CUSPIDAL CLASS NUMBER OF A TOWER OF MODULAR CURVES $X_1(Np^n)$

HAE-SANG SUN

ABSTRACT. We consider a cuspidal class number, which is the order of a subgroup of full cuspidal divisor class group of $X_1(Np^n)$ with $p \nmid N$ and $n \ge 1$. By studying the second generalized Bernoulli numbers, we obtain results similar to ones ([1], [9]) about the relative class numbers of cyclotomic \mathbb{Z}_p -extension of an abelian number field.

1. INTRODUCTION

Let G be a finite abelian group with a surjective homomorphism $r : G \to (\mathbb{Z}/N\mathbb{Z})^{\times}$ for an integer N > 0. Let χ be a character on G. A generalized k-th Bernoulli number $B_{k,\chi,G}$ can be defined for χ such that

$$B_{k,\chi,G} = N^{k-1} \sum_{g \in G} \chi(g) B_k\left(\frac{r(g)}{N}\right),$$

where $B_k(x)$ is the Bernoulli polynomial defined by the formula

$$B_k(x) = \sum_{r=0}^k \binom{k}{r} B_r x^{n-r}.$$

For $G = (\mathbb{Z}/N\mathbb{Z})^{\times}$, $B_{k,\chi,G}$ is the usual generalized Bernoulli numbers $B_{k,\chi}$. In many different contexts, those generalized Bernoulli numbers have been related to an index of the Stickelberger ideal of order k in the group ring $\mathbb{Z}[G]$, which is generated by a Stickelberger element

$$\theta = N^{k-1} \sum_{g \in G} B_k\left(\frac{r(g)}{N}\right) g \in \mathbb{Q}[G]$$

or by its variation.

When $G = (\mathbb{Z}/N\mathbb{Z})^{\times}$ and k = 1, the relative class number h_N^- of $\mathbb{Q}(\zeta_N)$ can be written as a product of $B_{1,\chi}$ for odd Dirichlet characters χ . More precisely, one has

(1.1)
$$h_N^- = Q_N w_N \prod_{\chi:odd} -\frac{1}{2} B_{1,\chi},$$

where Q_N is the unit index and w_N is the number of roots of unity. The relative class number h_N^- is turned out to be an index of minus part of Stickelberger ideal of order 1. To the cyclotomic fields $\mathbb{Q}(\zeta_{Np^n})$, two non-negative integers μ and λ

Date: August 4, 2008.

The author thanks Max-Plack-Institut für Mathematik for their support and hospitality during his visit and preparation of the manuscript.

HAE-SANG SUN

are associated in order to express *p*-adic valuation $v_p(h_{Np^n}^-)$ of the relative class numbers $h_{Np^n}^-$. In fact, one has

(1.2) $v_p(h_{Np^n}^-) = \mu p^n + \lambda n + \nu$ for all $n \gg 1$ and some $\nu \in \mathbb{Z}$.

It has been conjectured that $\mu = 0$ and it was proved by Ferrero and Washington ([1]).

Let ℓ be an odd prime number different from p. The ℓ -adic valuation $v_{\ell}(h_{Np^n})$ of the relative class numbers was also determined by Washington ([9]). He has shown that there exists a constant δ_{ℓ} such that

(1.3)
$$v_{\ell}(h_{Nn^n}) = \delta_{\ell} \text{ for all } n \gg 1$$

by verifying

Theorem 1.1 ([9]). Let N be fixed and $p \nmid N$. For almost all odd Dirichlet characters χ of conductor Np^n , we have

$$v_{\ell}(B_{1,\chi}) = 0.$$

From the relative class number formula and the argument of Kummer, one can conclude the formula (1.3).

In this paper, we consider the case that $G = (\mathbb{Z}/N\mathbb{Z})^{\times}$ and k = 2. This case is studied by Kubert-Lang ([4]) for an odd prime power $N = p^n$ and by J. Yu ([12]) for general N > 4.

For an integer N > 4, a cusp on the modular curve $X_1(N)$ is said to be of first type if it is projected down to the cusp 0 on the modular curve $X_0(q)$ for all prime divisor q of N. We consider the group $\mathfrak{F}_1^0(N)$ of functions on $X_1(N)$ whose divisors are supported on the cusps of the first type and the group $\mathfrak{D}_1^0(N)$ of divisors with degree 0 on $X_1(N)$ that are supported on the cusps of the first type. We set

$$\mathcal{C}_1^0(N) = \mathfrak{D}_1^0(N) / \operatorname{div} \mathfrak{F}_1^0(N).$$

Note that $C_1^0(N)$ is a subgroup of the full cuspidal divisor class group on the modular curve $X_1(N)$. Let $h_1^0(N)$ be the order of $C_1^0(N)$. Then one has an analogue of the formula (1.1) as follows:

Theorem 1.2 ([12]). For a prime number p, we set

$$L_p(N) = \phi\left(\frac{N}{p^{v_p(N)}}\right) p^{v_p(N)-1} - 2v_p(N) + \epsilon_p(N)$$

where

$$\epsilon_p(N) = \begin{cases} 2 - \phi\left(\frac{N}{p^{v_p(N)}}\right) & \text{if } N \text{ is not a prime power} \\ 2 & \text{if } N = p^n > 4 \text{ and } p \ge 3 \\ 3 & \text{if } N = 2^n > 4 \end{cases}$$

Then we have

(1.4)
$$h_1^0(N) = \prod_{p|N} p^{L_p(N)} \prod_{\substack{\chi:even\\\chi\neq 1}} \left[\frac{1}{4} B_{2,\chi_1} \prod_{p|N} (1 - p^2 \chi_1(p)) \right],$$

where χ_1 is the primitive Dirichlet character which induces the character χ .

Remark 1.1. As explained in [11], a minor error has to be corrected in the statement of [12, Theorem 5].

The purpose of present paper is to determine *p*-adic and ℓ -adic valuations of $h_1^0(Np^n)$, $p \nmid N$ for all sufficiently large *n*. We obtain similar results to the formulae (1.2) and (1.3) as follows:

Theorem 1.3. Let $\xi = \xi_p(N)$ be given in (2.11). We set

$$\kappa = \begin{cases} \phi(N) & \text{if } p \text{ is odd} \\ p\phi(N) & \text{if } p = 2 \end{cases}$$

and

$$\tau = \begin{cases} (p-1)\phi(N/\ell^{v_{\ell}(N)})(\ell^{v_{\ell}(N)-1}-1) & \text{if } \ell \mid N \\ 0 & \text{if } \ell \nmid N. \end{cases}$$

There exists two integers c_p and c_ℓ such that

(1) $v_p(h_1^0(Np^n)) = \kappa p^{n-1} + (\lambda + \xi - 3)n + c_p \text{ for all } n \gg 1.$ (2) $v_\ell(h_1^0(Np^n)) = \tau p^{n-1} + c_\ell \text{ for all } n \gg 1.$

Remark 1.2. When $N = p^n$ is a prime power and p is a regular prime, the primary decomposition of $\mathcal{C}_1^0(N)$ is determined in [11]. Note that in this case, $\xi = \lambda = 0$.

The *p*-adic valuation of $h_1^0(Np^n)$ or $B_{2,\chi}$ can be computed in a very similar way as done in [2], [10] and in the next section we follow the argument. On the other hand, in order to get ℓ -adic valuation, we prove an analogue of a theorem of Washington for the generalized Bernoulli number of higher order. In other words, we show:

Theorem 1.4. Let N be a fixed integer with $p \nmid N$. Let $\{\chi\}$ be a set of Dirichlet characters of conductor $p^n N$ with $n \ge 1$, and $\chi(-1) \ne (-1)^k$. Then we have

$$v_{\ell}\left(\frac{B_{k,\chi}}{k}\right) = 0 \text{ for almost all } \chi.$$

In [8], using the following formula (see Proposition 3.1)

(1.5)
$$\frac{B_{k,\chi}}{k} = G(\chi) \int_{-i\infty}^{i\infty} \frac{\sum_{r=1}^{Np^n-1} \chi^{-1}(r) e^{2\pi i z}}{1 - e^{2\pi i Np^n z}} z^{k-1} dz.$$

a proof of Theorem 1.1 is obtained from a homological formulation such as abelian modular symbols on punctured cylinders and a certain homological equi-distribution property. In the present paper, we count on elementary calculations rather than devise a homological description.

Remark 1.3. Let G be a Cartan group C(N) and k = 2. If $N = p^n$ is a prime power, the full cuspidal class number h(N) of the modular curve X(N) is represented by a product of terms involving $B_{2,\chi,C(N)}$, the Cartan-Bernoulli number. In fact, computing the index of a Stickelberger ideal of order 2, Kubert and Lang ([4]) also obtained the class number formula: For $p \neq 2,3$,

$$h(p^{n}) = \frac{6p^{3n}}{|C(p^{n})|} \prod_{\chi:even} \frac{1}{4} B_{2,\chi,C(p^{n})}.$$

Thanks to the results [5], one has the formula

$$B_{k,\chi,C(N)} = N^{1-k} \frac{G(\chi,r)}{G(\chi_{\mathbb{Z}})} B_{k,\chi_{\mathbb{Z}}}.$$

where $G(\chi, r) = \sum_{g \in C(N)} \chi(g) e^{2\pi i r(g)/N}$, $\chi_{\mathbb{Z}}$ is the restriction of χ to $(\mathbb{Z}/N\mathbb{Z})^{\times}$, and $G(\chi_{\mathbb{Z}})$ is the Gauss sum of $\chi_{\mathbb{Z}}$ with respect to the additive character $r \mapsto e^{2\pi i r/N}$. Since $|G(\chi, r)|^2$ is a *p*-power([3, Lemma 4.2]), Theorem 1.4 enables us to obtain a similar result as above. In other words, $v_{\ell}(h(p^n))$ is bounded for all $n \gg 1$ and $\ell > 3$.

For a *p*-adic integer α , we let $(\alpha)_n$ be the *n*-th partial sum of *p*-adic expansion of α . We say two sequences $\{a_n\}$, $\{b_n\}$ of *p*-adic numbers are *equivalent* if $v_p(a_n/b_n)$ are eventually constant as $n \to \infty$ and denote them by $a_n \stackrel{p}{\sim} b_n$. In Section 2, we fix two embeddings $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$. For an integer L > 0, we set $\zeta_L = e^{2\pi i/L}$ and for a Dirichlet character ψ with the conductor f, $G(\psi)$ is the Gauss sum $G(\psi) = \sum_{r=1}^{f-1} \psi(r) \zeta_f^r$.

2. The p-part of the cuspidal class number

Let $q_0 = 4$ if p = 2 and $q_0 = p$ if $p \ge 3$. Let χ be a Dirichlet character of conductor Nq_0p^n , and θ and π be the first and the second factors of χ respectively in the sense of [2]. In other words, θ and π are the restrictions of χ to $(\mathbb{Z}/Nq_0\mathbb{Z})^{\times}$ and $\frac{1+p\mathbb{Z}}{1+p^n\mathbb{Z}}$ respectively. From the cuspidal class number formula (1.4), we have $L_p(Nq_0p^n) = \phi(N)q_0p^{n-1} - 2n + \epsilon_p(Np^n)$ and since $\prod_{\chi}(1-\chi_1(p)p^2) \stackrel{p}{\sim} 1$ we obtain

(2.1)
$$h_1^0(Nq_0p^n) \stackrel{p}{\sim} p^{\phi(N)q_0p^{n-1}-2n} \prod_{\substack{\chi:even\\\pi\neq 1}} \frac{1}{4} B_{2,\chi_1} \prod_{q|N} (1-\chi_1(q)q^2).$$

From the equation $L(s,\chi) = \prod_{q|N} (1 - \chi_1(q)q^{-s})L(s,\chi_1)$, we obtain

$$B_{n,\chi} = B_{n,\chi_1} \prod_{q|N} (1 - \chi_1(q)q^{n-1}).$$

The formula (2.1) is written as

(2.2)
$$h_1^0(Nq_0p^n) \stackrel{p}{\sim} p^{\phi(N)q_0p^{n-1}-2n} \prod_{\substack{\chi:even\\\pi\neq 1}} \frac{1}{4} B_{2,\chi} \prod_{q|N} \frac{1-\chi_1(q)q^2}{1-\chi_1(q)q}.$$

We consider the first product of generalized Bernoulli numbers in (2.2). The following discussion is similar to [2], [10]. Let k be the number field obtained by adjoining θ to \mathbb{Q} and \mathfrak{o} be the ring of integers. It is a well-known fact ([10]) that if $\theta \neq 1$, there exists a power series $P_{\theta}(T) \in \mathfrak{o}[[T-1]]$ such that

$$2P_{\theta}(\zeta_{\chi}(1+q_0)^{1-n}) = -(1-\chi\omega^{-n}(p)p^{n-1})\frac{B_{n,\chi\omega^{-n}}}{n}$$

for $\chi(-1) = 1$, $\zeta_{\chi} = \chi(1+q_0)^{-1}$ and $n \ge 1$. In particular, for a Dirichlet character χ with $\pi \ne 1$, we have

$$P_{\theta\omega^2}(\zeta_{\pi}(1+q_0)^{-1}) = -\frac{B_{2,\chi}}{4}$$

And that if $\theta = 1$, then $P_1(T)$ can be written as

(2.3)
$$P_1(T) = G(T) \left(1 - \frac{1+q}{T}\right)^{-1},$$

where $G(T) \in \mathbb{Z}_p[[T-1]]^{\times}$. Using this, the first product in the formula (2.2) can be written as

(2.4)
$$\prod_{\substack{\chi:even\\\pi\neq 1}} \frac{1}{4} B_{2,\chi} \stackrel{p}{\sim} \prod_{\substack{\theta:even\\\pi\neq 1}} P_{\theta}(\zeta_{\pi}(1+q_0)^{-1}).$$

Note that ζ_{π} runs over all p^n -th roots of unity. Dividing the above product into two parts, namely a product over $\theta = 1$ and a product over $\theta \neq 1$, the formula (2.4) is equivalent to

(2.5)
$$\prod_{\substack{\zeta p^n = 1 \\ \zeta \neq 1}} P_1(\zeta(1+q_0)^{-1}) \prod_{\substack{\zeta p^n = 1 \\ \theta \neq 1}} \prod_{\substack{\theta : even \\ \theta \neq 1}} P_{\theta}(\zeta(1+q_0)^{-1}).$$

Now we set

$$P(T) = \prod_{\substack{\theta: even\\ \theta \neq 1}} P_{\theta}(T).$$

Note that we have $P(T) \in \mathbb{Z}_p[[T-1]]$ and there exists two non-negative integers μ and λ such that the power series P(T) has the factorization

$$P(t) = p^{\mu}Q(t)$$
 with $Q(T) \equiv (T-1)^{\lambda}U(T) \pmod{p}$

where $Q(T), U(T) \in \mathbb{Z}_p[[T-1]]$ with $U(0) \in \mathbb{Z}_p^{\times}$. The celebrated theorem due to Ferrero and Washington([1]) shows that $\mu = 0$. Furthermore, when p is an odd prime number and N = 1, we have $\lambda = 0$ if and only if p is regular, that is, $p \nmid h^-(\mathbb{Q}(\zeta_p))$.

From (2.3), we have

(2.6)
$$\prod_{\substack{\zeta p^n = 1 \\ \zeta \neq 1}} |P_1(\zeta(1+q_0)^{-1})|_p = \prod_{\zeta} |1-\zeta^{-1}(1+q_0)^2|_p^{-1} = |p^n|_p^{-1}.$$

For the second product in (2.5), one can easily deduce that

(2.7)
$$\prod_{\zeta^{p^n}=1} |Q(\zeta(1+q_0))^{-1}|_p \stackrel{p}{\sim} p^{\lambda n}.$$

In total, from (2.6) and (2.7) we have

(2.8)
$$\prod_{\substack{\chi: even\\ \pi\neq 1}} \frac{1}{4} B_{2,\chi} \stackrel{p}{\sim} p^{(\lambda-1)n}$$

Next we consider the second product in the formula (2.2). For a prime $q \mid N$, let $N^{(q)}$ be the integer obtained by removing q factors of N and F_q be the order of q in $(\mathbb{Z}/N^{(q)}q_0p^n\mathbb{Z})^{\times}/\{\pm 1\}$ and $E_q = \frac{\phi(N^{(q)}q_0p^n)}{2F_q}$. As observed in [11], one obtains

(2.9)
$$\prod_{\substack{\chi:even\\\chi\neq 1}} \frac{1-\chi_1(q)q^2}{1-\chi_1(q)q} = \frac{(1+q^{F_q})^{E_q}}{1+q}.$$

Since $q^{F_q} \equiv \pm 1 \pmod{q_0}$, we have $\omega(q)^{F_q} = \pm 1$. Furthermore if $\omega(q)^{F_q} = 1$, then obviously we have

$$v_p(1+q^{F_q}) = v_p(1+\langle q \rangle^{F_q}) = v_p(2).$$

On the other hand, if $\omega(q)^{F_q} = -1$, then we have

$$v_p(1+q^{F_q}) = v_p(1-\langle q \rangle^{F_q}) = v_p(F_q \log_p \langle q \rangle) + v_p(2).$$

Let f_q be the order of q in $(\mathbb{Z}/N^{(q)}q_0\mathbb{Z})^{\times}/\{\pm 1\}$ and $e_q = \frac{\phi(N^{(q)}q_0)}{2f_q}$. Since we have $F_q = p^{n-v_p(\log_p \langle q \rangle)}f_q$ and $E_q = p^{v_p(\log_p \langle q \rangle)}e_q$, we obtain $v_p(1+q^{F_q}) = n + v_p(f_q) + v_p(2)$ and from (2.9) we have

(2.10)
$$\prod_{q|N} \prod_{\substack{\chi:even \\ \chi \neq 1}} \frac{1 - \chi_1(q)q^2}{1 - \chi_1(q)q} \stackrel{p}{\sim} \prod_{\substack{q|N \\ q^{f_q} \equiv -1(p)}} p^{E_q n}$$

We set

(2.11)
$$\xi_p(N) = \sum_{\substack{q \mid N \\ q^{f_q} \equiv -1(p)}} E_q = \sum_{\substack{q \mid N \\ q^{f_q} \equiv -1(p)}} p^{v_p(\log_p \langle q \rangle)} e_q.$$

Putting together (2.2), (2.8), and (2.10), for an odd prime p we obtain

$$h_1^0(Nq_0p^n) \stackrel{p}{\sim} p^{\phi(N)q_0p^{n-1} + (\lambda_p(N) + \xi_p(N) - 3)n}.$$

3. The non-p-part of cuspidal class number

Let ℓ be an odd prime number different from p. We also consider a similar formula as (2.2) as follows.

(3.1)
$$h_1^0(Np^n) \stackrel{\ell}{\sim} \prod_{q|N} q^{L_q(Np^n)} \prod_{\substack{\chi:even\\ \pi\neq 1}} \frac{1}{4} B_{2,\chi} \prod_{q|N} \frac{1-\chi_1(q)q^2}{1-\chi_1(q)q}.$$

Since $1 - \chi_1(q)q^2$ and $1 - \chi_1(q)q$ for q|N are equivalent to 1, we have

(3.2)
$$h_1^0(Np^n) \stackrel{\ell}{\sim} \ell^{L'_\ell(Np^n)} \prod_{\substack{\chi:even\\ \pi\neq 1}} \frac{1}{4} B_{2,\chi},$$

where

$$L'_{\ell}(Np^{n}) = \begin{cases} \phi(N^{(\ell)})(\ell^{v_{p}(N)-1}-1)(p-1)p^{n-1} & \text{if } \ell \mid N \\ 0 & \text{if } \ell \nmid N. \end{cases}$$

Hence it remains to show Theorem 1.4. The main idea is to modify the method of Washington ([9]) to apply to the generalized Bernoulli numbers of higher order by following the discussion in [8], where a homological argument has been developed to obtain a conceptual interpretation of Washington's proof.

For a periodic function λ of period N, we define a rational function $R_{\lambda}(t)$ so that

$$R_{\lambda}(t) = \frac{\sum_{r=1}^{N-1} \lambda(r) t^r}{1 - t^N}$$

For $q = e^{2\pi i z}, z \in \mathbb{C}$ and a polynomial P(z), we have a meromorphic function $R_{\lambda}(q)P(z)$ on \mathbb{C} with poles $z = \frac{r}{N}, r \in \mathbb{Z}$ where the residue is given by

$$\operatorname{Res}\left(\frac{r}{N}; R_{\lambda}(q)P(z)\right) = \frac{\widehat{\lambda}(r)}{N} P\left(\frac{r}{N}\right),$$

where $\operatorname{Res}(z_0; R_\lambda(q)P(z))$ is the residue of $R_\lambda(q)P(z)$ at $z = z_0$. Here $\widehat{\lambda}$ is a periodic function which is the Fourier transform of λ defined by

$$\widehat{\lambda}(r) = \sum_{s=1}^{N} \lambda(s) e^{\frac{2\pi i r s}{N}}.$$

 $\overline{7}$

From now on, we assume that $\lambda(N) = 0$ i.e. $\sum_{s=1}^{N} \hat{\lambda}(s) = 0$. With this assumption we observe that $R_{\lambda}(e^{2\pi i z})P(z)$ is exponentially decreasing as $\Im(z) \to \pm \infty$. Therefore the contour integral $\int_{x-i\infty}^{x+i\infty} R_{\lambda}(e^{2\pi i z})P(z)dz$ is well-defined for $x \in \mathbb{R} - \frac{1}{N}\mathbb{Z}$. Furthermore if $\frac{r-1}{N} < x < \frac{r}{N}$ and $\frac{r}{N} < y < \frac{r+1}{N}$, then we have

(3.3)
$$\int_{x-i\infty}^{x+i\infty} R_{\lambda}(e^{2\pi i z})P(z)dz - \int_{y-i\infty}^{y+i\infty} R_{\lambda}(e^{2\pi i z})P(z)dz$$
$$= \operatorname{Res}\left(\frac{r}{N}; R_{\lambda}(q)P(z)\right) = \frac{\widehat{\lambda}(r)}{N}P\left(\frac{r}{N}\right).$$

When $P(z) = z^k$, we obtain the following special value formula of Dirichlet *L*-functions.

Proposition 3.1. For $k \ge 0$, we have

(3.4)
$$L(-k,\lambda) = N^k \int_{-i\infty}^{i\infty} R_{\widehat{\lambda}}(e^{2\pi i z}) z^k dz.$$

Proof. We have the expression

(3.5)
$$L(s,\lambda) = N^{-s} \sum_{r} \lambda(r) \zeta\left(s, \frac{r}{N}\right)$$

which enables us to get the functional equation (See [6]) of $L(s, \lambda)$ as follows:

$$(e^{2\pi i s} - 1)\Gamma(s)L(s,\lambda) = \left(\frac{2\pi i}{N}\right)^s \left(L(1-s,\widehat{\lambda}) - (-1)^{s-1}L(1-s,\widehat{\lambda}\circ - 1)\right),$$

Since $\lim_{s \to -k} (e^{2\pi i s} - 1)\Gamma(s) = \frac{(-1)^k 2\pi i}{k!}$ for $k \ge 0$, we have

(3.6)
$$L(-k,\lambda) = \frac{N^k}{(2\pi i)^{k+1}}((-1)^k L(k+1,\lambda\circ-1) + L(k+1,\lambda)).$$

Since we have $L(k+1,\lambda) = \frac{1}{k!} \int_0^\infty R_\lambda(e^{-y}) y^k dy$, we obtain the proposition. \Box

Let ψ be a Dirichlet character. It is well-known that for an integer *a* relatively prime to the conductor of ψ and for integers $k \ge 0$, one has

$$(a^{k+1}\psi(a) - 1)L(-k,\psi) \in \mathbb{Z}[\psi].$$

Furthermore if we consider Dirichlet characters ψ of conductor $Np^n, \, n \geq 0$ then we have

$$v_{\ell}(a^{k+1}\psi(a) - 1) = 0$$
 for all $n \gg 1$.

Hence we are able to conclude that $L(-k, \psi)$ is ℓ -integral for all characters ψ of sufficiently large conductors, say all conductors Np^n with $n \ge m_1$.

In order to treat the case of N = 1, we let λ_0 be a periodic function with period g, a prime number different from p and ℓ , which is defined by

$$\lambda_0(r) = 1 \quad \text{if } g \nmid r \\ = 1 - g \text{ if } g \mid r.$$

Observe that $\widehat{\lambda_0}(g) = 0$ and $\widehat{\lambda_0}(r) = -g$ if r < g. We have the formula

Proposition 3.2. Let χ and λ be Dirichlet characters of conductor p^n and N respectively. When N > 1, we have

(3.7)
$$L(-k,\chi\lambda) = N^k \sum_{r=1}^{p^n-1} \chi(r) \int_{\frac{r}{p^n}-i\infty}^{\frac{r}{p^n}+i\infty} R_{\widehat{\lambda}}(q) \left(z - \frac{r}{p^n}\right)^k dz$$

When N = 1, we have

(3.8)
$$L(-k,\chi) = \frac{1}{1 - g^{k+1}\chi(g)}L(-k,\chi\lambda_0)$$

(3.9)
$$= \frac{g^k}{1 - g^{k+1}\chi(g)} \sum_{r=1}^{p^n - 1} \chi(r) \int_{\frac{r}{p^n} - i\infty}^{\frac{r}{p^n} + i\infty} R_{\hat{\lambda}_0}(q) \left(z - \frac{r}{p^n}\right)^k dz$$

Proof. Let N > 1. We start with the formula (3.4)

$$L(-k,\chi\lambda) = N^k \int_{-i\infty}^{i\infty} R_{\widehat{\chi\lambda}}(q) z^k dz.$$

Note that $\widehat{\chi\lambda} = G(\chi\lambda)\chi^{-1}\lambda^{-1}$. Since $R_{\chi^{-1}\lambda^{-1}}(q)$ can be written as

$$R_{\chi^{-1}\lambda^{-1}}(q) = \frac{1}{G(\chi)} \sum_{r=0}^{p^n - 1} \chi(r) R_{\lambda^{-1}}(q\zeta_n^r)$$

and $G(\chi\lambda) = G(\chi)G(\lambda)$, we obtain the formula (3.7). When N = 1, we have (3.8) by the definition of λ_0 and by the following formula

$$\widehat{\chi\lambda_0} = G(\chi)\chi^{-1}\widehat{\lambda_0}$$

The formula (3.9) can be obtained in a same way as before and we conclude the proposition. $\hfill \Box$

From now on we let χ be a Dirichlet character of *p*-power conductor and

$$\lambda = \begin{cases} \text{Dirichlet character of conductor } N & \text{if } N > 1 \\ \lambda_0 & \text{if } N = 1, \end{cases}$$

and L be the period of λ . In other words,

$$L = N$$
 if $N > 1$ and $L = g$ if $N = 1$.

Let $W = \mu_{p-1}$ if p is odd and $W = \mu_4$ if p = 2. Observe that we have the decomposition

$$\mathbb{Z}_p^{\times} = W \times (1 + 2p\mathbb{Z}_p).$$

Let $k_0 = \mathbb{Q}(\lambda, \chi|_W)$ be the finite extension of \mathbb{Q} adjoining the values λ and $\chi(W)$. Set $k_n = k_0(\mu_{p^n}), k_{\infty} = k_0(\mu_{p^{\infty}})$ and let \mathfrak{L} be a prime in k_{∞} over ℓ . The extension k_{∞}/k_0 is unramified at $\mathfrak{L} \cap k_0$. Let H be the decomposition group of \mathfrak{L} and $k = k_{\infty}^H$. Then \mathfrak{L} is inert in k_{∞}/k and for all sufficiently large n, say $n \geq m_2$, we have $k_{n+1} \neq k_n$ and \mathfrak{L} is inert in k_{∞}/k_n . For $\sigma \in \operatorname{Gal}(k_{\infty}/k_n)$, we have

$$\sigma L(-k, \chi \lambda) = L(-k, \chi^{\sigma} \lambda).$$

Recall that $L(-k, \chi \lambda)$ is ℓ -integral for all Dirichlet characters χ of which conductor is p^n with $n \ge m_1$. Now we set

$$m_0 = \max\{m_1, m_2\}.$$

For each $\eta \in W$ and an integer m > 0, we set

$$R_{\lambda,\eta,m}(q) = \sum_{s=1}^{p^m-1} \zeta_m^{s\eta^{-1}} R_{\lambda}(q\zeta_m^s) = \sum_{\substack{r \equiv -\eta(p^m)\\1 \leq r < p^{m_N}}} \frac{\lambda(r)q^r}{1 - q^{p^mL}}.$$

Observe that if we define a periodic function $\lambda_{\eta,m}$ of a period Np^m such that

$$\lambda_{\eta,m}(r) = \begin{cases} \lambda(r) & \text{if } r \equiv -\eta \pmod{p^m} \\ 0 & \text{otherwise,} \end{cases}$$

then we have

$$R_{\lambda,\eta,m}(q) = R_{\lambda_{\eta,m}}(q)$$

Proposition 3.3. Let the conductor of χ is p^n with $n > m_0$. If we have

$$L(-k, \chi \lambda) \equiv 0 \pmod{\mathfrak{L}},$$

then for all $m \ge m_0$ with n > 2m and $\alpha \in 1 + p^m \mathbb{Z}_p$ we have

(3.10)
$$L^{k} \sum_{\eta \in W} \chi(\eta) \int_{\frac{(\alpha\eta)n}{p^{n}} - i\infty}^{\frac{(\alpha\eta)n}{p^{n}} + i\infty} R_{\widehat{\lambda},\eta,m}(q) \left(z - \frac{(\alpha\eta)_{n}}{p^{n}}\right)^{k} \equiv 0 \pmod{\mathfrak{L}}.$$

Proof. Applying the trace $\operatorname{Tr} = \operatorname{Tr}_{k_n/k_{n-m}}$ to the congruence $L(-k, \chi \lambda) \equiv 0 \pmod{\mathfrak{L}}$ after multiplying $\chi(\alpha^{-1})$ for an $\alpha \in 1 + p\mathbb{Z}_p$, we have

(3.11)
$$\operatorname{Tr}(\chi(\alpha^{-1})L(-k,\chi\lambda)) \equiv 0 \pmod{\mathfrak{L}}.$$

Observe that we have

$$\operatorname{Tr}(\chi(x)) = \begin{cases} [k_n : k_{n-m}]\chi(x) & \text{if } \chi(x) \in k_{n-m} \\ 0 & \text{otherwise.} \end{cases}$$

We start with the formulae (3.7) and (3.9). Since $\chi(x) \in k_{n-m}$ if and only if $x \in 1 + p^{n-m}\mathbb{Z}_p$, the formula (3.11) implies that

$$L^k \sum_{\eta \in W} \chi(\eta) \sum_{r \in \alpha \frac{1+p^n - m_{\mathbb{Z}_p}}{1+p^n \mathbb{Z}_p}} \chi(r) \int_{\frac{(r\eta)_n}{p^n} - i\infty}^{\frac{(r\eta)_n}{p^n} + i\infty} R_\lambda(q) \left(z - \frac{(r\eta)_n}{p^n}\right)^k dz \equiv 0 \pmod{\mathfrak{L}}.$$

Setting $r = \alpha(1 + p^{n-m}s)$ with $0 \le s < p^m$, we have $\chi(1 + p^{n-m}s) = \zeta_m^s$ and the last congruence becomes

$$L^{k} \sum_{\eta} \chi(\eta) \sum_{s=0}^{p^{m}-1} \zeta_{m}^{s} \int_{\frac{(\alpha\eta(1+p^{n-m}s))_{n}}{p^{n}} - i\infty}} R_{\lambda}(q) \\ \times \left(z - \frac{(\alpha\eta(1+p^{n-m}s))_{n}}{p^{n}} \right)^{k} dz \equiv 0 \pmod{\mathfrak{L}}.$$

HAE-SANG SUN

Set $t_{n,m} = (\alpha \eta + p^{n-m}s)_n - (\alpha \eta)_n$. Changing the domain of integration and setting $s \mapsto (\alpha \eta)^{-1}s$, we have

$$L^k \sum_{\eta} \chi(\eta) \sum_{s=0}^{p^m - 1} \zeta_m^{s(\alpha\eta)^{-1}} \int_{\frac{(\alpha\eta)_n}{p^n} - i\infty}^{\frac{(\alpha\eta)_n}{p^n} + i\infty} R_{\lambda}(q\zeta_n^{t_{n,m}}) \left(z - \frac{(\alpha\eta)_n}{p^n}\right)^k dz \equiv 0 \pmod{\mathfrak{L}}.$$

Observe that $t_{n,m} \equiv p^{n-m} s \pmod{p^n}$. In total, after choosing $\alpha \in 1 + p^m \mathbb{Z}_p$, we conclude the proposition.

Proof of Theorem 1.4. Now we show the following statement: Let χ be a Dirichlet character of conductor p^n and $\chi\lambda(-1) \neq (-1)^k$. Then we have

$$L(-k, \chi \lambda) \not\equiv 0 \pmod{\mathfrak{L}}$$
 for almost all χ .

In order to reach a contradiction in the end, we assume the contrary that there exist infinitely many χ such that

$$L(-k,\chi\lambda) \equiv 0 \pmod{\mathfrak{L}}$$

By Proposition 3.3, the formula (3.10) holds for each m with $m \ge m_0$ and infinitely many $n \ge 2m$. Observe that we have $\frac{(-\alpha \eta)_n}{p^n} = 1 - \frac{(\alpha \eta)_n}{p^n}$, and therefore for each $\alpha \in 1 + p^m \mathbb{Z}_p$ we have

$$\int_{\frac{(-\alpha\eta)_n}{p^n} - i\infty}^{\frac{(-\alpha\eta)_n}{p^n} + i\infty} R_{\widehat{\lambda},\eta,m}(q) \left(z - \frac{(-\alpha\eta)_n}{p^n}\right)^k dz$$
$$= (-1)^k \int_{\frac{(\alpha\eta)_n}{p^n} - i\infty}^{\frac{(\alpha\eta)_n}{p^n} + i\infty} R_{\widehat{\lambda},-\eta,m}(q^{-1}) \left(z - \frac{(\alpha\eta)_n}{p^n}\right)^k dz.$$

Also observe that

$$R_{\widehat{\lambda},-\eta,m}(q^{-1}) = -\lambda(-1)R_{\widehat{\lambda},\eta,m}(q).$$

With the same notation in Proposition 3.3, the formula (3.10) becomes

$$2L^k \sum_{\eta \in W} \chi(\eta) \int_{\frac{(\alpha\eta)_n}{p^n} - i\infty}^{\frac{(\alpha\eta)_n}{p^n} + i\infty} R_{\widehat{\lambda},\eta,m}(q) \left(z - \frac{(\alpha\eta)_n}{p^n} \right)^k \equiv 0 \, (\bmod \, \mathfrak{L}).$$

Let M be the constant defined in (4.3). We choose m > 0 so that $p^m L > M$ and a character χ of which conductor is large enough to choose α and β as given in Proposition 4.2. Then we have

(3.12)
$$I(\alpha) := 2L^k \sum_{\eta \in W} \chi(\eta) \int_{\frac{(\alpha\eta)_n}{p^n} - i\infty}^{\frac{(\alpha\eta)_n}{p^n} + i\infty} R_{\hat{\lambda},\eta,m}(q) z^k dz \equiv 0 \pmod{\mathfrak{L}},$$

and same formula for β . Now we consider the difference

$$I(\alpha) - I(\beta) \equiv 0 \pmod{\mathfrak{L}}.$$

Let $W = \{\eta_1, \dots, \eta_R\}$. By Lemma 4.2, for each $j = 2, \dots, R$, $\frac{(\alpha \eta_j)_n}{p^n}$ and $\frac{(\beta \eta_j)_n}{p^n}$ are in a same interval $\left(\frac{s_j}{Lp^m}, \frac{s_j+1}{Lp^m}\right)$ for some $1 \le s_j < Lp^m$, and we have

$$\int_{\frac{(\alpha\eta_j)n}{p^n}-i\infty}^{\frac{(\alpha\eta_j)n}{p^n}+i\infty} R_{\widehat{\lambda},\eta_j,m}(q) z^k dz = \int_{\frac{(\beta\eta_j)n}{p^n}-i\infty}^{\frac{(\beta\eta_j)n}{p^n}+i\infty} R_{\widehat{\lambda},\eta_j,m}(q) z^k dz.$$

On the other hand, we have $\frac{(\alpha\eta_1)_n}{p^n} < \frac{1}{Lp^m} < \frac{(\beta\eta_1)_n}{p^n}$ and

$$\int_{\frac{(\alpha\eta_1)n}{p^n}-i\infty}^{\frac{(\alpha\eta_1)n}{p^n}+i\infty} R_{\hat{\lambda},\eta_1,m}(q) z^k dz - \int_{\frac{(\beta\eta_1)n}{p^n}-i\infty}^{\frac{(\beta\eta_1)n}{p^n}+i\infty} R_{\hat{\lambda},\eta_1,m}(q) z^k dz$$

$$= \operatorname{Res}\left(\frac{1}{Lp^m}; R_{\widehat{\lambda}, \eta_1, m}(q) z^k\right).$$

Since we have

$$\operatorname{Res}\left(\frac{1}{Lp^m}; R_{\widehat{\lambda},\eta,m}(q) z^k\right) = \frac{\widehat{\widehat{\lambda}}(\overline{p^m}) \zeta_L^{-\overline{p^m}(-\eta)_m} \zeta_{Lp^m}^{(-\eta)_m}}{(Lp^m)^{k+1}}$$

and $\widehat{\widehat{\lambda}}(\overline{p^m}) = L\lambda(-\overline{p^m})$, we obtain the following absurd congruence

$$I(\alpha) - I(\beta) = \frac{\lambda(-\overline{p^m})\zeta_L^{-p^m(-\eta_1)_m}\zeta_{Lp^m}^{(-\eta_1)_m}}{p^{m(k+1)}} \equiv 0 \pmod{\mathfrak{L}}.$$

From this contradiction, we deduce the theorem.

4. Equi-distribution of p-adic integers

We quote a proposition due to Ferrero and Washington. In [7], the reader can find a proof using compactness of the set $[0, 1]^r$. We give another proof using Fourier expansion of a suitable elementary function.

Proposition 4.1 ([9], Proposition 1). Let $\gamma_1, \dots, \gamma_r$ be \mathbb{Q} -linearly independent *p*-adic integers, $\delta > 0$, m > 0 an integer, d > 0 an integer prime to *p*, and $(y_1, \dots, y_r) \in (0, 1)^r$. For all sufficiently large *n*, there exists $\alpha \equiv 1 \pmod{p^m}$ so that

$$\frac{(\alpha\gamma_j)_n}{p^n} - y_j \bigg| \le \delta \text{ and } (\alpha\gamma_j)_n \equiv 0 \pmod{d} \text{ for all } j \le r$$

Proof. Set $z_i = \frac{y_i}{d}$ and $\epsilon = \frac{1}{d} \min(\delta, 1 - y_i, y_i)$. Let $\mathbf{x} = (x_i) \in [0, 1)^r$. Define

$$f(\mathbf{x}) = \begin{cases} \prod_{i=1}^{r} \sin(2\pi\epsilon^{-1}(x_i - z_i)) & \text{if } |x_i - z_i| \le \epsilon \text{ for all } \epsilon \\ 0 & \text{otherwise.} \end{cases}$$

We have the Fourier expansion

$$f(\mathbf{x}) = \sum_{\mathbf{n} \in \mathbb{Z}^r} c_{\mathbf{n}} e^{2\pi i \mathbf{x} \cdot \mathbf{n}}.$$

Since we have the evaluation of the integration

$$\int_{\alpha-\epsilon}^{\alpha+\epsilon} \sin\left(2\pi\epsilon^{-1}(x-\alpha)\right) e^{2\pi n i x} dx = \frac{\epsilon(e^{2n\pi i(\alpha+\epsilon)} - e^{2n\pi i(\alpha-\epsilon)})}{2\pi(n^2\epsilon^2 - 1)}$$

11

we obtain that

$$c_{\mathbf{n}} = O\left(\frac{1}{|\mathbf{n}|^{2r}}\right).$$

For $\beta \in \mathbb{Z}_p^{\times}$, set $\mathbf{x}_n(\beta) = \left(\frac{(\beta\gamma_1)_n}{p^n}, \cdots, \frac{(\beta\gamma_r)_n}{p^n}\right)$ and $Z_n = \frac{d^{-1} + p^m \mathbb{Z}_p}{1 + p^n \mathbb{Z}_p}$. In order to verify the proposition, first we show that

(4.1)
$$\frac{1}{p^{n-m}} \sum_{\beta \in Z_n} |f(\mathbf{x}_n(\beta))|^2 > 0 \text{ for } n \gg 1.$$

For $\mathbf{n} = (n_i) \in \mathbb{Z}^r$, we set $\sigma_{\mathbf{n}} = \sum_{i=1}^r n_i \gamma_i$. By the Fourier expansion of $f(\mathbf{x})$, we have

$$\frac{1}{p^{n-m}}\sum_{\beta\in Z_n}|f(\mathbf{x}_n(\beta))|^2 = \sum_{\mathbf{n}}|c_{\mathbf{n}}|^2 + \lim_{M\to\infty}\delta_{n,M}$$

where

$$\delta_{n,M} = \sum_{\substack{|\mathbf{n}|,|\mathbf{m}| < M, \\ n \neq m \\ \sigma_{\mathbf{n}} \equiv \sigma_{\mathbf{m}}(p^{n-m})}} e^{2\pi i \frac{d^{-1}(\sigma_{\mathbf{n}} - \sigma_{\mathbf{m}})}{p^{n}}} c_{\mathbf{n}} \overline{c}_{\mathbf{m}}.$$

Observe that $\lim_{n\to\infty} \delta_{n,M} = 0$ since $\{\gamma_i\}$ is linearly independent over \mathbb{Q} . Since the sum $\sum_{\mathbf{n}} c_{\mathbf{n}}$ converges absolutely, we have $\lim_{n\to\infty} \lim_{M\to\infty} \delta_{n,M} = 0$ and verify (4.1). In sum, there exists $\beta \in d^{-1} + p^m \mathbb{Z}_p$ such that

(4.2)
$$\left|\frac{(\beta\gamma_j)_n}{p^n} - z_j\right| \le \epsilon \text{ for each } j.$$

Now we set $\alpha = d\beta$. From the inequality (4.2), we have $0 < d(\beta\gamma_j) < p^n$ and, hence we conclude that

$$(\alpha \gamma_j)_n = d(\beta \gamma_j)_n \equiv 0 \pmod{d}.$$

Clearly we also have

$$\left|\frac{(\alpha\gamma_j)_n}{p^n} - y_j\right| \le \delta \text{ for each } j.$$

This finish the proposition.

Let $\{\eta_1, \dots, \eta_R\} = W \subset \mathbb{Z}_p^{\times}$ and $U = \{\eta_1, \dots, \eta_r\}$ be a maximal independent subset of W over \mathbb{Q} . Obviously $r = \phi(p-1)$ for Euler phi function ϕ and $\eta_{r+1}, \dots, \eta_R$ are \mathbb{Z} -linear combinations of η_1, \dots, η_r , say $\eta_j = \sum_{i=1}^r a_{ji}\eta_i$, $a_{ij} = a_{ij}(U) \in \mathbb{Z}$ for $j = r+1, \dots, R$. Then we set

(4.3)
$$M = \max \{ |a_{ji}(U)| \mid \text{maximal } \mathbb{Q}\text{-linearly independent } U \subseteq W \}.$$

Now we state a lemma to control contours of the integrations in Section 3.

Lemma 4.2. Let N > M and m > 0 be an integer. For all sufficiently large integer n, there exists p-adic integers $\alpha, \beta \equiv 1 \pmod{p^m}$ so that

$$\frac{(\alpha\eta_1)_n}{p^n} < \frac{1}{N} < \frac{(\beta\eta_1)_n}{p^n}$$

and

$$\frac{s_j}{N} < \frac{(\alpha \eta_j)_n}{p^n}, \frac{(\beta \eta_j)_n}{p^n} < \frac{s_j + 1}{N}$$

for $j = 2 \cdots R$ and $1 \le s_j < N$. Furthermore we also have $(\alpha \eta_j)_n, (\beta \eta_j)_n \equiv 0 \pmod{p}$ for all $j = 1, \cdots, R$.

Proof. We form an $r \times (R - r)$ matrix $A = (a_{ji})$. By changing the sign of η_j , we may assume that the first non-zero entry of the row $(a_{j1}, a_{j2}, \dots, a_{jr})$ is positive for all $j = r + 1, \dots, R$. We form a linear map

$$P(x_1, \cdots, x_r) = (x_1, \cdots, x_R) = (x_1, \cdots, x_r) (I|A)$$

for $x_1, \dots, x_r \in \mathbb{R}$, and for $r \times r$ identity matrix I and an $r \times R$ block matrix (I|A)formed by I and A. Now we want to show that there exists x_1, \dots, x_r and y_1, \dots, y_r such that $P(x_1, \dots, x_r), P(y_1, \dots, y_r) \in (0, 1)^R$, and $0 < x_1 < \frac{1}{N} < y_1 < 1$ and x_i and y_i are in the same interval $\left(\frac{s_i}{N}, \frac{s_i+1}{N}\right)$ for $i = 2, \dots, R$ and for some $1 \le s_i < N$. In fact, since $N > a_{j1} > 0$ for each $j = r + 1, \dots, R$, we can choose small enough real numbers $1 \gg z_2 \gg z_3 \dots \gg z_r > 0$ so that

$$P\left(\frac{1}{N}, z_2, \cdots, z_r\right) \in (0, 1)^R.$$

We choose x_1, y_1 close enough to $\frac{1}{N}$, and choose the points x_j, y_j close enough to z_j for each $j = 2, \dots, R$ so that x_j, y_j , and z_j are included in a same interval, say $\left(\frac{s_i}{N}, \frac{s_i+1}{N}\right)$.

By Proposition 4.1, we are able to choose two *p*-adic integers α and β so that $\alpha, \beta \equiv 1 \pmod{p^m}$ and $\frac{(\alpha \eta_j)_n}{p^n}$, $\frac{(\beta \eta_j)_n}{p^n}$ are close enough to x_j , y_j for $j = 1, \dots, r$ respectively. By the choice of x_j and y_j , we obtain that

$$P\left(\frac{(\alpha\eta_1)_n}{p^n},\cdots,\frac{(\alpha\eta_r)_n}{p^n}\right)\in(0,1)^R.$$

Furthermore, we have $\frac{(\alpha \eta_1)_n}{p^n} < \frac{1}{N}$ and

$$0 < \sum_{i=1}^{r} a_{ji} (\alpha \eta_j)_n < p^n \text{ for } j = r+1, \cdots, R.$$

Since $\alpha \eta_j \equiv \sum_{i=1}^r a_{ji} (\alpha \eta_j)_n \pmod{p^n}$, we conclude that

$$(\alpha \eta_j)_n = \sum_{i=1}^r a_{ji} (\alpha \eta_j)_n \text{ and } (\alpha \eta_j)_n \equiv 0 \pmod{p}.$$

We do the same for y_i and conclude the proposition.

13

References

- [1] Ferrero, B. and Washington, L.: The Iwasawa invariant μ_p vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395.
- [2] Iwasawa, K.: Lectures on p-adic L-functions, Ann. of Math. Stud. 74. Princeton Univ. Press 1972.
- [3] Kubert, D. and Lang, S.: Distributions on toroidal groups, Math. Z. 148, 33-51 (1976).
- [4] Kubert, D. and Lang, S.: The index of Stickelberger ideals of oerder 2 and cuspidal class numbers, Math. Ann. 237, 213–232(1978).
- [5] Kubert, D. and Lang, S.: Cartan-Bernoulli numbers as values of L-Series, Math. Ann. 240. 21–26 (1979).
- [6] Lang, S.: Introduction to modular forms, Grundlehren der Mathematischen Wissenschaften, 222. Springer-Verlag, Berlin
- [7] Oesterlé, J.: Travaux de Ferrero et Washington sur le Nombre de Classes d'Idéaux des Corps Cyclotomiques, Séminaire Bourbaki, 31e année, 1978/79, n. 535.
- [8] Sun, H.-S.: Homological interpretation of a Theorem of Washington, J. Number Theory 127 (2007), no. 1, 47–63.
- [9] Washington, L.: The non-p-part of the class number in a cyclotomic \mathbb{Z}_p -extension, Invent. Math. 49 (1978), 87–97

HAE-SANG SUN

- [10] Washington, L.: Introduction to cyclotomic fields, Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997
- [11] Yang, Y.: Modular units and cuspidal divisor class groups of $X_1(N)$, arXiv:0803.3732 [12] Yu, J.: A cuspidal class number formula for the modular curves $X_1(N)$, Math. Ann. 252, 197-216 (1980)

 $E\text{-}mail\ address: \verb+haesang@mpim-bonn.mpg.de+$

MAX-PLANCK INSTITUT FÜR MATHEMATIK BONN, VIVATSGASSE 7, 53111 BONN, GERMANY