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9 ALGEBRAS OVER Ω(coFrob)

GABRIEL C. DRUMMOND-COLE, JOHN TERILLA, AND THOMAS TRADLER

ABSTRACT. We show that a square zero, degree one element inW (V ), the

Weyl algebra on a vector spaceV , is equivalent to providingV with the structure

of an algebra over the properadΩ(coFrob), the properad arising from the cobar

construction applied to the cofrobenius coproperad.
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1. INTRODUCTION

The main result in this paper is Theorem 4.10 which asserts that two algebraic

structures defined on a vector spaceV are the same. One structure is defined by a

square zero, degree one element inW (V ), the Weyl algebra onV . In the next few

paragraphs, we give an brief summary of the Weyl algebra, andwe give the precise

definitions and formulae with signs in Sections 2 and Section3. The other struc-

ture is an algebra over the properadΩ(coFrob). Roughly speaking, properads and

coproperads are constructs that model composable and decomposable operations

to and from the tensor powers of a vector space. The main reference is [7] and we

give a review of properads and coproperads, mostly to fix notation and conventions,
1
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in Section 4. In the same way that operads govern algebras with many-to-one oper-

ations, properads and coproperads govern algebras with many-to-many operations,

such as Lie bialgebras, and are built to accomodate the “higher genus” phenomena

which may arise from composing multiple outputs with multiple inputs, such as

the involutive relation possessed by certain Lie bialgebras. Of particular interest

here are the relations organized by genus arising from the Frobenius compatibility

in Frobenius algebras. There is a simple coproperad, call itcoFrob, determined

by the Frobenius relations, and we review it in Section 4.2. The symbolΩ in

the expression “Ω(coFrob)” denotes a general construction called the cobar con-

struction, which assigns a properad to certain coproperads. We review the cobar

construction in Section 4.3.

Now, we present an overview of how we define the Weyl algebra. Fix a ground

field k of characteristic zero. LetV be a graded vector space overk, let SkV be

thek-th symmetric product ofV , let SV = ⊕∞
k=0S

kV be the symmetric algebra

of V , and letŜV =
∏∞

k=0 S
kV . Consider thek[[~]] moduleHom(SV, ŜV )[[~]].

There exists a star product

⋆ : Hom(SV, ŜV )[[~]] ⊗k[[~]] Hom(SV, ŜV )[[~]] → Hom(SV, ŜV )[[~]]

which is an associative, noncommutative, degree zero map ofk[[~]] modules. We

let W (V ) :=
(
Hom(SV, ŜV )[[~]], ⋆

)
, and call it the Weyl algebra1 of V . We

define the star product in a coordinate free way which is also natural from the point

of view of maps between tensor powers of vector spaces, but wepay for our choice

to be choice-free with combinatorial factors (banished to Appendix A) which are

used to align our definition with the familiar coordinate-dependent presentation

in common use since at least 1928 ([8]). Lemma 3.2 states thatour definition is

equivalent to the traditional one.

The star product is determined by its values on pairsf, g ∈ Hom(SV, ŜV ) and

decomposes in powers of~ by

f ⋆ g = f ◦1 g + ~f ◦1 g + ~
2f ◦2 g + · · ·

We are interested in degree negative one elementsH ∈W (V ) satisfyingH ⋆H =

0. Any elementH ∈W (V ) in the Weyl algebra comprises a collection of operators(
σ(g)

)j

i
: SiV → SjV , g, i, j ≥ 0: decomposeH into piecesH = σ(0) + ~σ(1) +

~
2σ(2) + · · · where eachσ(g) : SV → ŜV and decompose each mapσ(g) into

1We use the name “Weyl” since Hermann Weyl used a prototype of this algebra in his work

in quantum mechanics (see Chapter 2, section 11 of [8]), although the term “star product” was

introduced later [4]. The reader interested in the rich history of Weyl algebras and star products may

wish to consult [2], and the references therein.
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operators
(
σ(g)

)j

i
: SiV → SjV . The condition thatH ⋆ H = 0 summarizes an

infinite collection of relations among the maps
(
σ(g)

)j

i
. In this paper, we make a

technical assumption onH that
(
σ(g)

)j

i
= 0 if either i or j or both are zero in order

to avoid certain difficulties when we compareH with a properadic structure.

It is no surprise that degree one, square zero elements of theWeyl algebra make

up the data of an algebra over a properad. The work about whichwe are report-

ing consists mostly of identifying the properad precisely,and working through the

signs and combinatorial factors. A motivation for the work is that elements of

square zero in the Weyl algebra appear in a number of settings—they figure promi-

nently in a mathematical interpretation of quantum field theory that grew from the

BV-quantization scheme [5]; and the deep compactification,gluing, and analysis

theorems and conjectures in symplectic geometry can be summarized as a square

zero, degree one elementH in the Weyl algebra of a vector space defined by the

Reeb orbits of a contact manifold [3].

In the last section of the paper, Section 5, we verify that thehomology of an

algebra overΩ(coFrob) is a (commutative) Lie bialgebra satisfying the involutive

relation. We conjecture that theΩ(coFrob) properad gives a resolution of the Lie

bialgebra properad, but at present we do not have a proof (computer computations

show that ifΩ(coFrob) is not a resolution of involutive biLie, one must look at

rather high Euler characteristic to find a nonzero homology class). One implication

of Section 5 is that from a degree one elementH ∈ W (V ) with H ⋆ H = 0, one

obtains an associated homology theory which has the structure of a Lie bialgebra.

In the case of theH from symplectic field theory, the involutive Lie bialgebra in

homology is known to contact geometers [1], see also [6].

The authors would like to thank the referee for the helpful suggestions that

sharpened the exposition.

2. REVIEW OF SYMMETRIC AND TENSOR ALGEBRAS

In this section, we fix some basic notation that is used throughout this paper,

and define partial gluing operations◦k which are used in our definition of the Weyl

algebra. Some of the complexity in the next couple of sections arises from passing

between viewing the symmetric algebra as aquotient of the tensor algebra and

viewing the symmetric algebra as asubalgebraof the tensor algebra. When we

viewSV as the free commutative algebra onV , it is naturally obtained as a quotient

of the free algebraTV . In characteristic zero,SV andTV are also constructions

of the free cocommutative coalgebra and the free coalgebra on V , in which case

SV naturally embeds inTV . The specifics follow, but the reader may wish to skim
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over the signs and combinatorics and jump to Figure 1 which gives a picture of the

partial gluing operations◦k used to define the Weyl algebra in Definition 3.1.

For any elementv in the graded vector spaceV , let |v| denote the degree ofv.

Let T nV andTV denote the corresponding tensor power and tensor algebra ofV .

The tensor product is denoted by⊗ and the symmetric product by⊙. The element

v1 ⊗ · · · ⊗ vk ∈ T kV will be denoted bȳv.

If σ is in S
k, the symmetric group onk letters, then letǫ(σ, v̄) be the Koszul sign,

i.e. the sign of the permutation induced byσ on the odd entries of̄v. Then there

is a leftSk-action onT kV defined as the linear extension ofσ(v1 ⊗ · · · ⊗ vk) =

ǫ(σ, v̄)vσ−1(1)⊗· · ·⊗vσ−1(k). The image of̄v under the action ofσ will be denoted

σv̄. The signǫ(φ, v̄) whereφ is the permutation which reverses the order ofv̄

appears occasionally; denote it by||v̄||. This sign depends only on the number of

odd entries of̄v; if this number is0 or 1 mod4, the sign is positive; if it is2 or 3

the sign is negative. It also satisfies(||ū||)(||v̄||)(||ū⊗ v̄||) = (−1)|ū||v̄|.

A k, ℓ shuffleσ is an element ofSk such thatσ(1) < · · · < σ(ℓ) andσ(ℓ+1) <

· · · < σ(k). Let the set of shuffles beSk,ℓ. An unshuffle is an element ofS−1
k,ℓ. If

τ is an unshuffle, then̄vℓ andv̄k−ℓ should be taken to mean the firstℓ and the last

k − ℓ factors ofτ(v̄), respectively. The suppression ofτ should not cause much

confusion. Any permutation inSk can be factored uniquely as the composition of

a k, ℓ shuffle with a permutation fromSℓ ⊗ Sk−ℓ and uniquely as the composition

of a permutation fromSℓ ⊗ Sk−ℓ with ak, ℓ unshuffle.

The spaceSkV is defined as the quotient ofT kV by the subspace spanned by

v − σv, wherev ranges overT kV andσ ranges overSk. Let the symmetric class

of an elementv of T kV be denoted[v]; let sk : T kV → SkV denote the projection

v 7→ [v]. Also, oweing to the fact that in characteristic zero, the algebrasTV

andSV are constructions of the free coalgebra and free commutative coalgebra on

V , one can embedSkV in T kV via the symmetrization mapιk : SkV → T kV

defined by

ιk[v] =
1

k!

∑

σ∈Sk

σv.

The superscriptk in ιk andsk will usually be suppressed. Observe thatsι[v] =
1
k!

∑
[σv] = [v] andιs(v) = 1

k!

∑
σv. If v ∈ T kV satisfiesσv = v for all σ ∈ Sk,

thenιsv = v.

Using the above notation, we now define the partial gluing maps, both on the

tensor algebraTV and the symmetric algebraSV .
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Definition 2.1. Fori, j, k,m, n ≥ 0, there is apartial gluing map◦k : Hom(TmV, T nV )⊗

Hom(T iV, T jV ) → Hom(Tm+i−kV, T n+j−kV ) given by,

ϕ ◦k ψ = (ϕ⊗ id⊗j−k) ◦ (id⊗m−k ⊗ψ)

and is depicted in the following figure.

ψ

m− k i

j
m

j − kn

ϕ

FIGURE 1. Depiction of the partial gluing operation◦k where the

first k outputs ofψ are composed with the lastk inputs ofϕ

There is also an inducedpartial composition map, by abuse of notation also

denoted◦k : Hom(SmV, SnV )⊗Hom(SiV, SjV ) → Hom(Sm+i−kV, Sn+j−kV )

defined by

g ◦k f =

(
m+ i− k

i

)(
j

k

)
s((ιgs) ◦k (ιfs))ι

The reason for the choice of combinatorial factors in this definition is due to the

property exhibited in Proposition A.4 of appendix A.

Remark2.2. By convention,id⊗ℓ = 0 whenℓ < 0, so that the partial gluing map

◦k is zero whenk > m or k > j.

Remark2.3. Note that the definition ofg ◦k f for mapsg : SmV → SnV and

f : SiV → SjV extends to all ofHom(SV, ŜV ) since there are only finitely

many contributions to◦k.

3. THE WEYL ALGEBRA

In this section we define the Weyl algebra of a vector spaceV over a fieldk. The

coordinate free definition that we give will be ak[[~]] algebra onHom(SV, ŜV )[[~]].

Definition 3.1. We define theWeyl algebra ofV to be thek[[~]] algebra(W (V ), ⋆)

where

W (V ) = Hom(SV, ŜV )[[~]]
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and

⋆ : W (V ) ⊗k[[~]] W (V ) →W (V )

is defined forf, g ∈ Hom(SV, ŜV ) by

g ⋆ f = g ◦0 f + (g ◦1 f)~ + (g ◦2 f)~2 + · · ·

One frequently encounters this⋆ product for a finite dimensional vector spaceV

and “in coordinates.” Traditionally, elements ofV are denoted byq’s and elements

of its dual spaceV ∗ = Hom(V,k) are denoted byp’s (position and momentum).

If {qℓ} is a homogeneous basis forV with dual basis{pℓ} of V ∗, elements of

Hom(SV, ŜV ) are power series in thepℓ’s and theqℓ’s. Mapsf : SiV → SjV

andg : SmV → SnV are expressed in a standard form with all thep’s on the right

(1) f =
∑

f j̄

ī
qj̄p

ī andg =
∑

gn̄
m̄qn̄p

m̄.

Here, j̄, ī, m̄, andn̄ are multi-indices, and we will use the same notational con-

ventions that we do for tensor products:j̄k andj̄j−k denote the multi-indices con-

sisting of the firstk indices ofj̄ and the lastj − k indices ofj̄ respectively, and

φ(j̄) will be the reverse of̄j. We distinguish vectors in the tensor algebra from

the symmetric algebra by using a tensor symbol in the subscript: if, for example,

j̄ = (5, 2, 8), thenqj̄ = q5 ⊙ q2 ⊙ q8 ∈ SV andq⊗j̄ = q5 ⊗ q2 ⊗ q8 ∈ TV. The

symbolδj̄

ī
is zero unless̄i = j̄, in which caseδj̄

ī
= 1.

The functionf in Equation (1) for instance mapsqk̄ = [q⊗k̄] to
∑

σ∈Sk

ǫ(σ, k̄)δφī

σk̄
f j̄

ī
[q⊗j̄]

Note that thep’s act in “reverse” order, which gives the standard signs when trans-

lated to a tensor algebra context for a graded vector space. In other words,

f = i!f j̄

ī
[q⊗j̄]p

⊗īι

Lemma 3.2. The productg ⋆ f is the free product on the formal power series in

the variables{qℓ, pℓ} subject to the relations

[pℓ, qℓ′ ] := pℓqℓ′ − (−1)|p
ℓ||qℓ′ |qℓ′p

ℓ = ~δℓ
ℓ′

[pℓ, pℓ′ ] = [qℓ, qℓ′ ] = 0.

Remark3.3. The significance of thep-q description of the Weyl algebra is that the

symplectic nature of the situation is illuminated:Hom(SV, ŜV ) can be viewed as

(a completion of) the polynomial functions on the symplectic vector spaceV ⊕V ∗.

As usual, the set of such functions forms a Poisson algebra. In the notation of this

paper,f ◦0 g defines a graded commutative associative product and the Poisson
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bracket{f, g} has the expression{f, g} = f ◦1 g − (−1)|f ||g|g ◦1 f . The star

product corresponds to a deformation quantization of this Poisson algebra. We

have the expected relations; e.g.,{f, g} = lim~→0
f⋆g−(−1)|f ||g|g⋆f

~
.

In the rest of this section concerns the proof of Lemma 3.2, which establishes

the coincidence of our coordinate free definition ofW (V ) with the coordinate

dependent description in terms of generators and relations, which may be familiar

to the reader (who is invited to skip the proof and move on to Section 4).

Proof of lemma 3.2.We want to show that the~k term ofgf using the above com-

mutation relations isg ◦k f . Using the relations to put the result ofgf back in

standard form withp’s on the right is a process that involves commuting all the

pm’s in g with theqj ’s in f . As pm is moved to the right, each occurence ofpmqj

is replaced by the two termsqjpm and~δm
j . We need to show that the signs and

combinatorial factors are correct.

Moving a variablepm to the right as far as possible involves the sum of moving it

past all theqj with replacing it with~δm
j as it passes eachqj. This process induces

a recursive sequence of choices, for eachpm, of moving all the way to the end or

replacing with an~δm
j on one of the remainingqj. A term with an~

k coefficient

will come from the choice of|m̄| − k of thepm to move all the way to the end,

with the remainingk of thepm interacting with someqj. This further involves the

choice ofk of theqj and a permutation ofSk to govern which of thek pm interacts

with which of thek chosenqj . Then the~k term of the productgf , put in standard

form, is the following sum overσ ∈ S
−1
m,m−k, τ ∈ S

−1
j,k , andρ ∈ Sk

∑
ǫδm̄k

ρj̄k
qn̄qj̄j−k

pm̄m−kpī

The signsǫ will be reconciled at the end of the argument.

Let us evaluate the above expression on[q⊗v̄] ∈ Sm−k+i. First, q⊗v̄ is sym-

metrized, and thenp⊗m̄m−k is evaluated on the firstm − k factors of each sum-

mand of the symmetrization whilep⊗ī is evaluated on the followingi factors of

each summand. Using the unique representation of a permutation in Sm−k+i as the

composition of an element ofSm−k × Si with an (m − k + i,m − k)-unshuffle,

gf([q⊗v̄]) is the following sum overπ ∈ S
−1
m−k+i,m−k, η ∈ Sm−k, θ ∈ Si, and

σ, τ, ρ as before: ∑
ǫδm̄k

ρj̄k
δ
m̄m−k

ηv̄m−k
δī
θv̄i

[q⊗n̄ ⊗ q⊗j̄j−k
]

Now, let us evaluateg ◦k f applied to the same element[q⊗v̄]. By definition,

g ◦k f =

(
m+ i− k

i

)(
j

k

)
m!i!s(ιsq⊗n̄p

⊗m̄ιs) ◦k (ιsq⊗j̄p
⊗īιs)ι



8 GABRIEL C. DRUMMOND-COLE, JOHN TERILLA, AND THOMAS TRADLER

To apply this to[q⊗v̄], we begin by symmetrizingq⊗v̄. Again, it is more convenient

to view this as an unshuffle followed by a product of permutations fromSm−k and

Si. So we write

ι[q⊗v̄] =
1

(m− k + i)!

∑
q⊗ηv̄m−k

⊗ q⊗θv̄i

Next the second factor is resymmetrized, which has no effectsince it is already

symmetric, and thenιsq⊗j̄p
⊗ī is applied to it, yielding

m!i!

(m− k + i)!

∑
ǫδī

θv̄i
q⊗ηv̄m−k

⊗ ιsq⊗j̄

We view each summand permutation in the symmetrization ofj̄, again, as the

composition of product permutations with a(j, k)-unshuffle. We will sum over

ρ ∈ Sk and(j, k)-unshufflesτ , but incorporate theSj−k permutations withι and

s. So this is

(j − k)!

j!(m− k + i)!

∑
ǫδī

θv̄i
q⊗ηv̄m−k

⊗ q⊗ρj̄k
⊗ ιsq⊗j̄j−k

Applying ιs to symmetrize the first two factors corresponds to first symmetrizing

each one individually and then shuffling them with an(m,m − k)-shuffleσ−1.

Since they are both already symmetric, this gives

(j − k)!(m− k)!k!

m!j!(m− k + i)!

∑
ǫδī

θv̄i
σ−1(q⊗ηv̄m−k

⊗ q⊗ρj̄k
) ⊗ ιsq⊗j̄j−k

Applying ιsq⊗n̄p
⊗m̄ to the first factor gives

(j − k)!(m− k)!k!

m!j!(m− k + i)!

∑
ǫδī

θv̄i
δm̄
σ−1ηv̄m−k⊗ρj̄k

ιsq⊗n̄ ⊗ ιsq⊗j̄j−k

=
(j − k)!(m− k)!k!

m!j!(m− k + i)!

∑
ǫδī

θv̄i
δ
m̄m−k

ηv̄m−k
δm̄k

ρj̄k
ιsq⊗n̄ ⊗ ιsq⊗j̄j−k

By Lemma A.1, symmetrizing this whole expression means thatwe can ignore the

symmetrizations on̄n andj̄j−k. Including the combinatorial factor
(
m+i−k

i

)(
j
k

)
m!i!,

we obtain ∑
ǫδī

θv̄i
δ
m̄m−k

ηv̄m−k
δm̄k

ρj̄k
[q⊗n̄⊗j̄j−k

]

just as before.

Finally, we check equality of the signs.ǫ(π, v̄), ǫ(η, v̄m−k), ǫ(θ, v̄i), ǫ(τ, j̄),

ǫ(ρ, j̄k), and the signǫ(σ, m̄) are all on both the right and left-hand side. On the

left side, there are also the signs(−1)|j̄j−k ||m̄m−k|, ||m̄k||, and||v̄||, the first from

commuting the noninteractingqj andpm past one another and the second and third

the induced sign of applying a tensor product ofp’s to a tensor product ofq’s. These

are not literally the correct signs, but they coincide whenever the correspondingδ
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functions are nonzero. On the right, there are the signs||̄i|| and||m̄|| for the same

reason, along with the sign(−1)|f ||v̄m−k | from applyingf to the tensor factors on

the right. Expanding either side with the relations

||m̄m−k|| ||m̄|| ||m̄k|| = (−1)|m̄k ||m̄m−k|

||v̄i|| ||v̄|| ||v̄m−k|| = (−1)|v̄i||v̄m−k|

along with noting that|m̄k| = |j̄k|, |m̄m−k| = |v̄m−k|, and |v̄i| = |̄i| when the

correspondingδ functions are nonzero yields the equality of the two signs. �

4. PROPERADS AND COPROPERADS

The main reference for this section is [7]. A properad is, roughly, an alge-

braic structure that models composable operations to and from the tensor powers

of a vector space. In the same way that operads govern gebras with only many to

one operations, properads govern gebras with many to many operations, such as

Frobenius and biLie algebras. The dual notion of a properad is a coproperad, and

there are a number of ways to obtain a coproperad from a given properad, and vice

versa. The most naive uses finite dimensional pieces of a properad and dualizes

each piece individually. Starting from the properadP, this yields the coproperad

coP. A more conceptually elegant method of dualization is the bar or cobar con-

struction. The main result of this paper, again, is that degree one elements of square

zero in the Weyl algebraW (V ), as discussed in the previous section, are in one to

one correspondence withΩ(coFrob)-algebra structures onV .

To describe algebras overΩ(coFrob), we first define the Frobenius coprop-

eradcoFrob, then the cobar construction, and give a presentation of theproperad

Ω(coFrob). Finally, we will define algebras over a properad and obtain the rela-

tions on an algebra over the particular properad in question.

4.1. Preliminaries; notation. We now recall the notions of properad and coprop-

erad, and algebras over properads, cf. [7].

Definition 4.1. A finiten-level directed graphG consists of a triple({Vi}, {Fv}, {ϕi}),

given by the following data:

(1) A finite ordered setVi of vertices on leveli, for i ∈ {0, . . . , n + 1}. V0

andVn+1 are called the incoming and outgoing vertices of the graphG,

respectively.

(2) For each vertexv ∈
⋃
Vn, two finite setsF in

v andF out
v of directed incoming

and outgoing half-edges incident atv, with |F in
v | = 0 and |F out

v | = 1 for

v ∈ V0, and |F in
v | = 1 and |F out

v | = 0 for v ∈ Vn+1. We denote by

Fv = F in
v ⊔F out

v the disjoint unit of the incoming and outgoing half-edges.
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(3) Fori ∈ {0, . . . , n}, a bijection

ϕi :
⋃

v∈Vi

F out
v →

⋃

v∈Vi+1

F in
v

that joins outgoing half-edges of one level and incoming half-edges of the

next. ϕ0 andϕn reorder the overall incoming and outgoing edges of the

graph.

level
0

1

2

3

4

FIGURE 2. A finite 3-level directed graph

Two graphs({Vi}, {Fv}, {ϕi}) and({Uj}, {Gu}, {ψj}) are equivalent if there are

order-preserving bijections on the vertices on each level and bijections of the in-

coming and outgoing-half-edges which respect the joining bijectionsϕ andψ. A

L,R labelling of a graph is a pair of bijections from the setL to the incoming level

one half-edges, and a bijection from the outgoing leveln half-edges to theR.

The set of finiten-level directed graphs up to equivalence is denoted byG (n).

Definition 4.2. The geometric realizationof a graph({Vi}, {Fv}, {ϕi}) is the

topological space, defined as the quotient of the disjoint union
(
∐v∈

S

Vi
∗v

)
⊔

(
∐f∈

S

v Fv
If

)
,

where∗v denotes a one point space andIf denotes a copy of the unit interval[0, 1],

divided by the equivalence relation generated by

(1) 0f ∼ ∗v if f ∈ Fv.

(2) 1f1 ∼ 1f2 if ϕi(f1) = f2 for somei.

G is calledconnectedif its geometric realization is connected. The set of finite

connectedn-level directed graphs withk incoming andℓ outgoing edges is denoted

G
(n)
c (k, ℓ), and letG (n)

c = ⊔k,ℓ G
(n)
c (k, ℓ).
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An S-bimodulein the category of graded vector spaces (chain complexes) con-

sists of a set of graded vector spaces (chain complexes){P (m,n)} for m,n ≥ 0

with commuting leftSm and rightSn actions. The category ofS-bimodules is

denoted byC . There is a functor

⊠c : C × C → C

which acts on twoS-bimodulesP andQ by taking

P ⊠c Q(k, ℓ) =
⊕

G
(2)
c (k,ℓ)

⊗

v∈V2

P (|F out
v |, |F in

v |) ⊗
⊗

v∈V1

Q(|F out
v |, |F in

v |)
/

∼,

where|X| denotes the number of elements of a finite setX, and the equivalence

relation consists of the following two parts. For one, we divide out by

(
⊗

pi ⊗
⊗

qj){{Vi},{Fv},{ϕ0,ϕ1,ϕ2}}

∼ (
⊗

σipiρi ⊗
⊗

τjqjηj){{Vi},{Fv},{ϕ0(
Q

η−1),(
Q

τ−1)ϕ1(
Q

ρi),(
Q

σi)ϕ2}}

This construction does not have the appropriateS-bimodule structure, so we must

tensor over
∏

v∈V2
Svout with

∏
v∈V3

Svin and similarly with the incoming. The other

equivariance relation is

(
⊗

pi ⊗
⊗

qj){{Vi},{Fv},{ϕ0,ϕ1,ϕ2}}

∼ (σ−1
(⊗

pi

)
⊗ τ

(⊗
qj

)
){{Vi},{Fv},{τ−1ϕ0,σϕ1τ,ϕ2σ−1}}

where the action ofτ andσ in the compositions with theϕ should be taken as

acting on blocks of size equal to the number of outputs or inputs of pi or qj as

appropriate. The actions on thepi andqj themselves have signs as usual.

In words,P ⊠c Q(k, ℓ) consists of connected two-level graphs with elements of

Q labelling the vertices on the first level and elements ofP labelling the vertices

on the second level. The labelling elements should be chosenfrom the pieces

P (k′, ℓ′) so thatk′ is the number of incoming flags at the vertex andℓ′ the number

of outgoing flags.

Definition 4.3. Let I be theS-bimodule which hasI(1, 1, 0) = k andI(n,m,χ) =

0 otherwise.

The functor⊠c, along with the identity objectI, makesC a monoidal category.

This means that there is a natural transformation expressing the associativity of⊠c

and two more expressing thatI is a left and right identity for⊠c.

Definition 4.4. A properadP is a monoid in the categoryC . This data comprises

two morphisms:
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(1) A composition morphismµ : P ⊠c P → P, and

(2) A unit morphismι : I → P.

Composition must satisfy associativity up to the natural transformation for asso-

ciativity of ⊠c as well as left and right unit properties (e.g.,µ ◦ (ι ⊠ id) ∼ id via

the natural transformation betweenI ⊠ P andP).

Definition 4.5. A coproperadC is a comonoid in the categoryC . This data again

comprises two morphisms:

(1) A decomposition morphism∆ : C → C ⊠c C, and

(2) A counit morphismη : C → I.

Decomposition must satisfy coassociativity (up to the natural transformation for

associativity of⊠c) as well as left and right counit properties dual to the unit prop-

erties.

Example 4.6. If (V, d) is a chain complex (whit differential of degree|d| = 1),

thenT kV has the induced structure of a chain complex whered(v̄) = dv1 ⊗ v2 ⊗

· · ·⊗vk+· · ·+(−1)|v1|+···+|vi−1|v1⊗· · ·⊗vi−1⊗dvi⊗· · ·⊗vk+· · · . If (V, d) and

(V ′, d′) are chain complexes, thenHom(V, V ′) has the induced structure of a chain

complex with differentialf 7→ d′f−(−1)|f |fd. Thus, if(V, d) is a chain complex,

thenEnd(V )(m,n) := (Hom(TmV, T nV ),D) is a chain complex, whereD is

the induced differential. There are commuting leftSm and rightSn actions and

the obvious composition maps, soEnd(V ) is a properad. Note that in the graded

context, the symmetric actions respect the grading, so that, for example,ψσ(v̄) =

ψ(σv̄).

Definition 4.7. By definition,(V, d) has the structure of analgebraover the prop-

erad of chain complexesP, if there is a properad morphismP → End(V ).

Explicitly, this means that there are degree zero mapsP(m,n) → Hom(TmV, T nV )

which are equivariant with respect to both theSm andSn-actions, and such that

composition inP corresponds to actual composition of maps between tensor pow-

ers ofV . Furthermore, the differentiald in P(m,n) corresponds to the differential

D in the Hom complex.

4.2. The coFrob coproperad. We define an object{coFrob(m,n, χ)} in the

categoryC of S bimodules and morphismsη : coFrob → I and∆ : coFrob →

coFrob ⊠c coFrob as follows:

(1) Form, n ≥ 1 andχ ≥ m+ n− 2 and of the same parity asm+ n, we set

coFrob(m,n, χ) = k. This corresponds to the uniquem to n Frobenius

algebra operation of “genus”χ−m−n
2 . For all other choices ofm, n, and

χ, coFrob(m,n, χ) = 0.
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(2) All the Sm andSn actions are trivial.

(3) The mapη is projection onto the factorcoFrob(1, 1, 0).

(4) The map∆ is more involved to describe, and will be done below.

We first examinecoFrob ⊠c coFrob. This consists of all connected two-level

trees labeled by elements ofcoFrob of the appropriate grading, up to equivalence.

Since the symmetric group actions are trivial, only the information of the number

of edges between two vertices is important in a two-level graph, but not the actual

combinatorics of how the flags are connected. Therefore, a two-level tree withm

inputs andn outputs marked with elements ofcoFrob up to equivalence consists

of:

(1) Partitions of{1, . . . ,m} and {1, . . . , n} into nonempty setsui and vj ,

whereui denotes the vertices on the first level andvj the vertices on the

second level. This is taken up to reordering of the vertices,with the in-

duced sign.

(2) For each pair(u, v) from V1 × V2, a nonnegative numbere(u, v) of edges

from u to v so that the total number of edgese(u) =
∑

v e(u, v) and

e(v) =
∑

u e(u, v) are positive.

(3) A weightχ for eachuwhich is of the same parity and at least|u|+e(u)−2,

and likewise forv.

Furthermore, the geometric realization of the graph must beconnected. Then the

decomposition map∆ takescoFrob(m,n, χ) ∼= k into the direct sum over such

two level graphs of a tensor product ofcoFrob(m′, n′, χ′). It is just the zero map

on any zero summand and a combinatorial factorηG times the canonical isomor-

phism ofk with k⊗i on the summand spanned by a graphG where each factor of

the tensor product isk. We define the combinatorial factorηG as the product over

pairs(u, v) of vertices fromV1 × V2 of 1
e(u,v)! .

Remark4.8. coFrob can be interpreted in some sense as the naive dual of the

Frobenius properad or as the Koszul dual of a commutative, rather than skew, ver-

sion of the involutive biLie properad. We thought it more expedient to define it

directly, rather than introduce an additional level of duality.

Proposition 4.9. The data(coFrob,∆, η) defines a coproperad.

Proof. We have to check coassociativity for∆, and the left and right counit prop-

erties forη. To see that∆ is coassociative, considercoFrob
⊠c3. This is the vector

space spanned by three-level graphs marked bycoFrob. Let edges between the

first and second level of vertices generate an equivalence relation on vertices; then



14 GABRIEL C. DRUMMOND-COLE, JOHN TERILLA, AND THOMAS TRADLER

let the equivalence classes be the top level of vertices of a new graph, with in-

coming flags the disjoint union of the incoming flags of the constituent vertices in

the upper level of the equivalence class and outgoing flags the disjoint union of the

outgoing flags of the constituent vertices in the lower levelof the equivalence class.

Let the grading of an equivalence class be the sum of the gradings of its member

vertices. Let the third level of vertices of the original graph be the bottom level of

vertices of this new graph; then the old (three level) graph is part of the image of

the new (two level) one under∆ ⊠c Id. If the original graph isG, call this graph

G12.

Given a vertex[v] in the first level ofG12, that is, an equivalence class of vertices

of G, we construct a two level graph marked bycoFrob denotedHv. Let the

vertices on the first and second levels ofHv be the vertices ofG in [v]; let the

incoming flags, the vertex weights, and the edges between thefirst and second

levels be induced by the corresponding data in[v]. Let the number of outgoing

flags be determined by[v]; however[v] does not induce a labelling, so choose an

arbitrary labelling for the outgoing vertices. Intuitively, Hv represents[v] as an

independent graph.

A similar construction can be performed for the second and third level of the

graphG and will yield a two-level graphG23 which has the old graph as part of its

image underId⊠c ∆. We similarly getHv for [v] in the second level vertex set of

G23.

BothG12 andG23 are part of the image under∆ of the graphG123 obtained from

the original by collapsing all of the vertices and internal edges to a single vertex.

Let πG denote the linear projection onto the one dimensional subspace spanned by

G. ThenπG(∆⊠c Id)◦∆[G123] is equal toπG(∆⊠cId)◦πG12 ◦∆[G123] because

no other two level graphs can yieldG under expansion of the vertices on the first

level. The cognate statment is true forG23.

So to show coassociativity, it is enough to show that for a marked three-level

graphG,

πG ◦ (∆ ⊠c Id) ◦ πG12 ◦ ∆[G123] = πG ◦ (Id⊠c ∆) ◦ πG23 ◦ ∆[G123].

No signs are introduced in either of the applications of∆, so in order for this

equality to be true, it is only necessary that the combinatorial factors agree. IfV12

is the vertex set of the first level ofG12, the level consisting of equivalence classes,

and likewiseV23, then the above equality is, at the level of combinatorial factors,

ηG12

∏

[v]∈V12

ρvηHv = ηG23

∏

[v]∈V23

ρvηHv
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where for[v] in V12, ηHv is the product 1
e(u,w)! for u,w in [v], andρv counts the

number of two-level graphs which are similar enough to the graphHv that the

projection of∆[v] on the summand spanned by them contributes to this projection

on theG-summand.

The product of theηHv over [v] in V12 is the product of 1
e(u,w)! over all pairs

of vertices from the first and second levels ofG; for pairs where the two vertices

come from different equivalence classes,e(u,w) must be zero, so the contribution

from such pairs is1. ηG12 is the product of 1
e([v],z)! for [v] in V12 andz in the third

level ofG, wheree([v], z) =
∑

w∈[v] e(w, z).

To see this equality, considerG12. Fix a labelling on the incoming flags of the

second level vertices. Then there is some finite numberρv of relabellings of the

outgoing flags ofHv which are compatible with the given labelling, in the sense

that if such relabellings are chosen for each[v], then connecting the relabelledHvs

along the identity permutation to the labelled incoming flags of the second level

vertices ofG12 yields a graph isomorphic toG as a three-level graph with vertices

marked bycoFrob.

To justify the notation, theρv must be independent of one another; this occurs

because distinct[v] correspond to distinct subsets of the incoming flags ofG so

that each incoming flag of the second level ofG12 must be connected to a unique

[v]. So the outgoing flags from each relabelledHv can be considered seperately,

meaning the equality is well-defined.

It remains to calculateρv. This counts the number of ways of relabelling the

outgoing flags ofHv to be consistent with the incoming flags of the third level

vertices ofG. By equivalence and by the trivial symmetric action on a vertexw in

the second level ofG in [v] ∈ V12, any relabelling is equivalent to one where the

order of the outgoing flags atw respects a fixed order of the third level vertices of

G.

Now consider a vertexz on the third level ofG and a vertex[v] ∈ V12. To be

consistent, a relabelling must associate the incoming flagsof z associated to[v]

to the specific outgoing flags of the constituentw determined by the order in the

previous paragraph. Two relabellings from[v] to z are equivalent if they differ only

by a permutation of the outgoing flags ofw. Also, if there is an isomorphism ofG

that interchangesw andw′, then two relabellings interchanging the labels of their

outgoing flags are equivalent.

Then we are counting partitions ofe([v], z) into pieces of sizee(w, z), up to

simultaneous relabelling of the partitions correspondingto w andw′ for all z if

there is an isomorphism ofG interchanging them. The number of ordered partitions
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is determined by a familiar combinatorial formula:

e([v], z)!∏
w∈[v] e(w, z)!

.

So the number of relabellingsρv is the product of these factors for allz divided

by permutations of second level vertices along isomorphisms ofG. Suppose the

vertices on the second level ofHv are divided into equivalence classesW1, . . . ,Wr,

wherew andw′ are in the same equivalence class if there is an isomorphism of G

interchanging them. Note that if there is an isomorphism interchanging any two

vertices on the second level ofG, then they must be in the same equivalence class

in V12 and inV23. Then we obtain

ρv =

∏
z e([v], z)!∏

w∈[v],z e(w, z)!
∏r

1 |Wi|!
.

Now the left hand side of the equality that will prove coassociativity is

∏

([v],z)

1

(e([v], z)!

∏

[v]

∏
z e([v], z)!∏

w∈[v],z e(w, z)!
∏r

1 |Wi|!

∏

u,w

1

e(u,w)!

=
∏

w,z

1

e(w, z)!

∏

u,w

1

e(u,w)!

∏

Wi

1

|Wi|!

where the products are taken over pairsw, z from the second and third levels of

G, pairsu,w from the first and second levels ofG, and all equivalence classes of

second level vertices ofG.

A similar calculation shows that the right hand side is the same, showing coas-

sociativity.

To see thatcoFrob is counital, note that one factor of the decomposition of

any elementx of coFrob is the two-level graph withx on top and only copies

of coFrob(1, 1, 0) on the bottom. Applyingid ⊠cη to this yieldsx. On the

other hand, any other factor of the decomposition will have something other than

coFrob(1, 1, 0) on the bottom, andid ⊠cη will yield 0. A similar argument applies

for the left counit property. �

4.3. The cobar construction. Next it is necessary to discuss the cobar construc-

tion, which begins with a coproperadC and generates a properadΩ(C); cf. [7,

section 4]. This properad is freely generated on the constituent spaces of the asso-

ciatedS-moduleC̄[−1], which in this context can be interpreted asCm,n,g/C1,1,0

with a shift in grading, putting all the generators in degreenegative one.

This free generation is under properadic composition and the symmetric group

actions (subject to the associativity and equivariance relations), as a properad of
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graded vector spaces. The decomposition maps∆k,g′

m′,n′ enter the picture in terms of

a differentiald onΩ(C)m,n,g which makes this into a properad of chain complexes.

A generic basis element of the free properad on anS-moduleV is a tree labelled

by elements ofV . So fixing an order on the vertices of the tree, and on the edges

connecting two vertices, it is a tensor product of elements fromV (m,n). Specify-

ing an element with homogeneous grading, it is a tensor product of elements from

V (m,n, χ). The differential acts on this space as a derivation, meaning that up to

sign, it is determined by its action onV itself:

d(v1 ⊗ · · · vk) = dv1 ⊗ · · · vk + · · · + (−1)|v1|+···+|vk−1|v1 ⊗ · · · dvk

The differential acts onV as a restriction of the decomposition map∆. Call ver-

tices in a graph labelled with the identity trivial vertices(in this case this is any

vertex withm = n = 1 andχ = 0). There is a quotient map onV ⊠c V which

kills any graph with more or fewer than two nontrivial vertices. Note that because

the grading of the identity map is even, we can also forget theordering on the

vertices on each level, as their permutation will not introduce a sign. The compo-

sition of this quotient with decomposition gives the actionof d on V in the cobar

construction. Coassociativity and the shift in the gradingguarantee thatd2 = 0.

4.4. The properad Ω(coFrob). Now we describe the properadΩ(coFrob). First,

without the differential, it is just the free properad on thereduced versioncoFrob,

i.e. an element of the(r, t, χ) piece is a connected properad composition of ele-

ments ofcoFrob of grading(ri, ti, χi) with total grading(r, t, χ) under the rules

for the composition.

The only relations, other than those of equivariance and associativity, are those

imposed byd. Thus, we need to determine howd acts onΩ(r, t, χ). Its image is

contained in two-level graphs with appropriate total grading and only one nontrivial

vertex on each level. Ther inputs andt outputs need to be divided between the two

non-trivial vertices. There needs to be some positive number of output flags from

the first vertex connected to input flags from the second. Finally, any remaining

grading must be shared between the two vertices. Therefore,we take a sum over

1 ≤ i ≤ r, 1 ≤ k ≤ 1
2(χ−m− n) + 2, k ≤ j ≤ t+ k− 1, i+ j ≤ χ1 ≤ χ− 2k,

(r, r − i) shufflesτ , (t, t − j) unshufflesσ, along withm, n, andχ2 which are

induced asi+m− k = r, j + n− k = t, χ1 + χ2 = χ. Using this sum, we have

d(1r,t,χ) =
∑ 1

k!
τ(1m,n,χ2 ⊗ 1i,j,χ1)σ

The bounds oni, j, k, χ1 ensure that all of the indices here have the appropriate

size. If χ1 or χ2 has the wrong parity then the term is zero. Since the order of
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the vertices on each level doesn’t matter and the symmetric actions are trivial, we

can fix a convention without introducing signs, namely that on the first level, all of

the trivial vertices precede the nontrivial vertex; on the second level the nontrivial

vertex precedes the trivial ones.

At this point it is convenient to regrade by “genus” instead of by “Euler charac-

teristic.” This means that we replace the gradingχ, which is at leastm + n − 2

and of the same parity asm + n with g = 1
2(χ + 2 −m − n), which is then just

nonnegative. With this regrading, properadic compositionof two vertices alongk

flags has degreek − 1 instead of0. Rewritingd with this grading we get

d(1r,t,g) =
∑ 1

k!
τ(1m,n,g2 ⊗ 1i,j,g1)σ

where1 ≤ k ≤ g + 1 and0 ≤ g1 ≤ g + 1 − k, while i, j, σ, andτ are taken over

the same range as before. Nowg1 + g2 + k − 1 = g.

4.5. Algebras overΩ(coFrob). We now state and prove our main theorem.

Theorem 4.10. There is a one to one correspondence between algebra structures

overΩ(coFrob) onV and elementsH of degree−1 inW (V ) such thatH⋆H = 0.

Proof. The properadΩ(coFrob) is quasifree, meaning that every relation among

two or more generators involvesd. These relations were summarized above. There-

fore the structure of aΩ(coFrob)-algebra onV is equivalent to a collection of

graded symmetric mapsϕr,t,g : TmV → T nV (with noϕ1,1,0) which satisfy the

relations above. We can definẽϕr,t,g : SrV → StV asϕ̃r,t,g := sϕr,t,gι, wheres

andι are the maps from section 2.

Because theϕr,t,g are symmetric, they can be recovered fromϕ̃r,t,g asϕr,t,g =

ιϕ̃r,t,gs. This can be seen as follows:

ιϕ̃r,t,gs(v̄) =
1

r!
(ιs)ϕr,t,g(

∑

σ∈Sr

σv̄) =
1

r!

∑

σ∈Sr

(ιs)ϕr,t,g(σv̄) = (ιs)ϕr,t,g(v̄)

Sinceσ applied toϕr,t,g(v̄) ∈ T tV is σϕr,t,g = ϕr,t,g, (ιs) is the identity on

ϕr,t,g(v̄).

Now let us examine the relations involved in aΩ(coFrob)-algebra. This is a

structure consisting of a degree−1 differential d and a collection of degree−1

mapsϕr,t,g : T rV → T tV along with a symmetry condition, which can be ex-

pressed by saying that they come from the symmetric mapsϕ̃r,t,g instead. These

maps are subject to coherence relations. All these relations involve onlyDϕr,t,g

and compositions of twoϕr,t,g indexed by a two-vertex tree withk edges between

the two vertices.
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D(ϕr,t,g) =
∑ 1

k!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ

But Dϕ(v̄) = d(ϕ(v̄)) + ϕ(dv̄), whered here is extended as a derivation(d ⊗

id⊗ · · · )± (id⊗d⊗ · · · )± · · · . This isd ◦1 ϕ+ϕ ◦1 d, so definingϕ1,1,0 = −d,

the relations are precisely
∑ 1

k!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ = 0.

Now, let (V, {ϕr,t,g}) be an algebra overΩ(coFrob). DefineH ∈ W (V ) as⊕ 1
t! ϕ̃r,t,g~

g. Then the~g part ofHom(SrV, StV ) in H ⋆H is
∑ 1

n!j!
ϕ̃m,n,g2 ◦k ϕ̃i,j,g1,

where the sum ranges overm+ i−k = r, n+ j−k = t, andg1 + g2 +k−1 = g.

If this is applied to[v̄], then its injective image underι is equal to
∑ 1

k!t!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ = 0.

This shows that aΩ(coFrob)-algebra defines an element of square zero in the

Weyl algebra. On the other hand, suppose that we have such an elementH of

square zero in the Weyl algebra of a graded vector spaceV . Then(H
1 (0)
1 )2 = 0,

so we can take it to be a differentiald onV . Then, by defininingϕr,t,g = n!H
t (g)
r ,

the reverse equality holds, namely,
∑ 1

k!
τ(ϕm,n,g2 ◦k ϕi,j,g1)σ = t!ι(

∑
Hn (g2)

m ◦k H
j (g1)
i )[v̄] = t!ιH ⋆H(v̄) = 0.

�

5. THE HOMOLOGY OF ALGEBRAS OVERΩ(coFrob)

The homology of a properad is again a properad and ifV is an algebra over

a properadP, thenHV is an algebra over the properadHP. To see this, recall

from Section 4.5 that an algebraV over a properadP is a collection of chain

maps satisfying equivariance and compatibility with composition fromP(m,n) to

Hom(TmV, T nV ). The induced maps on homology still satisfy equivariance and

compatibility, so that there is a properad morphism fromHP(m,n) toHHom(TmV, T nV ).

There is a natural isomorphismHHom(TmV, T nV ) → Hom(TmHV, T nHV ),

hence a properad morphismHP(m,n) → Hom(TmHV, T nHV ) affordingHV

with the structure of an algebra overHP.

For the properadΩ(coFrob), grading by genus one identifies symmetric gen-

eratorsµ ∈ Ω(coFrob)(2, 1, 0) and∆ ∈ Ω(coFrob)(1, 2, 0) which are closed

under the differential because their decomposition is trivial in coFrob. By general
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arguments on the cobar construction,µ and∆ can be seen not to be boundaries,

and therefore pass to nonzero classes[µ] and [∆] in homology. Considering the

boundaries of the generators in the(3, 1, 0), (1, 3, 0), (2, 2, 0), and(1, 1, 1) spaces

of Ω(coFrob) we see that in homology,[µ] satisfies the Jacobi relation

[µ] ◦1 [µ](1 + σ + σ2) = 0

or, rewritten withµ as a bracket, more familiarly, this is

[[a, b], c] + (−1)(|b|+|c|)|a|[[b, c], a] + (−1)(|a|+|b|)|c|[[c, a], b]]

[∆] satisfies the coJacobi relation

(1 + σ + σ2)[∆] ◦1 [∆] = 0

and[µ] and[∆] together satisfy the five term compatibility relation

[∆] ◦ [µ] + (1 + τ)[µ] ◦1 [∆](1 + τ) = 0

or, applied toa⊗ b,

[∆][a, b] + (−1)|a|([µ] ⊗ id)a⊗ [∆]b+ (−1)|a||b|+|b|([µ] ⊗ id)b⊗ [∆]a

+ (−1)|a||b|(id⊗[µ])b⊗ [∆]a+ (id⊗[µ])[∆]a⊗ b

and the involutivity relation

[µ] ◦ [∆] = 0

This shows that the homologyHV of aΩ(coFrob)-algebraV is a (commutative

as opposed to skew-commutative) involutive biLie algebra,but we have not argued

that our computation of the homology is complete. We conjecture that the homol-

ogy of the properadΩ(coFrob) is the involutive bi Lie properad, but at present we

do not have a proof—there remains the possibility that thereare additional nonzero

homology operations.

APPENDIX A. COMBINATORIAL FACTORS IN DETAIL

In this appendix, we collect some properties of symmetrization ι and projection

s, and using this, we relate the partial composition map for the tensor algebra with

the one for the symmetric algebra.

The first two lemmas concern the effect of symmetrization part of a vector in the

tensor algebra. The first asserts that the outcome of symmetrizing part of a vector

followed by symmetrizing the entire vector is the same as simply symmetrizing the

entire vector. It is straightforward to check and we omit theproof. The second

asserts that
(
k
ℓ

)
(sℓ ⊗ sk−ℓ)ι : SkV → SℓV ⊗ Sk−ℓV approximates a sum over

unshufflesS−1
k,ℓ, and

(
k
ℓ

)
s(ιℓ ⊗ ιk−ℓ) : SℓV ⊗ Sk−ℓV → SkV approximates a sum
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over shufflesSk,ℓ. It is also straightforward to check but we include the proofsince

it explains the combinatorial factors.

Lemma A.1. If ℓ ≤ k, sk(idk−ℓ ⊗(ιsℓ)) = sk

Definition A.2. Let µk,ℓ, νk,ℓ : T kV → T kV be given byv 7→
∑
σv, where the

sum is taken over unshufflesS−1
k,ℓ for µ and over shufflesSk,ℓ for ν.

The mapsµk,ℓ andνk,ℓ are defined in the tensor algebra, but by abuse of notation,

we useµk,ℓ andνk,ℓ to refer to the compositions
(
k
ℓ

)
(s⊗s)ι and

(
k
l

)
s(ι⊗ι) defined

in the symmetric algebra as well.

Lemma A.3. The following diagrams commute:

SkV

(k
ℓ)(s⊗s)ι

��

T kV

µk,ℓ

��

s
oo

SℓV ⊗ Sk−ℓV T kV
s⊗s

oo

SℓV ⊗ Sk−ℓV
ι⊗ι

//

(k
ℓ)s(ι⊗ι)

��

T kV

νk,ℓ

��

SkV ι
// T kV

Proof. Following the first diagram along the top and left gives
(
k

ℓ

)
(s⊗ s)ιs(v̄) =

1

ℓ!(k − ℓ)!
(s⊗ s)

∑

σ∈Sk

σv̄

=
1

ℓ!(k − ℓ)!
(s⊗ s)

∑

τ1∈Sℓ

∑

τ2∈Sk−ℓ

∑

ρ∈S
−1
k,ℓ

(τ1 × τ2)ρv̄

=
∑

ρ∈S
−1
k,ℓ

[v̄ℓ] ⊗ [v̄k−ℓ]

= (s⊗ s)(µk,ℓv̄).

Similarly, for the second diagram, we get
(
k

ℓ

)
ιs(ι⊗ ι)([ū] ⊗ [v̄]) =

1

ℓ!(k − ℓ)!

∑

ρ∈Sk,ℓ

∑

τ1∈Sℓ

∑

τ2∈Sk−ℓ

ρ((τ1ι[ū]) ⊗ (τ2ι[v̄]))

=
∑

ρ∈Sk,ℓ

ρ(ι⊗ ι)([ū] ⊗ [v̄])

= νk,ℓ(ι⊗ ι)([ū] ⊗ [v̄]).

�

Given maps between symmetric products ofV , one can precompose withs and

postcompose withι to obtain maps between tensor products ofV . The following
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proposition indicates the combinatorial factor introduced when comparing the re-

sult of the partial gluing prior to passing from symmetric totensor (the left hand

side) and the partial gluing after passing from symmetric totensor (the right hand

side).

Proposition A.4. Letf : SiV → SjV andg : SmV → SnV . Then

(j + n− k)!k!

n!j!
ι(g ◦k f)s =

∑

σ∈S
−1
i+m−k,i

τ∈Sj+n−k,j−k

τ((sgι) ◦k (sfι))σ

Proof. The proof is a commutative diagram. The composition along the righthand

side of the diagram below computes
∑

σ∈S
−1
i+m−k,i

τ∈Sj+n−k,j−k

τ((sgι) ◦k (sfι))σ,

the righthand side of the equality in the proposition. It will be shown that the

composition along the top, lefthand side, and bottom of the diagram computes the

lefthand side of the equality in the proposition.

Si+m−kV

(id⊗f)µi+m−k,m−k

��

T i+m−kV

(id⊗fs)µi+m−k,m−k

��

s
oo

Sm−kV ⊗ SjV

id⊗((s⊗s)ι)
��

Tm−kV ⊗ SjV
s⊗id

oo

id⊗ι

��

Sm−kV ⊗ SkV ⊗ Sj−kV

(s(ι⊗ι))⊗id

��

Tm−kV ⊗ SkV ⊗ Sj−kV
s⊗id⊗ id
oo

id⊗ι⊗ι **TTTTTTTTTTTTTTTT
T j+m−kV

id⊗s⊗s
oo

id
��

Sm−kV ⊗ T jV

ι⊗id

��

T j+m−kV
s⊗id

oo

s⊗id
��

SmV ⊗ Sj−kV

g⊗id
��

id⊗ι

00T j+m−kV
s⊗id

// SmV ⊗ T j−kV

(ιg)⊗id

��

SnV ⊗ Sj−kV

νj+n−k,n

��

ι⊗ι
// T j+n−kV

νn+j−k,n

��

Sn+j−kV ι
// T n+j−kV

First, we check commutativity. The square and triangle nearthe middle of the

diagram commute by Lemma A.1. The rectangles at the top and bottom commute
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by the construction of the shuffle and unshuffle maps. Everything else commutes

trivially. In order to see that the composition along the lefthand side computes
(j+n−k)!k!

n!j! f ◦k g, consider the following commutative diagram:

Si+m−kV

(id⊗ιfs)ι

��

Si+m−kV

(id⊗ιf)µi+m−k,m−k

��

(i+m−k

i )
oo

T j+m−kV
s⊗id

//

ιs⊗ιs⊗id

((PPPPPPPPPPPP

s⊗id

��

Sm−kV ⊗ T jV

ι⊗(ιs)⊗s

��

T j+m−kV

s⊗idwwnnnnnnnnnnnn

id⊗s
// TmV ⊗ Sj−kV

s⊗id
��

SmV ⊗ T j−kV
id⊗s

//

s(ιg⊗id)

��

SmV ⊗ Sj−kV

νj+n−k,n(g⊗id)

��

Sj+n−kV
(j+n−k

n )
// Sj+n−kV

The left side of this diagram isg ◦k f and the right hand side is the left hand side

of the previous diagram. Here everything commutes trivially except the triangle,

which commutes due to Lemma A.1. Since(
i+m− k

i

)(
j + n− k

n

)
=

(j + n− k)!k!

j!n!

(
i+m− k

i

)
j!

(j − k)!k!

this computes the left hand side of the equation in the proposition, completing the

proof. �
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