CUSPIDAL CLASS NUMBER OF A TOWER OF MODULAR
CURVES X, (Np")

HAE-SANG SUN

ABSTRACT. We consider a cuspidal class number, which is the order of a sub-
group of full cuspidal divisor class group of X1 (Np™) withp{ N andn > 1. By
studying the second generalized Bernoulli numbers, we obtain results similar
to ones ([1], [9]) about the relative class numbers of cyclotomic Zp-extension
of an abelian number field.

1. INTRODUCTION

Let G be a finite abelian group with a surjective homomorphism r : G —
(Z/NZ)* for an integer N > 0. Let x be a character on G. A generalized k-
th Bernoulli number By, , ¢ can be defined for x such that

Biy.c =N x(9)Br <T](Vg)) ,

geG

where By (z) is the Bernoulli polynomial defined by the formula

B =3 (F) B

r=0

For G = (Z/NZ)*, Bi,,c is the usual generalized Bernoulli numbers By ,. In
many different contexts, those generalized Bernoulli numbers have been related
to an index of the Stickelberger ideal of order k in the group ring Z[G], which is
generated by a Stickelberger element

0=N"1>"B (75\,9)) 9 € QG

g€eG

or by its variation.
When G = (Z/NZ)* and k = 1, the relative class number hy of Q({x) can be
written as a product of B, , for odd Dirichlet characters x. More precisely, one has

_ 1
(11) hN:QNwN H —531%,
x:odd

where @y is the unit index and wy is the number of roots of unity. The relative
class number hy is turned out to be an index of minus part of Stickelberger ideal
of order 1. To the cyclotomic fields Q({npn), two non-negative integers p and A
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are associated in order to express p-adic valuation v,(hy,.) of the relative class
numbers hj_\,pn. In fact, one has

(1.2) Up(hppn) = pp™ 4+ An + v for all n > 1 and some v € Z.
It has been conjectured that p = 0 and it was proved by Ferrero and Washington

().

Let £ be an odd prime number different from p. The (-adic valuation ve(hjy,.) of
the relative class numbers was also determined by Washington ([9]). He has shown
that there exists a constant d, such that

(1.3) Ve(hp,n) = 0 for all n > 1
by verifying

Theorem 1.1 ([9]). Let N be fized and pt N. For almost all odd Dirichlet char-
acters x of conductor Np™, we have

UE(BLX) =0.

From the relative class number formula and the argument of Kummer, one can
conclude the formula (1.3).

In this paper, we consider the case that G = (Z/NZ)* and k = 2. This case is
studied by Kubert-Lang ([4]) for an odd prime power N = p™ and by J. Yu ([12])
for general N > 4.

For an integer N > 4, a cusp on the modular curve X; (V) is said to be of first
type if it is projected down to the cusp 0 on the modular curve X(gq) for all prime
divisor ¢ of N. We consider the group §}(NV) of functions on X;(NN) whose divisors
are supported on the cusps of the first type and the group ®9(N) of divisors with
degree 0 on X;(N) that are supported on the cusps of the first type. We set

CY(N) = DY(N)/divE](N).

Note that C¥(IV) is a subgroup of the full cuspidal divisor class group on the modular
curve X1(N). Let h{(NN) be the order of C¢(N). Then one has an analogue of the
formula (1.1) as follows:

Theorem 1.2 ([12]). For a prime number p, we set

N
LP(N) = (b (pvp(N)

) M1 20, (N) + ,(N)

where

2—(;5( AZN)> if N is not a prime power
(V) = 2 ifN=p">4andp>3
3 ifN=2">4.

Then we have

1
(1) W) = [T TT | 782 [10 -]
pIN xieven pIN

where x1 is the primitive Dirichlet character which induces the character x.

Remark 1.1. As explained in [11], a minor error has to be corrected in the statement
of [12, Theorem 5.
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The purpose of present paper is to determine p-adic and ¢-adic valuations of
hY(Np™), pt N for all sufficiently large n. We obtain similar results to the formulae
(1.2) and (1.3) as follows:

Theorem 1.3. Let §{ = &,(N) be given in (2.11). We set

o d(N) if p is odd
po(N) ifp=2

)

and
(p = Do(N/e M) (e =1 1) if £| N
T = :
0 if L1 N.
There exists two integers ¢, and c; such that
(1) vp(K(Np™)) = kp" 1 + (A +&—=3)n+cp for alln > 1.
(2) ve(RY(Np™)) = Tp" L + ¢ for alln>> 1.
Remark 1.2. When N = p” is a prime power and p is a regular prime, the primary
decomposition of CY(N) is determined in [11]. Note that in this case, £ = X\ = 0.

The p-adic valuation of h{(Np") or By, can be computed in a very similar
way as done in [2], [10] and in the next section we follow the argument. On the
other hand, in order to get f-adic valuation, we prove an analogue of a theorem of
Washington for the generalized Bernoulli number of higher order. In other words,
we show:

Theorem 1.4. Let N be a fized integer with pt N. Let {x} be a set of Dirichlet
characters of conductor p" N with n > 1, and x(—1) # (=1)*. Then we have

B
) (ZX> =0 for almost all x.

In [8], using the following formula (see Proposition 3.1)

o T T et
1— e27rin"z

(15) Pex — q(x)
a proof of Theorem 1.1 is obtained from a homological formulation such as abelian
modular symbols on punctured cylinders and a certain homological equi-distribution
property. In the present paper, we count on elementary calculations rather than
devise a homological description.

21z,

—100

Remark 1.3. Let G be a Cartan group C'(N) and k = 2. If N = p" is a prime power,
the full cuspidal class number h(N) of the modular curve X (N) is represented by
a product of terms involving Bs, c(n), the Cartan-Bernoulli number. In fact,
computing the index of a Stickelberger ideal of order 2, Kubert and Lang ([4]) also
obtained the class number formula: For p # 2,3,
6p>" 1
h(Pn) = W H ZBQ,X,C(p“)'

x:even

Thanks to the results [5], one has the formula

G(x,r) )
G(xz) ™

By yomny =N7*
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where G(x,7) = 3 cov x(g)e2™ 7 (@)/N "y is the restriction of x to (Z/NZ)*, and
G(xz) is the Gauss sum of yz with respect to the additive character 7 — 2™/,
Since |G(x,r)|? is a p-power([3, Lemma 4.2]), Theorem 1.4 enables us to obtain a
similar result as above. In other words, ve(h(p™)) is bounded for all n > 1 and

> 3.

For a p-adic integer «, we let («),, be the n-th partial sum of p-adic expansion of
a. We say two sequences {a,}, {b,} of p-adic numbers are equivalent if v,(a,/by,)
are eventually constant as n — oo and denote them by aj, £ b,. In Section 2, we
fix two embeddings Q — C and Q — C,,. For an integer L > 0, we set (; = e2mi/L
and for a Dirichlet character ¢ with the conductor f, G(¢) is the Gauss sum

G() = S I2 1 w(r)¢).

2. THE p-PART OF THE CUSPIDAL CLASS NUMBER

Let gg = 4if p=2and qo = pif p > 3. Let x be a Dirichlet character of
conductor Nqop™, and 6 and 7w be the first and the second factors of x respectively

in the sense of [2]. In other words,  and 7 are the restrictions of x to (Z/NgoZ)*
14pZ
1+p€*Z
L,(Ngop™) = ¢(N)qop™~* — 2n + €,(Np") and since [T, (1 - x1(p)p?) £ 1 we

obtain

and respectively. From the cuspidal class number formula (1.4), we have

e 1
(2.1) Wi (Ngop™) & p?aer™ =20 T 2Bay, [T - xa(a)g)-
et AN

From the equation L(s, x) =[], 5 (1 — x1(¢9)g™*)L(s, x1), we obtain

Bnx = Bnx, H(l —x1(9)q" ).
q|lN

The formula (2.1) is written as

2

0 ny 2 $(N)aop™ ' ~2n 1 1-xi(@)e”
(2:2) B (Ngop™) £ p I S
AL q|N
We consider the first product of generalized Bernoulli numbers in (2.2). The
following discussion is similar to [2], [10]. Let & be the number field obtained by
adjoining 0 to Q and o be the ring of integers. It is a well-known fact ([10]) that if
0 # 1, there exists a power series Py(T') € o[[T — 1]] such that

B on
2P)(G (14 qo)' ™) = —(1 — xw ™ (p)p" ") =2 —

for x(=1) =1, ¢, = x(1 4 ¢o) ! and n > 1. In particular, for a Dirichlet character
x with m # 1, we have

n

B2,x

Poo2 (Cr(Ll4q0) ™) = — 1

And that if = 1, then P;(T") can be written as

23) am=am(1-151)
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where G(T') € Zp[[T — 1]]*. Using this, the first product in the formula (2.2) can
be written as

(2.4) H iBz,Xﬂ H Py(Cx(1+q0) 7).

x:even O:even

TF#L T#L

Note that (, runs over all p™-th roots of unity. Dividing the above product into
two parts, namely a product over § = 1 and a product over 8 # 1, the formula (2.4)
is equivalent to

(2.5) H Pl( 1+q0 H H Pg 1+qo 1).

P =1 P 1 Oicven
C#1 ¢ 0F#1
Now we set
H Po(T)
O:even
0#£1

Note that we have P(T') € Z,[[T — 1]] and there exists two non-negative integers
and A such that the power series P(T) has the factorization

P(t) = p"Q(t) with Q(T) = (T — 1)*U(T) (mod p)

where Q(T'),U(T) € Z,[[T — 1]] with U(0) € Z). The celebrated theorem due to
Ferrero and Washmgton([ ]) shows that y = O Furthermore, when p is an odd
prime number and N = 1, we have A\ = 0 if and only if p is regular, that is,

p1h=(Q(¢))-

From (2.3), we have

(2.6) I P +a) ™ lp=]T1 ¢ +a) "t ="

¢pt =1 ¢
¢#1

For the second product in (2.5), one can easily deduce that

(27) [T 1e+aq)~"l, ~p*
=1
In total, from (2.6) and (2.7) we have
1
(28) [1 §Bon 200
e

Next we consider the second product in the formula (2.2). For a prime ¢ | N, let
N(@ be the integer obtained by removing ¢ factors of N and F, be the order of ¢

in (Z/N@gop"Z)* /{£1} and E, = %;ﬂzopn). As observed in [11], one obtains

1-xi(@)g® _ (L+q")"
weoen 1= x1(0)g l+gq

x#1

(2.9)

Since ¢fs = 41 (mod qp), we have w(q)f« = +1. Furthermore if w(q)*« = 1, then
obviously we have

vp(1+¢™) = v, (1 + (9)™) = v,(2).
On the other hand, if w(q)* = —1, then we have

vp(1 + qu) =wp(1 - <Q>Fq) = vp(Fy Ing (@) +vp(2).
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Let f, be the order of ¢ in (Z/N@gyZ)* /{£1} and e, = % Since we have

E, =pn (08, () . and B, = p*»U°8: (e we obtain v,(1+ ¢™) = n+v,(f,) +
vp(2) and from (2.9) we have

1-xi(9)d* » B

(2.10) 11 H X1 P
gl xieien —Xl(CI)q N
qqu—l(p)

We set
(2.11) &(N) = Z E, = Z porlios, (e

q|N q|N

qfa=—1(p) qfa=—1(p)

Putting together (2.2), (2.8), and (2.10), for an odd prime p we obtain
n—1
h(lj(Nqop") 2 p¢(N)QOP +(>\p(N)+§p(N)—3)n.

3. THE NON-p-PART OF CUSPIDAL CLASS NUMBER

Let ¢ be an odd prime number different from p. We also consider a similar
formula as (2.2) as follows.

n 1-— q)q
(3.1) WNp") ~ T o™ I BzXH - ala)
aIN Cegen —xi(a)g

2

Since 1 — x1(q)¢? and 1 — x1(q)q for q|N are equivalent to 1, we have

/ n 1
(3.2) RY(Np™) & T T 2 Ba,

r#1
where
G(NO)(e»MN =L —1)(p—1)p"~"  ifL|N

Li(Np") = { 0 iterN.

Hence it remains to show Theorem 1.4. The main idea is to modify the method
of Washington ([9]) to apply to the generalized Bernoulli numbers of higher order
by following the discussion in [8], where a homological argument has been developed
to obtain a conceptual interpretation of Washington’s proof.

For a periodic function X of period N, we define a rational function Ry(t) so

that
Ry(t) = St DY
1—tN
For g = e?™* 2 € C and a polynomial P(z), we have a meromorphic function

R)\(q)P(z) on C with poles z = 7, 7 € Z where the residue is given by

T ) r
(mare) - X (5).
Res (1 BA(@)P(:)) = 2P (1
where Res(20; Rx(q) P(2)) is the residue of Ry(q)P(z) at z = zy. Here \is a periodic
function which is the Fourier transform of A defined by

Z )\ 27!'17‘
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From now on, we assume that A(N) = 0 i.e. Zivzl X(s) = 0. With this as-
sumption we observe that Ry (e*™#)P(z) is exponentially decreasing as (z) —
+00. Therefore the contour integral f;ﬂ > R\(e*™*)P(z)dz is well-defined for

—100
reER— %Z. Furthermore if %1 <z<gand F<y< 7+l then we have

N
T+100 y—+ioo )
(3.3) / R - / RAET)P()d
= Res(%; RA(q)P(z)) = %P (%) .

When P(z) = zF, we obtain the following special value formula of Dirichlet L-
functions.

Proposition 3.1. For k > 0, we have

(3.4) L(—k,\) :N’“/ R;(e*™%) 2 dz.

Proof. We have the expression
s r
(3.5) L(s,\) = N ;A(T)g (3 N)

which enables us to get the functional equation (See [6]) of L(s, A) as follows:

(¥ — 1)T(s)L(s,\) = @) (L= = (-0 L =530 1),

; —1)*2mi
Since lim (e?™* — 1)I'(s) = (1) 2ri

s——k !

for k > 0, we have
Nk
(2mi)k+1

Since we have L(k +1,)) = % fooo Ry (e™¥)y*dy, we obtain the proposition. O

(3.6) L(—k,\) = (D) L(k+ 1,0 —=1) + L(k+1,))).

Let ¥ be a Dirichlet character. It is well-known that for an integer a relatively
prime to the conductor of ¥ and for integers k& > 0, one has

(@ y(a) = 1)L(—k,¥) € Z[y).
Furthermore if we consider Dirichlet characters ¢ of conductor Np™, n > 0 then
we have
ve(a"T(a) — 1) = 0 for all n > 1.

Hence we are able to conclude that L(—k, ) is ¢-integral for all characters ¢ of
sufficiently large conductors, say all conductors Np™ with n > my.

In order to treat the case of N =1, we let A\ be a periodic function with period
g, a prime number different from p and ¢, which is defined by

Ao(r)= 1 ifgtr
=1-—gifg|nr

Observe that XE(g) =0 and j\g(r) = —g if r < g. We have the formula
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Proposition 3.2. Let x and \ be Dirichlet characters of conductor p"™ and N
respectively. When N > 1, we have

pt—1

B Lk =N S0 [ " R (-~ p)d

S —ioo
When N =1, we have

1
1— g 1x(g)

k

p"—1 T 4ico k
g P r
3.9 = E T / Rx (z — ) dz
(39) 1—g"*1x(g9) ~ xr) s —ico 5 (9) P

Proof. Let N > 1. We start with the formula (3.4)

100

L(=k,x\) = Nk/ RXA)\(q)zkdz.

—100

Note that );3\ = G(x\)x 'AL. Since R,-15-1(g) can be written as

Ry s(0) = iy 20 XO)Ry-+(a)
r=0

and G(x\) = G(x)G(X), we obtain the formula (3.7). When N = 1, we have (3.8)
by the definition of Ay and by the following formula

Ao = GOx)x o

The formula (3.9) can be obtained in a same way as before and we conclude the
proposition. [l

From now on we let x be a Dirichlet character of p-power conductor and

Ao if N =1,
and L be the period of A. In other words,
L=NifN>land L=gif N=1.

Let W = pp—1 if p is odd and W = p4 if p = 2. Observe that we have the
decomposition

\ { Dirichlet character of conductor N if N > 1

7y =W x (1+2pZy).
Let kg = Q(X, x|w) be the finite extension of Q adjoining the values A and x(W).
Set ky, = ko(tpn), koo = ko(ptpes) and let £ be a prime in ko, over £. The extension
koo /ko is unramified at £Nky. Let H be the decomposition group of £ and k = k‘fo
Then £ is inert in ko /k and for all sufficiently large n, say n > mg, we have
kni1 # ky and £ is inert in koo /ky,. For o € Gal(koo/ky), we have
oL(=k,xA) = L(=k, X" A).

Recall that L(—k, x\) is ¢-integral for all Dirichlet characters x of which conductor
is p™ with n > my. Now we set

mo = max{my, ma}.
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For each n € W and an integer m > 0, we set

p"—1
sn~t s )\(r)qr
Ragm(@) = > G RaleG) = > T gL
= =iy

Observe that if we define a periodic function A, ,, of a period Np™ such that
A(r) ifr=—-n(mod p™)
Anm (1) = .
0 otherwise,

then we have
Banm(q) = R, .. (9)-
Proposition 3.3. Let the conductor of x is p"™ with n > myq. If we have
L(—k,x\) =0(mod &),

then for all m > mo with n > 2m and o € 1 + p™Z, we have

@ma o0
» k
an)n
(3.10) LF E x(1) / R (@) (z _ 71) > =0 (mod £).
new (emn _; P
T 100

Proof. Applying the trace Tr = Try, /. to the congruence L(—k, xA) = 0 (mod £)
after multiplying y(a~!) for an o € 1 + pZ,, we have

(3.11) Tr(x(a ') L(=k,x\)) = 0 (mod £).

Observe that we have

otherwise.

) and (3.9). Since x(x) € knp_p, if and only if
) implies that

We start with the formulae
z €1+ p""™Zy,, the formula

{ k x(z) if x(x) € kp_m
(3.7
(3.1

(rn)n +ioco

Lk Z x(n) / Ry (q ( (rn )n>kdz = 0(mod £).

new 1+p" M7y
rec—gonz e

(7"1)71.

Setting r = a(1 + p"™s) with 0 < s < p™, we have x(1 + p" "™s) = (3, and the
last congruence becomes

o1 (an(1+z;’;_m5))n +ico

Y Y G [ me

s=0 (an(14p" =™ )
(en(tpnm o)y _

x (z _ (o Jﬁl_m‘g))")kdz = 0(mod £).

100
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Set tym = (an+p"~™s), — (an),. Changing the domain of integration and setting
s+ (an)~ts, we have

7((1;7,2 4§00

p"—1 k
LF ZX(W) Z Cfrgan)_l / Ry (q¢lmm™) (z - (O;Z)n> dz = 0(mod £).

s=0

Cemn _;
- — 100
p’!l

Observe that t,, ., = p" ™s(mod p™). In total, after choosing @ € 1+ p™Z,, we
conclude the proposition. ([

Proof of Theorem 1.4. Now we show the following statement: Let x be a Dirichlet
character of conductor p™ and xA(—1) # (—1)*. Then we have

L(—k,x\) #Z 0(mod £) for almost all x.

In order to reach a contradiction in the end, we assume the contrary that there
exist infinitely many x such that

L(—=k,x\) =0 (mod £).

By Proposition 3.3, the formula (3.10) holds for each m with m > mg and infinitely

(7;‘77)" =1- (O;Z)", and therefore for each

many n > 2m. Observe that we have
o € 14 p™7Z, we have

(=an)n

A i0o _ k
/ g R;, . (q) (z _ (a)”> dz
Camn oo ™ pr

Lemn 4o k
p" _ an)n
=(-1)k R;\’in’m(q b (z— (o) ) dz.

7(0;22" —100

Also observe that
Riwfn,m(q_l) = _A(_l)RS\,n,m(q)

With the same notation in Proposition 3.3, the formula (3.10) becomes

@ 4o
g k
Qan)n
2L* Z x(n) / Ry, (@) (z _{ n) ) =0(mod £).
new (mll)” oo p

Let M be the constant defined in (4.3). We choose m > 0 so that p™L > M and
a character x of which conductor is large enough to choose a and (3 as given in
Proposition 4.2. Then we have

lam)n ”pT’?E 4400

(3.12) I(e) :=2L" Y x(n) / Ry, .(9)2*dz = 0(mod ),

new

(am)n
P’IL

—100
and same formula for 5. Now we consider the difference

I(a) — I(8) =0 (mod £).
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Let W = {n1,---,nr}. By Lemma 4.2, for each j = 2,--- | R, (‘XZ,{)” and (ﬁgf;)"

Sj sj+1
Lp'm ) me,

are in a same interval ( ) for some 1 < s5; < Lp™, and we have

(0”7%)n Fico (/3"7%)n Fioco

/ Rf\,m m(q)zkdz = / Ri,m m(q)zkdz.

(anj)n Bnjn
p" "

—100

On the other hand, we have (0‘271) < L;m < (ﬁzil) and

(sz}l)n tioco (ﬁ;/}z)n Fioco

/ R m m(q)zkdz - / R;\ml’m(q)zkdz

(ani)n .
enn —ioo

1
= Res <W; R;\mhm(q)zk> .

. 3
oo (/;}1)n,

Since we have

1 AT Cm (T
Res | ——; R3 (9)2" ) = gLy 3
Lpm™ \m,m (Lpm)k+t

and :\\(}W) = LA(—p™), we obtain the following absurd congruence

A(_W)C_W(_nl)mc(_zl)”L
I(a) — I(B) = me(k+1) Lr™ =0 (mod £).

From this contradiction, we deduce the theorem. O

4. EQUI-DISTRIBUTION OF p-ADIC INTEGERS

We quote a proposition due to Ferrero and Washington. In [7], the reader can
find a proof using compactness of the set [0, 1]". We give another proof using Fourier
expansion of a suitable elementary function.

Proposition 4.1 ([9], Proposition 1). Let v1,---,7, be Q-linearly independent
p-adic integers, § > 0, m > 0 an integer, d > 0 an integer prime to p, and
(y1, -+ ,yr) € (0,1)". For all sufficiently large n, there exists « = 1 (mod p™) so
that

(agi)” —y;| <6 and (ay;)n, = 0(mod d) for all j <.
Proof. Set z; = % and e = min(6,1 — y;,¥;). Let x = (z;) € [0,1)". Define

Fx) = {H;—l sin(2reY(x; — 2;))  if |#; — 2| < eforalli

0 otherwise.

We have the Fourier expansion
f(X) — Z Cn627rix~n'
nez”
Since we have the evaluation of the integration
a+te 6(62n7ri(a+5) _ eZnﬂ'i(afe))
I

sin (2me (2 — ) € dx = D2z 1) ,
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1
=0 )

-1 m
For 3 € ), set x,(f8) = ((ﬁ;ﬁ,)",-~- , (ﬁ;;%) and Z,, = 7d1+;fzf”. In order to

verify the proposition, first we show that

LS @) > 0 forn > L.

TL— 1
P™ " sez,

we obtain that

(4.1)

For n = (n;) € Z", we set 0y, = Y_._, n;v;. By the Fourier expansion of f(x), we
have

1 .
pmeQV@Amwzzg%F+$ﬂjML
where )
.d Y(on—om)
Sy = > €T T o,
In|,|m|<M,
n#m

on=om (Pt ™)
Observe that lim,, o 0p,as = 0 since {v;} is linearly independent over Q. Since
the sum ) ¢, converges absolutely, we have limy, o limas o0 0n a7 = 0 and verify

(4.1). In sum, there exists 3 € d~! + p™Z, such that
(B7)n
pn

Now we set o = dB. From the inequality (4.2), we have 0 < d(8v,) < p™ and,
hence we conclude that

< ¢ for each j.

(4.2)

(a7j)n = d(B7;)n = 0 (mod d).
Clearly we also have

(@7)n _y;
J
pn

< 4 for each j.

This finish the proposition. O

Let {ni,---,nr} = W C Z); and U = {n,---,n,} be a maximal indepen-
dent subset of W over Q. Obviously » = ¢(p — 1) for Euler phi function ¢
and 7,41, ,ng are Z-linear combinations of ny,---,n., say n; = >.._; ajini,
a;j = a;;(U) € Zfor j=r+1,---,R. Then we set
(4.3) M = max {|a;;(U)| | maximal Q-linearly independent U C W' }.

Now we state a lemma to control contours of the integrations in Section 3.

Lemma 4.2. Let N > M and m > 0 be an integer. For all sufficiently large integer
n, there exists p-adic integers o, 8 = 1 (mod p™) so that

n 1 n
(am) < < (Bm)
p" N P

and
55 _ (omj)n’ (Bns)n _ 85 +1
N pr pr N
forj=2---Rand 1 <s; < N. Furthermore we also have

(an)n, (BNj)n =0 (mod p) forallj=1,--- ,R.
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Proof. We form an r x (R — r) matrix A = (a;;). By changing the sign of n;, we
may assume that the first non-zero entry of the row (a1, a;2, - ,a;r) is positive
forall j=r+1,---,R. We form a linear map
Pz, ,xp) = (21, - yzR) = (21, ,2,) (I|4)

for z1,--- ,x, € R, and for r x r identity matrix I and an r x R block matrix (I|A)
formed by I and A. Now we want to show that there exists z1,--- ,z, and y1, -,y
such that P(z1, - ,2,), Py, -+ ,y,) € (0,1)F, and 0 < 21 < % <y <1 and
and y; are in the same interval (%, Swl) fori =2,---, Rand for some 1 < s; < N.
In fact, since N > aj; > 0 for each j =7+ 1,--- , R, we can choose small enough
real numbers 1 >> 25 > z3--- > 2, > 0 so that

1
P (N,zz, e ,zT> € (0,1)%.

We choose x1, y1 close enough to %, and choose the points x;, y; close enough to

zj for each j = 2,--- , R so that z;, y;, and z; are included in a same interval, say
i Sitl
(% *5)-
By Proposition 4.1, we are able to choose two p-adic integers « and [ so that
o, = 1(mod p™) and mgii)", (5;7+)n are close enough to x;, y; for j = 1,--- |r

respectively. By the choice of x; and y;, we obtain that

P ((aﬂl)n’.” , (am)n> € (0,1)R.

p" pm

Furthermore, we have mgii)" < % and

O<Zaji(0”7j)n <ptforj=r+1,---,R.
i=1

Since an; = Y_._, aji(an;), (mod p™), we conclude that

(anj)n = Zaji(anj)n and (am;), = 0(mod p).

We do the same for y; and conclude the proposition. ([l
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