ Y+,
v ∈ W , w ∈ I(µ)W . We first give the definition of the elements γ and a
that we use. Let J = {i ∈ S; siw < w}. Since w ∈ I(µ)W , J ∩I(µ) = ∅.
Hence µ− ρ∨J ∈ Y+. By definition, 〈ρ∨J , αi〉 − δw−1αi

= 0 for any i ∈ S.

Since x ∈ W̃ ′, we obtain 〈µ− ρ∨J , αi〉+ δvαi
6= 0 for any i ∈ S.

Let J ′ = I(µ − ρ∨J ). Then vαi < 0 for any i ∈ J ′. Thus v = v′w0
J ′

for some v′ ∈ W J ′

. Here w0
J ′ is the largest element in WJ ′. Now

wv = (wv′)w0
J ′ = w′z for some w′ ∈ W J ′

and z ∈ WJ ′. Define γ ∈ Y+

and y ∈ W I(γ) by µ − ρ∨J + (w′)−1ρ∨J = yγ. Furthermore, we define
a = (y−1z) ∗ (w′y). It has support supp(a) = S since S = supp(wv) ⊆
supp(w′y) ∪ supp(y−1z).

We show that

(a) ℓ(w′y) = ℓ(w′)− ℓ(y).

Let α ∈ Φ+ with y−1α < 0. Then 〈γ, y−1α〉 6 0. If 〈γ, y−1α〉 = 0,
then y−1α ∈ Φ−

I(γ) and α = y(y−1α) ∈ Φ−. That is a contradiction.

Hence 〈µ−ρ∨J +(w′)−1ρ∨J , α〉 = 〈yγ, α〉 = 〈γ, y−1α〉 < 0. Since µ−ρ∨J ∈
Y+, 〈µ− ρ∨J , α〉 > 0. Thus 〈ρ∨J , w

′α〉 = 〈(w′)−1ρ∨J , α〉 < 0 and w′α < 0.
Since w′α < 0 for any α ∈ Φ+ with y−1α < 0, Lemma 2.6.1 shows that
ℓ(w′y) = ℓ(w′)− ℓ(y). (a) is proved.

Now set x1 = vz−1tµ−ρ∨
J y and x2 = y−1ztρ

∨

Jw. Then x = x1x2 and
we claim that

(b) ℓ(x) = ℓ(x1) + ℓ(x2).

By the proof of (a), y ∈ J ′

W . In fact, if for any j ∈ J ′, y−1αj < 0,
then by the proof of (a), w′αj < 0, which contradicts that w′ ∈ W J ′

.

Hence tµ−ρ∨
J y ∈ SW̃ and ℓ(x1) = ℓ(vz−1) + ℓ(tµ−ρ∨

J )− ℓ(y) = ℓ(tµ−ρ∨
J ) +

ℓ(v)−ℓ(z)−ℓ(y). Also ℓ(x2) = ℓ(y−1z)+ℓ(tρ
∨

J )−ℓ(w) = ℓ(tρ
∨

J )+ℓ(y)+
ℓ(z) − ℓ(w). Thus ℓ(x1) + ℓ(x2) = ℓ(tµ−ρ∨

J ) + ℓ(tρ
∨

J ) + ℓ(v) − ℓ(w) =
ℓ(tµ) + ℓ(v)− ℓ(w) = ℓ(x). (b) is proved.

Now

Xx(b) = { g x // bσ(g) } = { g
x1 // g1

x2 // bσ(g) }.

Set

X1 ={ g1
x2 // g2

x1 // bσ(g1) }

∼={ g1
y−1z

// g3
tρ

∨

J w // g2
x1 // bσ(g1) }.
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The map (g, g1) 7→ (g1, bσ(g)) is a universal homeomorphism from
Xx(b) to X1. Let

X2 = { g1
y−1z

// g3
tρ

∨

J w //

w′ytγ

<<
g2

x1 // bσ(g1) } ⊂ X1.

Then we have that dim(Xx(b)) > dim(X2).

Now let

X3 = { g1
y−1z

// g3
w′ytγ

// bσ(g1) },

and let f : X2 → X3 be the projection map. Notice that w′ytγ =
tρ

∨

Jwx1. Thus by 2.5.2 (1), the map is surjective and each fiber is of

dimension ℓ(tρ
∨

J w)+ℓ(x1)−ℓ(w′ytγ )
2

= ℓ(x)−ℓ(y−1z)−ℓ(w′y)−ℓ(tγ )
2

. Hence

(c) dim(Xx(b)) > dim(X3) +
ℓ(x)−ℓ(y−1z)−ℓ(w′y)−ℓ(tγ )

2
.

Notice that

X3 = { g1
y−1z

// g3
w′y

// g4
tγ // bσ(g1) }.

Recall that a = (y−1z) ∗ (w′y). We set

X4 ={ g1
y−1z

//

a

??
g3

w′y
// g4

tγ // bσ(g1) },

X5 ={ g1
a // g4

tγ // bσ(g1) }.

By 2.5.2 (2), dim(X3) > dim(X4) > dim(X5)+ℓ(y−1z)+ℓ(w′y)−ℓ(a).
As we proved above, ℓ(y−1z)+ℓ(w′y) = ℓ(w′)+ℓ(z) = ℓ(wv). Therefore

ℓ(y−1z) + ℓ(w′y) + ℓ(x)−ℓ(y−1z)−ℓ(w′y)−ℓ(tγ )
2

= ℓ(x)+ℓ(wv)−ℓ(tγ )
2

. So

(d) dim(Xx(b)) > dim(X5) +
ℓ(x)+ℓ(wv)−ℓ(tγ )

2
− ℓ(a).

Notice that ℓ(atγ) = ℓ(a) + ℓ(tγ). Thus the map (g1, g4) 7→ g1 gives
an isomorphism X5

∼= Xatγ (b).

If Xatγ (b) 6= ∅, then we obtain that Xx(b) 6= ∅, and

dimXx(b) > dimXatγ (b) + d(x)− d(atγ),

i.e., x ⇒ atγ .

Example 3.5.1. Let us see what the elements a, γ are in the following
two special cases:
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(1) If v = 1, then the assumption that x ∈ W̃ ′ implies that J ′ = ∅.
Therefore w′ = w, z = y = 1, so that γ = µ and a = w. The
result in this case is that tµw ⇒ wtµ.

(2) If µ is “very regular”, then I(µ) = I(µ− ρ∨J +(w′)−1ρ∨J ) = ∅, so
that a = w′ = wv. In this case we obtain vtµw ⇒ wvtγ.

3.6. Proof of Theorem 3.1.5 (4). Since η(x) is a Coxeter element
of W , by [9, Prop 6.7 (1)], we have that x→̃η(x). By Lemma 3.2.1,
x ⇒ η(x).

4. Remarks on the critical strips

4.1. A sharpened criterion for non-emptiness. We have seen that
the non-emptiness of Xx(b) for b basic and x ∈ W̃ ′ can be decided by
looking at η(x) = η2(x)

−1η1(x)η2(x). In fact, if supp(η(x)) 6= S and
the translation part of x is non-trivial in the sense that it is different
from the Newton vector of b, then Xx(b) = ∅ ([5, Proposition 9.5.4]). If

x ∈ W̃ \ W̃ ′, then the converse is not true anymore, but one could ask
whether it would help to check whether supp(η′) = S for additional
elements η′ ∈ W (depending on x), and specifically one could try to
replace η2(x) by a different element of W . The following proposition
gives a result in this direction, using the notion of P -alcove introduced
in [5]. In the proposition, η2(x) is replaced by an element of the form
sαη2(x), where α depends on x. Recall that whenever x is a P -alcove
sufficiently far away from the origin, then Xx(b) = ∅.

Of course, the proposition is of particular interest, if xI∩Uα = I∩Uα

(in particular x /∈ W̃ ′, and more specifically, x lies in the “critical strip”
attached to α).

Proposition 4.1.1. Let x = vtµw ∈ W̃ , w ∈ I(µ)W , let α be a finite
root such that xI ∩ Uα ⊆ I ∩ Uα, and assume that −v−1α is a simple
root. If there exists j ∈ S such that

(sαv)
−1η1(x)(sαv) ∈ WS\{j},

then x is a P -alcove for P = sαvP0, P0 = M0N0 the standard parabolic
subgroup whose Levi component M0 is generated by S \ {j}.

Proof. As usual, we write P = MN for the Levi decomposition of P ,
where M is the Levi subgroup containing the fixed maximal torus. By
definition of P , x ∈ W̃M , so we have to show that xI ∩Uβ ⊆ I for every
root β occurring in N . By assumption, −v−1α is a simple root αi.
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Denote by U the unipotent radical of the fixed Borel subgroup of G.
Since the alcove v−1x lies in the dominant chamber, we have v−1xI∩U ⊆
I. Furthermore, by our normalization of I with respect to the dominant
chamber, we have v(I ∩ U) ⊂ I, so altogether we obtain

(4.1.1) xI ∩ vU ⊂ I.

The set RN of roots occurring in N is

RN = {vsiγ = sαvγ; γ a root in N0}.

We distinguish two cases: If i 6= j, i.e., si ∈ WM , then si stabilizes the
set of roots in N0, and therefore RN is the set of roots in vN0. In this
case our claim follows from (4.1.1).

Now let us consider the case i = j, so that αi ∈ RN0
, and α = −vαi =

vsiαi ∈ RN . For all β ∈ RN \ {α}, we have v−1β > 0, so xI ∩ Uβ ⊂ I
by (4.1.1), and finally we have xI ∩ Uα ⊂ I by assumption. �

Even though the proposition yields examples of pairs (x, b) for which
Xx(b) = ∅ although supp(η(x)) = S, it does not give rise to a sufficient
criterion for non-emptiness in the critical strips, as can be shown by
examples for G = SL4.

5. An example of an affine Deligne-Lusztig variety which

is not equidimensional

5.1. Looking again at the reduction method of Deligne and Lusztig,
Corollary 2.5.3, we see that the situation in the affine case, in the
shrunken Weyl chambers, is very much different from the classical sit-
uation: Whereas in the classical situation we always have dimX1 =
dimX − 1, dimX2 = dimX (denoting by X the pertaining Deligne-
Lusztig variety), in the affine shrunken case for the expected dimen-
sions we have d(sxs)+1 = d(x), d(sx)+1 6 d(x) — so the closed part
X1, if non-empty, always should have the same dimension as the affine
Deligne-Lusztig variety itself, while the open part has at most this di-
mension. See the example below for a specific case where this inequality
is strict and where one can produce examples of affine Deligne-Lusztig
varieties which are not equidimensional.

5.2. To give an example of a non-equidimensional affine Deligne-Lusztig
variety, we again use Corollary 2.5.3 (2). Let x = vtµw ∈ Wa be an
element with µ dominant and very regular, and let s ∈ S such that

(1) ℓ(sv) < ℓ(v), ℓ(ws) > ℓ(w),
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(2) ℓ(wsv) < ℓ(wv)− 1,
(3) supp(wv) = supp(wsv) = S.

By (1), we have ℓ(sxs) = ℓ(x)− 2. We also have η(x) = η(sxs) = wv,
η(sx) = wsv. Therefore as in Corollary 2.5.3 (2), we write Xx(1) =
X1 ∪ X2, where X1 is of relative dimension 1 over Xsxs(1), and X2 is
of relative dimension 1 over Xsx(1).

By the main result and assumption (3), we have

dimX2 = dimXsx(1) + 1 = d(sx) + 1 < d(x) = dimXx(1),

where the < in the second line holds because of (2) and Lemma 3.2.2.
(We also see that dimX1 = dimX .) Since X2 is open in Xx(1) and
has strictly smaller dimension, Xx(1) cannot be equidimensional.

It remains to find elements v, w, and s that satisfy (1)–(3). But this
is easy, for instance for type A3, we can take

v = s1s2, w = s1s2s3s2, s = s1,

so that

wv = s1s2s3s2s1s2, wsv = s1s2s3.
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