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Abstract

Let f be a holomorphic automorphism of positive entropy on a compact
Kähler surface. We show that the equilibrium measure of f is exponentially
mixing. The proof uses some recent development on the pluripotential the-
ory. The result also holds for automorphisms on compact Kähler manifolds
of higher dimension under a natural condition on their dynamical degrees.
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1 Introduction

Let (X,ω) be a compact Kähler manifold of dimension k and f a holomorphic
automorphism of X. The dynamical degree of order q of f is the spectral radius of
the pull-back operator f ∗ acting on the Hodge cohomology group Hq,q(X,C). It
is denoted by dq(f) or simply by dq if there is no confusion. We have d0 = dk = 1
and if fn := f ◦ · · · ◦ f (n times) is the iterate of order n of f , then dq(f

n) = dn
q .

A theorem by Khovanskii [13], Teissier [18] and Gromov [8] implies that the
sequence q 7→ log dq is concave. So, there are integers 0 ≤ p ≤ p′ ≤ k such that

1 = d0 < · · · < dp = · · · = dp′ > · · · > dk = 1.

An instructive example with p 6= p′ is a map f on a product X = Y × Z of
compact Kähler manifolds such that f(y, z) = (g(y), z) for (y, z) ∈ Y × Z. More
interesting examples of maps preserving a fibration were considered in [4].

Most dynamical studies on automorphisms of compact Kähler manifolds are
concentrated on the case where the consecutive dynamical degrees are distinct,
i.e. p = p′. Somehow, this condition insures that the considered dynamical
systems have no trivial direction. From now on, we also assume that f satisfies
this natural condition. In [6, 7], we constructed for f canonical invariant currents
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(Green currents) and ergodic invariant probability measures using the theory of
intersection of currents, see also [10].

When the operator f ∗, acting on Hp,p(X,C), admits only one eigenvalue of
maximal modulus, there is only one invariant probability measure obtained as the
intersection of a Green (p, p)-current of f and a Green (k − p, k − p)-current of
f−1. We call it the equilibrium measure of f . The above eigenvalue is necessarily
equal to dp and the obtained measure is shown to be mixing, hyperbolic and of
maximal entropy. The reader finds in [7] and in Section 4 below some details.
Here is our main theorem.

Theorem 1.1. Let f be a holomorphic automorphism on a compact Kähler man-

ifold (X,ω) and dq its dynamical degrees. Assume that there is a degree dp strictly

larger than the other ones and that f ∗, acting on Hp,p(X,C), admits only one

eigenvalue of maximal modulus dp. Then the equilibrium probability measure

µ of f is exponentially mixing. More precisely, if δ is a constant such that

max(dp−1, dp+1) < δ < dp and all the eigenvalues of f ∗, acting on Hp,p(X,C),
except dp, are strictly smaller than δ, then

|〈µ, (ϕ ◦ fn)ψ〉 − 〈µ, ϕ〉〈µ, ψ〉| ≤ A‖ϕ‖Cβ‖ψ‖
Cβ′ (dp/δ)

−nββ′/8,

for all Cβ function ϕ and all Cβ′

function ψ on X with 0 ≤ β, β ′ ≤ 2. Here,

A = A(β, β ′, δ) is a constant independent of ϕ, ψ and of the integer n ≥ 0.

Mixing is equivalent to the property that the left hand side of the above
inequality converges to 0 when n goes to infinity. In the proof of Theorem 1.1,
we use in particular dynamical properties of the map F := (f−1, f) acting on
X×X. A Green (k, k)-current of F can be obtained as the limit of d−2n

p (F n)∗[∆],
where [∆] is the current of integration on the diagonal ∆ of X ×X. The speed
of convergence is the key point in the proof of our result, see Proposition 3.1
below. The idea was already introduced in [3, 5, 7]. However, the use of the
pseudoconvexity of Ck is no longer valid in the compact setting. We will replace
it with the use of the Hölder continuity of Green super-potentials.

Theorem 1.1 still holds under weaker hypothesis: all the eigenvalues of maxi-
mal modulus of f ∗, acting on Hp,p(X,C), are equal to dp and the spectral radius
dp of this operator is of multiplicity 1, i.e. ‖(fn)∗‖ ∼ dn

p . The last property can be
seen in the Jordan form of the square matrix associated to f ∗: the Jordan blocks
whose diagonal entries have modulus dp, are of size 1 × 1. Very likely, the con-
dition ‖(fn)∗‖ ∼ dn

p is necessary because it insures that the cohomology classes
associated to d−2n

p (F n)∗[∆] converge exponentially fast. Otherwise, we cannot
have a good speed of convergence for the currents d−2n

p (F n)∗[∆]. In the con-
sidered case, the construction in [7] gives a finite family of invariant probability
measures of maximal entropy. They are all exponentially mixing.

Consider now an automorphism f of positive entropy on a compact Kähler
surface X. Results by Gromov [9] and Yomdin [20] say that the (topological)
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entropy of f is equal to log d1. So, d1 > 1 and the consecutive dynamical degrees
of f are distinct. These automorphisms were studied by Cantat in [2]. He showed
in particular that all the eigenvalues of f ∗, acting on H1,1(X,C), have modulus
1 except two eigenvalues d1 and 1/d1. So, we can apply Theorem 1.1 and deduce
the following result.

Corollary 1.2. Let f be a holomorphic automorphism of positive entropy on a

compact Kähler surface X. Then the equilibrium measure of f is exponentially

mixing.

Note that exponential mixing for polynomial automorphisms was proved by
Nguyen and the authors in [3, 5]. We refer to Bedford-Kim [1], Keum-Kondo
[12], McMullen [14] and Oguiso [15] for interesting examples of automorphisms
on compact Kähler manifolds.

Acknowledgement. The first author wishes to express his gratitude to the Max-
Planck Institut für Mathematik in Bonn for its hospitality during the preparation
of this paper.

2 Super-potentials of currents

Super-potentials were introduced by the authors in order to develop a calculus
on positive closed currents. We recall some basic properties and refer to [7] for
details.

Let Dp denote the real space generated by positive closed (p, p)-currents on
X. If S is a current in Dp, define the norm ‖S‖∗ of S by

‖S‖∗ := min ‖S+‖ + ‖S−‖

where the minimum is taken over the positive closed currents S± with S =
S+ − S−. Here, ‖S±‖ denote the mass of S± which are defined by

‖S±‖ := 〈S, ωk−p〉.

Observe ‖S±‖ depend only on the cohomology classes of S± in Hp,p(X,R). We
say that a subset of Dp is ∗-bounded if it is bounded for the ‖ ‖∗-norm. Let D0

p

denote the subspace of currents S in Dp whose classes {S} in Hp,p(X,R) are zero.
We consider on Dp and D0

p the following topology: a sequence (Sn) in Dp or
D0

p converges to a current S if Sn converge to S in the sense of currents and if
‖Sn‖∗ are bounded by a constant independent of n. Smooth forms are dense in
Dp and D0

p for this topology.
For any 0 < l <∞, we can associate to Dp a norm ‖ ‖C−l and a distance distl

defined by

‖S‖C−l := sup
‖Φ‖

Cl≤1

|〈S,Φ〉| and distl(S, S
′) := ‖S − S ′‖C−l,
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where Φ is a smooth test form of bidegree (k−p, k−p) on X. The weak topology
on each ∗-bounded subset of Dp coincides with the topology induced by ‖ ‖C−l.
If 0 < l < l′ < ∞ are two constants, then on each ∗-bounded subset of Dp we
have

distl′ ≤ distl ≤ cl,l′( distl′)
l/l′

for some positive constant cl,l′.
The super-potential of a current S in Dp is a canonical linear function defined,

under some normalization, on the smooth forms in D0
k−p+1. It plays the same role

as the potentials of positive closed (1, 1)-currents which are quasi-p.s.h. functions.
Let α = (α1, . . . , αh) with h := dimHp,p(X,R) be a fixed family of real

smooth closed (p, p)-forms such that the family of classes {α} = ({α1}, . . . , {αh})
is a basis of Hp,p(X,R). Let R be a current in D0

k−p+1. Since the cohomology
class of R is zero, there is a real (k − p, k − p)-current UR such that ddcUR = R.
We call UR a potential of R. Adding to UR a suitable closed form allows to assume
that 〈UR, αi〉 = 0 for i = 1, . . . , h and we say that UR is α-normalized. When R
is smooth, we can choose UR smooth and the α-normalized super-potential US of
S is defined by

US(R) := 〈S, UR〉.
The definition does not depend on the choice of UR.

When the function US extends continuously to D0
k−p+1 for the considered

topology, we say that S has a continuous super-potential. If S is in D0
p then US

does not depend on the choice of α; if moreover S is smooth, it has a continuous
super-potential and we have the formula

US(R) = UR(S),

where UR is the super-potential of R which is also independent of the normal-
ization. We can extend the above equality to the case where S has a continuous
super-potential.

We say that US is (l, λ,M)-Hölder continuous if it is continuous and if

|US(R)| ≤M‖R‖λ
C−l

for R ∈ D0
k−p+1 with ‖R‖∗ ≤ 1, where l > 0, 0 < λ ≤ 1 and M ≥ 0 are

constants. If l′ > 0 is another constant, the above comparison between distl and
distl′ implies that when US is (l, λ,M)-Hölder continuous, it is (l′, λ′,M ′)-Hölder
continuous for some constants λ′ and M ′ which are independent of S.

Here is the main result in this section. It improves Theorem 3.2.6 in [7] and
can be seen as a version of the classical exponential estimates for p.s.h. functions.

Proposition 2.1. Let R be a current in D0
k−p+1 with ‖R‖∗ ≤ 1 such that its

super-potential UR is (2, λ,M)-Hölder continuous. Then there is a constant A > 0
independent of R, λ and M such that the super-potential US of S satisfies

|US(R)| ≤ A(1 + λ−1 log+M),
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for any current S in D0
p with ‖S‖∗ ≤ 1, where log+ := max(0, log).

We will use a family of linear regularizing operators Lθ : D
0
p → D

0
p introduced

in [7] with θ in P1 = C∪{∞}. Let us recall some properties of Lθ. Fix a constant
c > 0 large enough which depends only on the geometry of (X,ω).

The operators Lθ are continuous for the considered topology on D0
p and are

bounded for the ‖ ‖∗-norm, i.e. ‖Lθ(S)‖∗ ≤ c‖S‖∗ with c > 0 independent of θ
and S. We have L0(S) = S and

dist2(S,Lθ(S)) ≤ c‖S‖∗|θ|.

Moreover, Lθ = L∞ for |θ| ≥ 1.
Let p ≥ 1 be a constant and let q ≥ 1 such that when p < k+ 1, 1/q = 1/p−

1 + k/(k + 1) and q = ∞ when p ≥ k + 1. We always have ‖L∞(S)‖L1 ≤ c‖S‖∗.
If S is an Lp form, p ≥ 1, then L∞(S) is an Lq form satisfying

‖L∞(S)‖Lq ≤ c‖S‖Lp.

Here, c > 0 is a constant large enough. Recall also that the function uS(θ) :=
ULθ(S)(R) is continuous and is constant out of the unit disc. It satisfies

‖ddcuS(θ)‖ ≤ c‖S‖∗‖R‖∗.

The last properties hold for R smooth and extend by continuity to currents R
with a continuous super-potential.

Proof of Proposition 2.1. For R and S as in the proposition, we have ‖S‖∗ ≤ 1
and ‖R‖∗ ≤ 1. Multiplying S by a constant allows to assume that ‖S‖∗ ≤ c−k−3.
Define S0 := S and Si+1 := L∞(Si) for 0 ≤ i ≤ k + 1. Define also ui(θ) :=
ULθ(Si)(R) and mi := ui(0) = ui−1(∞). Using inductively the above estimates,
we get ‖Si‖∗ ≤ 1/c, ‖ddcui‖ ≤ 1 and ‖Sk+2‖L∞ ≤ 1. The last inequality implies
that |mk+2| is bounded by a constant independent of S,R. Indeed, R always
admits a potential UR of bounded L1-norm and we have mk+2 = 〈Sk+2, UR〉.

We need to show that |m0| ≤ A(1 + λ−1 log+M) for some constant A > 0.
For this purpose, we can assume that M > 1 and it is enough to check that |mi−
mi+1| ≤ A(1 + λ−1 logM) for some constant A > 0. We have mi −mi+1 = vi(0)
where vi := ui −mi+1. The above properties of ui imply that vi are continuous,
vanish outside the unit disc and satisfy ‖ddcvi‖ ≤ 1. The classical exponential
estimates for subharmonic functions imply that ‖e|vi|‖L1(P1) ≤ c for some universal
constant c > 0, see [7, Lemma 2.2.4] and [11, Th. 4.4.5]. We then deduce that
there is a θ satisfying |θ| ≤M−1/λ and |vi(θ)| ≤ (A− 1) +Aλ−1 logM for a fixed
constant A large enough. Finally, using the Hölder continuity of UR, we get

|vi(0) − vi(θ)| = |USi
(R) − ULθ(Si)(R)| = |UR(Si) − UR(Lθ(Si))|

≤ M dist2(Si,Lθ(Si))
λ ≤M |θ|λ ≤ 1.

Therefore, |vi(0)| ≤ A(1 + λ−1 logM). This completes the proof. �
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3 Convergence towards Green currents

Let f , dq and δ be as in Theorem 1.1. Fix a constant δ0 < δ, close enough to
δ, so that δ0 satisfies also the same properties as δ. We recall some known facts
and refer to [7] for details. By Poincaré duality, the dynamical degree dq of f is
equal to the degree dk−q(f

−1) of f−1. Since the mass of a positive closed current
can be computed cohomologically, if S is in Dq and R is in Dk−p+1, we have
‖(fn)∗(S)‖∗ ≤ cdn

p‖S‖∗ and ‖(fn)∗(R)‖∗ ≤ cδn
0 ‖R‖∗ for some constant c > 0

independent of S,R and n.
By Perron-Frobenius theorem, the eigenspace H associated to the eigenvalue

dp of f ∗ acting on Hp,p(X,R) is a real line. Therefore, d−n
p (fn)∗ converge to a

linear operator L∞ : Hp,p(X,R) → H . Under the hypothese of Theorem 1.1, it
is easy to deduce that on Hp,p(X,R)

‖d−n
p (fn)∗ − L∞‖ ≤ c(d/δ0)

−n

for some constant c > 0. A Green (p, p)-current T+ of f is a non-zero positive
closed (p, p)-current invariant under d−1

p f ∗, i.e. f ∗(T+) = dpT+. Its cohomol-
ogy class {T+} generates the real line H . Moreover, it is known [7] that T+ is
the unique positive closed current in {T+}. So, if S is a current in Dp, then
d−n

p (fn)∗(S) converge to a multiple of T+. Here is the main result of this section.

Proposition 3.1. Let f, dq, δ be as in Theorem 1.1 and S a current in Dp. Let

r be the constant such that d−n
p (fn)∗(S) converge to rT+. Let R be a current in

D0
k−p+1 with ‖R‖∗ ≤ 1 whose super-potential UR is (2, λ, 1)-Hölder continuous.

Let U+, Un be the α-normalized super-potentials of T+ and of d−n
p (fn)∗(S). Then

|Un(R) − rU+(R)| ≤ A(d/δ)−n

where A > 0 is a constant independent of R and of n.

We first prove the following lemma.

Lemma 3.2. Let R be a current in D0
k−p+1 whose super-potential UR is (2, λ,M)-

Hölder continuous. Then, there is a constant A0 ≥ 1 independent of R, λ,M such

that the super-potential Uf∗(R) of f∗(R) is (2, λ, A0M)-Hölder continuous.

Proof. Let T be a current in D0
p such that ‖T‖∗ ≤ 1. We have seen that

‖f ∗(T )‖∗ ≤ c for some constant c ≥ 1 independent of T . Define T ′ := c−1f ∗(T ).
If T is smooth and UT is a smooth potential of T , then f ∗(UT ) is a smooth
potential of f ∗(T ) and we have

Uf∗(R)(T ) = 〈f∗(R), UT 〉 = 〈R, f ∗(UT )〉 = UR(f ∗(T )).

Since UR is continuous and smooth forms are dense in D0
p, we deduce that Uf∗(R)

is continuous and Uf∗(R)(T ) = UR(f ∗(T )) for every T in D0
p. Therefore,

|Uf∗(R)(T )| = c|UR(T ′)| ≤ cM‖T ′‖λ
C−2.
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Now, it is enough to show that ‖f ∗(T )‖C−2 ≤ c′‖T‖C−2 for some constant
c′ > 0. Consider test (k − p, k − p)-forms Φ such that ‖Φ‖C2 ≤ 1. Since f−1 is
smooth, there is a constant c′ > 0 such that ‖f∗(Φ)‖C2 ≤ c′. It follows that

‖f ∗(T )‖C−2 = sup
Φ

|〈f ∗(T ),Φ〉| = sup
Φ

|〈T, f∗(Φ)〉| ≤ c′‖T‖C−2.

This completes the proof.

Proof of Proposition 3.1. We have seen that ‖d−n
p (fn)∗ − L∞‖ . (d/δ0)

−n

on Hp,p(X,R). So, the computation in [7, Lemma 4.2.3] shows that if US is
continuous, |Un(R)−rU+(R)| . (d/δ)−n. Therefore, subtracting from S a smooth
closed (p, p)-form allows to assume that {S} = 0 and hence r = 0.

Define Rn := c−1δ−n
0 (fn)∗(R) where c ≥ 1 is a fixed constant large enough. We

have ‖Rn‖∗ ≤ 1. Lemma 3.2 implies by induction that URn
is (2, λ, An

0)-Hölder
continuous. As in the proof of this lemma, we obtain Un(R) = c(dp/δ0)

−nUS(Rn).
Finally, we deduce from Proposition 2.1 that

|Un(R)| = c(dp/δ0)
−n|US(Rn)| . n(dp/δ0)

−n.

The result follows. �

4 Exponential mixing

In this section, we prove Theorem 1.1. Theory of interpolation between the
Banach spaces C0 and C2 [19] implies that it is enough to consider the case
β = β ′ = 2, see [3, 5] for details. Assume now that ϕ and ψ are C2 functions such
that ‖ϕ‖C2 ≤ 1 and ‖ψ‖C2 ≤ 1. Subtracting from ψ a constant allows to assume
also that 〈µ, ψ〉 = 0. We have to show that

|〈µ, (ϕ ◦ fn)ψ〉| . (d/δ)−n/2.

We only need to consider the case where n is even. Indeed, if n is odd, we can
replace ϕ with ϕ ◦ f and deduce the result from the first case. So, it is enough
to check that

|〈µ, (ϕ ◦ f 2n)ψ〉| . (d/δ)−n.

We will apply Proposition 3.1 to the automorphism F of X × X defined
by F (x, y) := (f−1(x), f(y)). By Künneth formula [17, Th. 11.38], there is a
canonical isomorphism

Hq,q(X ×X,C) =
⊕

s+r=q

Hs,r(X,C) ⊗Hr,s(X,C).

It is not difficult to see that F ∗ preserves the above decomposition. So, the
dynamical degree of order k of F is equal to d2

p. It was shown in [4] that the
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spectral radius of f ∗ on Hr,s(X,C), which is also the spectral radius of f∗ on
Hk−r,k−s(X,C), is smaller or equal to

√
drds. Therefore, the dynamical degrees

and the eigenvalues of F ∗ on Hk,k(X×X,R), except d2
p, are strictly smaller than

dpδ0. So, we can apply Proposition 3.1 to F .
Let [∆] denote the positive closed (k, k)-current associated to the diagonal ∆

of X × X. Recall µ is the wedge-product T+ ∧ T− of a Green (p, p)-current T+

associated to f and a Green (k−p, k−p)-current T− associated to f−1. We have
f ∗(T+) = dpT+ and f∗(T−) = dpT−. Hence, F∗(T+⊗T−) = d2

pT+⊗T−. We deduce
from the uniqueness of Green currents that any Green (k, k)-current of F−1 is a
multiple of T+ ⊗ T−. In particular, it has a Hölder continuous super-potential.

Recall that ‖ϕ‖C2 ≤ 1 and ‖ψ‖C2 ≤ 1. Define Φ(x, y) := ϕ(x)ψ(y). Since
the C2-norm of this function is bounded, ddcΦ is a current in D0

2(X × X) with
bounded ‖ ‖∗-norm. If U is its super-potential and T is a current in D0

2k(X ×
X), then U(T ) = 〈Φ, T 〉. Clearly, U is (2, 1,M)-Hölder continuous for some
constant M > 0 independent of ϕ, ψ. By Proposition 3.4.2 in [7], the wedge-
product of currents with Hölder continuous super-potentials has also a Hölder
continuous super-potential. We deduce from the proof of that proposition and
the comparison between the distances distl that R := (T+ ⊗ T−) ∧ ddcΦ is a
current in D0

k+1(X ×X) with a (2, λ,M ′)-Hölder continuous super-potential for
some constants λ,M ′ independent of ϕ, ψ. This current R has also a bounded
‖ ‖∗-norm. Multiplying ϕ by a constant allows us to assume that ‖R‖∗ ≤ 1 and
M ′ = 1.

Proposition 3.1 applied to F , [∆] instead of f , S yields

|Ud−2n
p (F n)∗[∆](R) −m| . (dp/δ)

−n where m := lim
n→∞

Ud−2n
p (F n)∗[∆](R).

On the other hand, since F∗(T+ ⊗ T−) = d2
pT+ ⊗ T− and since Green currents are

well approximated by smooth forms, the following calculus holds (see [7])

Ud−2n
p (F n)∗[∆](R) = 〈d−2n

p (F n)∗[∆],Φ(T+ ⊗ T−)〉
= 〈[∆], d−2n

p (Φ ◦ F−n)(F n)∗(T+ ⊗ T−)〉
= 〈[∆], (Φ ◦ F−n)T+ ⊗ T−〉
= 〈(T+ ⊗ T−) ∧ [∆],Φ ◦ F−n〉.

The same arguments and the fact that µ = T+ ∧ T− is invariant yield

Ud−2n
p (F n)∗[∆](R) = 〈T+ ∧ T−, (ϕ ◦ fn)(ψ ◦ f−n)〉 = 〈µ, (ϕ ◦ f 2n)ψ〉.

We deduce from the mixing of µ that the last integral tends to 0 since 〈µ, ψ〉 = 0.
Therefore, we have m = 0. This together with the above estimate on the super-
potential of d−2n

p (F n)∗[∆] implies that

|〈µ, (ϕ ◦ f 2n)ψ〉| . (dp/δ)
−n,

and completes the proof of Theorem 1.1.
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Remark 4.1. Let δ+ ≥ dp−1 (resp. δ− ≥ dp+1) denote the smallest number such
that the eigenvalues of f ∗ acting on Hp,p(X,C), except dp, are of modulus smaller
than or equal to δ+ (resp. δ−). Theorem 1.1 still holds for any δ such that

2 log δ+ log δ−
log δ+ + log δ−

< log δ < log dp.

Indeed, there are positive integers l,m such that

max
(

δl
+, δ

m
−

)

< δ
l+m

2

and it is enough to follow the proof of Theorem 1.1 where we replace F with the
automorphism (f−l, fm). The details are left to the reader.
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