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Entropy and Growth Rate of

Periodic Points of Algebraic Zd-actions

Douglas Lind, Klaus Schmidt, and Evgeny Verbitskiy

Abstract. Expansive algebraic Zd-actions corresponding to ideals are char-
acterized by the property that the complex variety of the ideal is disjoint from
the multiplicative unit torus. For such actions it is known that the limit for the
growth rate of periodic points exists and equals the entropy of the action. We
extend this result to actions for which the complex variety intersects the mul-
tiplicative torus in a finite set. The main technical tool is the use of homoclinic
points which decay rapidly enough to be summable.

1. Introduction

An algebraic Zd-action on a compact abelian group X is a homomorphism
α : Zd → aut(X) from Zd to the group of (continuous) automorphisms of X . We
denote the image of n ∈ Zd under α by αn, so that αm+n = αm ◦αn and α0 = IdX .

We will consider here cyclic algebraic Zd-actions, described as follows. Let Rd =
Z[u±1

1 , . . . , u±1
d ] denote the ring of Laurent polynomials with integer coefficients

in the variables u1, . . . , ud. We write f ∈ Rd as f =
∑

m∈Zd fmum, where u =

(u1, . . . , ud), m = (m1, . . . ,md) ∈ Zd, um = um1
1 . . . umd

d , and fm ∈ Z with fm = 0
for all but finitely many m.

Let T = R/Z, and define the shift Zd-action σ on TZ
d

by

(σmx)n = xm+n

for m ∈ Zd and x = (xn) ∈ TZ
d

. For f =
∑
fmum ∈ Rd put

f(σ) =
∑

m∈Zd

fmσ
m : TZ

d → TZ
d

.

We identify Rd with the dual group of TZ
d

by setting

〈f, x〉 = e2πi[f(σ)x)]0 = e2πi
P

m
fmxm

for f ∈ Rd and x ∈ TZ
d

. In this identification the shift σm is dual to multiplication
by um on Rd.

A closed subgroup X ⊂ TZ
d

is shift-invariant if and only if its annihilator

X⊥ = {h ∈ Rd : 〈h, x〉 = 1 for every x ∈ X}
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is an ideal in Rd. In view of this, for every ideal a in Rd write

XRd/a
= a⊥ = {x ∈ TZ

d

: 〈h, x〉 = 1 for every h ∈ a}

for the closed, shift-invariant subgroup of TZ
d

annihilated by a. Note that the dual
group of XRd/a

is Rd/a. Denote by αRd/a
the restriction of the shift-action σ on

TZ
d

to XRd/a
. A cyclic algebraic Zd-action is one of this form, corresponding to the

cyclic Rd-module Rd/a.
According to [9, Eqn. (1-1)] or [13, Thm. 18.1], the topological entropy of

αRd/a
, which coincides with its entropy with respect to Haar measure on XRd/a

, is
given by

(1.1) h(αRd/a
) =






∞ if a = {0},
m(f) if a = 〈f〉 = f · Rd for some nonzero f ∈ Rd,

0 if a is nonprincipal,

where

m(f) =

∫ 1

0

. . .

∫ 1

0

log |f(e2πit1 , . . . , e2πitd)| dt1 . . . dtd

is the logarithmic Mahler measure of f .
An algebraic Zd-action α on X is expansive if there is a neighborhood U of 0X

such that
⋂

m∈Zd αm(U) = {0X}. To characterize expansiveness for cyclic actions
αRd/a

, let

V(a) = {(z1, . . . , zd) ∈ (C×)d : g(z1, . . . , zd) = 0 for all g ∈ a}

denote its complex variety. Let S = {z ∈ C : |z| = 1}, so that Sd is the unit
multiplicative d-torus in (C×)d. Define the unitary variety of a as

U(a) = V(a) ∩ Sd = {(z1, . . . , zd) ∈ V(a) : |z1| = · · · = |zd| = 1}.

According to [13, Thm. 6.5], αRd/a
is expansive if and only if U(a) = ∅.

In order to describe periodic points for αRd/〈f〉, let F denote the collection

of finite-index subgroups of Zd, and let Γ be an arbitrary element of F . Define
〈Γ〉 = min{‖m‖ : 0 6= m ∈ Γ}, where ‖m‖ = max{|m1|, . . . , |md|}. A point x ∈ X
has period Γ if αmx = x for all m ∈ Γ. Let

FixΓ(αRd/a
) = {x ∈ XRd/a

: x has period Γ}

be the closed subgroup of XRd/a
consisting of all Γ-periodic points. In general

FixΓ(αRd/a
) may be infinite (examples are given in the next section). We can,

however, reduce this to a finite object by forming the quotient of FixΓ(αRd/a
) by

its connected component Fix
◦
Γ(αRd/a

) of the identity. We therefore define

PΓ(αRd/a
) = |FixΓ(αRd/a

)/ Fix
◦
Γ(αRd/a

)|,

where | · | denotes cardinality. The growth rate of periodic components is defined as

(1.2) p+(αRd/a
) = lim sup

〈Γ〉→∞

1

|Zd/Γ| log PΓ(αRd/a
).

The following relation between entropy and growth rate of PΓ was proved in
[13, Thm. 21.1].
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Theorem 1.1. Let a be a nonzero ideal in Rd. Then p+(αRd/a
) = h(αRd/a

). If

αRd/a
is expansive, or equivalently if U(a) = ∅, then the lim sup in (1.2) is actually

a limit, i.e.,

(1.3) lim
〈Γ〉→∞

1

|Zd/Γ| log PΓ(αRd/a
) = h(αRd/a

).

It is not known whether (1.3) holds for all cyclic actions. Even when d = 1 the
existence of this limit involves some deep results in number theory (see [7, Sec. 4]
for details). The purpose of this note is to prove the following partial result.

Theorem 1.2. Let d > 2 and a be an ideal in Rd whose unitary variety U(a) finite.

Then (1.3) holds.

The machinery described in [13, Sec. 21] allows us to reduce the proof of The-
orem 1.2 to the case where the ideal a is prime. If a prime ideal a is nonprincipal,
then by (1.1) and Theorem 1.1, p+(αRd/a

) = h(αRd/a
) = 0, which implies (1.3).

In view of this fact, we can assume from now on that a = 〈f〉 for some nonzero
irreducible Laurent polynomial f ∈ Rd with

|U(f)| := |U(〈f〉)| = |{s ∈ Sd : f(s) = 0}| <∞.

Furthermore we will assume for the remainder of this paper that d > 2, for reasons
which we will explain. In order to simplify notation, we use X for XRd/〈f〉 and α
for αRd/〈f〉.

2. Counting periodic components

In this section we derive an expression for PΓ(α) = PΓ(αRd/〈f〉) in terms of f .
Let Γ ∈ F . Following [13, (21.13)], we set bΓ = 〈um − 1 : m ∈ Γ〉 ⊂ Rd, and

ΩΓ = {ω = (ω1, . . . , ωd) ∈ Sd : ωm = ωm1
1 · · ·ωmd

d = 1 for every m ∈ Γ}.
Observe that ΩΓ = U(bΓ). As in [13, Sec. 21], we note that the dual group of
FixΓ(α) = FixΓ(αRd/〈f〉) is

FixΓ(αRd/〈f〉)̂= Rd/(〈f〉 + bΓ).

Hence PΓ(α) is the cardinality of the Z-torsion subgroup of Rd/(〈f〉 + bΓ). The
following result shows how to compute this number.

Lemma 2.1. For every finite-index subgroup Γ ⊂ Zd,

PΓ(α) = PΓ(αRd/〈f〉) =
∏

ω∈ΩΓrU(f)

|f(ω)|.

Proof. The group Rd/bΓ is dual to the group FixΓ(σ) of Γ-periodic points

in TZ
d

. Furthermore, FixΓ(σ) is isomorphic to the finite-dimensional torus TZ
d/Γ.

Then FixΓ(α) is the kernel of the restriction of the homomorphism f(σ) to this
torus FixΓ(σ).

To describe this kernel we write ℓ∞(Zd,C), ℓ∞(Zd,R), and ℓ∞(Zd,Z) for the
spaces of bounded complex, real, and integer valued functions on Zd. Let σ̃ be the
natural shift-action on each of these spaces. Write VΓ(C) ⊂ ℓ∞(Zd,C), VΓ(R) ⊂
ℓ∞(Zd,R), and VΓ(Z) ⊂ ℓ∞(Zd,Z) for the subspaces of Γ-invariant elements in
these spaces.
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Next we diagonalize the restriction of σ̃ to VΓ(C). For each ω = (ω1, . . . , ωd) ∈
ΩΓ define v(ω) ∈ VΓ(C) by

(2.1) (v(ω))n := ωn = ωn1
1 · · ·ωnd

d for n = (n1, . . . , nd) ∈ Zd.

Then σ̃mv(ω) = ωmv(ω) for all m ∈ Zd, and so f(σ̃)v(ω) = f(ω)v(ω). The set
{v(ω) : ω ∈ ΩΓ} forms a basis of VΓ(C) consisting of eigenvectors of σ̃ with distinct
eigenvalues.

Let Ω′
Γ = {ω ∈ ΩΓ : f(ω) 6= 0} = ΩΓ r U(f), and define V ′

Γ(C) to be the

C-linear span of {v(ω) : ω ∈ Ω′
Γ}. Then V ′

Γ(C) is finite-dimensional and f(σ̃)-
invariant. Observe that f(σ̃)(VΓ(C)) = V ′

Γ(C) and that the restriction of f(σ̃) to
V ′

Γ(C) is invertible with

| det(f(σ̃)|V ′

Γ(C))| =
∏

ω∈Ω′

Γ

|f(ω)|2.

Since f(σ̃) commutes with complex conjugation on V ′
Γ(C), we can restrict it to

V ′
Γ(R) = V ′

Γ(C) ∩ ℓ∞(Zd,R) and obtain that

| det(f(σ̃)|V ′

Γ(R))| =
∏

ω∈Ω′

Γ

|f(ω)|.

The space V ′
Γ(Z) = V ′

Γ(R)∩ ℓ∞(Zd,Z) is a σ̃-invariant lattice in V ′
Γ(R), hence f(σ̃)-

invariant with image f(σ̃)(V ′
Γ(Z)) ⊂ V ′

Γ(Z). It follows that

(2.2) |V ′
Γ(Z)/f(σ̃)(V ′

Γ(Z))| =
∏

ω∈Ω′

Γ

|f(ω)|.

Finally, we note that VΓ(Z) ∼= ZZ
d/Γ is (isomorphic to) the dual group of FixΓ(σ) ⊂

TZ
d

, that VΓ(Z)/f(σ̃)(VΓ(Z)) = VΓ(Z)/f(σ̃)(V ′
Γ(Z)) is dual to FixΓ(α), and that

the torsion subgroup V ′
Γ(Z)/f(σ̃)(V ′

Γ(Z)) of VΓ(Z)/f(σ̃)(V ′
Γ(Z)) is therefore dual to

FixΓ(α)/ Fix
◦
Γ(α). By combining this with (2.2) we complete the proof. �

Remark 2.2. Suppose that αRd/〈f〉 is expansive, so that U(f) = ∅. Then f does

not vanish on Sd, so log |f | is continuous there. Lemma 2.1 shows that

1

|Zd/Γ| log PΓ(αRd/〈f〉) =
1

|Zd/Γ|
∑

ω∈ΩΓ

log |f(ω)|

is a Riemann sum approximation to m(f), and so converges to m(f) = h(α) as
〈Γ〉 → ∞.

When U(f) 6= ∅ there are two issues to deal with. The vanishing of f at some
points of ΩΓ creates connected components, so we count those. More difficult are
various diophantine problems concerning points of U(f) coming abnormally close
to ΩΓ. The latter issue is discussed in Section 9.

3. Examples

We provide here some examples of irreducible polynomials f with finite U(f),
illustrating a range of algebraic properties of U(f) and the resulting influence on
the structure of FixΓ(αRd/〈f〉). For clarity we use variables u, v, w, rather than u1,
u2, u3.
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Example 3.1. Let d = 2 and f(u, v) = 2−u− v. Clearly U(f) = {(1, 1)}. Observe
that F = FixZ2(αR2/〈2−u−v〉) is isomorphic to T, with each t ∈ T corresponding
to the point in XR2/〈2−u−v〉 all of whose coordinates equal t. For each finite-index
subgroup Γ we have that ΩΓ ∩ U(f) = {(1, 1)}, so the analysis of the previous
section implies that FixΓ(αR2/〈2−u−v〉) is a finite union of cosets of F , and hence
always infinite. The exact number of these cosets is computed in Lemma 2.1.

Example 3.2. Let d = 2 and f(u, v) = 1 + u + v. Setting ω = e2πi/3, it is easy
to verify that U(f) = {(ω, ω2), (ω2, ω)}. To describe the periodic point behavior of
this example, parametrize the finite-index subgroups of Z2 as

Γa,b,c = Z

[
a
0

]
⊕ Z

[
b
c

]
, where a > 0, c > 0, and 0 6 b < a.

Then

ΩΓa,b,c
∩ U(f) =

{
U(f) if a ≡ 0 (mod 3) and b+ 2c ≡ 0 (mod 3),

∅ otherwise.

Hence FixΓa,b,c
(αR2/〈1+u+v〉) is a finite union of 2-dimensional tori if a ≡ 0 (mod

3) and b+ 2c ≡ 0 (mod 3), and is a finite set otherwise. Thus FixΓNZ2 (αR2/ 1+u+v〉)
is infinite whenever N is a multiple of 3. In this example the coordinates of every
point in U(f) are roots of unity.

Example 3.3. Let d = 2 and f(u, v) = 2 − u2 + v − uv. We will show that
U(f) = {(ξ, η), (ξ, η)}, where ξ and η are algebraic numbers but not algebraic
integers. It follows that ΩΓ ∩U(f) = ∅ for all Γ ∈ F , and hence that FixΓ(αR2/〈f〉)
is always finite.

From f(u, v) = 0 we obtain that v = v(u) = 2−u2

u−1 . Setting u = e2πiθ, we must

solve |v(e2πiθ)| = 1. Since u = u−1 = e−2πiθ, we can write 1 = |v(u)|2 = v(u)v(u) =
v(u)v(u−1) as an algebraic equation. Clearing fractions yields (2 − u2)(2 − u−2) =
(u− 1)(u−1 − 1). Symmetry in u and u−1 means we can write this as an equation
in c = 1

2 (u + u−1) = cos 2πθ, resulting in 8c2 − 2c − 7 = 0. This equation has

roots (1 −
√

57)/8 ≈ −0.818 and (1 +
√

57)/8 ≈ 1.068. Only the first is a possible

value of cos 2πθ, so Re(ξ) = (1 −
√

57)/8. There are two choices for Im(ξ), namely

±(1−Re (ξ)
2
)1/2. Using these yield the corresponding values η = v(ξ), or explicitly,

ξ =
1 −

√
57

8
+ i

(
3 +

√
57

32

)1/2

and

η =
−1

56 + 8
√

57

[
34 + 6

√
57 + i

(
11

√
6 + 2

√
57 +

√
342 + 114

√
57

)]

The minimal polynomial for ξ is 2t4 − t3 − 3t2 − t+ 2 and for η is 2t4 + 13t3 +
18t2+13t+2, showing that each is an algebraic number but not an algebraic integer.

Example 3.4. Let d = 2 and f(u, v) = 2 − u3 + v − uv − u2v. Here v appears
linearly, and the techniques used in the preceding example still work. In this case

v(u) = 2−u3

u2+u−1 , and the equation v(u)v(u−1) = 1 is transformed under the change

of variables c = 1
2 (u+u−1) to 16c3− 4c2 − 12c = 0. The root c = 1 yields the point

(1, 1) ∈ U(f). The root c = 0 gives u = ±i, with corresponding v(±i) = − 3
5 ∓ i 45 .
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The final root c = − 3
4 gives u = − 3

4 ± i
√

7
4 , with corresponding v = − 528

704 ± i 176
√

7
704 .

Thus

U(f) = {(1, 1), (i, ξ), (−i, ξ), (η, ζ), (η, ζ)},
where

ξ = −3

5
− i

4

5
, η = −3

4
+ i

√
7

4
, and ζ = −528

704
+ i

176
√

7

704
are all algebraic numbers but not algebraic integers.

Note that although f is irreducible, the algebraic properties of the coordinates
of points in U(f) vary considerably.

In the previous two examples we exploited the property that one variable could
be expressed as a rational function of the other. In general this function will be
algebraic, and calculations much more difficult. An alternative approach is to use
Gröbner bases. Let uk = xk + iyk and expand f(x1 + iy1, . . . , xd + iyd) into real
and imaginary parts as g(x1, y1, . . . , xd, yd) + ih(x1, y1, . . . , xd, yd), where g, h ∈
Z[x1, y1, . . . , xd, yd]. Compute a Gröbner basis for the ideal in Q[x1, y1, . . . , xd, yd]
generated by g, h, and the polynomials x2

k + y2
k − 1 (1 6 k 6 d), say with term

order x1 ≺ y1 ≺ · · · ≺ xd ≺ yd. If this basis contains a polynomial in x1 only, we
can solve for the real roots and back substitute to obtain all solutions. Carrying
this out on Example 3.3, for instance, gives 8x2

1 − 2x1 − 7 in the ideal, the same
polynomial (in c) as we arrived at there.

Before the next example, we remark that when d = 2 finding examples is
relatively easy, since generically we expect the 2-dimensional torus to intersect the
(real) 2-dimensional variety in a finite set. This behavior fails for d > 3, and the
matter is more delicate since the variety must now intersect the torus tangentially
in finitely many places.

Example 3.5. Let d = 3 and f(u, v, w) = g(u) − v − w, where g(u) = u4 − 3u3 +
3u+ 3.

We claim that the minimum value of |g| on S is 2, and that this minimum
is attained at exactly two algebraic integers η and η in S. It turns out here that
g(η) = 2η. Hence

U(f) = {(η, η, η), (η, η, η)}.
It follows that all periodic point groups are finite.

To verify our claim, use the rational function parametrization s : R → Sr{−i}
given by

s(t) =
2t

1 + t2
+ i

1 − t2

1 + t2
.

(Omitting −i from the range is harmless since −i is far from the location of the
minimum.) Then

φ(t) = |g(s(t))|2 = g(s(t))g(s(t)) > 0.

Expanding this product and taking the derivative shows, after a lengthy calculation,
that

φ′(t) = − 96

(1 + t2)5
(t8 − 7t7 − 10t6 + 25t5 − 25t3 + 10t2 + 7t− 1).

Evaluating φ at the real roots of φ′(t) = 0 shows that the minimum value of φ is
attained at the two real roots of the irreducible quartic factor t4 + t3 − 2t2 + t+ 1
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of the numerator of φ′(t), explicitly at

ξ =
−1 −

√
17

4
+

1

2

√
1 +

√
17

2

and its real conjugate. We put η = s(ξ) ∈ S. An exact calculation shows that
g(η) = 2η, verifying our claim.

One variation on this theme is to use f(u, v, w) = g(u) − vr − ws, which has a
more complicated, but still finite, unitary variety.

4. Algebraic points on varieties

In every example from the preceding section, the coordinates of the points in
U(f) are algebraic numbers. Using an argument kindly shown to us by Marius van
der Put, we will prove that this is always true. The algebraicity of the coordinates
is crucial to our proof of Theorem 1.2.

We begin with a result in real algebraic geometry.

Proposition 4.1. Let q be an ideal in Q[t1, . . . , td] and define

R(q) := {(r1, . . . , rd) ∈ Rd : g(r1, . . . , rd) = 0 for all g ∈ q}.
Suppose that (a1, . . . , ad) is an isolated point in R(q). Then each aj is an algebraic

number.

Proof. Each a = (a1, . . . , ad) ∈ R(q) gives a ring homomorphism

φa : Q[t1, . . . , td]/q → K := Q(a1, . . . , ad) ⊂ R

with φa(tj) = aj , and every homomorphism Q[t1, . . . , td]/q → R comes from a point
in R(q) this way.

Suppose that a = (a1, . . . , ad) ∈ R(q), and that K = Q(a1, . . . , ad) is not al-
gebraic over Q. Then there are k > 1 algebraically independent elements b1, . . . , bk ∈
K and an element c ∈ K algebraic over Q(b1, . . . , bk) such thatK = Q(b1, . . . , bk)(c).
Write the minimal polynomial of c over Q(b1, . . . , bk) as

P (b1, . . . , bk, T ) := T n + pn−1(b1, . . . , bk)T n−1 + · · · + p0(b1, . . . , bk)

where the pj(T1, . . . , Tk) ∈ Q(T1, . . . , Tk) are rational functions. Now P (b1, . . . , bk, T )
is irreducible over Q(b1, . . . , bk) ⊂ R, so that c is a simple root. Hence there are
c1 < c and c2 > c such that P (b1, . . . , bk, c1) and P (b1, . . . , bk, c2) are nonzero and
have opposite sign. Therefore if we perturb slightly each bj to b′j , the new polyno-

mial P (b′1, . . . , b
′
k, T ) ∈ R[T ] has a root c′ very close to c. If we further assume that

{b′1, . . . , b′k} is also algebraically independent, then there is a field isomorphism

ψ : Q(b1, . . . , bk, c) → Q(b′1, . . . , b
′
k, c

′).

Now each aj is in K = Q(b1, . . . , bk)(c) and can thus be written in the form

aj =

n∑

m=0

qmj(b1, . . . , bk)cm, where qmj(T1, . . . , Tk) ∈ Q(T1, . . . , Tk).

Hence if the perturbations are sufficiently small, we see that

a′j :=

n∑

m=0

qmj(b
′
1, . . . , b

′
k)(c′)m
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is very close to aj for 1 6 j 6 d. Let a′ = (a′1, . . . , a
′
d). Then

φa′ = ψ ◦ φa : Q[t1, . . . , td]/q → R

is a homomorphism, and so a′ ∈ R(q). This proves that if a has at least one non-
algebraic coordinate, then a cannot be isolated in R(q). �

Proposition 4.2. Let f ∈ Rd and suppose that U(f) is finite. Then the coordinates

of every point in U(f) are algebraic numbers.

Proof. We again use the rational function parametrization s : R → S r {−i}
given by

s(t) =
2t

1 + t2
+ i

1 − t2

1 + t2
.

Define s : Rd → Sd by s(t1, . . . , td) = (s(t1), . . . , s(td)). We may assume that U(f) ⊂
s(Rd). For if this fails, we can easily adjust the parametrization to omit a point on
S with rational coordinates that does not appear as a coordinate of any point in
the finite set U(f).

Consider the equation f(s(t1, . . . , td)) = 0. Expanding and multiplying through

by
∏d

k=1(1 + tk)nk 6= 0 for suitable nk, this takes the form

g1(t1, . . . , td) + i g2(t1, . . . , td) = 0,

where each gj ∈ Z[t1, . . . , td]. Let q = 〈g1, g2〉 ⊂ Q[t1, . . . , td]. By assumption, R(q)
is finite, so all of its points are isolated. By the preceding proposition, these points
have algebraic coordinates. Each point in U(f) is the image under s of a point in
R(q), and hence also has coordinates that are algebraic numbers. �

5. Homoclinic points

In this section we will construct periodic points by using homoclinic points
which decay rapidly enough.

Let β be an algebraic Zd-action on a compact abelian group Y . An element
y ∈ Y is homoclinic for β if lim|n|→∞ βny = 0Y . The set of all homoclinic points
for β is a subgroup of Y , denoted by ∆β(Y ).

According to [8], the following hold if β is assumed to be expansive:

(1) ∆β(Y ) is at most countable;
(2) ∆β(Y ) 6= {0Y } if and only if β has positive entropy with respect to Haar

measure λY on Y ;
(3) ∆β(Y ) is dense in Y if and only if β has completely positive entropy with

respect to λY ; and
(4) For every y ∈ ∆β(Y ), βny → 0Y exponentially fast.

If β is not expansive, then there is no guarantee that ∆β(Y ) 6= {0}, even if
β has completely positive entropy. For example, let A ∈ GLn(Z) have irreducible
characteristic polynomial, and also have some but not all of its roots on S. Then
by [8, Example 3.4], the Z-action generated by A on Tn has completely positive
entropy (indeed is Bernoulli), and yet has trivial homoclinic group.

Furthermore, if β is not expansive then homoclinic points may decay very
slowly, in contrast to the exponential decay in the expansive case. Let f(u, v) =
2 − u − v and consider the Z2-action αR2/〈f〉 on XR2/〈f〉 that we discussed in
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Example 3.1. By [8, Example 7.2], 1/f is integrable on S2, and its Fourier transform
w∆ is given by

(5.1) w∆
(−m,−n) =





1

2m+n+1

(
m+ n

n

)
if m > 0 and n > 0,

0 otherwise.

Let x∆ denote the coordinate-wise reduction (mod 1) of w∆. Then x∆ is a ho-
moclinic point for αR2/〈f〉, and in fact every homoclinic point is a finite integral

combination of translates of x∆. Note that

w∆
(−n,−n) =

1

22n+1

(
2n

n

)
≈ 1

2
√
πn

decays slowly, and also that
∑

m,n |w∆
(m,n)| = ∞.

When U(f) is finite but nonempty, the action α = αRd/〈f〉 is not expansive on
X = XRd/〈f〉. We will restrict our attention to those homoclinic points which decay
rapidly enough to be summable. Hence define

∆1
α(X) :=

{
x ∈ ∆α(X) :

∑

n∈Zd

|xn| <∞
}
,

where for t ∈ T we let |t| denote the distance from t to 0 in T.
In order to analyze the homoclinic group, we first linearize the action α. Con-

sider the surjective map ρ : ℓ∞(Zd,R) → TZ
d

given by ρ(w)n = wn (mod 1). If f =∑
n
fnu

n and σ̃ is the shift-action on ℓ∞(Zd,R), then f(σ̃) =
∑

n
fnσ̃

n : ℓ∞(Zd,R) →
ℓ∞(Zd,R). We define

Wf := ρ−1(X) = {w ∈ ℓ∞(Zd,R) : ρ(w) ∈ X}
= {w ∈ ℓ∞(Zd,R) : f(σ̃)(w) ∈ ℓ∞(Zd,Z)},

and view Wf as the linearization of X .
For w ∈ ℓ∞(Zd,R), we define its adjoint w∗ by w∗

n
= w−n

. Each a ∈ ℓ1(Zd,R)

acts as a linear operator on ℓ∞(Zd,R) via convolution, defined by

(a ∗ w)m =
∑

n∈Zd

anwm−n for all w ∈ ℓ∞(Zd,R).

For a ∈ ℓ1(Zd,R) we define its Fourier transform â : Sd → C by â(s) =
∑

n
ans

n,
where as usual sn = sn1

1 · · · snd

d . In the opposite direction, if φ : Sd → C is integrable

with respect to Haar measure λ on Sd, then we write φ̃ ∈ ℓ∞(Zd,C) for its Fourier
transform, where

φ̃n =

∫

Sd

φ(s)s−n dλ(s).

If g =
∑

n
gnu

n ∈ Rd, we can consider g as the element (gn) ∈ ℓ1(Zd,R).

With this convention, the action of g(σ̃) on ℓ∞(Zd,R) coincides with convolution
by g∗, i.e., g(σ̃)(w) = g∗∗w. Furthermore, ĝ is just the restriction of the polynomial

function g to Sd, and ĝ∗ is the restriction of the complex conjugate g.

Since the Fourier transform f̂ of f has only finitely many zeros on Sd by as-

sumption, it follows that 1/f̂ : Sd → C is analytic with finitely many poles. We seek
multipliers that will make the Fourier transform summable, and so define

mf :=
{
g ∈ Rd : ĝ/f̂ : Sd → C has absolutely convergent Fourier series

}
,
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which is clearly an ideal in Rd. For every g ∈ mf we write

(5.2) w(g) = (ĝ∗/f̂∗)̃ ∈ ℓ1(Zd,R)

for the summable Fourier transform of ĝ∗/f̂∗ = ĝ/f̂ .

Proposition 5.1. Let f ∈ Rd with finite U(f). Then 〈f〉 ( mf .

Before beginning the proof, we remark that if U(f) = ∅, then 1/f̂ is smooth,

and so mf = Rd. However, if U(f) is nonempty, then 1/f̂ is not bounded, and so
mf is a proper ideal. The strict containment 〈f〉 ( mf fails for d = 1, and this is
the main reason we require d > 2.

Proof. First note that f cannot be expressed as a polynomial in fewer than
d variables since U(f) is finite. Hence no polynomial of fewer variables can be
contained in 〈f〉.

Define the isomorphism e : Td → Sd by e(t1, . . . , td) = (e2πit1 , . . . , e2πitd). As
before, for t ∈ T let |t| denote the distance from t to 0. For t, t′ ∈ Td put ‖t− t′‖ =
max{|tj−t′j| : 1 6 j 6 d}. Define the metric δ on Sd by δ(s, s′) = ‖e−1(s)−e−1(s′)‖.

Let a = (a1, . . . , ad) ∈ U(f). Since f̂ ◦e is analytic on Rd, and in a neighborhood
of e−1(a) vanishes only there, it follows that there are constants c > 0, k > 1, and
ε > 0 such that

|f̂(s)| > c δ(s,a)k whenever δ(s,a) < ε.

We start by considering the first coordinate a1 of a. By Proposition 4.2, a1 is an
algebraic number. Hence there is a nonzero polynomial h1 ∈ Z[u1] with h1(a1) = 0.

It follows that |ĥ(s)| 6 c1δ1(s, a1) for s ∈ S near a1, where c1 > 0 is a suitable
constant and δ1 is the metric on S analogous to δ. Define h ∈ Rd by h(u1, . . . , ud) =

h1(u1). Then for s near a we have that |ĥ(s)| 6 c1 δ1(s1, a1) 6 c1 δ(s,a). Hence near
a we have the estimate ∣∣∣∣∣

ĥn(s)

f̂(s)

∣∣∣∣∣ 6

(cn1
c

)
δ(s,a)n−k.

By taking n sufficiently large we can guarantee that ĥn/f̂ is as differentiable as we
please, in particular that it is d times continuously differentiable.

Repeating this procedure for every point in U(f), and letting g[u1] ∈ Z[u1] be

the product of the corresponding hn
1 (u1)’s, we obtain that ĝ/f̂ is d times continu-

ously differentiable on Sd. Hence the Fourier series of ĝ/f̂ is absolutely convergent
(see [10] or [1] for much sharper results). Thus g ∈ mf , and since it is a polynomial
in one variable it cannot be in 〈f〉 by our earlier remark. �

Proposition 5.2. Suppose that f ∈ Rd has finite U(f), and let α = αRd/〈f〉 be the

algebraic Zd-action on X = XRd/〈f〉. For every g ∈ mf let x(g) = ρ(w(g)), where

w(g) is defined in (5.2). Then ∆1
α(X) = {x(g) : g ∈ mf}. Furthermore, x(g) = 0

if and only if g ∈ 〈f〉, so that the map g + 〈f〉 7→ x(g) is a group isomorphism of

mf/〈f〉 with ∆1
α(X).

Proof. Let z ∈ ∆1
α(X). Choose w ∈ ℓ1(Zd,R) with ρ(w) = z. Then

f(σ̃)(w) ∈ ℓ∞(Zd,Z) ∩ ℓ1(Zd,R),
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and so is an element, say g∗, of Rd. Taking Fourier transforms of f∗∗w = f(σ̃)(w) =

g∗ shows that f̂∗ · ŵ = ĝ∗. Hence ŵ = ĝ∗/f̂∗ is well-defined off a finite set, and has
absolutely convergent Fourier series w. Thus w = w(g), and so z = x(g).

Conversely, suppose that g ∈ mf . Then w(g) = (ĝ∗/ f̂∗)̃ ∈ ℓ1(Zd,R), and as

above we obtain that f(σ̃)(w(g)) = g∗ ∈ ℓ∞(Zd,Z). Hence w(g) ∈ Wf , and so

x(g) = ρ(w(g)) ∈ ∆1
α(x).

Finally, if g ∈ mf and x(g) = ρ(w(g)) = 0, then h = w(g) ∈ Rd. Taking Fourier

transforms gives ĥ = ĝ∗/f̂∗, so that g∗ = h · f∗ and g = f · h∗ ∈ 〈f〉. The converse
is obvious. �

Sometimes it is useful to determine mf explicitly. For example, this is the case

in [14], where the Laplacian f (d) = 2d−∑d
j=1(uj + u−1

j ) ∈ Rd, d > 2, was studied.
There it is shown that

(5.3) mf(d) = 〈f (d)〉 + I
3
d,

where Id =
{
h ∈ Rd : h(1, . . . , 1) = 0

}
= 〈u1 − 1, . . . , ud − 1〉.

We demonstrate how to obtain such results using again the example f(u, v) =
2−u− v ∈ R2 discussed in Example 3.1 and at the start of Section 5. Firstly, since

f has only one zero on S2, namely 1 = (1, 1), the Fourier transform f̂ has one zero

on T2 ∼= [−1/2, 1/2)2 at 0 = (0, 0). The Taylor series expansion of f̂ at 0 is

f̂(θ, φ) = −2πi(θ + φ) + 2π2(θ2 + φ2) + O(|θ|3 + |φ|3).

According to the proof of Proposition 5.1, gm(u) := (u−1)m ∈ mf for all sufficiently

large m. What is the minimal such m? If gm(u) ∈ mf , then ĝm/f̂ must be at least
continuous at 0. Inspecting the Taylor series expansion of ĝm at 0 for small m we
find that

ĝ0(θ, φ) = 1,

ĝ1(θ, φ) = −2πiθ + 2π2θ2 + O(θ3),

ĝ2(θ, φ) = −4π2θ2 + O(θ3).

It is evident that ĝm/f̂ is not continuous at 0 for m = 0, 1, 2. It turns out that

g3(u) ∈ mf . We can establish this fact either by showing that ĝ3/f̂ is sufficiently
smooth at 0, or alternatively by showing that g∗3 ∗w∆ ∈ ℓ1(Zd,R), where w∆ is the
homoclinic point given by (5.1).

For every (m,n) ∈ Z2 we have that

(g∗3 ∗ w∆)(m,n) = −w(m,n) + 3w(m+1,n) − 3w(m+2,n) + w(m+3,n).

Assuming that m > 3, n > 0, and using expression (5.1) for elements of w∆, one
has after some manipulation that

(g∗3 ∗ w∆)(−m,−n) =
1

2m+n+1

(
m+ n

m

)
(m− n)3 − 3(m2 − n2) + 2(m− n)

(m+ n− 2)(m+ n− 1)(m+ n)
.

Let N = m+ n > 3. Then m = N − n, and so

|(g∗3 ∗ w∆)(−m,−n)| 6
1

2N+1

(
N

n

) |N − 2n|3 + (3N + 2)|N − 2n|
(N − 2)(N − 1)N

.
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Suppose X1, X2, . . . are independent random variables with an identical distribu-
tion P(Xi = ±1) = 1

2 . Then, by a well known probabilistic result, the so-called
Khintchine inequality [11], for any p > 0 there exists a constant cp such that

E

∣∣∣∣
N∑

i=1

Xi

∣∣∣∣
p

=
1

2N

N∑

n=0

(
N

n

)
|N − 2n|p 6 cpN

p
2 for all N.

Thus for some C > 0 and all sufficiently large N
∑

m>3,n>0
m+n=N

|(g∗3 ∗w∆)(−m,−n)| 6
C

N3/2
.

This, together with the observation that the boundary terms w∆
(−m,−n) with m 6 3

are exponentially small in N = m+ n, proves that g∗3 ∗ w∆ ∈ ℓ1(Zd,R).
Similarly one shows that other third powers (1 − u)2(1 − v), (1 − u)(1 − v)2,

(1 − v)3 belong to mf as well. Moreover, u− 1 ≡ −(v − 1) mod 〈f〉 and mf ⊃ 〈f〉.
Therefore from (u−1)2 /∈ mf we conclude that (u−1)(v−1) /∈ mf and (v−1)2 /∈ mf .
Thus we have exactly identified the multiplier ideal of f(u, v) = 2 − u − v to be
mf = 〈f〉 + I

3
2.

6. Symbolic covers

For every nonzero summable homoclinic point z ∈ ∆1
α(X) we construct here

a shift-equivariant group homomorphism from ℓ∞(Zd,Z) to X . Indeed this map is
surjective when restricted to a ball of finite radius in ℓ∞(Zd,Z), and so provides a
symbolic cover of X .

According to Proposition 5.2, every homoclinic point z ∈ ∆1
α(X) has the form

z = ρ(w(g)) for some g ∈ mf , where w(g) ∈ ℓ1(Zd,R). We define group homomor-

phisms ξ̃g : ℓ∞(Zd,Z) → ℓ∞(Zd,R) and ξg : ℓ∞(Zd,Z) → TZ
d

by

ξ̃g(v) = w(g)∗(σ̃)(v) = w(g) ∗ v and ξg(w) = ρ(ξ̃g(w)).

These maps are well-defined since w(g) ∈ ℓ1(Zd,R), and commute with the appro-
priate Zd-actions.

Proposition 6.1. For every g ∈ mf ,

(6.1) ξg(ℓ
∞(Zd,Z)) =

{
{0} if g ∈ 〈f〉.
X if g ∈ mf r 〈f〉.

We first establish two lemmas.

Lemma 6.2. For every v ∈ ℓ∞(Zd,R) and g ∈ mf ,

(6.2) (f(σ̃) ◦ ξ̃g)(v) = f∗ ∗ w(g) ∗ v = g∗ ∗ v = g(σ̃)(v).

Proof. The proof of Proposition 5.2 shows, after taking Fourier transforms,
that (6.2) holds whenever g ∈ mf and v ∈ ℓ1(Zd,R).

For K > 1 put VK = {v ∈ ℓ∞(Zd,R) : ‖v‖∞ 6 K}. Then VK is shift-invariant
and compact in the topology of pointwise convergence, and the set V 1

K = VK ∩
ℓ1(Zd,R) is dense in VK . For v ∈ V 1

K clearly ξ̃g(v) = w(g) ∗ v and (f(σ̃) ◦ ξ̃g)(v) =

g∗ ∗ v. Since ξ̃g and f(σ̃) are continuous on VK , these equations continue to hold
for all v ∈ VK . Letting K → ∞ shows that (6.2) holds for all v ∈ ℓ∞(Zd,R) and
g ∈ mf .
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For the last assertion, recall that for every v ∈ Rd,

f(σ̃)(ξ̃g(v)) = f∗ ∗ w(g) ∗ v = g∗ ∗ v ∈ Rd ⊂ ℓ∞(Zd,Z).

Hence ξg(v) = ρ(ξ̃g(v)) ∈ X for every v ∈ Rd. The continuity argument above then
shows that ξg(v) ∈ X for every v ∈ ℓ∞(Zd,Z). �

Lemma 6.3. Let g ∈ mf r 〈f〉, and put K =
∑

n∈Zd |fn|. Then ξg(VK) = X, and

so ξg(ℓ
∞(Zd,Z)) = X. Furthermore, the restriction of ξg to VK , or to any other

bounded, closed, shift-invariant subspace of ℓ∞(Zd,Z), is continuous in the product

topology.

Proof. Let x ∈ X . Choose w ∈ Wf with ρ(w) = x and 0 6 wn < 1 for all
n ∈ Zd. If v = f(σ̃)(w), then v ∈ ℓ∞(Zd,Z) and −K 6 vn 6 K for every n ∈ Zd,
so that v ∈ VK .

Since ξ̃g commutes with f(σ̃), we see that ξg(v) = ρ(ξ̃g(v)) = g(α)(x). This
shows that g(α)(X) ⊂ ξg(VK) ⊂ X .

We claim that g(α)(X) = X . For h+〈f〉 ∈ Rd/〈f〉 annihilates g(α)X iff gh+〈f〉
annihilates X iff gh ∈ 〈f〉 iff h ∈ 〈f〉, since f is irreducible and g /∈ 〈f〉. This shows
that g(α)(X) and X have the same annihilator, and so g(α)(X) = X .

Continuity of ξg follows as in the previous lemma. �

Proof of Proposition 6.1. If g = h · f ∈ 〈f〉 for some h ∈ Rd, then w(g) =

h∗ ∈ Rd, and hence ξ̃g(v) = h ∗ v ∈ ℓ∞(Zd,Z) for every v ∈ ℓ∞(Zd,Z), showing
that ξg(ℓ

∞(Zd,Z)) = {0}. The case g ∈ mf r 〈f〉 is handled by Lemma 6.3. �

7. Proof of Theorem 1.2

We use the fact that entropy equals the growth rate of separated sets, and that
by using homoclinic points we can approximate elements in such sets with periodic
points.

Lemma 7.1. Let {Γn}n>1 be a sequence of finite-index subgroups of Zd with 〈Γn〉 →
∞ as n→ ∞. Then there exists a sequence {Qn}n>1 of subsets of Zd such that

(1) Each Qn is a fundamental domain for Γn, i.e. the collection {Qn + m :
m ∈ Gn} is disjoint and has union Zd; and

(2) {Qn}n>1 is a Følner sequence in Zd.

Proof. This is an easily proved special case of [3, Cor. 5.6]. �

Definition 7.2. Let Q ⊂ Zd and ε > 0. We say that E ⊂ X is (Q, ε)-spanning

in X if, for every x ∈ X there is a y ∈ E such that |xn − yn| < ε for every n ∈ Q.
Dually, F ⊂ X is (Q, ε)-separated in X if, for every distinct pair x, y of points in F ,
there is an n ∈ Q with |xn − yn| > ε.

Lemma 7.3. For every ε > 0 there exists a finite set Aε with the following property:

if Γ is a finite-index subgroup of Zd and Q is a fundamental domain for Γ, then

FixΓ(α) is
(⋂

m∈Aε
(Q− m), ε

)
-spanning in X.

Proof. Fix g ∈ mf r〈f〉, and define w(g) ∈ ℓ1(Zd,R) as in (5.2). Let ε > 0, and

put K =
∑

n∈Zd |fn|. Choose a finite subset Aε of Zd so that
∑

n∈ZdrAε
|w(g)

n | <
ε/K.

Since ξ̃g(VK) = X by Proposition 6.1, for every x ∈ X there is a v ∈ VK with
ξg(v) = x. Define v′ ∈ VΓ(Z) by requiring that v′

n
= vn for every n ∈ Q, and
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extending v′ by Γ-periodicity. Our choice of Aε implies that |ξ̃g(v)n − ξ̃g(v
′)n| < ε

for every n ∈
⋂

m∈Aε
(Q− m). Let x′ = ρ(v′). Then x ∈ FixΓ(α) and |x

n
− x′

n
| < ε

for every n ∈
⋂

m∈Aε
(Q− m). �

We write

Ω(f) = {ω = (ω1, . . . , ωd) ∈ U(f) : each ωj is a root of unity}
for the set of torsion points in U(f). If Ω(f) 6= ∅, set

Γ(f) = {n ∈ Zd : ωn = 1 : for every ω ∈ Ω(f)}.
Then Γ(f) ∈ F , and we can find N(f) > 0 with Γ(f) ⊂ N(f) · Zd.

Lemma 7.4. Let Γ be a finite-index subgroup, and put ΩΓ(f) = Ω(f) ∩ ΩΓ. Then

FixΓ(α) is finite if and only if ΩΓ(f) = ∅. If ΩΓ(f) 6= ∅, then Fix
◦
Γ(α) ∼= T|ΩΓ(f)|

and Fix
◦
Γ(α) ⊂ FixN(f)·Zd(α).

Proof. We denote by WΓ(C) ⊂ ℓ∞(Zd,C) the linear span of {v(ω) : ω ∈
ΩΓ(f)}, where v(ω) is defined in (2.1). Write VΓ(R) = WΓ(C) ∩ ℓ∞(Zd,R) ⊂ Wf

for the real part of WΓ(C). The dimension of VΓ(R) equals |ΩΓ(f)|, and Fix
◦
Γ(α) =

ρ(VΓ(R)) ∼= T|ΩΓ(f)|. Since VΓ(R) ⊂ VN(f)·Zd(R), applying ρ shows that Fix
◦
Γ(α) ⊂

FixN(f)·Zd(α). �

Lemma 7.5. For every ε > 0 there is an M(ε) > 0 with the following property:

for each Γ ∈ F , every (Zd, ε)-separated set in Fix
◦
Γ(α) has cardinality < M(ε).

Proof. By Lemma 7.4, for every Γ ∈ FixΓ we have that Fix
◦
Γ(α) is a subtorus

of the fixed finite-dimensional torus FixN(f)·Zd(σ). If Q = {0, . . . , N(f)− 1}d, there
is an M(ε) > 0 such that every (Q, ε)-separated set in FixN(f)·Zd(σ) has cardinality

< M(ε). By periodicity, every (Zd, ε)-separated set in FixN(f)·Zd(σ) (and hence in

Fix
◦
Γ(α)) has cardinality < M(ε). �

Lemma 7.6. Let Q ⊂ Zd and Γ be a finite-index subgroup of Zd. Suppose that

ε > 0 and that F ⊂ FixΓ(α) is a (Q, ε)-separated subset with cardinality L. Then

F intersects at least L/M(ε) distinct cosets of Fix
◦
Γ(α) in FixΓ(α), where M(ε) is

given in Lemma 7.5.

Proof. This is an immediate consequence of Lemma 7.5. �

Proof of Theorem 1.2. For a finite subset Q ∈ Zd, let rQ(ε) denote the
largest cardinality of a (Q, ε)-separated set in X . According to [2, Prop. 2.1], for
every Følner sequence {Ln}n>1 in Zd, we have that

(7.1) lim
ε→0

lim inf
n→∞

1

|Ln|
log rLn(ε) = h(α).

Let {Γn}n>1 be a sequence in F with 〈Γn〉 → ∞ as n → ∞. By Lemma 7.1,
there exists a Følner sequence {Qn}n>1 of fundamental domains for the Γn.

Fix ε > 0 and use Lemma 7.3 to find a finite set Aε/3 ⊂ Zd such that FixΓn(α)
is (Q′

n, ε/3)-spanning in X for every n > 1, where Q′
n =

⋂
m∈Aε/3

(Qn − m). Note

that {Q′
n}n>1 is again a Følner sequence in Zd with |Q′

n|/|Qn| → 1 as n→ ∞. We
may assume Q′

n 6= ∅ for all n > 1.
For all n > 1 choose a maximal (Q′

n, ε)-separated set Fn ⊂ X with cardinality
rQ′

n
(ε). We fix n for the moment and choose for every y ∈ Fn an element z(y) ∈

FixΓn(α) with |yn − z(y)n| < ε/3 for all n ∈ Q′
n. The points z(y) must be distinct
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for different y, so F ′
n = {z(y) : y ∈ Fn} also has cardinality |Fn|. Lemma 7.6 shows

that there is an M(ε) > 0 (which depends on ε but not on n) such that F ′
n intersects

at least |F ′
n|/M(ε/3) distinct cosets of Fix

◦
Γn

(α) in FixΓn(α). Hence

PΓn(α) = |FixΓn(α)/ Fix
◦
Γn

(α)| >
|F ′

n|
M(ε/3)

=
1

M(ε/3)
rQ′

n
(ε)

for every n > 1. It follows that

lim inf
n→∞

1

|Zd/Γn|
log PΓn(α) > lim inf

n→∞
1

|Qn|
log rQ′

n
(ε) = lim inf

n→∞
1

|Q′
n|

log rQ′

n
(ε).

Letting ε → 0, invoking (7.1), and combining with Theorem 1.1 completes the
proof. �

8. Specification

Specification is a strong orbit tracing property that has many uses. Ruelle
[12] investigated the extension of this notion to topological Zd-actions. In [8] it
was shown that expansive algebraic Zd-actions with completely positive entropy
satisfy several flavors of specification. The proof made crucial use of the existence
of summable homoclinic points. By Proposition 5.2, this tool remains available for
the (nonexpansive) actions αRd/〈f〉 when U(f) is finite. In this section we extend
previous results to such actions.

Definition 8.1. Let β be a Zd-action by homeomorphisms of a compact metric
space (X, ρ).

(1) The action β has strong specification if there exists, for every ε > 0, a
number p(ε) > 0 with the following property: for every finite collection {Q1, . . . , Qt}
of finite subsets of Zd with

(8.1) dist(Qj , Qk) := min
m∈Qj , n∈Qk

‖m− n‖ > p(ε) (1 6 j < k 6 t),

every collection {x(1), . . . , x(t)} ⊂ X , and every Γ ∈ F with

dist(Qj + k, Qk) > p(ε) (1 6 j < k 6 t, k ∈ Γ r {0}),
there is a y ∈ FixΓ(β) with

(8.2) ρ(βny, βnx(j)) < ε for all n ∈ Qj , (1 6 j 6 t).

(2) The action β has homoclinic specification if, for every ε > 0, there is a
p(ε) > 0 such that for every finite collection {Q1, . . . , Qt} of finite subsets of Zd

satisfying (8.1) and every {x(1), . . . , x(t)} ⊂ X , there is a y ∈ ∆β(X) satisfying
(8.2).

Theorem 8.2. Let d > 2 and f ∈ Rd have finite U(f). Then αRd/〈f〉 has both

strong specification and homoclinic specification.

Proof. Let α = αRd/〈f〉 and X = XRd/〈f〉. Using the notation of Proposition

5.2, choose g ∈ mf r 〈f〉, with corresponding x(g) ∈ ∆1
α. By the proof of Lemma

6.3, we can find y(j) ∈ X with g(α)(y(j)) = x(j) for 1 6 j 6 t. The proof of [8,
Thm. 5.2], applied to the y(j) and replacing the fundamental homoclinic point with
x(g), now yields the required y. �
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Remark 8.3. For d = 1 and U(f) 6= ∅, both strong specification and homoclinic
specification always fail, although a weaker form still holds [6]. This again illustrates
the difference between d = 1 and d > 2.

9. Further remarks

An alternative approach to proving Theorem 1.2 uses Gelfond’s deep results on
algebraic numbers (see [4, p. 28]). Let ξ = (ξ1, . . . , ξd) have algebraic coordinates,
and recall that these are called multiplicatively independent if the only n ∈ Zd for
which ξn := ξn1

1 · · · ξnd

d = 1 is n = 0.

Theorem 9.1 (Gelfond, [4, Thm. III]). Suppose that ξ = (ξ1 . . . , ξd) has al-

gebraic coordinates that are multiplicatively independent. Then for every ε > 0
there are only finitely many n ∈ Zd for which |ξn − 1| < e−ε‖n‖, where ‖n‖ =
max{|n1|, . . . , |nd|}.

Let f ∈ Rd have finite U(f). Define log0 t for t > 0 to be log t if t > 0 and 0 if
t = 0. According to Lemma 2.1, for each Γ ∈ F ,

(9.1)
1

|ΩΓ|
log PΓ(αRd/〈f〉) =

1

|ΩΓ|
∑

ω∈ΩΓ

log0 |f(ω)|.

Now log |f | has only finitely many logarithmic singularities, and by Proposition
4.2 these all have algebraic coordinates. We can therefore use Gelfond’s result to
control the few potentially large negative values of log0 |f | for ω ∈ ΩΓ near one of
these singularities, to show that the Riemann sums in (9.1) will converge to the
limit m(f) = h(αRd/〈f〉).

To make a similar argument work when U(f) is infinite, we would need an
estimate of the form dist(U(f),ω) > e−ε·o(ω), where ω = (ω1, . . . , ωd) /∈ U(f) has
coordinates which are roots of unity, and o(ω) denotes the order of ω in Sd. Such
estimates, however, do not appear to be available.

We remark that if we replace averages of log |f | over the finite subgroups ΩΓ by
averages over a sequence {Kn} of compact connected subgroups in Sd that become
uniformly distributed, then a result of Lawton [5] shows that for every nonzero
f ∈ Rd we do have convergence,

∫

Kn

log |f | dλKn →
∫

Sd

log |f | dλSd as n→ ∞,

and so the diophantine issues disappear.
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