Exponential mixing for automorphisms on compact Kähler manifolds

Tien-Cuong Dinh and Nessim Sibony

July 22, 2009

Abstract

Let f be a holomorphic automorphism of positive entropy on a compact Kähler surface. We show that the equilibrium measure of f is exponentially mixing. The proof uses some recent development on the pluripotential theory. The result also holds for automorphisms on compact Kähler manifolds of higher dimension under a natural condition on their dynamical degrees.

AMS classification : 37F, 32H.

Key-words : dynamical degree, equilibrium measure, exponential mixing.

1 Introduction

Let (X, ω) be a compact Kähler manifold of dimension k and f a holomorphic automorphism of X. The *dynamical degree of order* q of f is the spectral radius of the pull-back operator f^* acting on the Hodge cohomology group $H^{q,q}(X, \mathbb{C})$. It is denoted by $d_q(f)$ or simply by d_q if there is no confusion. We have $d_0 = d_k = 1$ and if $f^n := f \circ \cdots \circ f$ (n times) is the iterate of order n of f, then $d_q(f^n) = d_q^n$.

A theorem by Khovanskii [13], Teissier [18] and Gromov [8] implies that the sequence $q \mapsto \log d_q$ is concave. So, there are integers $0 \le p \le p' \le k$ such that

$$1 = d_0 < \dots < d_p = \dots = d_{p'} > \dots > d_k = 1.$$

An instructive example with $p \neq p'$ is a map f on a product $X = Y \times Z$ of compact Kähler manifolds such that f(y, z) = (g(y), z) for $(y, z) \in Y \times Z$. More interesting examples of maps preserving a fibration were considered in [4].

Most dynamical studies on automorphisms of compact Kähler manifolds are concentrated on the case where the consecutive dynamical degrees are distinct, i.e. p = p'. Somehow, this condition insures that the considered dynamical systems have no trivial direction. From now on, we also assume that f satisfies this natural condition. In [6, 7], we constructed for f canonical invariant currents (Green currents) and ergodic invariant probability measures using the theory of intersection of currents, see also [10].

When the operator f^* , acting on $H^{p,p}(X, \mathbb{C})$, admits only one eigenvalue of maximal modulus, there is only one invariant probability measure obtained as the intersection of a Green (p, p)-current of f and a Green (k - p, k - p)-current of f^{-1} . We call it the *equilibrium measure* of f. The above eigenvalue is necessarily equal to d_p and the obtained measure is shown to be mixing, hyperbolic and of maximal entropy. The reader finds in [7] and in Section 4 below some details. Here is our main theorem.

Theorem 1.1. Let f be a holomorphic automorphism on a compact Kähler manifold (X, ω) and d_q its dynamical degrees. Assume that there is a degree d_p strictly larger than the other ones and that f^* , acting on $H^{p,p}(X, \mathbb{C})$, admits only one eigenvalue of maximal modulus d_p . Then the equilibrium probability measure μ of f is exponentially mixing. More precisely, if δ is a constant such that $\max(d_{p-1}, d_{p+1}) < \delta < d_p$ and all the eigenvalues of f^* , acting on $H^{p,p}(X, \mathbb{C})$, except d_p , are strictly smaller than δ , then

$$|\langle \mu, (\varphi \circ f^n)\psi \rangle - \langle \mu, \varphi \rangle \langle \mu, \psi \rangle| \le A \|\varphi\|_{\mathfrak{C}^{\beta}} \|\psi\|_{\mathfrak{C}^{\beta'}} (d_p/\delta)^{-n\beta\beta'/8},$$

for all \mathfrak{C}^{β} function φ and all $\mathfrak{C}^{\beta'}$ function ψ on X with $0 \leq \beta, \beta' \leq 2$. Here, $A = A(\beta, \beta', \delta)$ is a constant independent of φ, ψ and of the integer $n \geq 0$.

Mixing is equivalent to the property that the left hand side of the above inequality converges to 0 when n goes to infinity. In the proof of Theorem 1.1, we use in particular dynamical properties of the map $F := (f^{-1}, f)$ acting on $X \times X$. A Green (k, k)-current of F can be obtained as the limit of $d_p^{-2n}(F^n)^*[\Delta]$, where $[\Delta]$ is the current of integration on the diagonal Δ of $X \times X$. The speed of convergence is the key point in the proof of our result, see Proposition 3.1 below. The idea was already introduced in [3, 5, 7]. However, the use of the pseudoconvexity of \mathbb{C}^k is no longer valid in the compact setting. We will replace it with the use of the Hölder continuity of Green super-potentials.

Theorem 1.1 still holds under weaker hypothesis: all the eigenvalues of maximal modulus of f^* , acting on $H^{p,p}(X, \mathbb{C})$, are equal to d_p and the spectral radius d_p of this operator is of multiplicity 1, i.e. $||(f^n)^*|| \sim d_p^n$. The last property can be seen in the Jordan form of the square matrix associated to f^* : the Jordan blocks whose diagonal entries have modulus d_p , are of size 1×1 . Very likely, the condition $||(f^n)^*|| \sim d_p^n$ is necessary because it insures that the cohomology classes associated to $d_p^{-2n}(F^n)^*[\Delta]$ converge exponentially fast. Otherwise, we cannot have a good speed of convergence for the currents $d_p^{-2n}(F^n)^*[\Delta]$. In the considered case, the construction in [7] gives a finite family of invariant probability measures of maximal entropy. They are all exponentially mixing.

Consider now an automorphism f of positive entropy on a compact Kähler surface X. Results by Gromov [9] and Yomdin [20] say that the (topological) entropy of f is equal to $\log d_1$. So, $d_1 > 1$ and the consecutive dynamical degrees of f are distinct. These automorphisms were studied by Cantat in [2]. He showed in particular that all the eigenvalues of f^* , acting on $H^{1,1}(X, \mathbb{C})$, have modulus 1 except two eigenvalues d_1 and $1/d_1$. So, we can apply Theorem 1.1 and deduce the following result.

Corollary 1.2. Let f be a holomorphic automorphism of positive entropy on a compact Kähler surface X. Then the equilibrium measure of f is exponentially mixing.

Note that exponential mixing for polynomial automorphisms was proved by Nguyen and the authors in [3, 5]. We refer to Bedford-Kim [1], Keum-Kondo [12], McMullen [14] and Oguiso [15] for interesting examples of automorphisms on compact Kähler manifolds.

Acknowledgement. The first author wishes to express his gratitude to the Max-Planck Institut für Mathematik in Bonn for its hospitality during the preparation of this paper.

2 Super-potentials of currents

Super-potentials were introduced by the authors in order to develop a calculus on positive closed currents. We recall some basic properties and refer to [7] for details.

Let \mathcal{D}_p denote the real space generated by positive closed (p, p)-currents on X. If S is a current in \mathcal{D}_p , define the norm $||S||_*$ of S by

$$||S||_* := \min ||S^+|| + ||S^-||$$

where the minimum is taken over the positive closed currents S^{\pm} with $S = S^{\pm} - S^{-}$. Here, $||S^{\pm}||$ denote the mass of S^{\pm} which are defined by

$$||S^{\pm}|| := \langle S, \omega^{k-p} \rangle.$$

Observe $||S^{\pm}||$ depend only on the cohomology classes of S^{\pm} in $H^{p,p}(X,\mathbb{R})$. We say that a subset of \mathcal{D}_p is *-bounded if it is bounded for the $|| ||_*$ -norm. Let \mathcal{D}_p^0 denote the subspace of currents S in \mathcal{D}_p whose classes $\{S\}$ in $H^{p,p}(X,\mathbb{R})$ are zero.

We consider on \mathcal{D}_p and \mathcal{D}_p^0 the following *topology*: a sequence (S_n) in \mathcal{D}_p or \mathcal{D}_p^0 converges to a current S if S_n converge to S in the sense of currents and if $||S_n||_*$ are bounded by a constant independent of n. Smooth forms are dense in \mathcal{D}_p and \mathcal{D}_p^0 for this topology.

For any $0 < l < \infty$, we can associate to \mathcal{D}_p a norm $|| ||_{\mathcal{C}^{-l}}$ and a distance dist_l defined by

$$||S||_{\mathcal{C}^{-l}} := \sup_{\|\Phi\|_{\mathcal{C}^{l}} \le 1} |\langle S, \Phi \rangle| \quad \text{and} \quad \operatorname{dist}_{l}(S, S') := ||S - S'||_{\mathcal{C}^{-l}},$$

where Φ is a smooth test form of bidegree (k-p, k-p) on X. The weak topology on each *-bounded subset of \mathcal{D}_p coincides with the topology induced by $\| \|_{\mathcal{C}^{-l}}$. If $0 < l < l' < \infty$ are two constants, then on each *-bounded subset of \mathcal{D}_p we have

$$\operatorname{dist}_{l'} \leq \operatorname{dist}_l \leq c_{l,l'} (\operatorname{dist}_{l'})^{l/l'}$$

for some positive constant $c_{l,l'}$.

The super-potential of a current S in \mathcal{D}_p is a canonical linear function defined, under some normalization, on the smooth forms in \mathcal{D}_{k-p+1}^0 . It plays the same role as the potentials of positive closed (1, 1)-currents which are quasi-p.s.h. functions.

Let $\alpha = (\alpha_1, \ldots, \alpha_h)$ with $h := \dim H^{p,p}(X, \mathbb{R})$ be a fixed family of real smooth closed (p, p)-forms such that the family of classes $\{\alpha\} = (\{\alpha_1\}, \ldots, \{\alpha_h\})$ is a basis of $H^{p,p}(X, \mathbb{R})$. Let R be a current in \mathcal{D}^0_{k-p+1} . Since the cohomology class of R is zero, there is a real (k - p, k - p)-current U_R such that $dd^c U_R = R$. We call U_R a potential of R. Adding to U_R a suitable closed form allows to assume that $\langle U_R, \alpha_i \rangle = 0$ for $i = 1, \ldots, h$ and we say that U_R is α -normalized. When Ris smooth, we can choose U_R smooth and the α -normalized super-potential \mathcal{U}_S of S is defined by

$$\mathfrak{U}_S(R) := \langle S, U_R \rangle.$$

The definition does not depend on the choice of U_R .

When the function \mathcal{U}_S extends continuously to \mathcal{D}_{k-p+1}^0 for the considered topology, we say that S has a *continuous* super-potential. If S is in \mathcal{D}_p^0 then \mathcal{U}_S does not depend on the choice of α ; if moreover S is smooth, it has a continuous super-potential and we have the formula

$$\mathcal{U}_S(R) = \mathcal{U}_R(S),$$

where \mathcal{U}_R is the super-potential of R which is also independent of the normalization. We can extend the above equality to the case where S has a continuous super-potential.

We say that \mathcal{U}_S is (l, λ, M) -Hölder continuous if it is continuous and if

$$|\mathcal{U}_S(R)| \le M \|R\|_{\mathcal{C}^{-1}}^{\lambda}$$

for $R \in \mathcal{D}^0_{k-p+1}$ with $||R||_* \leq 1$, where l > 0, $0 < \lambda \leq 1$ and $M \geq 0$ are constants. If l' > 0 is another constant, the above comparison between dist_l and dist_{l'} implies that when \mathcal{U}_S is (l, λ, M) -Hölder continuous, it is (l', λ', M') -Hölder continuous for some constants λ' and M' which are independent of S.

Here is the main result in this section. It improves Theorem 3.2.6 in [7] and can be seen as a version of the classical exponential estimates for p.s.h. functions.

Proposition 2.1. Let R be a current in \mathcal{D}^0_{k-p+1} with $||R||_* \leq 1$ such that its super-potential \mathcal{U}_R is $(2, \lambda, M)$ -Hölder continuous. Then there is a constant A > 0 independent of R, λ and M such that the super-potential \mathcal{U}_S of S satisfies

$$|\mathcal{U}_S(R)| \le A(1 + \lambda^{-1}\log^+ M),$$

for any current S in \mathcal{D}_p^0 with $||S||_* \leq 1$, where $\log^+ := \max(0, \log)$.

We will use a family of linear regularizing operators $\mathcal{L}_{\theta} : \mathcal{D}_{p}^{0} \to \mathcal{D}_{p}^{0}$ introduced in [7] with θ in $\mathbb{P}^{1} = \mathbb{C} \cup \{\infty\}$. Let us recall some properties of \mathcal{L}_{θ} . Fix a constant c > 0 large enough which depends only on the geometry of (X, ω) .

The operators \mathcal{L}_{θ} are continuous for the considered topology on \mathcal{D}_{p}^{0} and are bounded for the $\| \|_{*}$ -norm, i.e. $\|\mathcal{L}_{\theta}(S)\|_{*} \leq c \|S\|_{*}$ with c > 0 independent of θ and S. We have $\mathcal{L}_{0}(S) = S$ and

$$\operatorname{dist}_2(S, \mathcal{L}_{\theta}(S)) \le c \|S\|_* |\theta|.$$

Moreover, $\mathcal{L}_{\theta} = \mathcal{L}_{\infty}$ for $|\theta| \geq 1$.

Let $p \ge 1$ be a constant and let $q \ge 1$ such that when p < k+1, 1/q = 1/p - 1 + k/(k+1) and $q = \infty$ when $p \ge k+1$. We always have $\|\mathcal{L}_{\infty}(S)\|_{L^1} \le c\|S\|_*$. If S is an L^p form, $p \ge 1$, then $\mathcal{L}_{\infty}(S)$ is an L^q form satisfying

$$\|\mathcal{L}_{\infty}(S)\|_{L^{q}} \le c \|S\|_{L^{p}}.$$

Here, c > 0 is a constant large enough. Recall also that the function $u_S(\theta) := \mathcal{U}_{\mathcal{L}_{\theta}(S)}(R)$ is continuous and is constant out of the unit disc. It satisfies

$$||dd^{c}u_{S}(\theta)|| \leq c||S||_{*}||R||_{*}.$$

The last properties hold for R smooth and extend by continuity to currents R with a continuous super-potential.

Proof of Proposition 2.1. For R and S as in the proposition, we have $||S||_* \leq 1$ and $||R||_* \leq 1$. Multiplying S by a constant allows to assume that $||S||_* \leq c^{-k-3}$. Define $S_0 := S$ and $S_{i+1} := \mathcal{L}_{\infty}(S_i)$ for $0 \leq i \leq k+1$. Define also $u_i(\theta) :=$ $\mathcal{U}_{\mathcal{L}_{\theta}(S_i)}(R)$ and $m_i := u_i(0) = u_{i-1}(\infty)$. Using inductively the above estimates, we get $||S_i||_* \leq 1/c$, $||dd^c u_i|| \leq 1$ and $||S_{k+2}||_{L^{\infty}} \leq 1$. The last inequality implies that $|m_{k+2}|$ is bounded by a constant independent of S, R. Indeed, R always admits a potential U_R of bounded L^1 -norm and we have $m_{k+2} = \langle S_{k+2}, U_R \rangle$.

We need to show that $|m_0| \leq A(1 + \lambda^{-1} \log^+ M)$ for some constant A > 0. For this purpose, we can assume that M > 1 and it is enough to check that $|m_i - m_{i+1}| \leq A(1 + \lambda^{-1} \log M)$ for some constant A > 0. We have $m_i - m_{i+1} = v_i(0)$ where $v_i := u_i - m_{i+1}$. The above properties of u_i imply that v_i are continuous, vanish outside the unit disc and satisfy $||dd^c v_i|| \leq 1$. The classical exponential estimates for subharmonic functions imply that $||e^{|v_i|}||_{L^1(\mathbb{P}^1)} \leq c$ for some universal constant c > 0, see [7, Lemma 2.2.4] and [11, Th. 4.4.5]. We then deduce that there is a θ satisfying $|\theta| \leq M^{-1/\lambda}$ and $|v_i(\theta)| \leq (A - 1) + A\lambda^{-1} \log M$ for a fixed constant A large enough. Finally, using the Hölder continuity of \mathcal{U}_R , we get

$$\begin{aligned} |v_i(0) - v_i(\theta)| &= |\mathcal{U}_{S_i}(R) - \mathcal{U}_{\mathcal{L}_{\theta}(S_i)}(R)| = |\mathcal{U}_R(S_i) - \mathcal{U}_R(\mathcal{L}_{\theta}(S_i))| \\ &\leq M \operatorname{dist}_2(S_i, \mathcal{L}_{\theta}(S_i))^{\lambda} \leq M |\theta|^{\lambda} \leq 1. \end{aligned}$$

Therefore, $|v_i(0)| \leq A(1 + \lambda^{-1} \log M)$. This completes the proof.

3 Convergence towards Green currents

Let f, d_q and δ be as in Theorem 1.1. Fix a constant $\delta_0 < \delta$, close enough to δ , so that δ_0 satisfies also the same properties as δ . We recall some known facts and refer to [7] for details. By Poincaré duality, the dynamical degree d_q of f is equal to the degree $d_{k-q}(f^{-1})$ of f^{-1} . Since the mass of a positive closed current can be computed cohomologically, if S is in \mathcal{D}_q and R is in \mathcal{D}_{k-p+1} , we have $\|(f^n)^*(S)\|_* \leq cd_p^n \|S\|_*$ and $\|(f^n)_*(R)\|_* \leq c\delta_0^n \|R\|_*$ for some constant c > 0 independent of S, R and n.

By Perron-Frobenius theorem, the eigenspace H associated to the eigenvalue d_p of f^* acting on $H^{p,p}(X,\mathbb{R})$ is a real line. Therefore, $d_p^{-n}(f^n)^*$ converge to a linear operator $L_{\infty}: H^{p,p}(X,\mathbb{R}) \to H$. Under the hypothese of Theorem 1.1, it is easy to deduce that on $H^{p,p}(X,\mathbb{R})$

$$||d_p^{-n}(f^n)^* - L_{\infty}|| \le c(d/\delta_0)^{-n}$$

for some constant c > 0. A Green (p, p)-current T_+ of f is a non-zero positive closed (p, p)-current invariant under $d_p^{-1}f^*$, i.e. $f^*(T_+) = d_pT_+$. Its cohomology class $\{T_+\}$ generates the real line H. Moreover, it is known [7] that T_+ is the unique positive closed current in $\{T_+\}$. So, if S is a current in \mathcal{D}_p , then $d_p^{-n}(f^n)^*(S)$ converge to a multiple of T_+ . Here is the main result of this section.

Proposition 3.1. Let f, d_q, δ be as in Theorem 1.1 and S a current in \mathcal{D}_p . Let r be the constant such that $d_p^{-n}(f^n)^*(S)$ converge to rT_+ . Let R be a current in \mathcal{D}_{k-p+1}^0 with $||R||_* \leq 1$ whose super-potential \mathcal{U}_R is $(2, \lambda, 1)$ -Hölder continuous. Let \mathcal{U}_+ , \mathcal{U}_n be the α -normalized super-potentials of T_+ and of $d_p^{-n}(f^n)^*(S)$. Then

$$|\mathcal{U}_n(R) - r\mathcal{U}_+(R)| \le A(d/\delta)^-$$

where A > 0 is a constant independent of R and of n.

We first prove the following lemma.

Lemma 3.2. Let R be a current in \mathcal{D}_{k-p+1}^0 whose super-potential \mathcal{U}_R is $(2, \lambda, M)$ -Hölder continuous. Then, there is a constant $A_0 \geq 1$ independent of R, λ, M such that the super-potential $\mathcal{U}_{f_*(R)}$ of $f_*(R)$ is $(2, \lambda, A_0M)$ -Hölder continuous.

Proof. Let T be a current in \mathcal{D}_p^0 such that $||T||_* \leq 1$. We have seen that $||f^*(T)||_* \leq c$ for some constant $c \geq 1$ independent of T. Define $T' := c^{-1}f^*(T)$. If T is smooth and U_T is a smooth potential of T, then $f^*(U_T)$ is a smooth potential of $f^*(T)$ and we have

$$\mathfrak{U}_{f_*(R)}(T) = \langle f_*(R), U_T \rangle = \langle R, f^*(U_T) \rangle = \mathfrak{U}_R(f^*(T)).$$

Since \mathcal{U}_R is continuous and smooth forms are dense in \mathcal{D}_p^0 , we deduce that $\mathcal{U}_{f_*(R)}$ is continuous and $\mathcal{U}_{f_*(R)}(T) = \mathcal{U}_R(f^*(T))$ for every T in \mathcal{D}_p^0 . Therefore,

$$|\mathfrak{U}_{f_*(R)}(T)| = c|\mathfrak{U}_R(T')| \le cM ||T'||_{\mathcal{C}^{-2}}^{\lambda}.$$

Now, it is enough to show that $||f^*(T)||_{\mathcal{C}^{-2}} \leq c'||T||_{\mathcal{C}^{-2}}$ for some constant c' > 0. Consider test (k - p, k - p)-forms Φ such that $||\Phi||_{\mathcal{C}^2} \leq 1$. Since f^{-1} is smooth, there is a constant c' > 0 such that $||f_*(\Phi)||_{\mathcal{C}^2} \leq c'$. It follows that

$$||f^*(T)||_{\mathcal{C}^{-2}} = \sup_{\Phi} |\langle f^*(T), \Phi \rangle| = \sup_{\Phi} |\langle T, f_*(\Phi) \rangle| \le c' ||T||_{\mathcal{C}^{-2}}.$$

This completes the proof.

Proof of Proposition 3.1. We have seen that $||d_p^{-n}(f^n)^* - L_{\infty}|| \leq (d/\delta_0)^{-n}$ on $H^{p,p}(X,\mathbb{R})$. So, the computation in [7, Lemma 4.2.3] shows that if \mathcal{U}_S is continuous, $|\mathcal{U}_n(R) - r\mathcal{U}_+(R)| \leq (d/\delta)^{-n}$. Therefore, subtracting from S a smooth closed (p, p)-form allows to assume that $\{S\} = 0$ and hence r = 0.

Define $R_n := c^{-1} \delta_0^{-n} (f^n)_*(R)$ where $c \ge 1$ is a fixed constant large enough. We have $||R_n||_* \le 1$. Lemma 3.2 implies by induction that \mathcal{U}_{R_n} is $(2, \lambda, A_0^n)$ -Hölder continuous. As in the proof of this lemma, we obtain $\mathcal{U}_n(R) = c(d_p/\delta_0)^{-n} \mathcal{U}_S(R_n)$. Finally, we deduce from Proposition 2.1 that

$$|\mathfrak{U}_n(R)| = c(d_p/\delta_0)^{-n}|\mathfrak{U}_S(R_n)| \lesssim n(d_p/\delta_0)^{-n}.$$

The result follows.

4 Exponential mixing

In this section, we prove Theorem 1.1. Theory of interpolation between the Banach spaces C^0 and C^2 [19] implies that it is enough to consider the case $\beta = \beta' = 2$, see [3, 5] for details. Assume now that φ and ψ are C^2 functions such that $\|\varphi\|_{C^2} \leq 1$ and $\|\psi\|_{C^2} \leq 1$. Subtracting from ψ a constant allows to assume also that $\langle \mu, \psi \rangle = 0$. We have to show that

$$|\langle \mu, (\varphi \circ f^n)\psi\rangle| \lesssim (d/\delta)^{-n/2}.$$

We only need to consider the case where n is even. Indeed, if n is odd, we can replace φ with $\varphi \circ f$ and deduce the result from the first case. So, it is enough to check that

$$|\langle \mu, (\varphi \circ f^{2n})\psi\rangle| \lesssim (d/\delta)^{-n}$$

We will apply Proposition 3.1 to the automorphism F of $X \times X$ defined by $F(x,y) := (f^{-1}(x), f(y))$. By Künneth formula [17, Th. 11.38], there is a canonical isomorphism

$$H^{q,q}(X \times X, \mathbb{C}) = \bigoplus_{s+r=q} H^{s,r}(X, \mathbb{C}) \otimes H^{r,s}(X, \mathbb{C}).$$

It is not difficult to see that F^* preserves the above decomposition. So, the dynamical degree of order k of F is equal to d_p^2 . It was shown in [4] that the

spectral radius of f^* on $H^{r,s}(X,\mathbb{C})$, which is also the spectral radius of f_* on $H^{k-r,k-s}(X,\mathbb{C})$, is smaller or equal to $\sqrt{d_r d_s}$. Therefore, the dynamical degrees and the eigenvalues of F^* on $H^{k,k}(X \times X, \mathbb{R})$, except d_p^2 , are strictly smaller than $d_p \delta_0$. So, we can apply Proposition 3.1 to F.

Let $[\Delta]$ denote the positive closed (k, k)-current associated to the diagonal Δ of $X \times X$. Recall μ is the wedge-product $T_+ \wedge T_-$ of a Green (p, p)-current T_+ associated to f and a Green (k - p, k - p)-current T_- associated to f^{-1} . We have $f^*(T_+) = d_p T_+$ and $f_*(T_-) = d_p T_-$. Hence, $F_*(T_+ \otimes T_-) = d_p^2 T_+ \otimes T_-$. We deduce from the uniqueness of Green currents that any Green (k, k)-current of F^{-1} is a multiple of $T_+ \otimes T_-$. In particular, it has a Hölder continuous super-potential.

Recall that $\|\varphi\|_{\mathcal{C}^2} \leq 1$ and $\|\psi\|_{\mathcal{C}^2} \leq 1$. Define $\Phi(x, y) := \varphi(x)\psi(y)$. Since the \mathcal{C}^2 -norm of this function is bounded, $dd^c\Phi$ is a current in $\mathcal{D}_2^0(X \times X)$ with bounded $\|\|_*$ -norm. If \mathcal{U} is its super-potential and T is a current in $\mathcal{D}_{2k}^0(X \times X)$, then $\mathcal{U}(T) = \langle \Phi, T \rangle$. Clearly, \mathcal{U} is (2, 1, M)-Hölder continuous for some constant M > 0 independent of φ, ψ . By Proposition 3.4.2 in [7], the wedgeproduct of currents with Hölder continuous super-potentials has also a Hölder continuous super-potential. We deduce from the proof of that proposition and the comparison between the distances dist_l that $R := (T_+ \otimes T_-) \wedge dd^c\Phi$ is a current in $\mathcal{D}_{k+1}^0(X \times X)$ with a $(2, \lambda, M')$ -Hölder continuous super-potential for some constants λ, M' independent of φ, ψ . This current R has also a bounded $\|\|_*$ -norm. Multiplying φ by a constant allows us to assume that $\|R\|_* \leq 1$ and M' = 1.

Proposition 3.1 applied to F, $[\Delta]$ instead of f, S yields

$$|\mathfrak{U}_{d_p^{-2n}(F^n)^*[\Delta]}(R) - m| \lesssim (d_p/\delta)^{-n} \quad \text{where} \quad m := \lim_{n \to \infty} \mathfrak{U}_{d_p^{-2n}(F^n)^*[\Delta]}(R).$$

On the other hand, since $F_*(T_+ \otimes T_-) = d_p^2 T_+ \otimes T_-$ and since Green currents are well approximated by smooth forms, the following calculus holds (see [7])

$$\begin{aligned} \mathfrak{U}_{d_p^{-2n}(F^n)^*[\Delta]}(R) &= \langle d_p^{-2n}(F^n)^*[\Delta], \Phi(T_+ \otimes T_-) \rangle \\ &= \langle [\Delta], d_p^{-2n}(\Phi \circ F^{-n})(F^n)_*(T_+ \otimes T_-) \rangle \\ &= \langle [\Delta], (\Phi \circ F^{-n})T_+ \otimes T_- \rangle \\ &= \langle (T_+ \otimes T_-) \wedge [\Delta], \Phi \circ F^{-n} \rangle. \end{aligned}$$

The same arguments and the fact that $\mu = T_+ \wedge T_-$ is invariant yield

$$\mathfrak{U}_{d_p^{-2n}(F^n)^*[\Delta]}(R) = \langle T_+ \wedge T_-, (\varphi \circ f^n)(\psi \circ f^{-n}) \rangle = \langle \mu, (\varphi \circ f^{2n})\psi \rangle.$$

We deduce from the mixing of μ that the last integral tends to 0 since $\langle \mu, \psi \rangle = 0$. Therefore, we have m = 0. This together with the above estimate on the superpotential of $d_p^{-2n}(F^n)^*[\Delta]$ implies that

$$|\langle \mu, (\varphi \circ f^{2n})\psi \rangle| \lesssim (d_p/\delta)^{-n},$$

and completes the proof of Theorem 1.1.

Remark 4.1. Let $\delta_+ \geq d_{p-1}$ (resp. $\delta_- \geq d_{p+1}$) denote the smallest number such that the eigenvalues of f^* acting on $H^{p,p}(X, \mathbb{C})$, except d_p , are of modulus smaller than or equal to δ_+ (resp. δ_-). Theorem 1.1 still holds for any δ such that

$$\frac{2\log\delta_+\log\delta_-}{\log\delta_++\log\delta_-} < \log\delta < \log d_p.$$

Indeed, there are positive integers l, m such that

$$\max\left(\delta_{+}^{l},\delta_{-}^{m}\right) < \delta^{\frac{l+m}{2}}$$

and it is enough to follow the proof of Theorem 1.1 where we replace F with the automorphism (f^{-l}, f^m) . The details are left to the reader.

References

- Bedford E., Kim K., Dynamics of Rational Surface Automorphisms: Linear Fractional Recurrences, preprint, 2006. arXiv:math/0611297
- [2] Cantat S., Dynamique des automorphismes des surfaces K3, Acta Math., 187 (2001), no. 1, 1-57.
- [3] Dinh T.-C., Decay of correlations for Hénon maps, Acta Math., 195 (2005), 253-264.
- [4] —, Suites d'applications méromorphes multivaluées et courants laminaires, J. Geom. Anal., 15 (2005), no. 2, 207-227.
- [5] Dinh T.-C., Nguyen V.-A., Sibony N., Dynamics of horizontal-like maps in higher dimension, Adv. Math., 219 (2008), 1689-1721.
- [6] Dinh T.-C., Sibony N., Green currents for holomorphic automorphisms of compact Kähler manifolds, J. Amer. Math. Soc., 18 (2005), 291-312.
- [7] —, Super-potentials for currents on compact Kähler manifolds and dynamics of automorphisms, 2008. arXiv:0804.0860
- [8] Gromov M., Convex sets and Kähler manifolds, Advances in Differential Geometry and Topology World Sci. Publishing, Teaneck, NJ (1990), 1-38.
- [9] —, On the entropy of holomorphic maps, Enseign. Math. (2), 49 (2003), no. 3-4, 217-235.
- [10] Guedj V., Propriétés ergodiques des applications rationnelles, *Panoramas et Synthèses*, to appear.
- [11] Hörmander L., An introduction to complex analysis in several variables, Third edition, North-Holland Mathematical Library, 7, North-Holland Publishing Co., Amsterdam, 1990.

- [12] Keum J., Kondo S., The automorphism groups of Kummer surfaces associated with the product of two elliptic curves, *Trans. Amer. Math. Soc.*, **353**(4) (2001), 1469-1487.
- [13] Khovanskii A.G., The geometry of convex polyhedra and algebraic geometry, Uspehi Mat. Nauk., 34:4 (1979), 160-161.
- [14] McMullen C.T., Dynamics on blowups of the projective plane, Publ. Math. Inst. Hautes Études Sci., No. 105 (2007), 49-89.
- [15] Oguiso K., A remark on Dynamical degrees of automorphisms of compact Hyperkähler manifolds, *Manuscripta Math.*, to appear.
- [16] Sibony N., Dynamique des applications rationnelles de \mathbb{P}^k , Panoramas et Synthèses, 8 (1999), 97-185.
- [17] Voisin C., Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, 10, Société Mathématique de France, Paris, 2002.
- [18] Teissier B., Du théorème de l'index de Hodge aux inégalités isopérimétriques, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), no. 4, 287-289.
- [19] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, 1978.
- [20] Yomdin Y., Volume growth and entropy, Israel J. Math., 57 (1987), no. 3, 285-300.

T.-C. Dinh, UPMC Univ Paris 06, UMR 7586, Institut de Mathématiques de Jussieu, F-75005 Paris, France. dinh@math.jussieu.fr, http://www.math.jussieu.fr/~dinh

N. Sibony, Université Paris-Sud, Mathématique - Bâtiment 425, 91405 Orsay, France. nessim.sibony@math.u-psud.fr