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Abstract

For each N ≥ cdn
2d(d+1)

d+2 we prove the existence of a spherical n-

design on Sd consisting of N points, where cd is a constant depending

only on d.

Keywords: Spherical designs, Brouwer fixed point theorem, Marcinkiewich-

Zygmund inequality, area-regular partitions.
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1 Introduction

Let Sd be the unit sphere in R
d+1 with normalized Lebesgue measure dµd(∫

Sd dµd(x) = 1
)
. The following concept of a spherical design was introduced

by Delsarte, Goethals and Seidel [5]:

A set of points x1, . . . , xN ∈ Sd is called a spherical n-design if

∫

Sd

P (x)dµd(x) =
1

N

N∑

i=1

P (xi)

for all algebraic polynomials in d + 1 variables and of total degree at most

n. For each n ∈ N denote by N(d, n) the minimal number of points in a

spherical n-design. The following lower bounds

(1) N(d, n) ≥

(
d + k

d

)
+

(
d + k − 1

d

)
, n = 2k,

N(d, n) ≥ 2

(
d + k

d

)
, n = 2k + 1,

are also proved in [5].

Spherical n-designs attaining these bounds are called tight. Exactly eight

tight spherical designs are known for d ≥ 2 and n ≥ 4. All such configurations

of points are highly symmetrical and possess other extreme properties. For

example, the shortest vectors in the E8 lattice form a tight 7-design in S7,

and a tight 11-design in S23 is obtained from the Leech lattice in the same

way [4]. In general, lattices are a good source for spherical designs with

small (d, n) [7].

On the other hand construction of spherical n-design with minimal car-

dinality for fixed d and n → ∞ becomes a difficult analytic problem even for

d = 2. There is a strong relation between this problem and the problem of

findind N points on a sphere S2 that minimize the energy functional

E(~x1, . . . , ~xN) =
∑

1≤i<j≤N

1

‖~xi − ~xj‖
,

see Saff, Kuijlaars [12].
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Let us begin by giving a short history of asymptotic upper bounds on

N(d, n) for fixed d and n → ∞. First, Seymour and Zaslavsky [13] have

proved that spherical design exists for all d, n ∈ N. Then, Wagner [14]

and Bajnok [2] independently proved that N(d, n) ≤ cdn
Cd4

and N(d, n) ≤

cdn
Cd3

respectively. Korevaar and Meyers have [8] improved this inequalities

by showing that N(d, n) ≤ cdn
(d2+d)/2. They have also conjectured that

N(d, n) ≤ cdn
d. Note that (1) implies N(d, n) ≥ Cdn

d. In what follows we

denote by bd, cd, c1d, etc., sufficiently large constants depending only on d.

In [3] we proved the following

Theorem BV. Let ad be the sequence defined by

a1 = 1, a2 = 3, a2d−1 = 2ad−1 + d, a2d = ad−1 + ad + d + 1, d ≥ 2.

Then for all d, n ∈ N,

N(d, n) ≤ cdn
ad .

Corollary BV. For each d ≥ 3 and n ∈ N we have

N(d, n) ≤ cdn
ad .

a3 ≤ 4, a4 ≤ 7, a5 ≤ 9, a6 ≤ 11, a7 ≤ 12, a8 ≤ 16, a9 ≤ 19, a10 ≤ 22,

and

ad <
d

2
log2 2d, d > 10.

In this paper we suggest a new nonconstructive approach for obtaining new

upper bounds for N(d, n). We will make extensive use of the Brouwer fixed

point theorem (the source of nonconstructive nature of our method), the

Marcinkiewich-Zygmund inequality on the sphere [10] and the notion of area-

regular partitions [9]. The main result of this paper is

Theorem 1. For each N ≥ cdn
2d(d+1)

d+2 there exists a spherical n-design on Sd

consisting of N points.
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This result improves our previous estimate on N(d, n) for all d > 3, d 6= 7,

and in particular allows us to remove the ”nasty” logarithm in the power

in Corollary BV, so that the function in the power has a linear behavior,

which confirms the conjecture of Korevaar and Meyers. Finally, Theorem 1

guaranties the existence of spherical n-design for each N greater then our

new existence bound.

2 Preliminaries

Let ∆ be the Laplace operator in R
d+1

∆ =
d+1∑

j=1

∂2

∂x2
j

.

We say that a polynomial P in R
d+1 is harmonic if ∆P = 0. For integer

k ≥ 1, the restriction to Sd of a homogeneous harmonic polynomial of degree

k is called a spherical harmonic of degree k. The vector space of all spherical

harmonics of degree k will be denoted by Hk (see [10] for details). The

dimension of Hk is given by

dim Hk =
2k + d − 1

k + d − 1

(
d + k − 1

k

)
.

The vector spaces Hk are invariant under the action of the orthogonal group

O(d + 1) on Sd and are orthogonal to each other with respect to the scalar

product

〈P, Q〉 :=

∫

Sd

P (x)Q(x)dµd(x).

Another remarkable property of harmonic polynomials is that the spaces Hk

are eigenspaces of the spherical Laplacian (Laplace-Beltrami operator [6])

(2) ∆̃f(x) := ∆f(
x

‖x‖
).

Thus, for a polynomial P ∈ Hk we have

(3) ∆̃P = −k(k + d − 1)P.
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Here and below we use the notations ‖·‖ and (·, ·) for the Euclidean norm and

usual scalar product in R
d+1, respectively. For a twice differentiable function

f : R
d+1 → R and a point x0 ∈ R

d+1 denote by

∂f

∂x
(x0) :=

(
∂f

∂x1
(x0), . . .

∂f

∂xd+1
(x0)

)

and
∂2f

∂x2
(x0) :=

(
∂2f

∂xi∂xj
(x0)

)d+1

i,j=1

the gradient and the matrix of second derivatives of f (Hessian matrix) at the

point x0 respectively. Analogously to (2) we will also define for a polynomial

Q ∈ Pn the spherical gradient

∇Q(x) :=
∂

∂x
Q(

x

‖x‖
)

and the Hessian matrix on the sphere

(4) ∇2Q(x) :=
∂2

∂x2
Q(

x

‖x‖
).

We will also write

∇2Q · x · y := (∇2Q · x, y) for x, y ∈ R
d+1.

One consequence of Stokes’s theorem is the first Green’s identity [15]

(5)

∫

Sd

P (x)∆̃Q(x)dµd(x) = −

∫

Sd

(∇P (x),∇Q(x))dµd(x).

Let Pn be the vector space of polynomials P of degree ≤ n on Sd such

that ∫

Sd

P (x)dµd(x) = 0.

Each polynomial in R
d+1 can be written as a finite sum of terms, each of

which is a product of a harmonic and a radial polynomial (i.e. a polynomial
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which depends only on ‖x‖). Therefore the vector space Pn decomposes into

the direct sum Hk

Pn =

n⊕

k=1

Hk.

For each vector of positive weights w = (w1, . . . , wn) we can define a scalar

product 〈·, ·〉w on Pn invariant with respect to the action of O(d + 1) on Sd

by

〈P, Q〉w :=
n∑

k=1

wk〈Pk, Qk〉,

where Pk, Qk ∈ Hk, P = P1 + . . . + Pn and Q = Q1 + . . . + Qn. For each

Q ∈ Pn denote by

‖Q‖w =
√

〈Q, Q〉w

the norm corresponding to this scalar product. We will also define the oper-

ator

∆wP :=

n∑

k=1

k(k + d − 1)

wk
Pk, P ∈ Pn.

Then from (3) and (5) we get

(6) 〈∆wP, Q〉w =

∫

Sd

〈∇P (x),∇Q(x)〉dµd(x).

Now, for each point x ∈ Sd there exists a unique polynomial Gx ∈ Pn

(depending on w) such that

〈Gx, Q〉w = Q(x) for all Q ∈ Pn.

Then, the set of points x1, . . . , xN ∈ Sd form a spherical design if and only if

Gx1 + . . . + GxN
= 0.

To construct the polynomials Gx explicitly we will use the Gegenbauer poly-

nomials Gα
k [1]. For a fixed α, the Gα

k are orthogonal on [−1, 1] with respect

to the weight function ω(t) = (1 − t2)α− 1
2 , that is

∫ 1

−1

Gα
m(t)Gα

n(t)(1 − t2)α− 1
2 dt = δmn

π21−2αΓ(n + 2α)

n!(α + n)Γ2(α)
.
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Set α := d−1
2

, and let

Gx(y) := gw((x, y)),

where

gw(t) :=
n∑

k=1

dim Hk

wkG
α
k (1)

Gα
k (t).

In order to show that 〈Px, Q〉w = Gx(Q) = Q(x) for each Q ∈ Pn we will use

the following identity for Gegenbauer polynomials [10]

(7) Gα
k ((x, y)) =

Gα
k (1)

dim Hk

dim Hk∑

j=1

Yjk(x)Yjk(y),

where x, y ∈ Sd and Yjk are some orthonormal basis in the space (Hk, µd). In

particular, for a fixed x ∈ Sd, Gα
k ((x, y)) ∈ Hk. Therefore, for a polynomial

Q ∈ Pn we have

〈Gx, Q〉w =
n∑

k=1

wi〈Gk, Qk〉 =
n∑

k=1

∫

Sd

Gα
k ((x, y))Qk(y)dµd(y) =

=
n∑

k=1

dim Hk∑

j=1

Yjk(x)

∫

Sd

Qk(y)Yjk(y)dµd(y) =
n∑

k=1

Qk(x) = Q(x).

Fix the weight vector w = (w1, . . . , wn) such that wk = k(k + d − 1).

Further we will use the following additional equalities for Gegenbauer poly-

nomials [1]:

Gα
n(1) =

(
2α + n − 1

n

)
,

and

(8)
d

dt
Gα

n(t) = 2αGα+1
n−1(t),

d2

dt2
Gα

n(t) = 4α(α + 1)Gα+2
n−2(t).

Applying Cauchy’s inequality to (7) we get, for all k ∈ N and x, y ∈ Sd,

|Gα
k ((x, y))|2 ≤ Gα

k ((x, x))Gα
k ((y, y)),
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and hence

max
x∈[−1,1]

|gw(x)| = gw(1).

Similarly, by (8) we obtain

(9) max
x∈[−1,1]

|g′
w(x)| = g′

w(1).

Finally, let us estimate g′
w(1) and g′′

w(1). We have

(10) g′
w(1) =

n∑

k=1

dim Hk

wkG
α
k (1)

Gα
k
′(1) =

n∑

k=1

(2k + d − 1)(k + d − 2)!

k!d!
≤ c1dn

d.

Hence, by (9) and Markov inequality we get

(11) g′′
w(1) < n2 max

x∈[−1,1]
|g′

w(x)| = n2g′
w(1) ≤ c1dn

d+2.

3 Proof of Theorem 1

Fix n ∈ N. As mentioned in section 2, points x1, . . . , xN form a spherical

n-design if and only if Gx1 + . . . + GxN
= 0. First we will construct a set

of points such that the norm ‖Gx1 + . . . + GxN
‖w is small, and then we will

use the Brouwer fixed point theorem to show that there exists a collection of

points {y1, . . . , yN} “close” to {x1, . . . , xN} with ‖Gy1 + . . . + GyN
‖w = 0.

Let R = {R1, . . . , RN} be a finite collection of closed, non-overlapping

(i.e., having no common interior points) regions Ri ⊂ Sd such that ∪N
i=1Ri =

Sd. The partition R is called area-regular if volRi :=
∫

Ri
dµd(x) = 1/N , for

all i = 1, . . . , N . The partition norm for R is defined by

‖R‖ := max
R∈R

diam R.

Now we will prove

Lemma 1. For each N ∈ N there exists an area-regular partition R =

{R1, . . . , RN} of Sd and a collection of points xi ∈ Ri, i = 1, . . . , N such that
∥∥∥∥
Gx1 + . . . + GxN

N

∥∥∥∥
w

≤
bdn

d/2

N1/2+1/d
.

9



Proof. As shown in [9], for each N ∈ N there exists an area-regular partition

R = {R1, . . . , RN} such that ‖R‖ ≤ c2dN
1/d for some constant c2d. For this

partition R we will estimate the average value of
∥∥∥Gx1+...+GxN

N

∥∥∥
2

w
, when the

points xi are uniformly distributed over Ri. We have

1

volR1 · · ·volRN

∫

R1×···×RN

∥∥∥∥
Gx1 + . . . + GxN

N

∥∥∥∥
2

w

dµd(x1) · · · dµd(xN ) =

=
1

volR1 · · ·volRN

∫

R1×···×RN

1

N2

N∑

i,j=1

〈Gxi
, Gxj

〉wdµd(x1) · · ·dµd(xN )

=
∑

i6=j

∫

Ri×Rj

〈Gxi
, Gxj

〉wdµd(xi)dµd(xj) +
N∑

i=1

1

N

∫

Ri

〈Gxi
, Gxi

〉wdµd(xi)

=

∫

Sd×Sd

〈Gx, Gy〉wdµd(x)dµd(y)+

+
N∑

i=1

(
1

N

∫

Ri

〈Gx, Gx〉wdµd(x) −

∫

Ri×Ri

〈Gx, Gy〉wdµd(x)dµd(y)

)

=

∫

Sd×Sd

gw((x, y))dµd(x)dµd(y)+

+

N∑

i=1

∫

Ri×Ri

gw(1) − gw((x, y))dµd(x)dµd(y).

The first term of the sum is equal to zero because for each fixed x ∈ Sd,

the polynomial gw((x, y)) ∈ Pn. We can estimate the second term by

N∑

i=1

∫

Ri×Ri

gw(1)−gw((x, y))dµd(x)dµd(y) ≤
1

N
max
Ri∈R

max
x,y∈Ri

|gw(1)−gw((x, y))|

≤
1

N
max
Ri∈R

max
x,y∈Ri

g′
w(1)‖x − y‖2 ≤

1

N
c1dn

d‖R‖2 ≤ c1d
c2
2dn

d

N1+2/d
,

where in the last line we use (9) and (10). This immediately implies the

statement of the Lemma.

For a polynomial Q ∈ Pn define the norm of the Hessian matrix on the

sphere, as defined by (4), at the point x0 ∈ Sd by

∥∥∇2Q(x0)
∥∥ = max

‖y‖=1
|∇2Q(x0) · y · y|,
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where the maximum is taken over vectors y orthogonal to x0. We will prove

the following estimate

Lemma 2. For a polynomial Q ∈ Pn and point x0 ∈ Sd

∥∥∇2Q(x0)
∥∥ ≤ (3g′′

w(1) + g′
w(1))1/2‖Q‖w.

Proof. Fix a unit vector y0 orthogonal to x0 and define a curve x(t) on the

sphere Sd by

x(t) = x0 cos(t) + y0 sin(t).

For each t ∈ R we consider the polynomial Gx(t)(y) = gw((x(t), y)) ∈ Pn,

which has the property 〈Q, Gx(t)〉w = Q(x(t)) for all Q ∈ Pn. Setting G′′ =
d2

dt2
Gx(t)|t=0, we have that

(12) ∇2Q(x0) · y0 · y0 =
d2

dt2
Q(x(t))|t=0 = 〈Q, G′′〉w.

Hence ∥∥∇2Q(x0)
∥∥ ≤ ‖G′′‖w‖Q‖w.

It remains to show that ‖G′′‖w = (3g′′
w(1) + g′

w(1))1/2. Since

d2

dt2
Gx(t)(y) =

d2

dt2
gw((x(t), y)),

we obtain

(13) G′′(y) = (y0, y)2g′′
w((x0, y)) − (x0, y)g′

w((x0, y)).

From (12) and (13) we get by direct calculation

〈G′′, G′′〉w =
d2

dt2
G′′(x(t))|t=0 = 3g′′

w(1) + g′
w(1).

Lemma 2 is proved.

Denote by Bq the closed ball of radius 1 with center at 0 in R
q. To prove the

following Lemma 3 we use the Brouwer fixed point theorem [11]

Theorem B. Let A be a closed bounded convex subset of R
q and H : A → A

be a continuous mapping on A. Then there exists some z ∈ A such that

H(z) = z.
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Lemma 3. Let F : Bq → R
q be a continuous map such that

F (x) = A(x) + G(x),

where A(x) is a linear map and for each x ∈ Bq

(14) ‖A(x)‖ ≥ α‖x‖

and

(15) ‖G(x)‖ ≤ α‖x‖/2,

for some α > 0. Then, the image of F contains the closed ball of radius α/2

with center at 0.

Proof. Take an arbitrary y, with ‖y‖ ≤ α/2. It is sufficient to show that

there exists x ∈ Bq such that F (x) = y. The inequality (14) implies that

‖A−1(y)‖ ≤ 1/2. Denote by K the ball of radius 1/2 with center 0. Consider

a map

Hy(z) = −A−1(G(A−1(y) + z)).

By (14) and (15) we obtain that Hy(K) ⊂ K. Hence, by the Brouwer fixed

point theorem, there exists z ∈ K such that Hy(z) = z. This then implies

that

F (A−1(y) + z) = y.

To prove the principal Lemma 4 we also need a result which is an easy

corollary of Theorem 3.1 in [10]

Theorem MNW. There exist constants rd and Nd such that for each area-

regular partition R = {R1, . . . , RN} with ‖R‖ < rd

m
, each collection of points

xi ∈ Ri, i = 1, . . . , N and each algebraic polynomial P of total degree m > Nd

the following inequality

(16)
1

2

∫

Sd

|P (x)|dµd(x) <
1

N

N∑

i=1

|P (xi)| <
3

2

∫

Sd

|P (x)|dµd(x)
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holds.

Consider the map Φ : (Sd)N → Pn defined by

(x1, . . . , xN) Φ
//

Gx1+...+GxN

N
.

Lemma 4. Let x1, . . . , xN ∈ Sd be the collection of points and R = {R1, . . . , RN}

an area-regular partition such that xi ∈ Ri and ‖R‖ ≤ rd

2n
. Then the image

of the map Φ contains a ball of radius ρ ≥ Adn
(−d−2)/2 with center at the

point G =
Gx1+...+GxN

N
, where Ad is a sufficiently small constant, depending

only on d.

Proof. For each polynomial P ∈ Pn consider the circles on Sd given by

x̃i(t) = xi cos(‖∇P (xi)‖t) + yi sin(‖∇P (xi)‖t),

where yi = ∇P (xi)
‖∇P (xi)‖

, i = 1, . . . , N . Define the map X : Pn → (Sd)N by

X(P ) = (x1(P ), . . . , xN (P )) := (x̃1(1), . . . , x̃N (1)).

Now we will consider the composition L = Φ ◦X : Pn → Pn which takes the

form

L(P ) =
Gx1(P ) + . . . + GxN (P )

N
.

For each Q ∈ Pn one can take the Taylor expansion

(17)

〈Gx̃i(t), Q〉w = Q(x̃i(t)) = Q(xi)+
d

dt
Q(x̃i(0))t+

1

2
·

d2

dt2
Q(x̃i(ti))t

2, ti ∈ [0, t].

Hence, we can represent the function L(P ) in the form

L(P ) = L(0) + L′(P ) + L′′(P ).

Here L′(P ) is the unique polynomial in Pn satisfying

〈L′(P ), Q〉w =
1

N

N∑

i=1

(∇Q(xi),∇P (xi)) for all Q ∈ Pn,

13



and

L′′(P ) = L(P ) − L(0) − L′(P ).

First, for each P ∈ Pn we will estimate the norm of L′(P ) from below. We

have

‖L′(P )‖w ≥
1

‖P‖w
· 〈L′(P ), P 〉w =

1

‖P‖w
·

1

N

N∑

i=1

(∇P (xi),∇P (xi)).

Applying (16) to the polynomial (∇P,∇P ) of degree ≤ 2n, we get

1

N

N∑

i=1

(∇P (xi),∇P (xi)) ≥
1

2

∫

Sd

(∇P (x),∇P (x))dµd(x).

On the other hand, by (6) we have
∫

Sd

(∇P (x),∇P (x))dµd(x) = 〈P, ∆wP 〉w = ‖P‖2
w.

This gives us the estimate

(18) ‖L′(P )‖w ≥
1

2
‖P‖w.

Now we will estimate the norm of L′′(P ) from above. By (17) we have

〈L′′(P ), Q〉w =
1

2N

N∑

i=1

d2

dt2
Q(x̃i(ti)),

for some ti ∈ [0, 1]. Since the following equality holds

d2

dt2
Q(x̃i(t)) = ∇2Q ·

dx̃i(t)

dt
·
dx̃i(t)

dt
,

Lemma 2 implies that

|
d2

dt2
Q(x̃i(t))| ≤ (3g′′

w(1) + g′
w(1))1/2‖

dx̃i

dt
‖2 · ‖Q‖w.

It follows from the identity

‖
dx̃i

dt
(t)‖ = ‖∇P (xi)‖

14



and estimates (10), (11) that

|
d2

dt2
Q(x̃i(t))| ≤ c3dn

(d+2)/2‖∇P (xi)‖
2 · ‖Q‖w.

This inequality yields immediately

|〈L′′(P ), Q〉w| = |
1

2N

N∑

i=1

d2

dt2
Q(x̃i(ti))| ≤

c3dn
(d+2)/2‖Q‖w

N

N∑

i=1

‖∇P (xi)‖
2.

Applying again (16), we obtain

1

N

N∑

i=1

‖∇P (xi)‖
2 ≤

3

2
‖P‖2

w.

So, for each Q ∈ Pn we have that

|〈L′′(P ), Q〉w| ≤
3

2
c3dn

(d+2)/2‖P‖2
w · ‖Q‖w.

Thus, we get

(19) ‖L′′(P )‖w ≤
3

2
c3dn

(d+2)/2‖P‖2
w.

Lemma 3 combined with inequalities (18) and (19) implies that the image

of L, and hence the image of Φ, contains a ball of radius ρ ≥ Adn
(−d−2)/2

around L(0) = G, where Ad = 1/6c3d, proving the lemma.

Proof of Theorem 1. By Lemma 1, there exists an area-regular partition R =

{R1, . . . , RN} such that ‖R‖ ≤ c2dN
1/d, and a collection of points xi ∈ Ri,

i = 1, . . . , N such that
∥∥∥∥
Gx1 + . . . + GxN

N

∥∥∥∥
w

≤
bdn

d/2

N1/2+1/d
.

Take N large enough such that N > Nd and c2d

N1/d < rd

2n
, where Nd and rd are

defined by Theorem MNW. Applying Lemma 4 to the partition R and the

collection of points x1, . . . , xN , we obtain immediately that Gy1+. . .+GyN
= 0

for some y1, . . . , yN ∈ Sd if

bdn
d/2

N1/2+1/d
< Adn

(−d−2)/2.

So, we can choose a constant cd such that the last inequality holds for all

N > cdn
2d(d+1)

d+2 . Theorem 1 is proved.
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