CUSPIDAL CLASS NUMBER OF A TOWER OF MODULAR CURVES $X_{1}\left(N p^{n}\right)$

HAE-SANG SUN

Abstract

We consider a cuspidal class number, which is the order of a subgroup of full cuspidal divisor class group of $X_{1}\left(N p^{n}\right)$ with $p \nmid N$ and $n \geq 1$. By studying the second generalized Bernoulli numbers, we obtain results similar to ones ([1], [9]) about the relative class numbers of cyclotomic \mathbb{Z}_{p}-extension of an abelian number field.

1. Introduction

Let G be a finite abelian group with a surjective homomorphism $r: G \rightarrow$ $(\mathbb{Z} / N \mathbb{Z})^{\times}$for an integer $N>0$. Let χ be a character on G. A generalized k th Bernoulli number $B_{k, \chi, G}$ can be defined for χ such that

$$
B_{k, \chi, G}=N^{k-1} \sum_{g \in G} \chi(g) B_{k}\left(\frac{r(g)}{N}\right)
$$

where $B_{k}(x)$ is the Bernoulli polynomial defined by the formula

$$
B_{k}(x)=\sum_{r=0}^{k}\binom{k}{r} B_{r} x^{n-r}
$$

For $G=(\mathbb{Z} / N \mathbb{Z})^{\times}, B_{k, \chi, G}$ is the usual generalized Bernoulli numbers $B_{k, \chi}$. In many different contexts, those generalized Bernoulli numbers have been related to an index of the Stickelberger ideal of order k in the group ring $\mathbb{Z}[G]$, which is generated by a Stickelberger element

$$
\theta=N^{k-1} \sum_{g \in G} B_{k}\left(\frac{r(g)}{N}\right) g \in \mathbb{Q}[G]
$$

or by its variation.
When $G=(\mathbb{Z} / N \mathbb{Z})^{\times}$and $k=1$, the relative class number h_{N}^{-}of $\mathbb{Q}\left(\zeta_{N}\right)$ can be written as a product of $B_{1, \chi}$ for odd Dirichlet characters χ. More precisely, one has

$$
\begin{equation*}
h_{N}^{-}=Q_{N} w_{N} \prod_{\chi: o d d}-\frac{1}{2} B_{1, \chi} \tag{1.1}
\end{equation*}
$$

where Q_{N} is the unit index and w_{N} is the number of roots of unity. The relative class number h_{N}^{-}is turned out to be an index of minus part of Stickelberger ideal of order 1 . To the cyclotomic fields $\mathbb{Q}\left(\zeta_{N p^{n}}\right)$, two non-negative integers μ and λ

The author thanks Max-Plack-Institut für Mathematik for their support and hospitality during his visit and preparation of the manuscript.
are associated in order to express p-adic valuation $v_{p}\left(h_{N p^{n}}^{-}\right)$of the relative class numbers $h_{N p^{n}}^{-}$. In fact, one has

$$
\begin{equation*}
v_{p}\left(h_{N p^{n}}^{-}\right)=\mu p^{n}+\lambda n+\nu \text { for all } n \gg 1 \text { and some } \nu \in \mathbb{Z} . \tag{1.2}
\end{equation*}
$$

It has been conjectured that $\mu=0$ and it was proved by Ferrero and Washington ([1]).

Let ℓ be an odd prime number different from p. The ℓ-adic valuation $v_{\ell}\left(h_{N p^{n}}^{-}\right)$of the relative class numbers was also determined by Washington ([9]). He has shown that there exists a constant δ_{ℓ} such that

$$
\begin{equation*}
v_{\ell}\left(h_{N p^{n}}^{-}\right)=\delta_{\ell} \text { for all } n \gg 1 \tag{1.3}
\end{equation*}
$$

by verifying
Theorem 1.1 ([9]). Let N be fixed and $p \nmid N$. For almost all odd Dirichlet characters χ of conductor $N p^{n}$, we have

$$
v_{\ell}\left(B_{1, \chi}\right)=0 .
$$

From the relative class number formula and the argument of Kummer, one can conclude the formula (1.3).

In this paper, we consider the case that $G=(\mathbb{Z} / N \mathbb{Z})^{\times}$and $k=2$. This case is studied by Kubert-Lang ([4]) for an odd prime power $N=p^{n}$ and by J. Yu ([12]) for general $N>4$.

For an integer $N>4$, a cusp on the modular curve $X_{1}(N)$ is said to be of first type if it is projected down to the cusp 0 on the modular curve $X_{0}(q)$ for all prime divisor q of N. We consider the group $\mathfrak{F}_{1}^{0}(N)$ of functions on $X_{1}(N)$ whose divisors are supported on the cusps of the first type and the group $\mathfrak{D}_{1}^{0}(N)$ of divisors with degree 0 on $X_{1}(N)$ that are supported on the cusps of the first type. We set

$$
\mathcal{C}_{1}^{0}(N)=\mathfrak{D}_{1}^{0}(N) / \operatorname{div} \mathfrak{F}_{1}^{0}(N)
$$

Note that $\mathcal{C}_{1}^{0}(N)$ is a subgroup of the full cuspidal divisor class group on the modular curve $X_{1}(N)$. Let $h_{1}^{0}(N)$ be the order of $\mathcal{C}_{1}^{0}(N)$. Then one has an analogue of the formula (1.1) as follows:

Theorem 1.2 ([12]). For a prime number p, we set

$$
L_{p}(N)=\phi\left(\frac{N}{p^{v_{p}(N)}}\right) p^{v_{p}(N)-1}-2 v_{p}(N)+\epsilon_{p}(N)
$$

where

$$
\epsilon_{p}(N)=\left\{\begin{array}{cl}
2-\phi\left(\frac{N}{p^{v_{p}(N)}}\right) & \text { if } N \text { is not a prime power } \\
2 & \text { if } N=p^{n}>4 \text { and } p \geq 3 \\
3 & \text { if } N=2^{n}>4 .
\end{array}\right.
$$

Then we have

$$
\begin{equation*}
h_{1}^{0}(N)=\prod_{p \mid N} p^{L_{p}(N)} \prod_{\substack{\chi: e v e n \\ \chi \neq 1}}\left[\frac{1}{4} B_{2, \chi_{1}} \prod_{p \mid N}\left(1-p^{2} \chi_{1}(p)\right)\right], \tag{1.4}
\end{equation*}
$$

where χ_{1} is the primitive Dirichlet character which induces the character χ.
Remark 1.1. As explained in [11], a minor error has to be corrected in the statement of [12, Theorem 5].

The purpose of present paper is to determine p-adic and ℓ-adic valuations of $h_{1}^{0}\left(N p^{n}\right), p \nmid N$ for all sufficiently large n. We obtain similar results to the formulae (1.2) and (1.3) as follows:

Theorem 1.3. Let $\xi=\xi_{p}(N)$ be given in (2.11). We set

$$
\kappa= \begin{cases}\phi(N) & \text { if } p \text { is odd } \\ p \phi(N) & \text { if } p=2\end{cases}
$$

and

$$
\tau=\left\{\begin{array}{cl}
(p-1) \phi\left(N / \ell^{v_{\ell}(N)}\right)\left(\ell^{v_{\ell}(N)-1}-1\right) & \text { if } \ell \mid N \\
0 & \text { if } \ell \nmid N .
\end{array} .\right.
$$

There exists two integers c_{p} and c_{ℓ} such that
(1) $v_{p}\left(h_{1}^{0}\left(N p^{n}\right)\right)=\kappa p^{n-1}+(\lambda+\xi-3) n+c_{p}$ for all $n \gg 1$.
(2) $v_{\ell}\left(h_{1}^{0}\left(N p^{n}\right)\right)=\tau p^{n-1}+c_{\ell}$ for all $n \gg 1$.

Remark 1.2. When $N=p^{n}$ is a prime power and p is a regular prime, the primary decomposition of $\mathcal{C}_{1}^{0}(N)$ is determined in [11]. Note that in this case, $\xi=\lambda=0$.

The p-adic valuation of $h_{1}^{0}\left(N p^{n}\right)$ or $B_{2, \chi}$ can be computed in a very similar way as done in [2], [10] and in the next section we follow the argument. On the other hand, in order to get ℓ-adic valuation, we prove an analogue of a theorem of Washington for the generalized Bernoulli number of higher order. In other words, we show:

Theorem 1.4. Let N be a fixed integer with $p \nmid N$. Let $\{\chi\}$ be a set of Dirichlet characters of conductor $p^{n} N$ with $n \geq 1$, and $\chi(-1) \neq(-1)^{k}$. Then we have

$$
v_{\ell}\left(\frac{B_{k, \chi}}{k}\right)=0 \text { for almost all } \chi
$$

In [8], using the following formula (see Proposition 3.1)

$$
\begin{equation*}
\frac{B_{k, \chi}}{k}=G(\chi) \int_{-i \infty}^{i \infty} \frac{\sum_{r=1}^{N p^{n}-1} \chi^{-1}(r) e^{2 \pi i z}}{1-e^{2 \pi i N p^{n} z}} z^{k-1} d z \tag{1.5}
\end{equation*}
$$

a proof of Theorem 1.1 is obtained from a homological formulation such as abelian modular symbols on punctured cylinders and a certain homological equi-distribution property. In the present paper, we count on elementary calculations rather than devise a homological description.

Remark 1.3. Let G be a Cartan group $C(N)$ and $k=2$. If $N=p^{n}$ is a prime power, the full cuspidal class number $h(N)$ of the modular curve $X(N)$ is represented by a product of terms involving $B_{2, \chi, C(N)}$, the Cartan-Bernoulli number. In fact, computing the index of a Stickelberger ideal of order 2, Kubert and Lang ([4]) also obtained the class number formula: For $p \neq 2,3$,

$$
h\left(p^{n}\right)=\frac{6 p^{3 n}}{\left|C\left(p^{n}\right)\right|} \prod_{\chi: \text { even }} \frac{1}{4} B_{2, \chi, C\left(p^{n}\right)}
$$

Thanks to the results [5], one has the formula

$$
B_{k, \chi, C(N)}=N^{1-k} \frac{G(\chi, r)}{G\left(\chi_{\mathbb{Z}}\right)} B_{k, \chi_{\mathbb{Z}}}
$$

where $G(\chi, r)=\sum_{g \in C(N)} \chi(g) e^{2 \pi i r(g) / N}, \chi_{\mathbb{Z}}$ is the restriction of χ to $(\mathbb{Z} / N \mathbb{Z})^{\times}$, and $G\left(\chi_{\mathbb{Z}}\right)$ is the Gauss sum of $\chi_{\mathbb{Z}}$ with respect to the additive character $r \mapsto e^{2 \pi i r / N}$. Since $|G(\chi, r)|^{2}$ is a p-power ([3, Lemma 4.2]), Theorem 1.4 enables us to obtain a similar result as above. In other words, $v_{\ell}\left(h\left(p^{n}\right)\right)$ is bounded for all $n \gg 1$ and $\ell>3$.

For a p-adic integer α, we let $(\alpha)_{n}$ be the n-th partial sum of p-adic expansion of α. We say two sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ of p-adic numbers are equivalent if $v_{p}\left(a_{n} / b_{n}\right)$ are eventually constant as $n \rightarrow \infty$ and denote them by $a_{n} \stackrel{p}{\sim} b_{n}$. In Section 2 , we fix two embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_{p}$. For an integer $L>0$, we set $\zeta_{L}=e^{2 \pi i / L}$ and for a Dirichlet character ψ with the conductor $f, G(\psi)$ is the Gauss sum $G(\psi)=\sum_{r=1}^{f-1} \psi(r) \zeta_{f}^{r}$.

2. The p-Part of the cuspidal class number

Let $q_{0}=4$ if $p=2$ and $q_{0}=p$ if $p \geq 3$. Let χ be a Dirichlet character of conductor $N q_{0} p^{n}$, and θ and π be the first and the second factors of χ respectively in the sense of [2]. In other words, θ and π are the restrictions of χ to $\left(\mathbb{Z} / N q_{0} \mathbb{Z}\right)^{\times}$ and $\frac{1+p \mathbb{Z}}{1+p^{n} \mathbb{Z}}$ respectively. From the cuspidal class number formula (1.4), we have $L_{p}\left(N q_{0} p^{n}\right)=\phi(N) q_{0} p^{n-1}-2 n+\epsilon_{p}\left(N p^{n}\right)$ and since $\prod_{\chi}\left(1-\chi_{1}(p) p^{2}\right) \stackrel{p}{\sim} 1$ we obtain

$$
\begin{equation*}
h_{1}^{0}\left(N q_{0} p^{n}\right) \stackrel{p}{\sim} p^{\phi(N) q_{0} p^{n-1}-2 n} \prod_{\substack{x: e v e n \\ \pi \neq 1}} \frac{1}{4} B_{2, \chi_{1}} \prod_{q \mid N}\left(1-\chi_{1}(q) q^{2}\right) . \tag{2.1}
\end{equation*}
$$

From the equation $L(s, \chi)=\prod_{q \mid N}\left(1-\chi_{1}(q) q^{-s}\right) L\left(s, \chi_{1}\right)$, we obtain

$$
B_{n, \chi}=B_{n, \chi_{1}} \prod_{q \mid N}\left(1-\chi_{1}(q) q^{n-1}\right)
$$

The formula (2.1) is written as

$$
\begin{equation*}
h_{1}^{0}\left(N q_{0} p^{n}\right) \stackrel{p}{\sim} p^{\phi(N) q_{0} p^{n-1}-2 n} \prod_{\substack{\chi: e v e n \\ \pi \neq 1}} \frac{1}{4} B_{2, \chi} \prod_{q \mid N} \frac{1-\chi_{1}(q) q^{2}}{1-\chi_{1}(q) q} . \tag{2.2}
\end{equation*}
$$

We consider the first product of generalized Bernoulli numbers in (2.2). The following discussion is similar to [2], [10]. Let k be the number field obtained by adjoining θ to \mathbb{Q} and \mathfrak{o} be the ring of integers. It is a well-known fact ([10]) that if $\theta \neq 1$, there exists a power series $P_{\theta}(T) \in \mathfrak{o}[[T-1]]$ such that

$$
2 P_{\theta}\left(\zeta_{\chi}\left(1+q_{0}\right)^{1-n}\right)=-\left(1-\chi \omega^{-n}(p) p^{n-1}\right) \frac{B_{n, \chi \omega^{-n}}}{n}
$$

for $\chi(-1)=1, \zeta_{\chi}=\chi\left(1+q_{0}\right)^{-1}$ and $n \geq 1$. In particular, for a Dirichlet character χ with $\pi \neq 1$, we have

$$
P_{\theta \omega^{2}}\left(\zeta_{\pi}\left(1+q_{0}\right)^{-1}\right)=-\frac{B_{2, \chi}}{4}
$$

And that if $\theta=1$, then $P_{1}(T)$ can be written as

$$
\begin{equation*}
P_{1}(T)=G(T)\left(1-\frac{1+q}{T}\right)^{-1} \tag{2.3}
\end{equation*}
$$

where $G(T) \in \mathbb{Z}_{p}[[T-1]]^{\times}$. Using this, the first product in the formula (2.2) can be written as

$$
\begin{equation*}
\prod_{\substack{\chi: e v e n \\ \pi \neq 1}} \frac{1}{4} B_{2, \chi} \stackrel{p}{\sim} \prod_{\substack{\theta: e v e n \\ \pi \neq 1}} P_{\theta}\left(\zeta_{\pi}\left(1+q_{0}\right)^{-1}\right) . \tag{2.4}
\end{equation*}
$$

Note that ζ_{π} runs over all p^{n}-th roots of unity. Dividing the above product into two parts, namely a product over $\theta=1$ and a product over $\theta \neq 1$, the formula (2.4) is equivalent to

$$
\begin{equation*}
\prod_{\substack{\zeta^{n}=1 \\ \zeta \neq 1}} P_{1}\left(\zeta\left(1+q_{0}\right)^{-1}\right) \prod_{\substack{{\zeta^{n}}^{n}=1}} \prod_{\substack{\theta: e v e n \\ \theta \neq 1}} P_{\theta}\left(\zeta\left(1+q_{0}\right)^{-1}\right) . \tag{2.5}
\end{equation*}
$$

Now we set

$$
P(T)=\prod_{\substack{\theta: e v e n \\ \theta \neq 1}} P_{\theta}(T)
$$

Note that we have $P(T) \in \mathbb{Z}_{p}[[T-1]]$ and there exists two non-negative integers μ and λ such that the power series $P(T)$ has the factorization

$$
P(t)=p^{\mu} Q(t) \text { with } Q(T) \equiv(T-1)^{\lambda} U(T)(\bmod p)
$$

where $Q(T), U(T) \in \mathbb{Z}_{p}[[T-1]]$ with $U(0) \in \mathbb{Z}_{p}^{\times}$. The celebrated theorem due to Ferrero and Washington([1]) shows that $\mu=0$. Furthermore, when p is an odd prime number and $N=1$, we have $\lambda=0$ if and only if p is regular, that is, $p \nmid h^{-}\left(\mathbb{Q}\left(\zeta_{p}\right)\right)$.

From (2.3), we have

$$
\begin{equation*}
\prod_{\substack{\zeta^{p^{n}}=1 \\ \zeta \neq 1}}\left|P_{1}\left(\zeta\left(1+q_{0}\right)^{-1}\right)\right|_{p}=\prod_{\zeta}\left|1-\zeta^{-1}\left(1+q_{0}\right)^{2}\right|_{p}^{-1}=\left|p^{n}\right|_{p}^{-1} \tag{2.6}
\end{equation*}
$$

For the second product in (2.5), one can easily deduce that

$$
\begin{equation*}
\prod_{\zeta^{p^{n}}=1}\left|Q\left(\zeta\left(1+q_{0}\right)\right)^{-1}\right|_{p} \stackrel{p}{\sim} p^{\lambda n} . \tag{2.7}
\end{equation*}
$$

In total, from (2.6) and (2.7) we have

$$
\begin{equation*}
\prod_{\substack{x: e v e n \\ \pi \neq 1}} \frac{1}{4} B_{2, \chi} \stackrel{p}{\sim} p^{(\lambda-1) n} \tag{2.8}
\end{equation*}
$$

Next we consider the second product in the formula (2.2). For a prime $q \mid N$, let $N^{(q)}$ be the integer obtained by removing q factors of N and F_{q} be the order of q in $\left(\mathbb{Z} / N^{(q)} q_{0} p^{n} \mathbb{Z}\right)^{\times} /\{ \pm 1\}$ and $E_{q}=\frac{\phi\left(N^{(q)} q_{0} p^{n}\right)}{2 F_{q}}$. As observed in [11], one obtains

$$
\begin{equation*}
\prod_{\substack{\chi: e v e n \\ \chi \neq 1}} \frac{1-\chi_{1}(q) q^{2}}{1-\chi_{1}(q) q}=\frac{\left(1+q^{F_{q}}\right)^{E_{q}}}{1+q} \tag{2.9}
\end{equation*}
$$

Since $q^{F_{q}} \equiv \pm 1\left(\bmod q_{0}\right)$, we have $\omega(q)^{F_{q}}= \pm 1$. Furthermore if $\omega(q)^{F_{q}}=1$, then obviously we have

$$
v_{p}\left(1+q^{F_{q}}\right)=v_{p}\left(1+\langle q\rangle^{F_{q}}\right)=v_{p}(2)
$$

On the other hand, if $\omega(q)^{F_{q}}=-1$, then we have

$$
v_{p}\left(1+q^{F_{q}}\right)=v_{p}\left(1-\langle q\rangle^{F_{q}}\right)=v_{p}\left(F_{q} \log _{p}\langle q\rangle\right)+v_{p}(2) .
$$

Let f_{q} be the order of q in $\left(\mathbb{Z} / N^{(q)} q_{0} \mathbb{Z}\right)^{\times} /\{ \pm 1\}$ and $e_{q}=\frac{\phi\left(N^{(q)} q_{0}\right)}{2 f_{q}}$. Since we have $F_{q}=p^{n-v_{p}\left(\log _{p}\langle q\rangle\right)} f_{q}$ and $E_{q}=p^{v_{p}\left(\log _{p}\langle q\rangle\right)} e_{q}$, we obtain $v_{p}\left(1+q^{F_{q}}\right)=n+v_{p}\left(f_{q}\right)+$ $v_{p}(2)$ and from (2.9) we have

$$
\begin{equation*}
\prod_{q \mid N} \prod_{\substack{\chi: \text { even } \\ \chi \neq 1}} \frac{1-\chi_{1}(q) q^{2}}{1-\chi_{1}(q) q} \stackrel{p}{\sim} \prod_{\substack{q \mid N \\ q^{f} q \equiv-1(p)}} p^{E_{q} n} \tag{2.10}
\end{equation*}
$$

We set

$$
\begin{equation*}
\xi_{p}(N)=\sum_{\substack{q \mid N \\ q^{f q} \equiv-1(p)}} E_{q}=\sum_{\substack{q \mid N \\ q^{f q} \equiv-1(p)}} p^{v_{p}\left(\log _{p}\langle q\rangle\right)} e_{q} . \tag{2.11}
\end{equation*}
$$

Putting together (2.2), (2.8), and (2.10), for an odd prime p we obtain

$$
h_{1}^{0}\left(N q_{0} p^{n}\right) \stackrel{p}{\sim} p^{\phi(N) q_{0} p^{n-1}+\left(\lambda_{p}(N)+\xi_{p}(N)-3\right) n .}
$$

3. The non- p-Part of cuspidal Class number

Let ℓ be an odd prime number different from p. We also consider a similar formula as (2.2) as follows.

$$
\begin{equation*}
h_{1}^{0}\left(N p^{n}\right) \stackrel{\ell}{\sim} \prod_{q \mid N} q^{L_{q}\left(N p^{n}\right)} \prod_{\substack{\chi: e v e n \\ \pi \neq 1}} \frac{1}{4} B_{2, \chi} \prod_{q \mid N} \frac{1-\chi_{1}(q) q^{2}}{1-\chi_{1}(q) q} \tag{3.1}
\end{equation*}
$$

Since $1-\chi_{1}(q) q^{2}$ and $1-\chi_{1}(q) q$ for $q \mid N$ are equivalent to 1 , we have

$$
\begin{equation*}
h_{1}^{0}\left(N p^{n}\right) \stackrel{\ell}{\sim} \ell^{L_{\ell}^{\prime}\left(N p^{n}\right)} \prod_{\substack{\chi: e v e n \\ \pi \neq 1}} \frac{1}{4} B_{2, \chi} \tag{3.2}
\end{equation*}
$$

where

$$
L_{\ell}^{\prime}\left(N p^{n}\right)=\left\{\begin{array}{cl}
\phi\left(N^{(\ell)}\right)\left(\ell^{v_{p}(N)-1}-1\right)(p-1) p^{n-1} & \text { if } \ell \mid N \\
0 & \text { if } \ell \nmid N
\end{array}\right.
$$

Hence it remains to show Theorem 1.4. The main idea is to modify the method of Washington ([9]) to apply to the generalized Bernoulli numbers of higher order by following the discussion in [8], where a homological argument has been developed to obtain a conceptual interpretation of Washington's proof.

For a periodic function λ of period N, we define a rational function $R_{\lambda}(t)$ so that

$$
R_{\lambda}(t)=\frac{\sum_{r=1}^{N-1} \lambda(r) t^{r}}{1-t^{N}}
$$

For $q=e^{2 \pi i z}, z \in \mathbb{C}$ and a polynomial $P(z)$, we have a meromorphic function $R_{\lambda}(q) P(z)$ on \mathbb{C} with poles $z=\frac{r}{N}, r \in \mathbb{Z}$ where the residue is given by

$$
\operatorname{Res}\left(\frac{r}{N} ; R_{\lambda}(q) P(z)\right)=\frac{\widehat{\lambda}(r)}{N} P\left(\frac{r}{N}\right),
$$

where $\operatorname{Res}\left(z_{0} ; R_{\lambda}(q) P(z)\right)$ is the residue of $R_{\lambda}(q) P(z)$ at $z=z_{0}$. Here $\widehat{\lambda}$ is a periodic function which is the Fourier transform of λ defined by

$$
\widehat{\lambda}(r)=\sum_{s=1}^{N} \lambda(s) e^{\frac{2 \pi i r s}{N}}
$$

From now on, we assume that $\lambda(N)=0$ i.e. $\sum_{s=1}^{N} \widehat{\lambda}(s)=0$. With this assumption we observe that $R_{\lambda}\left(e^{2 \pi i z}\right) P(z)$ is exponentially decreasing as $\Im(z) \rightarrow$ $\pm \infty$. Therefore the contour integral $\int_{x-i \infty}^{x+i \infty} R_{\lambda}\left(e^{2 \pi i z}\right) P(z) d z$ is well-defined for $x \in \mathbb{R}-\frac{1}{N} \mathbb{Z}$. Furthermore if $\frac{r-1}{N}<x<\frac{r}{N}$ and $\frac{r}{N}<y<\frac{r+1}{N}$, then we have

$$
\begin{align*}
& \int_{x-i \infty}^{x+i \infty} R_{\lambda}\left(e^{2 \pi i z}\right) P(z) d z-\int_{y-i \infty}^{y+i \infty} R_{\lambda}\left(e^{2 \pi i z}\right) P(z) d z \tag{3.3}\\
& =\operatorname{Res}\left(\frac{r}{N} ; R_{\lambda}(q) P(z)\right)=\frac{\widehat{\lambda}(r)}{N} P\left(\frac{r}{N}\right)
\end{align*}
$$

When $P(z)=z^{k}$, we obtain the following special value formula of Dirichlet L functions.

Proposition 3.1. For $k \geq 0$, we have

$$
\begin{equation*}
L(-k, \lambda)=N^{k} \int_{-i \infty}^{i \infty} R_{\widehat{\lambda}}\left(e^{2 \pi i z}\right) z^{k} d z \tag{3.4}
\end{equation*}
$$

Proof. We have the expression

$$
\begin{equation*}
L(s, \lambda)=N^{-s} \sum_{r} \lambda(r) \zeta\left(s, \frac{r}{N}\right) \tag{3.5}
\end{equation*}
$$

which enables us to get the functional equation (See [6]) of $L(s, \lambda)$ as follows:

$$
\left(e^{2 \pi i s}-1\right) \Gamma(s) L(s, \lambda)=\left(\frac{2 \pi i}{N}\right)^{s}\left(L(1-s, \widehat{\lambda})-(-1)^{s-1} L(1-s, \widehat{\lambda} \circ-1)\right)
$$

Since $\lim _{s \rightarrow-k}\left(e^{2 \pi i s}-1\right) \Gamma(s)=\frac{(-1)^{k} 2 \pi i}{k!}$ for $k \geq 0$, we have

$$
\begin{equation*}
L(-k, \lambda)=\frac{N^{k}}{(2 \pi i)^{k+1}}\left((-1)^{k} L(k+1, \lambda \circ-1)+L(k+1, \lambda)\right) . \tag{3.6}
\end{equation*}
$$

Since we have $L(k+1, \lambda)=\frac{1}{k!} \int_{0}^{\infty} R_{\lambda}\left(e^{-y}\right) y^{k} d y$, we obtain the proposition.
Let ψ be a Dirichlet character. It is well-known that for an integer a relatively prime to the conductor of ψ and for integers $k \geq 0$, one has

$$
\left(a^{k+1} \psi(a)-1\right) L(-k, \psi) \in \mathbb{Z}[\psi]
$$

Furthermore if we consider Dirichlet characters ψ of conductor $N p^{n}, n \geq 0$ then we have

$$
v_{\ell}\left(a^{k+1} \psi(a)-1\right)=0 \text { for all } n \gg 1
$$

Hence we are able to conclude that $L(-k, \psi)$ is ℓ-integral for all characters ψ of sufficiently large conductors, say all conductors $N p^{n}$ with $n \geq m_{1}$.

In order to treat the case of $N=1$, we let λ_{0} be a periodic function with period g, a prime number different from p and ℓ, which is defined by

$$
\begin{aligned}
\lambda_{0}(r) & =1 \quad \text { if } g \nmid r \\
& =1-g \text { if } g \mid r .
\end{aligned}
$$

Observe that $\widehat{\lambda_{0}}(g)=0$ and $\widehat{\lambda_{0}}(r)=-g$ if $r<g$. We have the formula

Proposition 3.2. Let χ and λ be Dirichlet characters of conductor p^{n} and N respectively. When $N>1$, we have

$$
\begin{equation*}
L(-k, \chi \lambda)=N^{k} \sum_{r=1}^{p^{n}-1} \chi(r) \int_{\frac{r}{p^{n}}-i \infty}^{\frac{r}{p^{n}}+i \infty} R_{\widehat{\lambda}}(q)\left(z-\frac{r}{p^{n}}\right)^{k} d z \tag{3.7}
\end{equation*}
$$

When $N=1$, we have

$$
\begin{align*}
L(-k, \chi) & =\frac{1}{1-g^{k+1} \chi(g)} L\left(-k, \chi \lambda_{0}\right) \tag{3.8}\\
& =\frac{g^{k}}{1-g^{k+1} \chi(g)} \sum_{r=1}^{p^{n}-1} \chi(r) \int_{\frac{r}{p^{n}}-i \infty}^{\frac{r}{p^{n}}+i \infty} R_{\widehat{\lambda}_{0}}(q)\left(z-\frac{r}{p^{n}}\right)^{k} d z \tag{3.9}
\end{align*}
$$

Proof. Let $N>1$. We start with the formula (3.4)

$$
L(-k, \chi \lambda)=N^{k} \int_{-i \infty}^{i \infty} R_{\widehat{\chi \lambda}}(q) z^{k} d z
$$

Note that $\widehat{\chi \lambda}=G(\chi \lambda) \chi^{-1} \lambda^{-1}$. Since $R_{\chi^{-1} \lambda^{-1}}(q)$ can be written as

$$
R_{\chi^{-1} \lambda^{-1}}(q)=\frac{1}{G(\chi)} \sum_{r=0}^{p^{n}-1} \chi(r) R_{\lambda^{-1}}\left(q \zeta_{n}^{r}\right)
$$

and $G(\chi \lambda)=G(\chi) G(\lambda)$, we obtain the formula (3.7). When $N=1$, we have (3.8) by the definition of λ_{0} and by the following formula

$$
\widehat{\chi \lambda_{0}}=G(\chi) \chi^{-1} \widehat{\lambda_{0}}
$$

The formula (3.9) can be obtained in a same way as before and we conclude the proposition.

From now on we let χ be a Dirichlet character of p-power conductor and

$$
\lambda=\left\{\begin{array}{cl}
\text { Dirichlet character of conductor } N & \text { if } N>1 \\
\lambda_{0} & \text { if } N=1
\end{array}\right.
$$

and L be the period of λ. In other words,

$$
L=N \text { if } N>1 \text { and } L=g \text { if } N=1
$$

Let $W=\mu_{p-1}$ if p is odd and $W=\mu_{4}$ if $p=2$. Observe that we have the decomposition

$$
\mathbb{Z}_{p}^{\times}=W \times\left(1+2 p \mathbb{Z}_{p}\right) .
$$

Let $k_{0}=\mathbb{Q}\left(\lambda,\left.\chi\right|_{W}\right)$ be the finite extension of \mathbb{Q} adjoining the values λ and $\chi(W)$. Set $k_{n}=k_{0}\left(\mu_{p^{n}}\right), k_{\infty}=k_{0}\left(\mu_{p^{\infty}}\right)$ and let \mathfrak{L} be a prime in k_{∞} over ℓ. The extension k_{∞} / k_{0} is unramified at $\mathfrak{L} \cap k_{0}$. Let H be the decomposition group of \mathfrak{L} and $k=k_{\infty}^{H}$. Then \mathfrak{L} is inert in k_{∞} / k and for all sufficiently large n, say $n \geq m_{2}$, we have $k_{n+1} \neq k_{n}$ and \mathfrak{L} is inert in k_{∞} / k_{n}. For $\sigma \in \operatorname{Gal}\left(k_{\infty} / k_{n}\right)$, we have

$$
\sigma L(-k, \chi \lambda)=L\left(-k, \chi^{\sigma} \lambda\right)
$$

Recall that $L(-k, \chi \lambda)$ is ℓ-integral for all Dirichlet characters χ of which conductor is p^{n} with $n \geq m_{1}$. Now we set

$$
m_{0}=\max \left\{m_{1}, m_{2}\right\}
$$

For each $\eta \in W$ and an integer $m>0$, we set

$$
R_{\lambda, \eta, m}(q)=\sum_{s=1}^{p^{m}-1} \zeta_{m}^{s \eta^{-1}} R_{\lambda}\left(q \zeta_{m}^{s}\right)=\sum_{\substack{r=-\eta\left(p^{m}\right) \\ 1 \leq r<p^{m}}} \frac{\lambda(r) q^{r}}{1-q^{p^{m} L}}
$$

Observe that if we define a periodic function $\lambda_{\eta, m}$ of a period $N p^{m}$ such that

$$
\lambda_{\eta, m}(r)=\left\{\begin{array}{cl}
\lambda(r) & \text { if } r \equiv-\eta\left(\bmod p^{m}\right) \\
0 & \text { otherwise }
\end{array}\right.
$$

then we have

$$
R_{\lambda, \eta, m}(q)=R_{\lambda_{\eta, m}}(q)
$$

Proposition 3.3. Let the conductor of χ is p^{n} with $n>m_{0}$. If we have

$$
L(-k, \chi \lambda) \equiv 0(\bmod \mathfrak{L})
$$

then for all $m \geq m_{0}$ with $n>2 m$ and $\alpha \in 1+p^{m} \mathbb{Z}_{p}$ we have

$$
\begin{equation*}
L^{k} \sum_{\eta \in W} \chi(\eta) \int_{\frac{(\alpha \eta) n}{p^{n}}-i \infty}^{\frac{(\alpha \eta) n}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta, m}(q)\left(z-\frac{(\alpha \eta)_{n}}{p^{n}}\right)^{k} \equiv 0(\bmod \mathfrak{L}) \tag{3.10}
\end{equation*}
$$

Proof. Applying the trace $\operatorname{Tr}=\operatorname{Tr}_{k_{n} / k_{n-m}}$ to the congruence $L(-k, \chi \lambda) \equiv 0(\bmod \mathfrak{L})$ after multiplying $\chi\left(\alpha^{-1}\right)$ for an $\alpha \in 1+p \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\operatorname{Tr}\left(\chi\left(\alpha^{-1}\right) L(-k, \chi \lambda)\right) \equiv 0(\bmod \mathfrak{L}) \tag{3.11}
\end{equation*}
$$

Observe that we have

$$
\operatorname{Tr}(\chi(x))=\left\{\begin{array}{cl}
{\left[k_{n}: k_{n-m}\right] \chi(x)} & \text { if } \chi(x) \in k_{n-m} \\
0 & \text { otherwise }
\end{array}\right.
$$

We start with the formulae (3.7) and (3.9). Since $\chi(x) \in k_{n-m}$ if and only if $x \in 1+p^{n-m} \mathbb{Z}_{p}$, the formula (3.11) implies that

$$
L^{k} \sum_{\eta \in W} \chi(\eta) \sum_{r \in \alpha \frac{1+p^{n}-m_{\mathbb{Z}_{p}}}{1+p^{n} \mathbb{Z}_{p}}} \chi(r) \int_{\frac{\left.(r r)_{n}\right)}{p^{n}}-i \infty}^{\frac{(r \eta)_{n}}{p^{n}}+i \infty} R_{\lambda}(q)\left(z-\frac{(r \eta)_{n}}{p^{n}}\right)^{k} d z \equiv 0(\bmod \mathfrak{L}) .
$$

Setting $r=\alpha\left(1+p^{n-m} s\right)$ with $0 \leq s<p^{m}$, we have $\chi\left(1+p^{n-m} s\right)=\zeta_{m}^{s}$ and the last congruence becomes

$$
\begin{aligned}
L^{k} \sum_{\eta} \chi(\eta) \sum_{s=0}^{p^{m}-1} \zeta_{m}^{s} & \int_{\frac{\left(\alpha \eta \left(1+p^{\left.\left.n-m_{s}\right)\right)_{n}}-i \infty\right.\right.}{p^{n}}}^{\frac{\left(\alpha \eta \left(1+p^{\left.n-m_{s)}\right) n}\right.\right.}{p^{n}}+i \infty} R_{\lambda}(q) \\
& \times\left(z-\frac{\left(\alpha \eta\left(1+p^{n-m} s\right)\right)_{n}}{p^{n}}\right)^{k} d z \equiv 0(\bmod \mathfrak{L})
\end{aligned}
$$

Set $t_{n, m}=\left(\alpha \eta+p^{n-m} s\right)_{n}-(\alpha \eta)_{n}$. Changing the domain of integration and setting $s \mapsto(\alpha \eta)^{-1} s$, we have

$$
L^{k} \sum_{\eta} \chi(\eta) \sum_{s=0}^{p^{m}-1} \zeta_{m}^{s(\alpha \eta)^{-1}} \int_{\frac{(\alpha \eta)_{n}}{p^{n}}-i \infty}^{\frac{(\alpha \eta)_{n}}{p^{n}}+i \infty} R_{\lambda}\left(q \zeta_{n}^{t_{n, m}}\right)\left(z-\frac{(\alpha \eta)_{n}}{p^{n}}\right)^{k} d z \equiv 0(\bmod \mathfrak{L})
$$

Observe that $t_{n, m} \equiv p^{n-m} s\left(\bmod p^{n}\right)$. In total, after choosing $\alpha \in 1+p^{m} \mathbb{Z}_{p}$, we conclude the proposition.

Proof of Theorem 1.4. Now we show the following statement: Let χ be a Dirichlet character of conductor p^{n} and $\chi \lambda(-1) \neq(-1)^{k}$. Then we have

$$
L(-k, \chi \lambda) \not \equiv 0(\bmod \mathfrak{L}) \text { for almost all } \chi
$$

In order to reach a contradiction in the end, we assume the contrary that there exist infinitely many χ such that

$$
L(-k, \chi \lambda) \equiv 0(\bmod \mathfrak{L})
$$

By Proposition 3.3, the formula (3.10) holds for each m with $m \geq m_{0}$ and infinitely many $n \geq 2 m$. Observe that we have $\frac{(-\alpha \eta)_{n}}{p^{n}}=1-\frac{(\alpha \eta)_{n}}{p^{n}}$, and therefore for each $\alpha \in 1+p^{m} \mathbb{Z}_{p}$ we have

$$
\begin{aligned}
\int_{\frac{(-\alpha \eta)_{n}}{p^{n}}-i \infty}^{\frac{(-\alpha \eta)_{n}}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta, m}(q) & \left(z-\frac{(-\alpha \eta)_{n}}{p^{n}}\right)^{k} d z \\
= & (-1)^{k} \int_{\frac{(\alpha \eta)_{n}}{p^{n}}-i \infty}^{\frac{(\alpha)_{n}}{p^{n}}+i \infty} R_{\widehat{\lambda},-\eta, m}\left(q^{-1}\right)\left(z-\frac{(\alpha \eta)_{n}}{p^{n}}\right)^{k} d z
\end{aligned}
$$

Also observe that

$$
R_{\widehat{\lambda},-\eta, m}\left(q^{-1}\right)=-\lambda(-1) R_{\widehat{\lambda}, \eta, m}(q)
$$

With the same notation in Proposition 3.3, the formula (3.10) becomes

$$
2 L^{k} \sum_{\eta \in W} \chi(\eta) \int_{\frac{(\alpha \eta) n}{p^{n}}-i \infty}^{\frac{(\alpha \eta) n}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta, m}(q)\left(z-\frac{(\alpha \eta)_{n}}{p^{n}}\right)^{k} \equiv 0(\bmod \mathfrak{L})
$$

Let M be the constant defined in (4.3). We choose $m>0$ so that $p^{m} L>M$ and a character χ of which conductor is large enough to choose α and β as given in Proposition 4.2. Then we have

$$
\begin{equation*}
I(\alpha):=2 L^{k} \sum_{\eta \in W} \chi(\eta) \int_{\frac{(\alpha \eta) n}{p^{n}}-i \infty}^{\frac{(\alpha \eta) n}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta, m}(q) z^{k} d z \equiv 0(\bmod \mathfrak{L}), \tag{3.12}
\end{equation*}
$$

and same formula for β. Now we consider the difference

$$
I(\alpha)-I(\beta) \equiv 0(\bmod \mathfrak{L})
$$

Let $W=\left\{\eta_{1}, \cdots, \eta_{R}\right\}$. By Lemma 4.2, for each $j=2, \cdots, R, \frac{\left(\alpha \eta_{j}\right)_{n}}{p^{n}}$ and $\frac{\left(\beta \eta_{j}\right)_{n}}{p^{n}}$ are in a same interval $\left(\frac{s_{j}}{L p^{m}}, \frac{s_{j}+1}{L p^{m}}\right)$ for some $1 \leq s_{j}<L p^{m}$, and we have

$$
\int_{\frac{\left(\alpha \eta_{j}\right) n}{p^{n}}-i \infty}^{\frac{\left(\alpha \eta_{j}\right)_{n}}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta_{j}, m}(q) z^{k} d z=\int_{\frac{\left(\beta \eta_{j}\right) n}{p^{n}}-i \infty}^{\frac{\left(\beta \eta_{j}\right)_{n}}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta_{j}, m}(q) z^{k} d z
$$

On the other hand, we have $\frac{\left(\alpha \eta_{1}\right)_{n}}{p^{n}}<\frac{1}{L p^{m}}<\frac{\left(\beta \eta_{1}\right)_{n}}{p^{n}}$ and

$$
\begin{aligned}
& \int_{\frac{\left(\alpha \eta_{1}\right) n}{p^{n}}-i \infty}^{\frac{\left(\alpha \eta_{1}\right)_{n}}{p^{n}}+i \infty} R_{\widehat{\lambda}, \eta_{1}, m}(q) z^{k} d z-\int_{\frac{\left(\beta \eta_{1}\right) n}{p^{n}}-i \infty}^{\frac{\left(\beta \eta_{1}\right) n}{p^{n}}}+i \infty \\
& R_{\widehat{\lambda}, \eta_{1}, m}(q) z^{k} d z \\
&=\operatorname{Res}\left(\frac{1}{L p^{m}} ; R_{\widehat{\lambda}, \eta_{1}, m}(q) z^{k}\right)
\end{aligned}
$$

Since we have

$$
\operatorname{Res}\left(\frac{1}{L p^{m}} ; R_{\widehat{\lambda}, \eta, m}(q) z^{k}\right)=\frac{\widehat{\hat{\lambda}}\left(\overline{p^{m}}\right) \zeta_{L}^{-\overline{p^{m}}}(-\eta)_{m}}{} \zeta_{L p^{m}}^{(-\eta)_{m}}
$$

and $\widehat{\hat{\lambda}}\left(\overline{p^{m}}\right)=L \lambda\left(-\overline{p^{m}}\right)$, we obtain the following absurd congruence

$$
I(\alpha)-I(\beta)=\frac{\lambda\left(-\overline{p^{m}}\right) \zeta_{L}^{-\overline{p^{m}}}\left(-\eta_{1}\right)_{m}}{\zeta_{L p^{m}}^{\left(-\eta_{1}\right)_{m}}} \equiv 0(\bmod \mathfrak{L})
$$

From this contradiction, we deduce the theorem.

4. EQUI-DISTRIBUTION OF p-ADIC INTEGERS

We quote a proposition due to Ferrero and Washington. In [7], the reader can find a proof using compactness of the set $[0,1]^{r}$. We give another proof using Fourier expansion of a suitable elementary function.
Proposition 4.1 ([9], Proposition 1). Let $\gamma_{1}, \cdots, \gamma_{r}$ be \mathbb{Q}-linearly independent p-adic integers, $\delta>0, m>0$ an integer, $d>0$ an integer prime to p, and $\left(y_{1}, \cdots, y_{r}\right) \in(0,1)^{r}$. For all sufficiently large n, there exists $\alpha \equiv 1\left(\bmod p^{m}\right)$ so that

$$
\left|\frac{\left(\alpha \gamma_{j}\right)_{n}}{p^{n}}-y_{j}\right| \leq \delta \text { and }\left(\alpha \gamma_{j}\right)_{n} \equiv 0(\bmod d) \text { for all } j \leq r
$$

Proof. Set $z_{i}=\frac{y_{i}}{d}$ and $\epsilon=\frac{1}{d} \min \left(\delta, 1-y_{i}, y_{i}\right)$. Let $\mathbf{x}=\left(x_{i}\right) \in[0,1)^{r}$. Define

$$
f(\mathbf{x})=\left\{\begin{array}{cl}
\prod_{i=1}^{r} \sin \left(2 \pi \epsilon^{-1}\left(x_{i}-z_{i}\right)\right) & \text { if }\left|x_{i}-z_{i}\right| \leq \epsilon \text { for all } i \\
0 & \text { otherwise }
\end{array}\right.
$$

We have the Fourier expansion

$$
f(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{r}} c_{\mathbf{n}} e^{2 \pi i \mathbf{x} \cdot \mathbf{n}} .
$$

Since we have the evaluation of the integration

$$
\int_{\alpha-\epsilon}^{\alpha+\epsilon} \sin \left(2 \pi \epsilon^{-1}(x-\alpha)\right) e^{2 \pi n i x} d x=\frac{\epsilon\left(e^{2 n \pi i(\alpha+\epsilon)}-e^{2 n \pi i(\alpha-\epsilon)}\right)}{2 \pi\left(n^{2} \epsilon^{2}-1\right)}
$$

we obtain that

$$
c_{\mathbf{n}}=O\left(\frac{1}{|\mathbf{n}|^{2 r}}\right)
$$

For $\beta \in \mathbb{Z}_{p}^{\times}$, set $\mathbf{x}_{n}(\beta)=\left(\frac{\left(\beta \gamma_{1}\right)_{n}}{p^{n}}, \cdots, \frac{\left(\beta \gamma_{r}\right)_{n}}{p^{n}}\right)$ and $Z_{n}=\frac{d^{-1}+p^{m} \mathbb{Z}_{p}}{1+p^{n} \mathbb{Z}_{p}}$. In order to verify the proposition, first we show that

$$
\begin{equation*}
\frac{1}{p^{n-m}} \sum_{\beta \in Z_{n}}\left|f\left(\mathbf{x}_{n}(\beta)\right)\right|^{2}>0 \text { for } n \gg 1 \tag{4.1}
\end{equation*}
$$

For $\mathbf{n}=\left(n_{i}\right) \in \mathbb{Z}^{r}$, we set $\sigma_{\mathbf{n}}=\sum_{i=1}^{r} n_{i} \gamma_{i}$. By the Fourier expansion of $f(\mathbf{x})$, we have

$$
\frac{1}{p^{n-m}} \sum_{\beta \in Z_{n}}\left|f\left(\mathbf{x}_{n}(\beta)\right)\right|^{2}=\sum_{\mathbf{n}}\left|c_{\mathbf{n}}\right|^{2}+\lim _{M \rightarrow \infty} \delta_{n, M}
$$

where

$$
\delta_{n, M}=\sum_{\substack{|\mathbf{n}|, \mathbf{m} \mid<M, \sigma_{\mathbf{n}} \neq \mathbf{m}, \sigma_{\mathbf{n}} \equiv \sigma_{\mathbf{m}}\left(p^{n-m}\right)}} e^{2 \pi i \frac{d^{-1}\left(\sigma_{\mathbf{n}}-\sigma_{\mathbf{m}}\right)}{p^{n}}} c_{\mathbf{n}} \bar{c}_{\mathbf{m}}
$$

Observe that $\lim _{n \rightarrow \infty} \delta_{n, M}=0$ since $\left\{\gamma_{i}\right\}$ is linearly independent over \mathbb{Q}. Since the sum $\sum_{\mathbf{n}} c_{\mathbf{n}}$ converges absolutely, we have $\lim _{n \rightarrow \infty} \lim _{M \rightarrow \infty} \delta_{n, M}=0$ and verify (4.1). In sum, there exists $\beta \in d^{-1}+p^{m} \mathbb{Z}_{p}$ such that

$$
\begin{equation*}
\left|\frac{\left(\beta \gamma_{j}\right)_{n}}{p^{n}}-z_{j}\right| \leq \epsilon \text { for each } j \tag{4.2}
\end{equation*}
$$

Now we set $\alpha=d \beta$. From the inequality (4.2), we have $0<d\left(\beta \gamma_{j}\right)<p^{n}$ and, hence we conclude that

$$
\left(\alpha \gamma_{j}\right)_{n}=d\left(\beta \gamma_{j}\right)_{n} \equiv 0(\bmod d)
$$

Clearly we also have

$$
\left|\frac{\left(\alpha \gamma_{j}\right)_{n}}{p^{n}}-y_{j}\right| \leq \delta \text { for each } j
$$

This finish the proposition.
Let $\left\{\eta_{1}, \cdots, \eta_{R}\right\}=W \subset \mathbb{Z}_{p}^{\times}$and $U=\left\{\eta_{1}, \cdots, \eta_{r}\right\}$ be a maximal independent subset of W over \mathbb{Q}. Obviously $r=\phi(p-1)$ for Euler phi function ϕ and $\eta_{r+1}, \cdots, \eta_{R}$ are \mathbb{Z}-linear combinations of $\eta_{1}, \cdots, \eta_{r}$, say $\eta_{j}=\sum_{i=1}^{r} a_{j i} \eta_{i}$, $a_{i j}=a_{i j}(U) \in \mathbb{Z}$ for $j=r+1, \cdots, R$. Then we set
(4.3) $\quad M=\max \left\{\left|a_{j i}(U)\right| \mid\right.$ maximal \mathbb{Q}-linearly independent $\left.U \subseteq W\right\}$.

Now we state a lemma to control contours of the integrations in Section 3.
Lemma 4.2. Let $N>M$ and $m>0$ be an integer. For all sufficiently large integer n, there exists p-adic integers $\alpha, \beta \equiv 1\left(\bmod p^{m}\right)$ so that

$$
\frac{\left(\alpha \eta_{1}\right)_{n}}{p^{n}}<\frac{1}{N}<\frac{\left(\beta \eta_{1}\right)_{n}}{p^{n}}
$$

and

$$
\frac{s_{j}}{N}<\frac{\left(\alpha \eta_{j}\right)_{n}}{p^{n}}, \frac{\left(\beta \eta_{j}\right)_{n}}{p^{n}}<\frac{s_{j}+1}{N}
$$

for $j=2 \cdots R$ and $1 \leq s_{j}<N$. Furthermore we also have

$$
\left(\alpha \eta_{j}\right)_{n},\left(\beta \eta_{j}\right)_{n} \equiv 0(\bmod p) \text { for all } j=1, \cdots, R
$$

Proof. We form an $r \times(R-r)$ matrix $A=\left(a_{j i}\right)$. By changing the sign of η_{j}, we may assume that the first non-zero entry of the row ($a_{j 1}, a_{j 2}, \cdots, a_{j r}$) is positive for all $j=r+1, \cdots, R$. We form a linear map

$$
P\left(x_{1}, \cdots, x_{r}\right)=\left(x_{1}, \cdots, x_{R}\right)=\left(x_{1}, \cdots, x_{r}\right)(I \mid A)
$$

for $x_{1}, \cdots, x_{r} \in \mathbb{R}$, and for $r \times r$ identity matrix I and an $r \times R$ block matrix $(I \mid A)$ formed by I and A. Now we want to show that there exists x_{1}, \cdots, x_{r} and y_{1}, \cdots, y_{r} such that $P\left(x_{1}, \cdots, x_{r}\right), P\left(y_{1}, \cdots, y_{r}\right) \in(0,1)^{R}$, and $0<x_{1}<\frac{1}{N}<y_{1}<1$ and x_{i} and y_{i} are in the same interval $\left(\frac{s_{i}}{N}, \frac{s_{i}+1}{N}\right)$ for $i=2, \cdots, R$ and for some $1 \leq s_{i}<N$. In fact, since $N>a_{j 1}>0$ for each $j=r+1, \cdots, R$, we can choose small enough real numbers $1 \gg z_{2} \gg z_{3} \cdots \gg z_{r}>0$ so that

$$
P\left(\frac{1}{N}, z_{2}, \cdots, z_{r}\right) \in(0,1)^{R}
$$

We choose x_{1}, y_{1} close enough to $\frac{1}{N}$, and choose the points x_{j}, y_{j} close enough to z_{j} for each $j=2, \cdots, R$ so that x_{j}, y_{j}, and z_{j} are included in a same interval, say $\left(\frac{s_{i}}{N}, \frac{s_{i}+1}{N}\right)$.

By Proposition 4.1, we are able to choose two p-adic integers α and β so that $\alpha, \beta \equiv 1\left(\bmod p^{m}\right)$ and $\frac{\left(\alpha \eta_{j}\right)_{n}}{p^{n}}, \frac{\left(\beta \eta_{j}\right)_{n}}{p^{n}}$ are close enough to x_{j}, y_{j} for $j=1, \cdots, r$ respectively. By the choice of x_{j} and y_{j}, we obtain that

$$
P\left(\frac{\left(\alpha \eta_{1}\right)_{n}}{p^{n}}, \cdots, \frac{\left(\alpha \eta_{r}\right)_{n}}{p^{n}}\right) \in(0,1)^{R}
$$

Furthermore, we have $\frac{\left(\alpha \eta_{1}\right)_{n}}{p^{n}}<\frac{1}{N}$ and

$$
0<\sum_{i=1}^{r} a_{j i}\left(\alpha \eta_{j}\right)_{n}<p^{n} \text { for } j=r+1, \cdots, R
$$

Since $\alpha \eta_{j} \equiv \sum_{i=1}^{r} a_{j i}\left(\alpha \eta_{j}\right)_{n}\left(\bmod p^{n}\right)$, we conclude that

$$
\left(\alpha \eta_{j}\right)_{n}=\sum_{i=1}^{r} a_{j i}\left(\alpha \eta_{j}\right)_{n} \text { and }\left(\alpha \eta_{j}\right)_{n} \equiv 0(\bmod p)
$$

We do the same for y_{j} and conclude the proposition.

References

[1] Ferrero, B. and Washington, L.: The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377-395.
[2] Iwasawa, K.: Lectures on p-adic L-functions, Ann. of Math. Stud. 74. Princeton Univ. Press 1972.
[3] Kubert, D. and Lang, S.: Distributions on toroidal groups, Math. Z. 148, 33-51 (1976).
[4] Kubert, D. and Lang, S.: The index of Stickelberger ideals of oerder 2 and cuspidal class numbers, Math. Ann. 237, 213-232(1978).
[5] Kubert, D. and Lang, S.: Cartan-Bernoulli numbers as values of L-Series, Math. Ann. 240. 21-26 (1979).
[6] Lang, S.: Introduction to modular forms, Grundlehren der Mathematischen Wissenschaften, 222. Springer-Verlag, Berlin
[7] Oesterlé, J.: Travaux de Ferrero et Washington sur le Nombre de Classes d'Idéaux des Corps Cyclotomiques, Séminaire Bourbaki, 31e année, 1978/79, n. 535.
[8] Sun, H.-S.: Homological interpretation of a Theorem of Washington, J. Number Theory 127 (2007), no. 1, 47-63.
[9] Washington, L.: The non- p-part of the class number in a cyclotomic \mathbb{Z}_{p}-extension, Invent. Math. 49 (1978), 87-97
[10] Washington, L.: Introduction to cyclotomic fields, Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997
[11] Yang, Y.: Modular units and cuspidal divisor class groups of $X_{1}(N)$, arXiv:0803.3732
[12] Yu, J.: A cuspidal class number formula for the modular curves $X_{1}(N)$, Math. Ann. 252, 197-216 (1980)
E-mail address: haesang@mpim-bonn.mpg.de
Max-Planck Institut für Mathematik Bonn, Vivatsgasse 7, 53111 Bonn, Germany

