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ALGEBRAS OVER Q(coFrob)
GABRIEL C. DRUMMOND-COLE, JOHN TERILLA, AND THOMAS TRADLER

ABSTRACT. We show that a square zero, degree one eleme (i), the
Weyl algebra on a vector spabg is equivalent to providing” with the structure
of an algebra over the proper@{coFrob), the properad arising from the cobar
construction applied to the cofrobenius coproperad.
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1. INTRODUCTION

The main result in this paper is Theorem 4.10 which asseatstwo algebraic
structures defined on a vector spacare the same. One structure is defined by a
square zero, degree one elemenilig)’), the Weyl algebra of’. In the next few
paragraphs, we give an brief summary of the Weyl algebrayangive the precise
definitions and formulae with signs in Sections 2 and Sedioihe other struc-
ture is an algebra over the properattoFrob). Roughly speaking, properads and
coproperads are constructs that model composable and gesabie operations
to and from the tensor powers of a vector space. The mairergferis [7] and we

give a review of properads and coproperads, mostly to fitiootand conventions,
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in Section 4. In the same way that operads govern algebrhsweihy-to-one oper-
ations, properads and coproperads govern algebras witi-taanany operations,
such as Lie bialgebras, and are built to accomodate the éhiglnus” phenomena
which may arise from composing multiple outputs with muéimnputs, such as
the involutive relation possessed by certain Lie bialgebi@f particular interest
here are the relations organized by genus arising from thledhius compatibility
in Frobenius algebras. There is a simple coproperad, callfitob, determined
by the Frobenius relations, and we review it in Section 4.Ze SymbolS2 in
the expression(2(coFrob)” denotes a general construction called the cobar con-
struction, which assigns a properad to certain copropergédsreview the cobar
construction in Section 4.3.

Now, we present an overview of how we define the Weyl algebpaalground
field k of characteristic zero. Lét be a graded vector space ovlerlet S¥V be
the k-th symmetric product o/, let SV = 6920205’“1/ be the symmetric algebra
of V, and letSV = 172, S*V. Consider the[[A]] moduleHom(SV, W)[[h]].
There exists a star product

% : Hom(SV, SV)[[]] @4 Hom(SV, SV)|[[1]] — Hom(SV, SV)[[A]

which is an associative, noncommutative, degree zero mafj/df modules. We
let W (V) = (Hom(SV, 517)[[5]],*), and call it the Weyl algebfaof V. We
define the star product in a coordinate free way which is adoral from the point
of view of maps between tensor powers of vector spaces, bpawéor our choice
to be choice-free with combinatorial factors (banished ppéndix A) which are
used to align our definition with the familiar coordinatepdadent presentation
in common use since at least 1928 ([8]). Lemma 3.2 statesotiratlefinition is
equivalent to the traditional one.

The star product is determined by its values on pfigs€ Hom(SV, §X7) and
decomposes in powers bfby

frg=forg+hforg+hforg+--
We are interested in degree negative one elem@ntsiV (V) satisfyingH x H =
0. Any_elementH € W(V) inthe Weyl algebra comprises a collection of operators
(0(9))] : S'V — 89V, g,i,j > 0: decomposéH into piecesH = o (o) + fio(1y +
h20'(2) + -+ where eacty(y) : SV — SV and decompose each map, into

Iwe use the name “Weyl” since Hermann Weyl used a prototypénisfalgebra in his work
in quantum mechanics (see Chapter 2, section 11 of [8])padth the term “star product” was
introduced later [4]. The reader interested in the richdmisbf Weyl algebras and star products may
wish to consult [2], and the references therein.
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operators(o(,))? : S’V — $/V. The condition that/ + H = 0 summarizes an
infinite collection of relations among the ma@s@))g. In this paper, we make a
technical assumption off that (a(g))f = 0 if eitheri or j or both are zero in order
to avoid certain difficulties when we compakewith a properadic structure.

It is no surprise that degree one, square zero elements @fdlkalgebra make
up the data of an algebra over a properad. The work about wigchre report-
ing consists mostly of identifying the properad precisalyl working through the
signs and combinatorial factors. A motivation for the wosktlhat elements of
square zero in the Weyl algebra appear in a number of settitigsy figure promi-
nently in a mathematical interpretation of quantum fieldtiyehat grew from the
BV-quantization scheme [5]; and the deep compactificatipmng, and analysis
theorems and conjectures in symplectic geometry can be animed as a square
zero, degree one elemeHt in the Weyl algebra of a vector space defined by the
Reeb orbits of a contact manifold [3].

In the last section of the paper, Section 5, we verify thathitbmology of an
algebra ovef)(coFrob) is a (commutative) Lie bialgebra satisfying the involutive
relation. We conjecture that tli&(coFrob) properad gives a resolution of the Lie
bialgebra properad, but at present we do not have a proofgigtancomputations
show that ifQ(coFrob) is not a resolution of involutive biLie, one must look at
rather high Euler characteristic to find a nonzero homoldgys). One implication
of Section 5 is that from a degree one elemBnt W (V') with H x H = 0, one
obtains an associated homology theory which has the stauofia Lie bialgebra.
In the case of théd from symplectic field theory, the involutive Lie bialgebra i
homology is known to contact geometers [1], see also [6].

The authors would like to thank the referee for the helpfudgastions that
sharpened the exposition.

2. REVIEW OF SYMMETRIC AND TENSOR ALGEBRAS

In this section, we fix some basic notation that is used thHrougthis paper,
and define partial gluing operationg which are used in our definition of the Weyl
algebra. Some of the complexity in the next couple of sestamises from passing
between viewing the symmetric algebra agumtient of the tensor algebra and
viewing the symmetric algebra assabalgebraof the tensor algebra. When we
view SV as the free commutative algebra@nit is naturally obtained as a quotient
of the free algebrd’V'. In characteristic zera§V andT'V are also constructions
of the free cocommutative coalgebra and the free coalgabid,dn which case
SV naturally embeds ifi'V. The specifics follow, but the reader may wish to skim
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over the signs and combinatorics and jump to Figure 1 whigbsya picture of the
partial gluing operations;, used to define the Weyl algebra in Definition 3.1.

For any element in the graded vector spadg, let |v| denote the degree of
Let7™V andTV denote the corresponding tensor power and tensor algebfa of
The tensor product is denoted Byand the symmetric product by. The element
V1 ® - @ € TFV will be denoted byp.

If o isinS¥, the symmetric group ohletters, then let (o, 7) be the Koszul sign,
i.e. the sign of the permutation induced &#yn the odd entries af. Then there
is a leftS*-action onT*V defined as the linear extension®fv; ® --- ® vg) =
€(0,0)v,-1(1) ®+ - - ®Vs-1(). The image ob under the action of will be denoted
ov. The signe(¢,v) where¢ is the permutation which reverses the ordersof
appears occasionally; denote it py||. This sign depends only on the number of
odd entries ofy; if this number isO or 1 mod 4, the sign is positive; if it i or 3
the sign is negative. It also satisfiggi||)(||||)(||z ® 7||) = (—1)@I7.

A k, ¢ shuffles is an element o8, such that (1) < --- < o(¢) ando (£ +1) <
.-+ < o(k). Let the set of shuffles b, .. An unshuffle is an element @f,;%. If
7 is an unshuffle, then, andv;_, should be taken to mean the fifsand the last
k — ¢ factors ofr(v), respectively. The suppression o&hould not cause much
confusion. Any permutation i, can be factored uniquely as the composition of
ak, ¢ shuffle with a permutation fror§; ® S;_, and uniquely as the composition
of a permutation fron$, ® S;_, with ak, ¢ unshuffle.

The spaceS”V is defined as the quotient @V by the subspace spanned by
v — ov, wherev ranges ovefl*V ando ranges oveSy,. Let the symmetric class
of an element of TV be denotedv]; let s* : T*V — S*¥V denote the projection
v — [v]. Also, oweing to the fact that in characteristic zero, thgeblasTV
andSV are constructions of the free coalgebra and free commatetiglgebra on
V, one can embed”V in T*V via the symmetrization mag : SV — T+V
defined by

The superscripk in .* and s* will usually be suppressed. Observe thd] =
L3 [ov] = [v] andes(v) = & S ov. If v € TFV satisfiesrv = v forall o € S,
thenisv = v.

Using the above notation, we now define the partial gluing snapth on the
tensor algebrd’V and the symmetric algebi@.
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Definition 2.1. Fori, j, k,m,n > 0, there is gartial gluing mapo;, : Hom(T™V, T"V)®
Hom(T?V,T7V) — Hom(T™+ =V, T"+=FV) given by,

port = (p®id® %) o (id*"* wy)
and is depicted in the following figure.

m — 7
| | |
1] K
(EARARER I

J

k
|

m

FIGURE 1. Depiction of the partial gluing operatien where the
first k outputs ofyy are composed with the lagtinputs ofy

There is also an induceplartial composition mapby abuse of notation also
denotedby, : Hom(S™V, S"V)@Hom(SV, S7V) — Hom(S™Hi—ky, §nti—Fy)

defined by _ _
gouf= ("1 (1) st ex o

1
The reason for the choice of combinatorial factors in thiiniteon is due to the
property exhibited in Proposition A.4 of appendix A.

Remark2.2 By convention,id®’ = 0 when/ < 0, so that the partial gluing map
ok is zero wherk > mork > j.

Remark2.3. Note that the definition of o, f for mapsg : S™V — S™V and
f: SV — SIV extends to all offom(SV, SV) since there are only finitely
many contributions tey,.

3. THE WEYL ALGEBRA

In this section we define the Weyl algebra of a vector spaceer a fieldk. The
coordinate free definition that we give will b&##]] algebra oHom (SV, SV)[[A]].

Definition 3.1. We define thé\Veyl algebra ol to be thek[[#]] algebra(1W (V'), *)
where

W (V) = Hom(SV, SV)[[H]]
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and
* W(V) ®k[[ﬁ” W(V) — W(V)
is defined forf, g € Hom(SV, SV) by

g*f:900f+(901f)ﬁ+(902f)h2_|_...

One frequently encounters thigproduct for a finite dimensional vector spdce
and “in coordinates.” Traditionally, elementséfare denoted by’s and elements
of its dual spacd™* = Hom(V, k) are denoted by’s (position and momentum).
If {g¢} is a homogeneous basis for with dual basis{p‘} of V*, elements of
Hom(SV, SV) are power series in the’’s and theg,’s. Mapsf : S’V — SiV
andg : S™V — S™V are expressed in a standard form with all gfeeon the right
(1) f=Y Ffop andg = ghap™
Here, j, i, m, andn are multi-indices, and we will use the same notational con-
ventions that we do for tensor producfg:and;;_; denote the multi-indices con-
sisting of the firstt indices of;j and the last — & indices ofj respectively, and
#(7) will be the reverse ofi. We distinguish vectors in the tensor algebra from
the symmetric algebra by using a tensor symbol in the sutisdfj for example,
j=(5,2,8), thenqj =g O0gpoqg eSSV andq®3 =q;s®q®qg € TV. The
symbolég is zero unless = 7, in which caseS% =1.

The functionf in Equation (1) for instance mapg = [q.;] to

> €0 k)% 1 lag;]

oSy,
Note that they's act in “reverse” order, which gives the standard signsminens-
lated to a tensor algebra context for a graded vector spachér words,

f=if lags ™

Lemma 3.2. The producty x f is the free product on the formal power series in
the variables{q,, p’} subject to the relations

0’ q0] = plaw — (—1)Pllewlgupt = naf,
', "] = lae, qe] = 0.
Remark3.3. The significance of thg-¢ description of the Weyl algebra is that the
symplectic nature of the situation is illuminatddom(SV, §V) can be viewed as
(a completion of) the polynomial functions on the sympleggctor spac® ¢ V™.

As usual, the set of such functions forms a Poisson algebriel notation of this
paper, f oy g defines a graded commutative associative product and thssdPoi
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bracket{ f, g} has the expressiofif,g} = f o, g — (—1)lfllslg o, f. The star
product corresponds to a deformation quantization of thisgen algebra. We
have the expected relations; e f, g} = limy_ w.

In the rest of this section concerns the proof of Lemma 3.4chvastablishes
the coincidence of our coordinate free definition1®f(17) with the coordinate
dependent description in terms of generators and relatiohieh may be familiar
to the reader (who is invited to skip the proof and move on wiSe 4).

Proof of lemma 3.2We want to show that th&* term of g f using the above com-
mutation relations ig o f. Using the relations to put the result gf back in
standard form withp’s on the right is a process that involves commuting all the
p™'sin g with theg;’s in f. Asp™ is moved to the right, each occurenceptfq;

is replaced by the two termgp™ andhd?". We need to show that the signs and
combinatorial factors are correct.

Moving a variablep™ to the right as far as possible involves the sum of moving it
past all they; with replacing it with%id" as it passes eaef. This process induces
a recursive sequence of choices, for eg¢h of moving all the way to the end or
replacing with am4?* on one of the remaining;. A term with anhk” coefficient
will come from the choice ofm| — k of the p™ to move all the way to the end,
with the remaining: of the p™ interacting with some;. This further involves the
choice ofk of the¢; and a permutation &, to govern which of thé p™ interacts
with which of thek choseny;. Then thefi* term of the producy f, put in standard
form, is the following sum oves € S~} T €S;;,andp € Sy

m,m—k>
YO gag, P
The signs will be reconciled at the end of the argument.

Let us evaluate the above expression[@g;] € S™**i. First, ¢g is sym-
metrized, and thep®™~—* is evaluated on the firsh — k factors of each sum-
mand of the symmetrization whilﬁg’f is evaluated on the following factors of
each summand. Using the unique representation of a pefowias,,, ;. ; as the
composition of an element &,,_; x S; with an(m — k + ¢,m — k)-unshuffle,
9f([gxs)) is the following sum overr € S;l_k%m_k, N E Spm_k, 0 €8S;, and
o, T, p as before:

Z 65:32 S 85, [den ® o5,

Now, let us evaluatg o, f applied to the same elemédnt,;|. By definition,

m+i—k j ) _ -
gor f= < ; > <2>m!z!8(bsq®ﬁp®mw) Ok (qu®3p®’Ls)L
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To apply this tdggs], we begin by symmetrizingy;. Again, it is more convenient
to view this as an unshuffle followed by a product of permotaifromsS,,,_, and
S;. So we write

Z d@no, 1, & 420v;

Next the second factor is resymmetrized, which has no effiecke it is already
symmetric, and themsq,,;p®" is applied to it, yielding

1
tqes] = m

151 .
ﬁ Z €05, domp -, @ 150z
We view each summand permutation in the symmetrization, afgain, as the
composition of product permutations with(g k)-unshuffle. We will sum over
p € S; and(j, k)-unshufflesr, but incorporate th&;_; permutations with and
s. Sothisis
(j — k)!

jlim —k+1)
Applying ¢s to symmetrize the first two factors corresponds to first syirizieg
each one individually and then shuffling them with @n, m — k)-shuffle s—!
Since they are both already symmetric, this gives

G I m— B
i m — k) 2 0007 donon s © dops) @ 1505, ,

Z 5911 ANV & 205k X qu®j

Applying t5qe7p®™ to the first factor gives
(j — k)(m — k)k! :
m!jl(m —k +1i)! (Z’UI o k@i 5000 O L345,
(G k) m — k)l -
- m'j m k _|_ Z 59Uz NV — kép]k L5q4en ® qu@ﬁjfk

By Lemma A.1, symmetrizing this whole expression meanswulgatan ignore the
symmetrizations on andyj;_. Including the combinatorial factdf™*'~*) (1) m!i!,
we obtain

Z €0po; 5;%2 125:;% [9enwj;_.]
just as before.

Finally, we check equality of the signs:(r, v), (1, Upm_r), €(0,7;), €(7,7),
e(p, jx), and the sigre(o,m) are all on both the right and left-hand side. On the
left side, there are also the sigfs1)li—#lmm—kl |||, and||7]|,
commuting the noninteracting; andp™ past one another and the second and third
the induced sign of applying a tensor producp'sfto a tensor product afs. These
are not literally the correct signs, but they coincide wivenehe corresponding
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functions are nonzero. On the right, there are the sjgfjsand||/m|| for the same
reason, along with the sigh-1)!//"=-«I from applying f to the tensor factors on
the right. Expanding either side with the relations

T | ||77]] ||| | = (= 1)kl

il 2] [[Bm—k]| = (=1)"lPm =k
along with noting thatmy| = |jk|, |Mm—r| = |om—k|, and|y;| = |i| when the
corresponding functions are nonzero yields the equality of the two signs. [J

4. PROPERADS AND COPROPERADS

The main reference for this section is [7]. A properad is,gidy an alge-
braic structure that models composable operations to @md fhe tensor powers
of a vector space. In the same way that operads govern geiifasny many to
one operations, properads govern gebras with many to magratigns, such as
Frobenius and biLie algebras. The dual notion of a propesaddoproperad, and
there are a number of ways to obtain a coproperad from a gragemd, and vice
versa. The most naive uses finite dimensional pieces of eepadpand dualizes
each piece individually. Starting from the propemdthis yields the coproperad
coP. A more conceptually elegant method of dualization is thedvacobar con-
struction. The main result of this paper, again, is thatelegne elements of square
zero in the Weyl algebr@l’ (1), as discussed in the previous section, are in one to
one correspondence wift(coFrob)-algebra structures ow.

To describe algebras ové€l(coFrob), we first define the Frobenius coprop-
eradcoFrob, then the cobar construction, and give a presentation qgfribygerad
Q(coFrob). Finally, we will define algebras over a properad and obtaérela-
tions on an algebra over the particular properad in question

4.1. Preliminaries; notation. We now recall the notions of properad and coprop-
erad, and algebras over properads, cf. [7].

Definition 4.1. A finite n-level directed grapldZ consists of a tripl€{V;}, { F, }, {¢i }),
given by the following data:

(1) A finite ordered seV; of vertices on levet, fori € {0,...,n 4+ 1}. V}
andV,, . are called the incoming and outgoing vertices of the gr@ph
respectively.

(2) Foreach vertex € |JV;,, two finite sets!" and F°" of directed incoming
and outgoing half-edges incidentatwith || = 0 and|F°Y| = 1 for
v € Vo, and|E" = 1 and|F® = 0 for v € V, ;. We denote by
F, = F"U F%the disjoint unit of the incoming and outgoing half-edges.
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(3) Fori € {0,...,n}, abijection
©; U Fout U F:)n
veV; vEVit1

that joins outgoing half-edges of one level and incomind-edbes of the
next. o and,, reorder the overall incoming and outgoing edges of the
graph.

FIGURE 2. A finite 3-level directed graph

Two graphs({V;}, {F }, {¢:}) and({U; }, {G.}, {;}) are equivalent if there are
order-preserving bijections on the vertices on each lendlldjections of the in-
coming and outgoing-half-edges which respect the joinifgctions o andy. A
L, R |labelling of a graph is a pair of bijections from the £eto the incoming level
one half-edges, and a bijection from the outgoing levbhlf-edges to the.

The set of finiten-level directed graphs up to equivalence is denotet’By.

Definition 4.2. The geometric realizatiorof a graph({V;},{F,},{y:}) is the
topological space, defined as the quotient of the disjoirdrun

( ey v *v) L ( Hyey, F, If>,
wherex, denotes a one point space ahdienotes a copy of the unit interval 1],
divided by the equivalence relation generated by
(1) Of ~ =, if f € F,.
(2) 14, ~ 14, if @;(f1) = fo for somei.
G is calledconnectedf its geometric realization is connected. The set of finite

connectecdh-level directed graphs withincoming and’ outgoing edges is denoted
@\ (k,0), and let@™) = Ly, , G (k, 0).
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An S-bimodulein the category of graded vector spaces (chain complexes) co
sists of a set of graded vector spaces (chain compleg{eg), n)} for m,n > 0
with commuting leftS,,, and rightS,, actions. The category @&-bimodules is
denoted by#'. There is a functor

X.:x€ — %€
which acts on twd-bimodulesP and( by taking

PR.QO = B @ PIFMLIEN) @ @ QUEM,IER) / ~,
g‘;@)(k‘,f) veVs veVy
where| X | denotes the number of elements of a finite Xetand the equivalence
relation consists of the following two parts. For one, wddkvout by

(® pi ® ® Qj){{Vi},{Fv},{eoo,sﬂl,w}}

~ (@ oipipi ® Q) i) (i} R} Lo T DT (T o0 (TTo)ea
This construction does not have the approprixtamodule structure, so we must

tensor oveq [y, Syou With [y, S,in @and similarly with the incoming. The other
equivariance relation is

(® pi ® ® Qj){{Vi},{Fv},{eoo,sﬂl,w}}

~ (0_1 <®Pz) T (® qJ')){{%}7{F1»}7{7*1¢o,a¢1T,¢20’1}}

where the action of ando in the compositions with the should be taken as
acting on blocks of size equal to the number of outputs ortspfip; or ¢; as
appropriate. The actions on thgandg; themselves have signs as usual.

In words, P X, Q(k, ¢) consists of connected two-level graphs with elements of
Q labelling the vertices on the first level and elementd’dabelling the vertices
on the second level. The labelling elements should be chfyeem the pieces
P(K',¢) so thatk’ is the number of incoming flags at the vertex d@hthe number
of outgoing flags.

Definition 4.3. Let I be theS-bimodule which hag(1,1,0) = kandI(n,m,x) =
0 otherwise.

The functoriX,., along with the identity objeck, makess” a monoidal category.
This means that there is a natural transformation exprgs$saassociativity ok,
and two more expressing thais a left and right identity folX...

Definition 4.4. A properadP is a monoid in the category’. This data comprises
two morphisms:
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(1) A composition morphism, : P X. P — P, and

(2) A unit morphism : I — P.
Composition must satisfy associativity up to the naturahsformation for asso-
ciativity of X. as well as left and right unit properties (e.g.¢ (¢ X id) ~ id via
the natural transformation betweéi P andP).

Definition 4.5. A coproperadC is a comonoid in the categofg. This data again
comprises two morphisms:

(1) A decomposition morphism : C — C KX, C, and

(2) A counit morphismy : C — 1.
Decomposition must satisfy coassociativity (up to the rattransformation for
associativity ofx.) as well as left and right counit properties dual to the urfp
erties.

Example 4.6. If (V,d) is a chain complex (whit differential of degredl = 1),
thenT*V has the induced structure of a chain complex whkfe = dv; ® vs ®
QU '—|—(—1)‘U1|+m+|vi’1‘2}1®' QU1 Qdu; @ - -Qup+- -+ If (V,d) and
(V',d') are chain complexes, théfom(V, V') has the induced structure of a chain
complex with differentialf — d'f — (—1)//1 fd. Thus, if(V, d) is a chain complex,
thenEnd(V)(m,n) := (Hom(T™V,T"V), D) is a chain complex, wher® is
the induced differential. There are commuting I8ft and rightS,, actions and
the obvious composition maps, Bmd (V) is a properad. Note that in the graded
context, the symmetric actions respect the grading, sofibraexampleio(v) =
(o).

Definition 4.7. By definition, (V, d) has the structure of aagebraover the prop-
erad of chain complexeB, if there is a properad morphisf — End(V').

Explicitly, this means that there are degree zero nps, n) — Hom(T™V,T"V)
which are equivariant with respect to both thg andS,,-actions, and such that
composition inP corresponds to actual composition of maps between tenser po
ers of V. Furthermore, the differentialin P(m, n) corresponds to the differential
D in the Hom complex.

4.2. The coFrob coproperad. We define an objec{coFrob(m,n,x)} in the
category% of S bimodules and morphisms: coFrob — I andA : coFrob —
coFrob K. coFrob as follows:

(1) Form,n > 1 andyx > m + n — 2 and of the same parity as + n, we set
coFrob(m,n, x) = k. This corresponds to the unique to » Frobenius
algebra operation of “genus*—5—=. For all other choices o, n, and
X, coFrob(m,n, x) = 0.
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(2) AlltheS,, andS,, actions are trivial.
(3) The map is projection onto the factaroFrob(1, 1,0).
(4) The mapA is more involved to describe, and will be done below.

We first examinecoFrob X, coFrob. This consists of all connected two-level
trees labeled by elements @fFrob of the appropriate grading, up to equivalence.
Since the symmetric group actions are trivial, only the infation of the number
of edges between two vertices is important in a two-leveplyréut not the actual
combinatorics of how the flags are connected. Thereforepddwel tree withm
inputs andn outputs marked with elements aFrob up to equivalence consists
of:

(1) Partitions of{1,...,m} and{1,...,n} into nonempty sets;; and v;,
whereu; denotes the vertices on the first level andhe vertices on the
second level. This is taken up to reordering of the vertigad) the in-
duced sign.

(2) For each paiftu,v) from V; x V3, a nonnegative numbe(u, v) of edges
from v to v so that the total number of edgesu) = >, e(u,v) and
e(v) =), e(u,v) are positive.

(3) Aweighty for eachu which is of the same parity and at le@st+e(u)—2,
and likewise for.

Furthermore, the geometric realization of the graph mustdmmected. Then the
decomposition mag\ takescoFrob(m,n, x) = k into the direct sum over such
two level graphs of a tensor product@fFrob(m/,n’, x’). It is just the zero map
on any zero summand and a combinatorial fagipitimes the canonical isomor-
phism of & with k7 on the summand spanned by a graphvhere each factor of
the tensor product is. We define the combinatorial factgg; as the product over
pairs (u, v) of vertices fromV; x V5 of —L+

e(u,v)!"

Remark4.8 coFrob can be interpreted in some sense as the naive dual of the
Frobenius properad or as the Koszul dual of a commutatitleerahan skew, ver-
sion of the involutive biLie properad. We thought it more edjent to define it
directly, rather than introduce an additional level of dyal

Proposition 4.9. The data(coFrob, A, n) defines a coproperad.

Proof. We have to check coassociativity far, and the left and right counit prop-
erties forn. To see that\ is coassociative, considesFrob™e>. This is the vector
space spanned by three-level graphs markedolfirob. Let edges between the
first and second level of vertices generate an equivalenatore on vertices; then
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let the equivalence classes be the top level of vertices adva graph, with in-
coming flags the disjoint union of the incoming flags of thestitnent vertices in
the upper level of the equivalence class and outgoing flagdi#ijoint union of the
outgoing flags of the constituent vertices in the lower I®f¢he equivalence class.
Let the grading of an equivalence class be the sum of therggadif its member
vertices. Let the third level of vertices of the original gihabe the bottom level of
vertices of this new graph; then the old (three level) grappairt of the image of
the new (two level) one undek X, Id. If the original graph ig~, call this graph
Gia.

Given a verteXv] in the first level ofGG12, that is, an equivalence class of vertices
of GG, we construct a two level graph marked &yFrob denotedH,. Let the
vertices on the first and second levels#f be the vertices of7 in [v]; let the
incoming flags, the vertex weights, and the edges betweefirtheand second
levels be induced by the corresponding datawin Let the number of outgoing
flags be determined bly|; however[v] does not induce a labelling, so choose an
arbitrary labelling for the outgoing vertices. IntuitiyelH, representgv] as an
independent graph.

A similar construction can be performed for the second aird thvel of the
graphG and will yield a two-level grapliz23 which has the old graph as part of its
image underd d X. A. We similarly getH,, for [v] in the second level vertex set of
Gas.

Both G135 andG43 are part of the image undér of the graph=123 obtained from
the original by collapsing all of the vertices and interndgjes to a single vertex.
Let 7 denote the linear projection onto the one dimensional sadgesppanned by
G. Thenmg (AR, Id) o A[G123] is equal torg(AK cld)omg,, o A[G123] because
no other two level graphs can yietd under expansion of the vertices on the first
level. The cognate statment is true t&ss.

So to show coassociativity, it is enough to show that for akeduthree-level
graphG,

YeRs (A &c Id) O TG4 © A[Glgg] = TG o (Id gc A) O TTGy3 © A[Glgg].

No signs are introduced in either of the applicationsAqgfso in order for this
equality to be true, it is only necessary that the combinatéactors agree. 1775

is the vertex set of the first level 6,5, the level consisting of equivalence classes,
and likewiselss, then the above equality is, at the level of combinatorieldes,

NGz H PvH, = NGa3 H PvTH,
[v]€Via [v]eVas



ALGEBRAS OVERQ(coFrob) 15

where for[v] in Vig, ng, is the productm for u,w in [v], andp, counts the
number of two-level graphs which are similar enough to thephrH, that the
projection of A[v] on the summand spanned by them contributes to this profectio
on theG-summand.

The product of thejy, over [v] in Vs is the product ofm over all pairs
of vertices from the first and second levels@f for pairs where the two vertices
come from different equivalence classe&;, w) must be zero, so the contribution
from such pairs id. nq,, is the product ofm for [v] in V15 andz in the third
level of G, wheree([v], z) = 3, ¢, €(w, 2).

To see this equality, considét,,. Fix a labelling on the incoming flags of the
second level vertices. Then there is some finite numahesf relabellings of the
outgoing flags ofH,, which are compatible with the given labelling, in the sense
that if such relabellings are chosen for e&ghthen connecting the relabelléd,s
along the identity permutation to the labelled incoming $ladl the second level
vertices of(z1, yields a graph isomorphic 1@ as a three-level graph with vertices
marked bycoFrob.

To justify the notation, the, must be independent of one another; this occurs
because distinclw] correspond to distinct subsets of the incoming flags:afo
that each incoming flag of the second levelf, must be connected to a unique
[v]. So the outgoing flags from each relabellEd can be considered seperately,
meaning the equality is well-defined.

It remains to calculate,. This counts the number of ways of relabelling the
outgoing flags ofH, to be consistent with the incoming flags of the third level
vertices ofGG. By equivalence and by the trivial symmetric action on aesett in
the second level off in [v] € V39, any relabelling is equivalent to one where the
order of the outgoing flags at respects a fixed order of the third level vertices of
G.

Now consider a vertex on the third level ofG and a verteXv] € Vi2. To be
consistent, a relabelling must associate the incoming figsassociated tgv]
to the specific outgoing flags of the constituentletermined by the order in the
previous paragraph. Two relabellings fromto z are equivalent if they differ only
by a permutation of the outgoing flagsf Also, if there is an isomorphism @
that interchanges andw’, then two relabellings interchanging the labels of their
outgoing flags are equivalent.

Then we are counting partitions ef[v], z) into pieces of sizex(w, z), up to
simultaneous relabelling of the partitions correspondimgy andw’ for all z if
there is an isomorphism &f interchanging them. The number of ordered partitions
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is determined by a familiar combinatorial formula:

e([v], 2)!
[Toep e(w, 2)! )

So the number of relabellings, is the product of these factors for alldivided
by permutations of second level vertices along isomorpsisiiG. Suppose the
vertices on the second level B, are divided into equivalence classés, ..., W,
wherew andw’ are in the same equivalence class if there is an isomorpHiséh o
interchanging them. Note that if there is an isomorphisrargtianging any two
vertices on the second level 6f then they must be in the same equivalence class
in V15 and inV43. Then we obtain

R | (5 I

[Luep),- e(w, ) TT7 [Wil!

Now the left hand side of the equality that will prove coasstdty is

([v], 2)! 1
11 (6([’0 'HH e(w Z)'H1!W!' w €(u,w)!

([v),2) " )
1 1
- g e(w,z)! g e(u,w)! lm_/[ [W|!

where the products are taken over pairs: from the second and third levels of
G, pairsu, w from the first and second levels 6f and all equivalence classes of
second level vertices af.

A similar calculation shows that the right hand side is th@eashowing coas-
sociativity.

To see thatoFrob is counital, note that one factor of the decomposition of
any elementr of coFrob is the two-level graph with: on top and only copies
of coFrob(1,1,0) on the bottom. Applyingid X.n to this yieldsz. On the
other hand, any other factor of the decomposition will hawaathing other than
coFrob(1,1,0) on the bottom, anil X.ny will yield 0. A similar argument applies
for the left counit property. a

4.3. The cobar construction. Next it is necessary to discuss the cobar construc-
tion, which begins with a coproperad and generates a proper&@{C); cf. [7,
section 4]. This properad is freely generated on the camstitspaces of the asso-
ciatedS-moduleC[—1], which in this context can be interpreted@s, ,, ,/C1.1.0
with a shift in grading, putting all the generators in degnegative one.

This free generation is under properadic composition aadsytmmetric group
actions (subject to the associativity and equivariancaticels), as a properad of
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graded vector spaces. The decomposition m{p%n enter the picture in terms of

adifferentiald on§2(C),, »,, Which makes this into a properad of chain complexes.
A generic basis element of the free properad oS8-amoduleV is a tree labelled

by elements ol/. So fixing an order on the vertices of the tree, and on the edges

connecting two vertices, it is a tensor product of elememsfi/ (m, n). Specify-

ing an element with homogeneous grading, it is a tensor gtaafielements from

V(m,n, x). The differential acts on this space as a derivation, megthiat up to

sign, it is determined by its action dn itself:

d('Ul ® - Uk) — d'Ul ® c Vg _|_ - _|_ (_1)|v1|+"'+|vk71|vl ® - dvk

The differential acts o as a restriction of the decomposition map Call ver-
tices in a graph labelled with the identity trivial vertic@s this case this is any
vertex withm = n = 1 andx = 0). There is a quotient map dri X. V' which
kills any graph with more or fewer than two nontrivial vedsc Note that because
the grading of the identity map is even, we can also forgetottoering on the
vertices on each level, as their permutation will not introgl a sign. The compo-
sition of this quotient with decomposition gives the actand on V' in the cobar
construction. Coassociativity and the shift in the gradjongrantee that? = 0.

4.4. The properad Q(coFrob). Now we describe the proper&t{coFrob). First,
without the differential, it is just the free properad on teduced versionoFrob,

i.e. an element of thér, ¢, x) piece is a connected properad composition of ele-
ments ofcoFrob of grading(r;, t;, x;) with total grading(r, ¢, x) under the rules
for the composition.

The only relations, other than those of equivariance andcésvity, are those
imposed byd. Thus, we need to determine hainacts onQ(r, t, x). Its image is
contained in two-level graphs with appropriate total gngcand only one nontrivial
vertex on each level. Theinputs and outputs need to be divided between the two
non-trivial vertices. There needs to be some positive hurabeutput flags from
the first vertex connected to input flags from the second. lligjreny remaining
grading must be shared between the two vertices. Theref@éake a sum over
1<i<r1<k<g(x—-m-n)+2,k<j<t+k—1i+j<x1 <x-—2k,
(r,r — i) shufflest, (¢,t — j) unshuffless, along withm, n, and s which are
inducedas +m —k=r,j+n—k=t,x1+ x2 = x. Using this sum, we have

1
d(Lytx) = Z HT(lm,mm ® Lijx)o

The bounds on, j, k, x1 ensure that all of the indices here have the appropriate
size. If x1 or x2 has the wrong parity then the term is zero. Since the order of
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the vertices on each level doesn’'t matter and the symmeaetiiiore are trivial, we
can fix a convention without introducing signs, namely thatlee first level, all of
the trivial vertices precede the nontrivial vertex; on teemd level the nontrivial
vertex precedes the trivial ones.

At this point it is convenient to regrade by “genus” instedtbp“Euler charac-
teristic.” This means that we replace the gradingvhich is at leasin + n — 2
and of the same parity a8 + n with g = %(x + 2 — m — n), which is then just
nonnegative. With this regrading, properadic compositibtwo vertices along:
flags has degrek — 1 instead of0. Rewritingd with this grading we get

1
d(lr’t’g) = Z ET(lmJng? ® ]'iijgl)o-

wherel < k<g+1land0 < ¢ < g+ 1—k,whiled, j, o, andr are taken over
the same range as before. Now+ g2 + & — 1 = g.

4.5. Algebras over()(coFrob). We now state and prove our main theorem.

Theorem 4.10. There is a one to one correspondence between algebra stesctu
overQ)(coFrob) onV and element#l of degree-1in W (V') suchthatdixH = 0.

Proof. The properad2(coFrob) is quasifree, meaning that every relation among
two or more generators involves These relations were summarized above. There-
fore the structure of &(coFrob)-algebra onV is equivalent to a collection of
graded symmetric maps,;, : 7™V — T"V (with no ¢1,1,0) which satisfy the
relations above. We can defigig, , : S™V — S'V as@,.; 4 1= spr. 4, Wheres
and. are the maps from section 2.

Because the,; , are symmetric, they can be recovered frgm , asy, ¢, =
Lpr.t,g5- This can be seen as follows:

LPrt,g8(V) = %(Ls)wr,t,g(z ov) = % Z (18)@rt,g(00) = (18)Pr14(V)

ocs, oESy
Sinceo applied top,;4(v) € T'V is 0ty = @reg (ts) is the identity on
‘Pr,ug(@)-

Now let us examine the relations involved ifdcoFrob)-algebra. This is a
structure consisting of a degreel differential d and a collection of degree 1
mapse,., : TV — T'V along with a symmetry condition, which can be ex-
pressed by saying that they come from the symmetric nfapg instead. These
maps are subject to coherence relations. All these refatimmlve only Dy, ; 4
and compositions of twe, ; , indexed by a two-vertex tree withedges between
the two vertices.
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D(orig) = Z %T(‘Pm,n,gQ Ok i jg1 )0
But Dp(v) = d(¢(v)) + ¢(dv), whered here is extended as a derivatioh @
d®--- )+ (d®d®---)£---. Thisisd o ¢ + ¢ o1 d, so definingp; 10 = —d,
the relations are precisely

1
Z ET((pmﬂqﬂgQ Ok Clpimj’gl)o- = 0'

Now, let (V,{¢,+4}) be an algebra oveR(coFrob). DefineH € W (V) as
@D %1 gh?. Then theh? part of Hom(S"V, S'V) in H « H is

1 . -
Z n!j!(pmvnng Ok Spivjvgl7

where the sumrangesover+i—k =r,n+j—k=t,andg; +go+k—1=g.
If this is applied to[o], then its injective image undeiis equal to

1
> T Pmn Ok i) =0

This shows that &)(coFrob)-algebra defines an element of square zero in the
Weyl algebra. On the other hand, suppose that we have suclemerd [ of
square zero in the Weyl algebra of a graded vector spfac*éhen(Hl1 (0))2 =0,

so we can take it to be a differentidlon V. Then, by defininingp,.; , = n!Hﬁ (9),

the reverse equality holds, namely,

1 .
Z ET(‘pmﬂ%gz Ok i jg1)T = t!L(Z H™(92) o, H (gl))[i] =thH % H(v) = 0.
O

5. THE HOMOLOGY OF ALGEBRAS OVER()(coFrob)

The homology of a properad is again a properad arid i§ an algebra over
a properadP, then HV is an algebra over the proper&P. To see this, recall
from Section 4.5 that an algebfid over a properad is a collection of chain
maps satisfying equivariance and compatibility with cosifion fromP (m,n) to
Hom(T™V,T"V). The induced maps on homology still satisfy equivarianag an
compatibility, so that there is a properad morphism fldR (m, n) to H Hom(T™V,T"V).
There is a natural isomorphistd Hom (T V,T"V) — Hom(T™HV,T"HV),
hence a properad morphisfP (m,n) — Hom(T™HV,T"HV) affording HV
with the structure of an algebra ovErP.

For the properad(coFrob), grading by genus one identifies symmetric gen-
eratorsy € (coFrob)(2,1,0) andA € Q(coFrob)(1,2,0) which are closed
under the differential because their decomposition igdrim coFrob. By general
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arguments on the cobar constructipgnand A can be seen not to be boundaries,
and therefore pass to nonzero clasggsand [A] in homology. Considering the
boundaries of the generators in tt%1,0), (1,3,0), (2,2,0), and(1, 1, 1) spaces
of Q(coFrob) we see that in homology| satisfies the Jacobi relation

] o1 [W](1+ 0 +0%) =0
or, rewritten withy, as a bracket, more familiarly, this is
[fa, 8], ¢] + (=1)IPHIDIelp, ] a] + (—1)U+DIel e, a], ]
[A] satisfies the coJacobi relation
(1+0+0%)[A] oy [A] =0
and|[u] and[A] together satisfy the five term compatibility relation
(Ao [1] + (L +7)[u] o1 [AJ(L +7) =0
or, applied taz ® b,

[Ala, b] + (—1)”([] @ id)a @ [A]p + (1) IHFPI([4] @ id)b @ [Aa
+ (=)l (id @[u])b @ [Ala + (id @[u])[Ala ® b

and the involutivity relation
[u]o[A] =0

This shows that the homolog¥ V" of aQ)(coFrob)-algebral” is a (commutative
as opposed to skew-commutative) involutive biLie algebreawe have not argued
that our computation of the homology is complete. We conjecthat the homol-
ogy of the properaé(coFrob) is the involutive bi Lie properad, but at present we
do not have a proof—there remains the possibility that taeseadditional nonzero
homology operations.

APPENDIXA. COMBINATORIAL FACTORS IN DETAIL

In this appendix, we collect some properties of symmeidmatand projection
s, and using this, we relate the partial composition map fertéimsor algebra with
the one for the symmetric algebra.

The first two lemmas concern the effect of symmetrization giea vector in the
tensor algebra. The first asserts that the outcome of synzingtpart of a vector
followed by symmetrizing the entire vector is the same apbirsymmetrizing the
entire vector. It is straightforward to check and we omit pneof. The second
asserts that?) (s ® s*4). : SFV — SV © S¥~‘V approximates a sum over
unshufflesS, j, and(§) s(:/ ® #=¢) : SV @ S*=*V — SV approximates a sum
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over shufflesS;, ;. Itis also straightforward to check but we include the prsiote
it explains the combinatorial factors.

LemmaA.l. If ¢ < k, s*(id** @(1st)) = ¥

Definition A.2. Let u** vy, : T*V — T*V be given byv — > ov, where the
sum is taken over unshuffls | for 1 and over shuffles, , for v.

The mapg:*-* andv;, ¢ are defined in the tensor algebra, but by abuse of notation,
we usey! anduy , to refer to the composition§) (s @ s)c and (%) s(¢® ) defined
in the symmetric algebra as well.

Lemma A.3. The following diagrams commute:

s

L&t
Skv TV SV e StV ——Thy
(?)(s@s)Ll luk‘[ (IZ)S(L®L) l l V¢
SV @ SV ~——TkV skv T+V

Proof. Following the first diagram along the top and left gives

<];>(S®S)Ls(ﬁ) E(k‘ 7 (s ®s) Zav

E(k: 0 (s®s) Z Z ZT1><T2

T1ES, T2E€SK_¢ peS
= > [0 @[]
PESL
= (s @ s)(u""D).

Similarly, for the second diagram, we get

(f)etonmom - gety & T T s o

PESE ¢ T1ESy T2E€SK 4

- Z p(t®1)([a] @ [v])

PESE ¢
= Vk,Z(L & L)(["a] ® [17])

O

Given maps between symmetric productd/gfone can precompose withand
postcompose with to obtain maps between tensor productd/ofThe following
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proposition indicates the combinatorial factor introdie¢ghen comparing the re-
sult of the partial gluing prior to passing from symmetrictémsor (the left hand
side) and the partial gluing after passing from symmetritetwsor (the right hand

side).

Proposition A.4. Let f : 'V — SV andg : S™V — S™V. Then

(J+n—Ek)k!

>

1
OES, ki

TES]?F!L*k,jfk

7((sgt) o (sf1))o

Proof. The proof is a commutative diagram. The composition aloegighthand

side of the diagram below computes

Y 7((sg) ox (sfo)o,

the righthand side of the equality in the proposition. Itivaé shown that the
composition along the top, lefthand side, and bottom of iagrdm computes the
lefthand side of the equality in the proposition.

s

Ti-i-m—lcV

Si-i—m—lcv

(id ®f)ui+m7k,m—k

s®id

Smky @ SIV

1d®((s®s)t)

. s®id ® id .
Sk @ Sk @ SI—kYy <— T kY @ SFV @ SI—kY

id
id @@t

d®s®s

(id @ fs)pitm—ksm—k
T YV @ STV
id ®¢

Tj-l—m—kV

(s(t®e))®id Sm—ky/ QTIV . Ti+m—ky
s®id
L®idl s®id
SmV @ SiTky TI+tm—ky s oy @ Tiohy
id ®¢
g®id (rg)®id
SV STy - Titn-ky
Vitn—k,n Vn+j—k,n
gnti—ky, - Tnti—ky

First, we check commutativity. The square and triangle rearmiddle of the
diagram commute by Lemma A.1. The rectangles at the top attodnhb@ommute
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by the construction of the shuffle and unshuffle maps. Evergtalse commutes
trivially. In order to see that the composition along thaHahd side computes

(”Jrz,i_jf“)'k'f o g, consider the following commutative diagram:
(1)
Si"'m—kv ’ Si+m—kv
(id®cfs)e (id ®Lf)ui+m7k,m—k
Titmoky — SRV @ TIV
ms@ﬁj
LR (Ls)®s
. id®s .
s®id T]+m—kv ., TmV ® Sj—k‘V
z/////// s®id
s®id A
SV @ TiTkY e SV @ SRV
s(Lg®id) Vjtn—k,n(g®id)
ok e
STV (k) SRV

The left side of this diagram ig o, f and the right hand side is the left hand side
of the previous diagram. Here everything commutes triyialkcept the triangle,
which commutes due to Lemma A.1. Since

i+m—k\(j+n—k\ (G+n—FkK)W% (i+m—-k j!
i n B jln! i (5 — k)k!

this computes the left hand side of the equation in the pitppnscompleting the
proof. O
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