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Abstract
Let K be any finite extension of Q,, L any finite Galois extension of K, and E any fi-
nite large enough coefficient field containing L. We classify two-dimensional L-semistable F-

representations of Gk, by listing the isomorphism classes of rank two weakly admissible filtered
(¢, N, L/K, E)-modules.

1 Introduction

Let K be any finite extension of Q, and p : Gk — GL,(Q,) any continuous n-dimensional repre-
sentation of Gx = Gal(Q,/K). Let L be any finite Galois extension of K. The representation p is
called L-semistable if it becomes semistable when restricted to G,. The field of definition F of p is a
finite extension of @, which may be extended to contain L. Let k£ > 1 be any integer. By a variant of
fundamental work of Colmez and Fontaine (JCFQQ]), the category of L-semistable E-representations
of Gx with Hodge-Tate weights in the range {0, 1, ...,k — 1} is equivalent to the category of weakly
admissible filtered (p, N, L/K, E)-modules D (Def. [LT]), such that Fil°(L ®., D) = L ®p, D and
Fil*(L ®r, D) = 0. We classify two-dimensional L-semistable E-representations of G, by listing
the isomorphism classes of rank two weakly admissible filtered (¢, N, L/ K, E)-modules.

When K # Q, interesting new phenomena occur, for example there exist disjoint infinite families
of irreducible two-dimensional crystalline representations of G, sharing the same characteristic
polynomial and filtration (Cor. [I4]). Such families have been constructed in [DOO08| and their
semisimplified modulo p reductions have been computed in [DOQ9].

Potentially semistable representations arise naturally in geometry. Deciding which isomorphism
classes of filtered modules occur from certain geometric objects, e.g. Hilbert modular forms is an
interesting open problem and we hope that this paper will contribute in this direction. Special cases
of the problem have been treated by Fontaine and Mazur [FM95] when both E and K equal Q,
and p > 5, Breuil and Mézard [BM02] who initiated the subject with arbitrary coefficients, Savitt
[SAVO05] in cases where the representation becomes crystalline over tamely ramified extensions of
Qp, and most recently by Ghate and Mézard [GM09] who treated almost all cases where K = Q,,
assuming that F is large enough and p # 2. In this paper we assume that the coefficient field F is
large enough, and make no further assumptions. The paper is organized as follows: in the rest of
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this introductory section we recall standard facts from p-adic Hodge theory and there is nothing
original. In Section 2] we set up our main notations and prove a canonical form lemma for Frobenius
and the monodromy operator (§2.1]). We then proceed to determine the Galois descent data (§2.2).
In Section B] we construct the Galois-stable filtrations and in Section ] we compute Hodge and
Newton invariants. In Section [§] we provide the complete list of rank two weakly admissible filtered
(p, N, L/ K, E)-modules, determine which are irreducible, non-split reducible or split-reducible, and
describe their precise submodule structure. In Section [6] we list the isomorphism classes of rank
two filters modules (§6.4)), and in Section [l we apply the results of previous sections to explore new
phenomena occurring in the K # Q,, case, focusing on crystalline representations.
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1.1 Fontaine’s rings

Let C, be the completlon of Q, for the p-adic topology. The field C,, is algebraically closed and

complete. Let E = lim C, = = {(©@, W 2™ ) such that (z("*t)P = 2™ for all n > 0}
mr—>mp

and let E* be the set of z = (2@, (1)

addition and multiplication defined by

2™, ..) € E with vg(z) := vp(2(9) > 0. Then E with

PREED)

(z + y)(n) = lim (I(ner) + y(n+m))p’" and (Iy)(n) = z(My ™

m— 00

for all n > 0 is an algebraically closed field of characteristic p and vg is a valuation on E for which
E is s complete with valuation ring E*. Let At be the ring of Witt vectors with E*-coefficients and
let BT = A"’[ = { Z pFlax], zx € BT}, where [2] € AT is the Teichmiiller lift of z € ET. The

ring B+ is endowed Wlth a ring epimorphism 6 : Bt — C,, given by 0 klz]) = kg (0 )
g g €ep P p & Yy p prx
k>—o0 kS oo

By functorial properties of Witt vectors the absolute Frobenius ¢ : Et — ET lifts to a ring
epimorphism ¢ : Bt — Btgiven by o( 3 pF[zi]) = X p Flah). Let ¢ = (€@);50 € E where
k>—o00 k>—o00
e® =1 and £ is a primitive p’-th root of 1 such that (e(+1)” = ¢@ for all 4. If 7 = [¢] — 1
and m = [a%] — 1, we write w = . The kernel of the epimorphism 6 : B+ — C, is the principal
ideal generated by w. The ring BIR is defined to be the separated ker 6-adic completion of IE*, ie.
~ 00 n
B, = lim B*/(ker 6)". The series log([¢]) = — > @ converges to some element ¢ € B, with
n n=1

the property that gt = x(g)t for all g € Gq,, where x : Gg, — Z, is the cyclotomic character. We
define Byr = IB%IR[ ]. The ring By is a field equipped with a decreasmg, exhaustive and separated
filtration given by Fil/Byr = tJI[B  for all integers j. It contains a subring B.,;s endowed with the
induced Galois action and a Frobemus endomorphism ¢ which extends ¢ : BY — B*, such that
©(t) = pt. It has the property that chs Ky for any finite extension K of Qp, where Ky is the
maximum unramified extension of Q, inside K. Between B.,;s and Bggr sits (non canonically) a
ring Bs; = Beis[X], where X is a polynomial variable over B.,;s. The ring B,; is equipped with
a Frobenius which extends the Frobenius on Be;s and is such that o(X) = pX. There is also a
Qp-linear monodromy operator N = —% which satisfies the equation Ny = poN. Let p € ET be
any element with 5(©) = p and let

> ~ )n—l

log[p] = log, (p) Z

There exist Galois equivariant, B.,;s-linear embeddings of Bg; in Byr which map X to log[p]. They
require a choice of log,(p) and we always assume that log,(p) = 0. The ring B; is equipped with



a Galois action which extends the Galois action on B,,;s. It has the properties that ng = K for
any finite extension K of @, and the map K ®g, BgK — Byg is injective.

1.2 Potentially semistable representations

Let K be a finite extension of Q, and V' a Q,-linear representation of Gx. The fact that Bgﬁ‘ =K
is part of a technical condition called regularity which implies that the K-vector space Dyr(V) =
(Bar®g, V)¢ has dimension at most dimg, (V). The representation V' is called de Rham if equality
holds. All representations coming from geometry are de Rham. The K-space Dyr(V) is equipped
with a natural decreasing, exhaustive and separated filtration given by Fil! Dyg(V) = (thB%j[R ®q,
V)@« for any integer j. An integer j is called a Hodge-Tate weight of a de Rham representation V' if
Fil ™ Dyg(V) # Fil=7+'Dyp(V'), and is counted with multiplicity dim (Fil ™/ Dag(V)/Fil 7' Dar(V)) .
There are d = dimg, (V) Hodge-Tate weights for V, counting multiplicities. A chosen inclusion
of B in Byr defines (non canonically) a filtration on K ®k, Ds(V) = K @k, (Bs; ®q, V)CGr
which is preserved by the Galois action. By the construction of the ring B,; the inequality
dimg, Ds(V) < dimg, (V) always holds, and V is called semistable when equality holds. It is
called potentially semistable if it becomes semistable when restricted to G, for some finite exten-
sion L of K. Crystalline representations are semistable and semistable representations are de Rham,
with the converse inclusions being false. Potentially semistable representations are de Rham. The
converse is a difficult theorem of Berger ([BE04b]), known as the p-adic monodromy theorem.

Let L be a finite Galois extension of K and E any finite extension of L. We write D% (V) instead
of Dt (V' |, )- Assume that V is equipped with an E-linear structure which commutes with the G-
action. The Lo-space D% (V) is additionally equipped with an Ly ®q, E-module structure, and V' is
L-semistable if and only if DL (V) is free of rank dimg V. For the rest of the section we assume that V
is L-semistable. The Frobenius endomorphism of B; induces an automorphism ¢ on DL (V) which
is semilinear with respect to the automorphism 7®1g of Lo®q, E, where 7 is the absolute Frobenius
of Lg. The monodromy operator N of By; induces an Ly ®q, E-linear nilpotent endomorphism N
on DL(V) such that Ny = ppN. We equip L ®r, D (V) with the filtration induced by the
injection L ®r,, DL(V) — Dqgr(V). It has the properties that Fil! (L ®r, DL(V)) = 0 for j > 0
and FiV (L ®r, DL(V)) = L ®L, DL (V) for j < 0. The module D% (V) is also equipped with an
Lo-semilinear, E-linear action of G = Gal(L/K) which commutes with ¢ and N and preserves the
filtration. The discussion above motivates the following.

Definition 1.1 A rankn filtered (o, N, L/ K, E)-module is a free module D of rank n over Lo®q, E
equipped with

e an Ly-semilinear, E-linear automorphism ¢;
e an Lg ®q, E-linear nilpotent endomorphism N such that Ny = ppoN;

e a decreasing filtration on Dy = L ®p, D such that Fil! Dy = 0 for j > 0 and Fi! D;, = D,
for j < 0, and

e an Lg-semilinear, E-linear action of G = Gal(L/K) which commutes with ¢ and N and
preserves the filtration of Dy,.

A morphism of filtered (¢, N, L/K, E)-modules is an Lo ®q, £-linear map h which commutes with
@, N and the Gal(L/K)-action, and is such that the L ®q, E-linear map hy, = lL@q, E®h preserves



the filtrations. A filtered (¢, N, L/ K, E)-module is called weakly admissible if it is weakly admissible
as a filtered (¢, N, F)-module in the sense of [BM02 Cor. 3.1.2.1]. The Galois action plays no role
in weak admissibility. We have the following fundamental theorem essentially due to Colmez and
Fontaine (cf. [BM02, Cor. 3.1.1.3)).

Theorem 1.2 Let k > 1 be any integer. The category of L-semistable E-representa-
tions of Gg with Hodge-Tate weights in the range {0,1,...,k — 1} is equivalent to the category of
weakly admissible filtered (¢, N, L/ K, E)-modules D such that Fil°(Dy) = Dy, and Fil*(Dy) = 0.

2 Rank two filtered (¢, N, L/K, E)-modules

Throughout the paper p will be a fixed prime number and L/K any finite Galois extension, with
K any finite extension of Q,. The coeflicient field £ will be any finite, large enough extension of
L. We denote by m the degree of L over Q,, by f = [Lo : Q,] the absolute inertia degree of L, and
by e = [L : Lg] the absolute ramification index of L. As in the introduction we denote by Lg the
maximal unramified extension of Q, inside L. Let 7 be the absolute Frobenius of Ly. We fix an
embedding ¢r,, : Lo — E and we let 7; = ¢z, o7/ for all j =0,1,..., f — 1. We fix once and for all
the f-tuple of embeddings Sr, := (79, 71, ..., Tf—1). The map

o Lo®g, E— [[ B : &n@®y) = (n@)y)-,
Srg

is a ring isomorphism (cf. [SAV05, Lemma 2.2]). Let ElStol := ] FE and (EX)ISLO‘ = I E*.
St St

The ring automorphism 7®1g : Lo®q, F — Lo®q, £ transforms vi; &1, to the ring automor}:[;hism
@ : EIStol — EIStol with ¢(zg, 21, ..., 24-1)

= (21,...,x5-1,%0). A filtered (¢, N,L/K, E)-module may therefore be viewed as a module over
ElStol, The automorphism ¢ : D — D is semilinear with respect to the automorphism ¢ of ElStol
defined above, and the monodromy N is E!Szol-linear. The Galois action of G = Gal(L/K) on E!Stol
will be described in Section2.2.21 We let e, := (0,...,1,,,...,0) € ElStol for any j € {0,1, ..., f—1},
and set up some more notation which will remain fixed throughout.

Notation 1 For each J C {0,1,...,f — 1} we write f; = > e . If ¥ € EIStol | we define
icJ

f-1r f=1
Nmy(Z) == [[ (&) and Try(Z) == 5 ¢'(&). For any ¥ € ElStol we denote by x; the i-th
i=0 i=0
component of ¥, and for any matriz M € My(E'Stol) we write Nm,(M) = M(M) - - - /=1 (M),
with ¢ acting on each entry of M.
2.1 Canonical forms for Frobenius and the monodromy operator

We start by putting the matrix of Frobenius of a rank two p-module in a convenient form. The
matrix of any (semi)linear operator 7" on D with respect to an ordered basis e will be denoted by
[T)e throughout. The following elementary lemma will be used frequently.

Lemma 2.1 (1) The operator Nm,, : (EX)‘SL“| — (EX)|$L°‘ is multiplicative;



2) Let @, e (EX)5l | The equation a-y = 3 ¥) has nonzero solutions ¥ € E!Stol if and only
2
if Nmy(&) :wa(g). In this case, all the solutions are 7 = vy (1 So et awy"af”)

? Bo? BoB1’ " PBofrBr-2
for any v € E.

Proof. Straightforward. m

Let D be a rank two @p-module over E!Stol and let n and e be ordered bases. Then (n1,72) =
(e1,e2)M for some matrix M € GLy (E!Stl) | and we write M = [1]5- Tt follows from Section
that [p]e. = M[p],o(M)~!. The main observation of this section is the following proposition.

Proposition 2.2 Let D be a rank two p-module over E!Stol. After enlarging E if necessary, there
exists an ordered basis 1) of D with respect to which the matriz of Frobenius takes one of the following
forms:

1) [¢], = diag(a- 1,6 - 1) for some a,8 € E* with of # 67, or
n

(2) [p]y = diag(a- I,a-1) for some o € EX, or

a-1

(3) [90]77=< T Oa)forsomeaeEX.

a-1
To prove Proposition 2.2] we use the following lemma.
Lemma 2.3 Let D be as in Proposition[2.2. After enlarging E if necessary, the following hold:

(1) If ¢f is not an E*-scalar times the identity map, then there exists an ordered basis n of D

—
—

such that [(p]ﬁ = < i g > , with the additional properties that:

n
(a) If Nm,(€) # Nm@(g), then i7=0 and
b) If Nmy,(€) = Nm 5, then € = gandﬁ =1, where 7j, is the (2,1) entry of the matriz
@ @ © 0

Nmsa ([‘P]n)

(2) If of = a- id for some a € E*, then there exists an ordered basis n of D such that [¢], =
diag((a, 1, ..., 1), (a, 1,...,1)).

Proof. (1) Since ¢/ is an ElStol-linear isomorphism, extending F if necessary, there exists an

—
—

ordered basis e of D such that [pf]. = ( ;_M, g» ) . With the convention of Notation [I] we have
a;0; # 0 for all i € Iy (because ¢ is an automorphism), and the basis can be chosen so that
~vi = 0 whenever a; # §; and v; € {0,1} whenever a; = §;. We repeatedly act by ¢ on the
equation (p(e1),¢(e2)) = (er,e2)[ple and get (p/(e1), 9/ (e2)) = (e1,e2) Nmy([g]e). Let P =
[¢le = (Po,P1,....;Pr—1) and @ = Nmy(P) = (Qo,Q1,...,Qf—1). Since Q = Pp(Q)P~!, we
have Ql = PiQi+1Pi_l and {ai+1,5i+1} = {O[Z',(Si} for all 7. Since for all i, Oéiisi = detQO =
d, we have {ai+1,da;_,’_11} = {a;,daj '}, Let o = dag'. Then o; € {a,da”'} for all i, and

o (Oéo,...,O[ffl) (O, ce ey 0) . o —1 2 - A .
Nmy(P) = ( (os e vr—1) (B0, s b7-1) with 0; = da; *. If o® # d then, ¥ = 0 and if



2 = d, then v; € {0,1} for all i. We conjugate by the matrix R = (Rg, R1,..., Rf_1), where

R;= ( (1) (1) ) or ( (1) (1) ) depending on whether a; = da~! or « respectively, and get RQR ™ '=

—1 . g —

< da i 1 - > If o2 # d, then RQR™! = diag((da?, ..., da1), (o, v, ..., ). If o® = d, then
a .

Nm(P) = ( @ .(-)»1 N .11» ) . Indeed, since Pp(Q)P~' = Q, if v; = 0 for some j then ;41 = 0

and ¢/ = o - id a contradiction. Therefore

=1 We have proved that there exists some ordered
basis n of D over E!Stol such that | = ( @ _1,
v

> for some o € E* and some v € E
withy=0if a? #dand v =1if a® =d. We compute the matrix of ¢ with respect to that basis
7. The relations Nm,, ([‘P]n) = [<pf] and [p],p (ng, ([‘P]n)) = Nmy ([w]ﬁ) [¢l, and a direct
computation imply that: (1) If a® # d, then the non diagonal entries of [¢],, are 0, and (2) If o2 = d,

then the (1,2) entry of [p ]Q is 0 and the diagonal entries are equal. This concludes the proof of

part (1). Part (2) follows immediately from the fact that the matrix of o/ is basis-independent
combined with the following claim. m

Claim 1 Let P € GLy(E'Stol) be such that Nm,(P) = diag (a - 1,a - 1) for some a € E*. Then
there exists some matriz Q* € GLy(E!Stol) such that

Q*Pp(Q*)~! = diag((a, 1, .., 1), (a, 1,..,1)).

Proof. As above we write P = (Py, P, ..., Py_1). We easily see that there exist matrices Q; €

G Ly(FE) such that the matrix @ = (Qo, Q1, ..., @ f—1) has the property QPp(Q)~! = (To, T, ..., Tf—2,Tf_1)

(673 O

for some triangular matrices T; =
Yi  0i

for i = 0,1,..., f — 2, and some matrix Tf_; =

< :Jtl ?Jtl > € GLy(F). In the proof of this claim, the entries «;, 3;,7; and &; are hav-
f-1 Of—1
ing independent meaning and should not be confused with those used before. The equation

o f=1 f=2
Nm,(QPp(Q)™') = diag(a- 1, - 1) implies that [] a; = a and ([] «;)Bs—1 = 0. Hence By_; =0
i=0 i=0

and QPp(Q) = < C_M, g» ) with Nm, (&) = ng,(g) = a1 Let 7= (1,000, apana™, ..., gy - - -
v
7= (1,001, 6001a7 Y, ..., 8001 - - - dp—2a71) and R = diag(Z,7) - Q. A computation shows that
_ 1,..,1) 0
RPo(R 1 _ (CY, )
A < SRR
o -1
for some ¢ € (E)lSLO‘. Since Nmy,(RPp(R)™") = diag(a - T,a - 1) we have ¢y + « Z ¢G = 0.
i=1
B (1,1,..,1)  (0,0,...,0) B L B
Let S = < 20y 21, e 2p—1) (L1 1) )7 where zg = 1, 21 = 1 = (G — (2 Cro1, 22 =
1—C——=Cr-1,.., 2f2=1—C(f2—C(f—1and zy_1 =1 —C(s_1, and let Q* = SR. The fact that
f-1

Co+a Y ¢ =0 and a simple computation yield that Q* Po(Q*)~! = diag ((a, 1, ..,1), (o, 1, .., 1)).
i=1

af,gofl),



m Proof of Proposition Again, the notations in the proof of this lemma are having indepen-
dent meaning and should not be confused with those of previous sections. Choose 7 as in Lemma

- —

In case (1)(a) so that [¢], = diag(&,0) with Nmy (&) # Nmy(0), let oy, 01 € E* be such that

Nm, (&) = of -1 and wa(g) = 6/ . 1. By Lemma [ZT] there exists a matrix M € GLy(E!Szol)
such that M ([gp]ﬂ) o(M)~1 = diag(ay - 1,8, - 1), and clearly af # 6. This gives the first pos-
sibility of the proposition. In case (1)(b) of Lemma [Z3] let o an f-th root of a. By Lemma
2.1 there exists a matrix M € GLy(E!Stol) such that M ([go],,) (M)t = ( alﬁ:l N 0 i ) .
n L
-1

: 1.1 0 : a1 0 ~
Si = A1 . d [pf], = - - |, we have Tr,(7) # 0. Let
ince [¢’], ( T 7)o 1 ) and [p]e T o1 we have Try,(y) # e

* = ff 0 wher
M‘< - <v>)’ here

Z Tr,

Z= (07 17 7f - 1) Trs&(ﬁj) - f(/707’70 +717 -0 +71 + - '7f—2) .

Then | . ! 0 - ) (M*) = M* o ! 0 - | . This gives the third possibility of the
ol aq -1 1 a1
proposition. Finally, in case (2)(b) of Lemma[Z3] let a; € E* be an f-th root of @ and proceed as

in case (1). This gives the second possibility of the proposition and concludes the proof. m

-

Definition 2.4 A p-module D is called F-semisimple, F-scalar or non-F-semisimple if and only
if the ElStol-linear map ¢! has the corresponding property.

One easily sees that D is F-semisimple if and only if there exists some ordered basis with respect to
which the matrix of Frobenius is as in cases (1) or (2) of Proposition 22, with D being non F-scalar
in case (1) and F-scalar in case (2). The ¢g-module D is not F-semisimple if and only if there exists
an ordered basis with respect to which the matrix of Frobenius is as in case (3). A basis of D
in which Frobenius is normalized as in Proposition will be called standard. Unless otherwise
stated, the matrix of any operator on D will be considered with respect to a fixed standard basis.
In the next proposition we determine the matrix of the monodromy operator with respect to a
standard basis 7.

Proposition 2.5 Let D be a rank two (¢, N, E)-module.

1. If D is F-semisimple and [go]ﬁ = diag(a - 1,6 T), then the monodromy operator is as follows:

(a) If of # pTf6f, then N = 0;

0 0 . _ . N
(b) If of = p/§7, then [N, = ( - ) , where i@ = n(1,¢, 2, ..., ¢f7Y), with ¢ = o5 and
n e kb,
(c) If 67 = pfal, then [N]g = ( g g ) , where i = n(1,e,e%,...,ef=1), with ¢ = p% and

nek.

2. If D is non-F-semisimple, then N = 0.



Proof. The condition Ny = ppN is equivalent to [N],[¢l, = p [¢lye([N],). The proposition
follows by a short computation, using Lemma [Z1] and taking into account that IV is nilpotent. m

Corollary 2.6 Let D be a rank two (p, N, E)-module with nontrivial monodromy. There exists an
ordered basis n with respect to which [¢l, = diag(a - 1,0 - 1) for some o, 6 € E* with o = pé, and

0 0
Nlp,=1{ - = |.
o (1)
Proof. If o/ = p/§7, change the basis to i’ with n{ = and 15 = 7 - n2. If 6/ = p/af, first swap
the basis elements, and then proceed as in the previous case. ®m

When the monodromy operator is nontrivial our standard bases will always be as in the corollary
above.

2.2 Galois descent data

In this section we determine the action of the Galois group Gal(L/K) on an arbitrary rank two
filtered (¢, N, L/K, E)-module D.

2.2.1 The Galois action on L ®q, E

Since E is assumed to be large enough, each embedding 7; of L¢ into E extends to an embedding
of L into E in exactly e = [L : Lo] different ways. For each j € {0,1, ..., f —1}, let h;; : L — E with
i € {0,1,...,e — 1} be any numbering of the distinct extensions of 7; : Ly — E to L. Each index
s € {0,1,...,m — 1} can be written uniquely in the form s = fi + j with ¢ € {0,1,...,e — 1} and
j€{0,1,...,f—1}. For each s =0,1,...,m—1, let o5 := h;;. These are all the distinct embeddings
of L into E and we fix the m-tuple of embeddings Sy, := (09, 01, ...,0m—1) once and for all. Recall

the notation ESt! := [ E. The map
St

¢ Log, BE—E% iagy— (o(0)y),

is a ring isomorphism. A simple computation shows that {1 (1Qa) = &L, (a)®¢ for any o € Lo®q, E,
where &7, is the isomorphism of Section Bl For each vector @ € E!Stol we denote @®° the vector of
E!5tl gotten by e copies of @, removing the inner parentheses. For each g € G = Gal(L/K) consider
the permutation 7(g) on {0, 1, ...,m—1} defined by 0;-g = 0 (4)(;) for any g € G and any embedding
o;. The map p: G — S, with p(g) = 7(g)~! is a group monomorphism. We define an E-linear G-
action on EISt| by setting g€1 (o) = &1 (ga) for all g and a. If z@y € L®g,E and g € G, then g€ (z®
Y) = (On(g)())(®)Y),, therefore g(oo(@)y, o1(2)y, ..., om—-1(2)y) = (Tr(g)(0) (@)Y, -+ T (g)(m—1) (¥)Y)
for any * ® y € L ®q, E (with indices viewed modulo m). From this we easily deduce that

9(51707$17 "'7x’mfl) = (xﬂ(g)(o)a [ :Eﬂ'(g)(m—l))
for any (zg, 1, ..., Tm—1) € E!Stl and g € G.

2.2.2 The Galois action on Lo ®q, £

We use the isomorphism &7, of Section [ to define an E-linear G-action on E!Stol by setting
g€y (x) = &Ly (g9x) forallg € Gand z € Lo®q, E. For each g € G there exists a unique integer n(g) €



{0,1, ..., f—1} such that g |, = 7(9). One easily sees that ga@ = (Qn(g)s Mn(g)+1s > Qn(g)+f—1) for all
g and & = (ao, o1, ..., f—1). We write 9@ instead of g& and it is obvious that Nm, (9@) =Nm,(d&).
Clearly £1(g(1 ® o)) = &1, (9)®€ for any g € G and a € Lo ®q, F, and this implies that g(a®¢) =
(g@)®¢. In the next proposition we determine the matrix of the Galois action with respect to
a standard basis. Recall that when the monodromy is nontrivial, standard bases are as in the
comment succeeding Corollary 2.6

Proposition 2.7 Let D be a rank two (¢, N, L/ K, E)-module and let n be a standard basis of D.
1. If D is F-semisimple and non-scalar,

(a) If the monodromy N is nontrivial, then there exists some E*-valued character x of G
such that [g], = diag(x(9) - 1,x(g) - 1) for all g € G;

(b) If the monodromy N is trivial, then there exist some E* -valued characters x,1 of G such
that [g], = diag(x(g) - 1,%(g) - 1) for allg € G.

2. If D is F-scalar, then there exists some group homomorphism

A1 G — GLo(E) such that [g], = Ag)-diag(T, 1) for all g € G.

8. If D is not F-semisimple, then there exist some E* -valued character x of G such
that [g], = diag(x(g) - 1,x(g) - 1) for all g € G.

Proof. For G to act on D we must have [g1g2], = [91], (91 [92]77) for any g1, g2 € G. We determine

the shape of the matrices [g],, utilizing the fact that the Galois action commutes with Frobenius and

the monodromy operators. That happens if and only if [¢],¢ ([g]ﬁ) = [g]4(*[¢]y) and [N]ylgl, =

[9]n (9 [N ]2) for all g € G. The proof of the proposition is a tedious calculation and we only give

alg) Blg)
J(g) o(g)

al;l - > for some o € E*. The equation [¢],¢ ([g]n) =
o - -

the details in Case (3). For any g, we write [g], = ( ) . In this case the monodromy

=

operator is trivial. Let [¢], = <

9]

55

(“[p]y) implies that for all g € G, [g], = < alg) - ! 0 > for some functions o,y : G —

g)-1 alg)-1
E. The equation [g192], = [91]y (91 [gg]ﬁ) implies that @ : G — E* is a character, and that

Y(9192) = alg1)7(g2) + a(g2)7(g1) for all g1 and g. By induction, v(g") = na(g"~*)y(g) for any
g € G and any non negative integer n. Since y(1) = 0 and a(g) # 0 for all g, we have y(g) = 0
because G is finite. m

3 Galois-stable filtrations

In this section we describe the shape of the filtrations of rank two filtered modules and construct
those which are stable under the Galois action. The notion of a labeled Hodge-Tate weight will be
important.
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3.1 Labeled Hodge-Tate weights

If D is a rank n filtered (¢, N,L/K, E)-module, D;, = L ®, D may be viewed as a module
over E!Stl via the ring isomorphism &7, of Section 2.2l For each embedding o of L into E, let
eo :=(0,...,0,1,,0,...,0) € EIStl and Dy, , := e, Dy,. We have the decomposition

D= P Dr..

oceSyL

Since Dy, is free of rank n over L ®q, £, the components Dy, , are equidimensional over F, each
of dimension n. We remark that the E!Stl-modules e, Dy, are not necessarily free. We filter each
component Dy, , = e, Dy, be setting FiljDLJ := e,Fily Dy,. An integer j is called a labeled Hodge-
Tate weight of Dy, (or of D) with respect to the embedding o if and only if Fil™/ Dy, , # Fil =7+ Dy, ,.
It is counted with multiplicity dimg (Fil_jDLyg/Fil_jHDL_,g). Since the components Dy, , are
equidimensional over E, there are n labeled Hodge-Tate weights for each embedding o, counting
multiplicities. The labeled Hodge-Tate weights of D are by definition the m-tuple of multiset
(W), , where each such multiset W; contains n integers, the opposites of the jumps of the filtration
of Dy, ,. From now on we restrict attention to rank two filtered modules with labeled Hodge-Tate
weights ({0, —ki})s,, with k; non negative integers. When the labeled Hodge-Tate weights are
arbitrary, we can always shift them into this range, after twisting by some appropriate rank one
weakly admissible filtered p-module. Indeed, since Fil/ (D; ® D3) = 5. Fil¥* D®Fil’2Dy  for
Wil
any filtered modules D; and Dy and any integer j, the claim follows ejasijly lesing the shape of the
rank-one weakly admissible filtered ¢-modules given in the Appendix and the definition of a labeled

Hodge-Tate weight.

Notation 2 Let ko, k1, ..., km—1 be non negative integers which we call weights. Assume that after
ordering them and omitting possibly repeated weights we get wo < wy < ... < wy_1, where wy s
the smallest weight, w1 the second smallest weight, ..., wi_1 is the largest weight and 1 <t < m.
For convenience we define w_q = 0. Let Iy = {0,1,....m—1}, [ ={i € Iy : k; > wo},..., I1—1 =
{i e ly: k > ’wt_g} = {’L ely: k = wt_l}, I; = 9 and IS_ = {Z e ly: k > 0} Notice that
t—1 m—1

SSwi(| L | = | Iiga |) = X ki If & € EIStl we write Jg = {i € Iy : x; # 0}. For any J C Iy, we

i=0 =0

let f;:= Y e,,. If A is a matriz with entries in E'Stol we write A®® for the matriz with entries
icJ
in [] E obtained by replacing each entry & of A by @*°, where a®¢ is as in Section[Z21)
St

3.2 The shape of the filtrations

Let Dy, be a filtered ¢-module with labeled Hodge-Tate weights ({—k;,0})s, and let n = (11, 72)
be any ordered basis of D over ElStol. By the definition of a labeled Hodge-Tate weight we have
) €o; DL lf] S O,
FiV(Dp o) = Dy if 1 <j <k,
0 if j >1+4+ kg,

where D} = (EIS)) (F(1®@m) + i (1@ n2)) e, , for some vectors & = (xf, 2%, ...,

11



2l ) and i = (yb,vi, . yh_y) € E!Stl with the additional condition that (z%,%;%) # (0,0)
whenever k; > 0. Since one may choose the z} and y; arbitrarily when k; = 0, we may assume that

(z¢,yh) # (0,0) for all i € Iy. From now on we always make this assumption. Since Fil/(Dy) =
m—1
@ e,,Fil¥ (D), we have FiVDy, = Dy, for j < 0 and FiVDy, = 0 for j > 1+ w;_1. Let 1 +
=0

wy—1 < j < w, for some r € {0,1,....,t — 1} (recall that w_; = 0), then FiVD;, = @ Di. If
i€l
7= (23, 2},....,2™"1) and ¥ = (49,1, ., y""1), then (2, y%) # (0,0) for all i € I and

0,
(E\SL\)f, (@FQem)+g1en)) if 1<j<w,
V(@1 @m) +glen)) i 14w <j <,
(BN fr, (@A @m) + g1 @) if 14w <j<we,
0 if j>14wsq.

Remark 3.1 The filtration of Dy, can be put into the shape above (for appropriate vectors & and
§) with respect to any ordered basis of Dy,. Two filtrations of Dy, are called equivalent if one is
obtained from the other by replacing & by - & and § by t - i, for some t € (EX)‘SLI . Filtrations
will be considered up to equivalence and one may assume that ij = fi.. If n = (n1,m2) is a standard
basis of D, the filtration of Dy, will be considered with respect to the basis 1 @n = (1@ m,1 Q).
We denote E!Stly .= (EIStlY . £, for any J C Iy.

3.3 Galois-stable filtrations in the non-F-scalar case

We now assume that D is not F-scalar and we construct the filtrations of Dy, which are stable under
the action of G = Gal(L/K). We define a right action of G on Iy by letting ¢-g := m(g)(i), where 7
is as in Section 221l Each orbit has cardinality equal to #G, hence there are v := [K : Q,] orbits
which we denote by O, s, ...,0,. Since the homomorphism p of Section 2:2.1] is injective, the
G-action on Iy is free. Let [g], = (x(g9) - I,%(g) - 1) with the characters x and 1 as in Proposition
27, and let the filtration of Dy, be

Dr if j <0,
. ‘SL‘] . f -, .
i1 _ ) (EPt) @1 em) + g1 @) if
FiF(Dr) = 1+w,—1 <j<w,, forr=0,...,t—1, (3.1)
0 it j2>1+4w 1,

for some vectors &, § € EIStl with (z;,9;) # (0,0) for all i € I,. We must have that g(FilDy) C
Fi Dy, for any ¢ € G and j € Z. For any r € {0,1,...,t — 1} there must exist some vector
t = t(r,g) € E!St! such that the following equations hold:

—

X)) fr.nz) OF) =t fr.a0 - and ¥(9)( fr.auy) C T =1 fr.n0; " - (3.2)
Notation 3 If g € G and J C Iy we denote by 9J the set {j - g, j € J}.

For any J,.J1,.Jo C Iy, any g € G and any & € E!St| the following equations are trivial to check:

fJ1 ' fJ2 = leﬂJw g(ff) = f(gl)a (ng1) ! fJ2 = f(ng)ﬂJgag Jz = Jog (3 3)
and g(Jl N JQ) = (ng) n (gJQ). ’

12



Since x(g) # 0 for all g, the equation x(9)(9 fr.ns.) - (9%) =T~ fr,n, - & implies 9(I. N Jz) N Joz C
I.N Jz. This is equivalent to 9(I. NJz) C I, N Jz and therefore to 9(I, N Jz) = I, N Jz for all g € G.
Similarly, 9(I, N Jz) = I N Jy for all g € G. The latter (for » = 0 combined with Formulae (33))
imply that the sets Jz and Jj are G-stable and therefore unions of G-orbits of Iy. Since JzUJy = Iy,
each set I, is G-stable and therefore a union of G-orbits as well. For a fixed g, equations (3.2]) hold
for any = 0,1,...,t — 1 if and only if they hold for » = 0, they are therefore equivalent to the
existence of some vector £ = #(g) € EI°rl such that

(Tr(9)(is)> Un(o)(iy)) = (H(9), - mi; . 1(g)s, - ys, ) - diag (x(9) " ,w(g)™") forall g € G.

Since Jz U J; = Iy all the coordinates of #(g) are non zero and by Remark B we may assume
that f(g) =1 for all g € G. Let i; be any index in the orbit O;, with 1 < j < v, and let
(zi;,9i;) € E x E with (z4;,y;;) # (0,0). Since G acts freely on Iy, for each index £ € Iy there
exist unique j € {1,2,...,v} and g € G such that ¢ = i, - g. Let %, § € EIStl be the vectors with
coordinates (z¢,y¢) = (zi,,y;,) -diag(x(9) "', 1 (g)~"!) for all g € G. Clearly

v v

F=3"3 2 (0 entriy ¢ ad =38y (97 - entorn

Jj=1 | geG J=1 \9€@
By the discussion above we have the following proposition.

Proposition 3.2 The filtration in (1) with vectors T and § as above is G-stable if and only if the
sets I, are unions of G-orbits of Iy for all 1 < r <t — 1. Conversely, any G-stable filtration of Dy,
18 equivalent to a filtration of this form.

Example 3.3 Let K = Q,, and let L be any finite Galois extension of Q. The action of G on Iy
s free and transitive. Since the sets I. are unions of G-orbits, I, = @ for all r > 1 and all the
labeled Hodge-Tate weights are equal to some non negative integer k. Since the sets Jz and Jg are
unions of G-orbits, the only possibilities are (Jz, Jy3) = (&, 1o), (Io, D), (Io,Io). The only G-stable
filtrations (up to equivalence) are

Fi/(Dp) =< (ESth (@1 @m) +§(1en)) if 1 <j <k,
0 ifj>1+k,

with (fa g) = (67 T) if (Ji'a‘]ﬁ) = (gaIO)v (fv ?j) = (Tv 6) if (Jfa Jﬁ) = (IO,Q) and

i (o (1) (V00"
(‘T’”‘(O(l’ o Gier) - (9) ) 1)
for any xo € EX, if (Jz, Jy) = (Lo, Io).

3.4 Galois-stable filtrations in the F-scalar case

Let A be the homomorphism of Proposition 27 and let A\(g) = :Eg g ((3)) ) . The Galois action
preserves the filtration if and only if for any g € G and any 0 < r <t — 1, there exists some vector
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t=t(g,r) € E'°c! such that

f1,{alg) - (°2) + B(g) - (°9)} = ff
If1,{v(g) - (°%) + 0(9) - ("9} =t -4+ f

Suppose that there exists some i € 91, with @ ¢ I.. Then (T(g)(),Yn(g))) - Mg) = (0,0),
and since detA(g) # 0 we have (Zx(g)(i)sYUr(g)(5)) = (0,0) a contradiction. Therefore 91, = I,
for all g. Then g (FiliDL) C FiV Dy, if and only if there exists some vector ¢ = f(g,O) € Elstl
such that (929 %) = (f Zt- g) (/\(g_l) - diag (f, T)) . This is equivalent to (a:w(g)(ij),y,r(g)(ij)) =
(t(g)ij “xi;,t(g)s, yl]) -AMg™!) for all ¢ € G. Arguing as in Section [3.3] one sees that {(g,O) €
(EX)ISLI for all g. By Remark 31 we may assume that #{g) = I for all g € G. Let i; be any index
in the orbit O, with 1 < j < v, and let (x;;,y;;) € E x E with (2;,,y:;) # (0,0). Since G acts
freely on Iy, for each index £ € I there exist unique j € {1,2,...,v} and g € G such that £ =1, - g.
Let #, 7 € E!St! be the vectors with coordinates (z¢,y,) := (zi;,9i,) - Mg™?) for all g € G. Clearly

422 Z%(g)(ij) “er(g)(iy) ¢ and 37:2 Zyw (i) * €n(g)(i)

j=1 | geG j=1 | geG
By the discussion above we have the following proposition.

Proposition 3.4 The filtration in (1) with vectors T and i as above is G-stable if and only if the
sets I are unions of G-orbits of Iy for all 1 <r <t —1. Conversely, any G-stable filtration of Dy,
1s equivalent to a filtration of this form.

4 Hodge and Newton invariants

In this section we compute Hodge and Newton invariants of rank two filtered ¢-modules (D, ).
We thank the referee for pointing out a mistake in the computation of Newton invariants. The
same mistake had been pointed out by David Savitt to whom we extend our thanks.

Let v, be the valuation of Q, normalized so that v,(p) = 1 and let valy, (x) = ev,(x) for any z € L.
Following [BS06, §3], we define

ty(D) == valy, (detr, ) (4.1)

[L: Qp]

and

= > > (Fi¥VDy,/Fi¥*'DL,). (4.2)

€Sy jJEL

Recall that the map ¢/ is Lo ®q, E-linear. The filtered ¢-module (D,¢) is weakly admissible
if tg(Dyr) = tn(D) and ty (D) < ty(D') for any ¢-stable Lo-subspace D' C D, where D} =
L ®r, D', and D is equipped with the induced filtration. By [BM02, Prop. 3.1.1.5] (with trivial
modifications adopted to our definitions of the Hodge and Newton invariants), one may only check
the inequalities above for ¢-stable Lo ®q, E-submodules D’ of D. We first determine the Lo ®q, E-
submodules of D which are stable under Frobenius and the monodromy.
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Proposition 4.1 Letn = be an ordered basis with respect to which the matriz of Frobenius

Sy Ol"‘

;72)
has the form [p], ( > All the @-stable Lo ®q, E-submodules of D are 0, D, Dy =

(BE!St0l)ny, or of the form Dy = (E!Stol)(n; + 0ny) for some vector 6 € ElStol,

Proof. Let M be a ¢-stable submodule of D. Case (1). If M N (EStol)ny £ 0. Let @2 € M with
Z #0. Then > e;m2 € M, and after multiplying by e,, for some i € Jz we get e,,n2 € M for

i€Jz

some (in fact all) i € Jz. We repeatedly act by ¢ and see that e,,n2 € M for all 7, which implies
that o € M. If I + yna € M for some & # 0, then Zn; € M. Arguing as before, given that
no € M, we see that 11 € M therefore M = D. Hence in this case M = (E!Stol)ny or M = D.
Case (2). If M N (E!Stol)ny, = 0. Assume that M # 0 and let Zn; + 42 € M with # # 0. Then

(S er)m + 7im2 € M for some 7y € ElSroland e, m + §ane € M for some index i € Jz and some
i€Jg

vector 5. We repeatedly act by ¢ and use the fact that M is ¢-stable to get that n + 9172 eM
for some vector 8. We will show that M = (E IStol) (my + 9772) Every nonzero element of M has the
form an —i—ﬁng for some vectors @ # 0 and ﬁ Since an +a- 9172 € M, we see that (&- 6— 5)772 eM
which implies that & - 6= ﬁ Then an; + 5772 =am+a- 9772 = a(m + 9772) ]
We now determine the vectors § for which Dy = (EIStoly(m + 0n) is g-stable. We have the
following cases.

Case (1). If D is F-semisimple and non-scalar. In this case Dy is @-stable if and only if

there exists ¢ € ElStol such that ¢(n; + 5772) = tlm + 7 772) We repeatedly act by ¢ and get
sD (771)+9g0 (m2) =Nmy( f) (m +§ng) This implies Nm (o 1) =Nm f) and 0 = (af —61)- g. Since
af # 6/, the only nontrivial -stable submodules of D are Dy = ETJSLO )m and D2 (E‘SLf)')ng

Case (2). If D is F-scalar we easily see that Dy is @-stable if and only if g =61 for some
0 e E*.

Case (3). If D is not F-semisimple Dy is never ¢-stable.
Note that the submodules Dy, Dy and Dy are pairwise complementary in D, and so are Dy, and
Dy, whenever 6; # 0. Combining the results of the previous paragraph with those of Proposition
23 we get the following proposition.

Proposition 4.2 Let 1 be a standard basis of a (¢, N)-module D. The submodules of D fized by
Frobenius and the monodromy are

1. 0, D, Dy = (E!Stol\py and Dy = (E'Stol)ny if D is F-semisimple, non-F-scalar;
2. 0, D, Dy, Dy and Dg = (E'Sco)(ny + 0 -1 - 1), for any 0 € EX if D is F-scalar;
3. 0, D and D+ if D is F-semisimple.

We proceed to compute Hodge invariants. We retain the notation of Proposition and we write
D :=L®pL,D; fori=1,2and Dy :=L®p, Dp for any § € E*.

Proposition 4.3 The Hodge invariants of the filtered modules Dy, D; 1 and Dy 1 are

=Y ki, tu(Dro)= > ki tu(Dar)= > ki

ic€lo {i€ely : y;=0} {icly : z;=0}
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and

tr(Dg) = > ks

{ieJz N J; : zi0=y;}
Proof. The formula for ¢z (D) follows immediately form Formula ([4.2)) since
dimp(E'S:) f; (Z1 @m) + fr, 1@ n)) =| J |
for any J C Iy (recall that (z;,v;) # (0,0) for all i). By definition,
Fil’(Dy,1) = Dy, NFil? (Dy)

for all j. Let 1 + w,—1 < j < w, for some 1 < r < t — 1. We have f(1®n2) = 5-f,,
F(1@m)+ 71 ®n)) if and only if £-Z- f;, =0 and £-§- f1, = L. For all i € I, with z; # 0
we have & = 0. If z; = 0, then y; # 0 and as gvaries in E!Stl the vector E ¥ - f1, can be any
element of f; J;(E‘SL‘), where J. is the complement of Jz in Iy. Let I,z = I, N J%. For all

1+wy—1 < j < wy, one has Fil/ (D 1) = (EISt) f (1 ® 1) and therefore

Dy 1 if j<0,
. |SL‘II',5 i
Fil (Do 1) = (7 ) @), it
1+w,1 <j<w;, fori=0,1,...,t —1,
0 if j Z 1+wt,1.

t—1
Clearly tH(DgyL) = Z wz(| Ii,i’ | - Ii-i—l,i’ |) (Wlth It,i’ = @) Since | Ii@* - | Ii+1)55 |: #{j S I() :

kj =w; and z; = O},iwe have

tu(Dor)= Y ki

{i€lp: z;=0}

The computation for ti(D1,1) is identical. Last, for any § € E*,
Fil/(Dy) = Dy N Fil (D).

Let 1+w,_1 <j<w, forsome 1 <r <t—1 and let 5(771 +0- fng) = 5 f1.(@m +in2) € FilI (D).

One easily sees that ¢; can be any elements of E as §; varies in F if and only if y; = x;60, and t; =0

in any other case. Therefore Fil/ Dg = (ElSL‘“"(")) (m +6 - 1n2), where I.(8) :== L, N Jz N Jzn{i €
t—1

Ip:zif =y; } for all 1 + w,—1 < j < w,. This implies tg(Dy) = > w#{i € Iy : w; = ks, x;y; #
i=0

Oand § =z; 'y} = > ki, m

{iedzNJy: zi0=y;}
For the Newton invariants of D, D;, and Dy we have the following proposition.

Proposition 4.4 If the diagonal entries of the matriz of ¢ with respect to a standard basis are
a-1 and 6 -1, then ty(D) = efvy(ad), tn(D2) = efvp(d), tn(Di1) = efvp(a) and tn(Dg) =
efup(a).

Proof. Follows easily from Formula (1) in the beginning of the section. m
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5 The weakly admissible rank two filtered modules.

We summarize the results of the previous sections and list the rank two weakly admissible filtered
(p, N, L/K, E)-modules. Before doing so, we briefly digress to recall some well known facts about
Galois types ([CDT99, App.B]).

5.1 Galois types

Let p : Gk — GL(V) be an L-semistable n-dimensional E-representation of Gk, as in the intro-
duction. Let Wy, be the Weil group of L and Wy the Weil group of K. Recall that Wy /Wy, =
Gal(L/K). The Frobenius endomorphism ¢ of DL (V') defines an E-linear isomorphism

2 €T¢+1DsLt(V) - enDsLt(V)a

for each embedding 7; of Lg in E. If ek is the absolute ramification index K, we define an Lg-linear
action of g € Wx on DL (V) given by (gmod W) o =9k were the image of g in Gal(kx /kx) is
the a(g)-th power of the gx-th power map, with kx being the residue field of K and gg its
cardinality. Since V is L-semistable, each component e,, DL (V') is an E-vector spaces of dimension
n with an induced action of (Wg, N). Its isomorphism class is independent of the choice of the
embedding 7; (cf. [BM02, Lemme 2.2.1.2]), and this unique isomorphism class is the Weil-Deligne
representation WD(p) attached to p.

Definition 5.1 A Galois type of degree 2 is an equivalence class of representations 7 : Ix —
GL2(Qp) with open kernel which extend to W . We say that a two-dimensional potentially semistable
representation has Galois type 7 if WD(p) |1, 7.

We have the following lemma.

Lemma 5.2 Assume that p > 2 and let T be a Galois type of degree 2. Then T has one of the
following forms:

(1) 7~ x1 |1 DX2 |15, where x1 and x2 are characters of Wy finite on I;

(2) T~ ]nd%; (0 |12 X |1 ©X" |15, where K’ is the quadratic unramified extension of K, x
is a character of Wk finite on I, which does not extend to Wk, and h a generator of Gal(K'/K);

(3) T ~ ]nd%; (X) |1k, where K' is a ramified quadratic extension of K and x a character of
Wk, finite on Ik, such that x |1K,which does not extend to Ik .

For Galois types we have the following three possibilities:
e N £ 0 and 7 is a scalar (special or Steinberg case);
e N =0and 7 as in (1) of Lemma [5:2 (principal series case);
e N=0and 7 as in (2) or (3) of Lemma [5.2] (supercuspidal case).

Notice that in the unramified supercuspidal case (Case (2) of Lemma [5.2), 7 is reducible and the
characters x |1, and X" |1, are necessarily distinct, while in the ramified supercuspidal case (Case
(3) of Lemma [5.2), 7 is irreducible.

We now provide the list of rank two weakly admissible filtered (p, N, L/ K, E)-modules and comment
on the Galois type of the corresponding potentially semistable representation, understanding that
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the above mentioned terminology applies only in case that p is odd, an assumption not necessary
in this paper.

Recall from Section that there is a right action of G = Gal(L/K) on Iy defined by i - g :=
m(g)(i), where 7 is as in Section[2.2.1]1 This action has orbits O1, Os, ..., 0,, where v = [K : Q,] . Let
i; be any fixed index in the orbit O; for any 1 < j < v, and choose any fixed pair (2;,,y;;) € ExX E
with (z;,9i;) # (0,0). Assume that the labeled Hodge-Tate weights are ({—k;,0})o,, with k; non
negative integers.

5.2 The F-semisimple, non-scalar case

There exists an ordered basis
n = (n,n2) of D over ElStol such that:

e The Frobenius endomorphism ¢ of D is given by [cp]ﬂ = diag(a - 1,6- f) with a, 6 € E* and
ol #67;
e The Galois action is given by [g], = diag(x1(g)- T, x2(g)-1) for some characters x; : G — E*;

e The Galois-stable filtrations are equivalent to

Dy if j <0,
(EPE) @1 @m) + gl @ng)) i1 <5< w,
(ESeln) (@1eom) + 71l ®n) ) if 1+we <j<wi,
(E‘SL"H) @1 @m)+ 71 @n)) if 14+wes <j<we,
0 if jzl"‘l_wt—lu

Fil/(Dp) =

with &= ) { >z oxilgTh) - eﬂ'(g)(ij)} s Y= { > iy xa(g™h) eﬂ(g)(ij)} ;

where the sets I, are unions of G-orbits of Iy for all r.

5.2.1 The potentially crystalline case

e The Frobenius-stable submodules are 0, D, Dy = (E!Stol)n; and
Dy = (E‘SLr)')nQ;

e The filtered (¢, L/K, E)-module D is weakly admissible if and only if

(i) efvp(ad) = > ks

i€ly
(5.1)

(ii) efvp(a) > > k; and (iii) efvp(d) > > ki,
{i€lp: y;=0} {i€lp: z;=0}
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where e is the absolute ramification index and f the absolute inertia degree of L. Assuming that D
is weakly admissible,

1. Tt is irreducible if and only if both inequalities (ii) and (iii) in (5.II) are strict;

2. It is reducible, non-split if and only if exactly one of the inequalities in ([G.)) is strict. If in-
equality (ii) is strict, the only nontrivial weakly admissible submodule is Do, while if inequality
(iii) is strict the only weakly admissible submodule is Dy;

3. It is split-reducible if and only if IS’ N Jz N Jyz = &. The only nontrivial weakly admissible
submodules are Dy and Ds.

The corresponding potentially crystalline representation is a principal series.

5.2.2 The potentially semistable, noncrystalline case

= Ol
jenlienl}

In this case, there exists a basis 1 so that a = pd and [N}, = ( > . Moreover,

e The characters x1 and ya are equal;

e The submodules fixed by Frobenius and the monodromy are 0, D and Dy;

The filtered (¢, N, L/K)-module D is weakly admissible if and only if
2efu,(0) +ef = Z k; and efvp,(d) > Z ki. (5.2)

i€lo {iely: z;=0}

Assuming that D is weakly admissible, it is reducible, non-split if and only if the inequality in (5.2])
is equality. In this case, the only nontrivial weakly admissible submodule stable under Frobenius
and the monodromy is Ds. In any other case D is irreducible.

The corresponding potentially semistable representation is a special series.

5.3 The F-scalar case
There exists an ordered basis n of D over EIStol such that [¢], = diag(a - 1,a - 1) with a € EX.
e The monodromy operator N is trivial;

e There exists a group homomorphism A : G — GL2(FE) such that
9], = A(g)-diag(T, 1) for all g € G;
o The Galois-stable filtrations are as in the non-F-scalar case with

F= 8D Tlo)iy)  Enla)iy) (0 T= D4 D Yn(a)liy) " Ex(o)i) { »

j=1 | geG j=1 | geG

where (2r(g)(i,) Yn(o) i) = (%15, 93;) - Mg™") for all g € G;
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e The Frobenius-stable submodules are 0, D, Dy, Ds, with D1 and D> as in the previous cases,
and Dy = (E!Stol)(n + 6 - 1) for any 6 € E*.

For each ¢ € E*, let k(c) := > ki, where z; and y; are the coordinates of the vectors
{ieJzNJy: w;lyizc}
Z and ¢. Let k be the maximum of the integers k(c). The filtered p-module D is weakly admissible
if and only if
(i) 2efvp(e) = 3 kiy (i) efvp(e) = 30 ki,
i€lo {t€lp: y;=0}
(5.3)
(i) efvp(a) > > k;, and (iv) efvp(a) > k.
{icly: ;=0}

Assuming that D is weakly admissible,
1. Tt is irreducible if and only if all inequalities (ii), (iii) and (iv) in ([@3]) are strict.

2. It is reducible, non-split if and only if either exactly one of the inequalities (ii) and (iii)
is equality and inequality (iv) is strict, or both inequalities (ii) and (iii) above are strict,
inequality (iv) is equality and the maximum is attained for precisely one constant ¢. The only
p-stable weakly admissible submodules are Dy, D2 and D, respectively.

3. It is split-reducible if and only if either z; 14 is a constant ¢ for all i € Iy NnJznN Jg (including
the case I” N Jz N J; = & in which we define ¢ = 0) and one of the inequalities (ii) and (iii)
above is equality, or there exist two distinct constants ¢y, ca such that k(c1) = k(cz). The only
weakly admissible submodules are Dy and D., or Do and D., or D., and D., respectively,
and all these pairs of submodules are complementary in D.

The corresponding potentially crystalline representation is supercuspidal or principal series, de-
pending on A.

5.4 The non-F-semisimple case

There exists an ordered basis 7 of D over EStol such that [oly = ( al;l Of ) , with o € EX.
i -

In this case the monodromy operator N is trivial.

e The Galois action is given by [g], = diag(x(g) - I,x(g) - 1) for some character x : G — E*,

and the G-stable filtrations are as in the F-semisimple, non-scalar case;
e The Frobenius-fixed submodules are 0, D, Ds;

The filtered p-module D is weakly admissible if and only if
2efup(a) +ef = Z k; and efu,(a) > Z k;. (5.4)
i€lp {i€ly: z;=0}

Assuming that D is weakly admissible, it is reducible, non-split if and only if the inequality in (G5.4I)
is equality. In this case, the only nontrivial weakly admissible submodule is Dy. In any other case
D is irreducible.

The corresponding potentially crystalline representation is a principal series.
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6 Isomorphism classes

Let (D;, @i, N;), i = 1,2be isomorphic filtered (¢, N, L/K, E)-modules with labeled Hodge-Tate
weights ({—kq,0})s, where k, are non negative integers. Let 1’ = (ni{,73), i = 1,2 be standard

2
bases and let h : D1 — D2 be an isomorphism. We denote by [h]g1 the matrix of h with respect to

the bases 7' and by [h]iggl the matrix of hy, = 15, £ ®h with respect to the bases 1®@17". If all the
weights k, equal zero, compatibility of h with the filtrations holds trivially and the corresponding

sections should be ignored.
6.1 The F-semisimple, non-scalar case

Let [p4],: = diag(ay - 1,6; - 1), with ozzf # 5{' and «; = pd; # 0 if the monodromy operators are
nontrivial. In the next proposition we determine when the isomorphism h commutes with the

Frobenius operators. We write Q = [h]g1 =

ol &
S

7| and by Section 2271 it is clear that

ave oo i b
[hL] =Q% = .. = |=| 2 5
C d C1 dl
Proposition 6.1 The isomorphism h commutes with Frobenius endomorphisms if and only if either

1. oz{ = on and 5{ = 52, in which case [h]%l = diag(a-dp, d- do) where @y = (1, p1, 3, ...,u{fl),

do = (1, piz, 43, oo 1), with py = 24, pp = & and a,d € EX,
f f_ f n _ 0 b-b 7o 2 f-1
2. 041 =03 and 6] = o3, in which case [h]n = . 5 , where by = (1,&1,&7, .., & ),
C-Co

Go=(1,.8,..8 "), with& = 2, & =% and b,c € E*.

Proof. We need ([p2],2) - ¢(Q) = Q - ([¢1],1), or equivalently @ = az¢p(a), 616 = azp(b), ay @ =
b200(2) and 01d = byp(d).If of & {af, 6]}, then LemmaPTlimplies @ = & = 0 a contradiction. Hence
of € {ad,64}, and similarly 67 € {af,8]}. Since of # 6/ for i = 1,2 we have the following cases:
Case (1). If of = af and 6] = 6], By Lemma 1] Q = diag(a@, d), where @ = a(1, 1, p2, ..., pd 1),
d=d(1, pg, p2, ..., pd ) with g o pp = % and a,d € EX. Case (2). If of = 6] and 6/ = of.

0 b I 1
Z 6 ) 3 with b = b(lué-lug%?"'a { 1)7 (1 527527' .y 2 )7

where § = 2L, & = $* and b,c€ EX. =
We now determine when h commutes with the monodromy operators.

Arguing as in Case (1), Q = (

Proposition 6.2 The isomorphism h commutes with the monodromy operators if and only if either

2
both the monodromies are trivial or the matriz [h]gl is as in Case (1) of Proposition[61], a = d and

04162 = a2(51.

Proof. Clearly the monodromy operator of one of the filtered modules is trivial if and only if the
monodromy operator of the other is. The monodromy operators commute with h if and only if
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2 2
[h]g1 N1l = [Na,2 [h]%1 . The proposition follows by a straightforward computation using
Corollary and Proposition ]

Proposition 6.3 Let [g],» = diag(x1(g) - 1, x2(g) - 1) and [g],2 = diag(¢1(g) - 1,%2(g) - 1).
(1) If the matriz of h is as in Case (1) of Proposition [, then h commutes with the Galois

actions if and only if x1(g) = u?@)% (9) and x2(g9) = ug(g)djg(g) for all g € G.
(2) If the matriz of h is as in Case (2) of Proposition [61], then h commutes with the Galois

actions if and only if x1(g) = 5;(9)1/)2(9) and x2(g) = 5?(9)1/)1 (g) for all g € G.

Proof. A straightforward computation, using that the Galois actions commutes with & if and only

! <[ ] ) (9l = laly (g[h]:;f) u

6.1.1 Compatibility with the filtrations

IS \3

Throughout this section we assume that at least one weight k, is positive. Suppose that for ¢ = 1,2
we have

D; L if j <0,
) |SL\I
G~ ) (B (@ (1®n1)+y1(1®n2))
Fll(DuL)_ 1+wr1<.]<wr7 fOI"I”—O ., _17

0if 7>14w_q,

‘We need _ _
hi(Fi Dy 1) = Fil Dy 1, (6.1)

for all j and we have the following cases: (1) If Q = diag(a, d) is as in Case (1) of Proposition (1]
let Q®¢ = diag(ﬁl,cfl), where @; = @®¢ and d; = d®?. Since hy, is (E'SL‘)—linear. Condition (6.1))
is equivalent to

(B (fo, - @0 @t @md) + foy, - (0 @ mb)) = (BH) (fi, - B2 (L@ + f,, (1 0 03)),

and the latter equivalent to the system of equations
a1-Ti=1t-fs., = fy -t -,
(i) Fam @1 T1 =1, and (i) O A (6.2)
d © X2 t'f,]gév fJg2:fJ,jl' 1 U1,

frg,
for some vectors 7, t; € EStl. We easily see that (6.2) implies

LSl

Jis 0y, Q1 T1 = [0y, - di - Ta.

Since a; € (EX)ISL‘ , the first equation of (6.2))(i) implies that Jz, C Jz, and the first equation of
©2))(ii) that Jz, C Jz,, therefore Jz = Jgz,.
Similarly, since d, € (E X)|SL‘ , we have Jy, = Jy,. Conversely, if the equations

o, = Jay; Jg = Jg, and fr,, g URE

5 01 T1 = [z, 00y

Y1

22



hold, then it is easy to see that the system of equations (6.2)) has solutions in t and #;. Hence, h
preserves the filtrations if and only if

Ji, = Jzy; Jg = Jg, and fi. g, -dy - Ty (6.3)

5 01T = fug,n0;

Y2

We have the following subcases:
(a) When the monodromies are trivial: In this case, the third equation in (6.3 can be replaced by

Jaenag - ((i’o)®6 T = frangg (CZ;J)®€ - &y in the projective space P 1(E), (6.4)

where @y = (1, ,ul,,ul,. ,,ul Y and do = (1, pa, 43, .. ,,ugfl).
Conversely, if 041 = 042, 01 f= 6; and equation (G.4) holds, then (after scaling one of the vectors do

or dy if necessary) Q = ( )2 ) = diag(d@, dy) defines an isomorphism of filtered (¢, N, L/K, E)-

modules h : (D1, 1) — (D2, @2).

(b) When the monodromies are nontrivial: By Proposition6.2 we have @ = d and (6.3) is equivalent
to

Jfl = Jiza J’Jl = J172 a‘nd fJi'ﬂJg : fl == fJimJ,j : fQ- (65)

Conversely, if a'{ = ag, 5{ = 65, and 102 = aindy, if the monodromy operators are non-trivial, and
if equations (63 hold, then the E!Srol-linear map

2
h : (D1,¢1) — (D2, ¢2) defined by Q = [h]%1 = diag(dp,dp) is an isomorphism of filtered
(¢, N, L/K, E)-modules.

wre=(1"

hr, preserves the filtrations if and only if

) then both the monodromy operators are zero. Arguing before we see that

Jfl = ng; Jﬂl = Ji’g and
(6.6)
frznag, - (00)%¢ = fr005, - (€)% - @ - & in PPY(E).

Conversely, if of = 67, 6/ = af and equations (6.6) hold, then the E!Stol-linear map h : (D1, 1) —

2 0 b -
(D2, p2) defined by Q = ([h121) = ( 9 b% ) (after scaling one of the vectors by or ¢ if necessary)
o

is an isomorphism of filtered (¢, N, L/K, E)-modules.

6.2 The F-scalar case

Suppose that
[pily: = diag(ey - 1,05 - 1) and [g],: = Ai(g) - diag(1,1)

for some group homomorphisms \; : G — GL3(E), i = 1,2. Arguing as in the non-F- scalar case,

one easily sees that an isomorphism h commuting with Frobenius exists if and only if al = ozg

Then, Q = [h ];1 = R-diag(1,1) for some R € GLo(E), and h commutes with the Galois action
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if and only if A2(g) = RA\i(g)R™! for all g € G. Let R = ( CCL Z

isomorphism, it preserves the filtrations if and only if Ay, (FillDL L) = Fil'! Dy 1, or equivalently

. Since hy, is an E!Szllinear

E‘Sl“ (a . .fl +b'f,]g1) - E‘Sl“fz and E‘Sl“ (C'fl +d.'f‘]§1) = EJISL‘fJ172
which we write in assorted form as

(B (71, ) - (R-diag(T. 1)) = (B (22, f,). (6.7)

Conversely, if of = af, if there exists some R € GLy(E) such that
A2(g9) = RA\i(g)R™! for all g € G and (6.2)) holds, then the E!Szol-linear map

2 — -
h: D1 — Dj defined by [h];, = R - diag(1, 1)
is an isomorphism of filtered (¢, N, L/ K, E)-modules.

6.3 The non-F-semisimple case
Let

(073 T 6 . g g
[pily: = ( 7 a--f) and [g], = diag(xi(g) - 1, xi(g) - 1)

> (@b
' ¢ d
The isomorphism h commutes with the Frobenius endomorphisms if and only if

(lp2ln2) - 0(Q) = Q- ([p1)y1). (6.8)

This implies that Nmy([p2],2) - Q@ = Q- Nmy([¢1]

for some characters x; : G — E*. Let Q = [h]

IS

»t), and this combined with Lemma [2.1] that

o’ \aa 1

Q

1
f f v_Q = 7 a a 2 a J=t X :
o =ay, b=0andd=d=a-(1,32 (—2) s ey (—2) for some a € E*. Then by equation
([63), the coordinates of ¢ satisfy

i—1

e= 1 3 (co—apt +a) =D (i =) b fori= 1.2, f— 1,
j=1

where ¢y € F is arbitrary. Arguing as in Section [6.1.1] we see that h is preserves the filtrations if
and only if

Jz, = Jz, and fy, - @3 - &€ = ( Frensy, - &= Frens, -gz'l) - g®e. (6.9)

It is straightforward to see that h commutes with the Galois actions if and only if x1(g) = u?(g) .

x2(g) and 9¢ = Mf(g) - ¢ for all g. The latter equation holds if and only if either oy = ag, or
n(g)—1 2j ¢ ¢ n(g)—1 2j

> (g—f) = 0 for all ¢ € G. Conversely, assume that af = o} and ) (g—f) = 0 for
Jj=0 j=0
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all ¢ € G, in case that a1 # . In addition, assume that x1(g) = u?(g) - x2(g) for all g. If
the first two equations in (G.9]) hold and there exist a € E* and ¢y € E such that the third

2 s
equation in (69) holds, then the E!Stol-linear map h : Dy — Do defined by [h]g1 = ( Cci 2, ) is
an isomorphism of filtered (¢, L/K, F)-modules. We now list the isomorphism classes of rank two
filtered (¢, N, L/K, E)-modules.

6.4 The list of isomorphism classes

Let (D;, @i, Niy L/ K, E) be filtered modules with labeled Hodge-Tate weights ({—ks,0})o, with ke
non negative integers. Let n°, i = 1,2, be standard bases, and suppose that the filtrations are given
by B

D; it j <0,
(B1oeln) (&1 @) + 51 @ b)) it
1+w,—1 <j<w, forr=0,...,t—1,

0 if j>1+w_,

Fi¥(D; ) =

for some vectors Z;,7; € E!®tl whose coordinates do not vanish simultaneously. Throughout this

section, any equation involving the sets Jz and Jyz should be ignored if all the weights k, equal
zero. Recall the definition of n(g) from Section 222

6.4.1 The F-semisimple case

Let [@;], = diag(ai-f, 6i-f) with «;, 0; € E* such that aif #+ (55 and [g]ﬂl = diag(xl(g)-f, xg(g)-f),
[9]2 = diag(¥1(9)- 1,42(g)-1) for some E*-valued characters x; and ¢; of G = Gal(L/K). When the

monodromy operators are nontrivial, the bases are chosen so that a; = pd; and [Ny],i = ( 9 9 ) .

—_
)

6.4.2 The potentially crystalline case
If both the monodromy operators are trivial, then (D1, ¢1, L/ K, E) ~ (D2, 2, L/K, E) if and only

if either
{ Oé{ = aﬁc } { Jz, = Jz } x1(9) = N?(g)wl(g)
ol = o Ty = Jg, x2(9) = 15" ¥a(g)
for all g € G and

'fl = (i me‘gﬂJ‘ 'fg in Pmil(E),

Q- fizniy 7o

Y1

- o -1\ 7 s f-1\%° a 5
with a= (1,,u1,,u1, ey M ) and d = (l,ug,,uQ, ceey 1 ) , where p; = o and pe = 5, or

{04{=52f } { Jz, = Jg, } { x1(9) = &9 9s(g) }
df=ab [ Un=Je [ | xalo) =€ Dvi(g)

for all g € G and

—

b . fJilm ng = 8 f']flm ng . fl . .fg iIl Pmil(E),

- 1\ ®e N 1\ ®e o
with b = (1,51,55,..., / 1) and &= (1,52,53,..., ] 1) , where & = 2L and & = %
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6.4.3 The potentially semistable, noncrystalline case
If both the monodromies are nontrivial, then (D1, 1, N1, L/K, E) ~ (D2, @2, No, L/K, E) if and
only if

{ a{ = ag } { Jz, = Jz, } { x1(g) = u?(g)djl(g) for all g € G and }

@102 = @21 g = g fJflm T, I = fJflﬂ g, - Ty in A™(E)

where p; = L.

s
6.4.4 The F-scalar case

Let 4], = diag(av - T, ;- T) and [g],: = \i (g)-diag(f, f) for some group homomorphisms \; : G —
GLs(E), i=1,2. Then
(Dlu ng,L/K, E) = (D27 902=L/K7 E)

if and only if af = a and there exists some matrix R € GLy(E) such that Ay(g) = RA;(g)R™! for
all g and (with the notation of Section [6.2))

(554) (1. 1) (m-ame.0) - (£54) (s 12,)

6.4.5 The non-F-semisimple case

Let . .
(673N 1 0 . x . - o
[ei]y: = T 4T with a; € E”and [g],: = diag(xi(g) - 1, xi(g) - 1)
for some characters y; : G — E*. Then (D1, ¢1,L/K,E) ~ (D2, 92, L/K, E) if and only if

n(g)—1 .
(1) a{ = ag and in case that a; # ag, >, M1_2] =0 for all g € G, where p; = ¢1;
j=0

(2) x1(9) = 19 - xa(g) for all g € G;
3) Jz, = Jz, and there exist a € E* and ¢g € E such that
1 2

Juz @318 = (fransy, T = fransy, - 31) -3 in A™(E),

where d = a - (l,ul_l,,ul_Q, ...,,ul_(f_l)) and €= (co,c1, ..., cf—1) with
i—1 ‘ ‘
e=pi§ (o —aprt +a) =Y (i = pur¥) b fori = 1,2, f 1.
j=1

7 Some consequences for crystalline representations

Let K be any finite extension of Q, of absolute ramification index e and absolute inertia degree f.
We apply the results of the previous sections to study 2-dimensional crystalline E-representations of
Gx. Let V be such a representation and let (D, @) be the corresponding weakly admissible filtered
@-module. Recall that the map ¢/ is Ko ® E-linear. We call characteristic polynomial of V' the
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characteristic polynomial of ¢f, and throughout this section we assume that V is F-semisimple,
meaning that ¢/ has the same property. Let 1 be a standard basis so that [cp]ﬂ = diag (a 1,6 T)
with a,6 € EX and of # 6/, and let

Dg if j <0,

) |SK|1 7. U - i
) _ ) (BSEl) (& + g om) if
Fil (DK) - 1+U)r71 SJS Wy, for r = Ov"'vt_ 17 (71)
0 if j> 14w 1.

for some vectors &,y € E™, where m is the degree of K over @, whose coordinates do not vanish
simultaneously. In practice it is often desirable to allow for a more flexible shape of Frobenius, at
the cost of adding extra rigidity to the filtrations. By Remark [B.1] we may assume that § = f;_,

and by considering the ordered basis ¢ = ((1,C2) with ¢; = (Y er, + 3 x;7ter,)m and G = g,
- ic J; i€Jz

we may further assume that & = f;. and i = f;,. In such a basis the matrix of Frobenius remains

diagonal of the form [p]; = diag (0_2, g) for some vectors @, 6 € (EX)ISKUI with Nmg (&) # Nmy,(g).

The results of Section [6.4.2] take the form of the following proposition.

-

Proposition 7.1 Let (D;, ;) be filtered p-modules with [¢;],: = diag(d;,0;), i = 1,2 and filtrations
as in Section with &; = fas, and i = fig, @ = 1,2. The F-semisimple filtered @-modules
(Di, ;) are isomorphic if and only if either

{ ng,(:l) = ng,(ozz), } { J-‘l = Jf y }
Nmy(01) = Nmy(d2) J 7 | Ja = g
and fjilﬂ I -d= fjilﬂ I - d viewed in the projective space P™1(E), where

e Re

20 2 25ty 99 2 ’5_2’5262"”’6252---52
0 %% 091

Qp oy QpQy -y _o f-2
Nmsa(ozl):Nmsa(gQ)v { Jz :J.7727 }
wa( 1) = wa(@b) ’ ng — sz

and fr. 0 g5 b= JJz,0 g5, - € viewed in the projective space P™=Y(E), where

or

Re ®e
1 slsl 151,481 1 1.1 lal. .l
g* 1 —50 5051 5051 6f_2 and € = Qp Qg Qo af—?
—\ 202,20 22 9 | 52052520 5252 2 :
af’ ajas GO g 05 0507 0507 -+ 0%

If all the k; are 0, any equation involving the sets Jg,, Jg, should be ignored.

The two cases of Proposition [T.] occur due to the isomorphism of any rank two filtered mod-
ule which swaps its basis elements. For our current normalization the results of Section (2.1

should be slightly modified: One should only replace e fv,(ad) by ev,(Nmy(&)Nmy(9)), efvp(a)

by ev,(Nmy(&)) and ev,(6) by ev,(Nmy(6)), where for a vector @ we denote by v,(Nm,(&)) the
valuation of the product of its coordinates. For the rest of the section we assume that our bases are
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standard with Frobenius as in Proposition [T and filtrations as in (ZI)) with Z = f;, and § = f,.
To avoid trivialities we assume that at least one of the non negative weights k; is strictly positive.
The following corollary follows easily.

Corollary 7.2 Let (D, ) be an F-semisimple, weakly admissible filtered o-module of rank two over
Ky ® E with labeled Hodge-Tate weights ({—ki,0})o, .

(1) If Tr(p’) € OF then the corresponding crystalline representation is reducible;

(2) There exist infinite families of weakly admissible non isomorphic F-semisimple rank two
filtered p-modules sharing the same characteristic polynomial and filtration with (D, ) if and only
Zf| JfﬂJg|> 1.

m—1

Let &k := z_: ki, and let 7 € E* be an e-th root of p. Let a@ € mp with a? # 47* so that the
i=0

roots gg,e1 of X2 —aX + ¥ be distinct. Consider the rank two filtered ¢-modules D (X, ﬁ) , with
X, ek X)f ! , with Frobenius endomorphisms given by

. €0 €1
—diag [ (Mo Ao Apoos ——2 ) (s gy oo g, —— ) ),
[eln g(( 05 AL oy Ap—2 A0)\1._.%(2) (Mo [, e Jp—2 uom,,,qu))

and filtrations as in (ZI) with Z = 7 = 1. We have the following corollary.

Corollary 7.3 (1) For any X, ji € (Ex)ff1

weakly admissible;
(2) D (X, ﬁ) ~D (Xl,ﬁl) if and only if X - iy = Xy - [i;
(3) The filtered modules D (fa ﬁ) with fi € (EX)JL1 are representatives of the distinct isomor-

phism classes of all rank two weakly admissible filtered modules with fixed characteristic polynomial
X2 —aX + 7% and filtration as in (71), with T == 1.

, the filtered modules D (X, ﬁ) are irreducible and

Corollary 7.4 If K # Q, there exist (infinitely many) disjoint infinite families of irreducible 2-
dimensional crystalline E-representations of Gy, sharing the same characteristic polynomial and
filtration.

Appendix

The potentially crystalline E*-valued characters of Gg. Let ko, k1, ..., k1 be arbitrary
m—1

> ki
integers. Assume that there exists w € E* such that w®™ = pi=0 . The weakly admissible

rank one filtered (o, L/K, E)-modules with labeled Hodge-Tate weights (—k;),, are of the form

D= (]I E)nwith ¢(n) = uw(w,w,...,w)n for some u € E* with v,(u) =0 and, g(n) = (x(9)-1)n
SLo

for some character
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x : Gal(L/K) — E*. Their filtrations are given by

(E\SL\) (1®n) if 7 < wp,
(E\SL\Il)(hg)n) if 1+wy<j<w,
Fi(Dy)=d
(ElsL\zt,l) (1on) if 1+ws <j<w,
0 if j > 14 w1,

where the sets I, are unions of Gal(L/K)-orbits for all . Denote such a filtered module by (D, x).
Then (Dy,x) ~ (D,,®) if and only if (i) u/ = v/ and (ii) x(g) = £™94(g) for all g € G, where
e=uv L
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