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Abstract

Möbius number systems represent real numbers by symbolic sequences of Möbius transforma-

tions. We say that a Möbius number system is rational, if it represents rational numbers by periodic

sequences, and we give some criteria for this property.

1 Introduction

Möbius number systems introduced in Kůrka [3, 6] generalize both positional number systems and contin-
ued fractions. They represent real numbers by sequences of Möbius transformations. A Möbius iterative
system consists of real Möbius transfromations (Fa : R → R)a∈A indexed by a finite alphabet A, which
act on the extended real line R = R ∪ {∞}. The convergence space XF of F consists of infinite words
u ∈ AN such that the sequence Fu0

Fu1
· · ·Fun

(z) converges to a real number Φ(u) ∈ R, whenever z be-
longs to the upper half of the complex plane. If Σ ⊂ XF is a subshift such that Φ : Σ → XF is continuous
and surjective, then we say that (F,Σ) is a Möbius number system. In Kůrka and Kazda [7] we use an
interval cover or almost-cover W = (Wa)a∈A of R to construct expansions of real numbers. A number
x ∈ R is expanded into its representation u ∈ AN with Φ(u) = x, if x ∈ Wu0

, F−1
u0

(x) ∈ Wu1
, etc. The

set of all these expansions forms the expanding subshift SW ⊂ AN. We show that (F,SW) is a Möbius
number system, provided the expansion quotient Q(W) of W is larger than one.

In the present paper we study expansions of rational numbers in the integer Möbius number systems,
whose transformations have integer entries. We say that an integer Möbius number system is rational,
if every rational number has a periodic expansion. We define the rational expansion interval R(M) of a
transformation M and show that the system is rational provided (R(Fa))a∈A is an almost-cover of R, i.e.,
provided the closures R(Fa) cover R. Using this criterion, we can show the rationality of a large class of
Möbius number systems. To show that some systems are not rational, we consider their dynamics in the
residue classes modulo certain primes. Using this tool we analyze the cancellations which occur during
expansions and show that some systems are not rational because the norm of rational numbers steadily
grows during their expansion.

We apply our theory to hyperbolic rectangular systems whose fixed points are numbers 0, 1,∞,−1 and
show that the square systems with the same expansion quotients in the horizontal and vertical directions
are never rational, while some non-square rectangular systems are. Then we turn to modular systems
whose transformations have unit determinant. In modular systems the condition of rationality coincides
with the condition of convergence, so naturally defined modular systems (F,ΣW) are usually rational.
Modular systems yield nice representations of rational numbers which are related to continued fractions
and to the Farey fractions. On the other hand, they are never redundant, and therefore unsuitable for
arithmetic algorithms.

Finaly we consider three bimodular octanic systems consisting of eight transformations with determi-
nant two, which optimize the almost-cover (R(Fa))a∈A and have nice symmetries. Besides being rational,
these systems are redundant, and therefore support the arithmetical algorithms for the exact real compu-
tation decribed for example in Vuillemin [10] and generalized to Möbius number systems by Kůrka and
Kazda [7].
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2 Möbius transformations

The extended real line R = R ∪ {∞} can be regarded as a projective space, i.e., the space of one-
dimensional subspaces of the two-dimensional vector space. On R we have homogenous coordinates
x = (x0, x1) ∈ R2 \ {(0, 0)} with equality x = y iff x0y1 = x1y0. We regard x ∈ R as a column vector,
and write it usually as x = x0/x1, for example ∞ = 1/0. For distinct a, b ∈ R, the open interval (a, b)
is the set {x ∈ R : a < x < b} if a < b and {x ∈ R : a < x or x < b} ∪ {∞} if b < a. For x ∈ R

we have x ∈ (a, b) iff (a − x)(x − b)(b − a) > 0. In homogenous coordinates we get a formula which
works for all distinct a, b ∈ R: (a, b) = {x ∈ R : (a0x1 − a1x0)(x0b1 − x1b0)(b0a1 − b1a0) > 0}. The map
d(z) = (iz + 1)/(z + i) maps R to the unit circle ∂D = {z ∈ C : |z| = 1} and the upper half-plane
U = {z ∈ C : ℑ(z) > 0} conformally to the unit disc D = {z ∈ C : |z| < 1}. The circle distance
̺(x, y) of x, y ∈ R is the length of the shortest arc joining d(x) and d(y) in ∂D:

̺(x, y) = 2 arcsin
|x − y|√

(x2 + 1)(y2 + 1)
= 2 arcsin

|x0y1 − x1y0|
||x|| · ||y|| ,

where ||x|| =
√

x2
0 + x2

1 is the euclidean norm of x ∈ R2. The length of an open interval Br(a) = {x ∈
R : ̺(x, a) < r} is ||Br(a)|| = 2r provided r < π.

A real orientation-preserving Möbius transformation (MT) is a self-map of R of the form
M(a,b,c,d)(x) = ax+b

cx+d = ax0+bx1

cx0+dx1
where a, b, c, d ∈ R and det(M(a,b,c,d)) = ad − bc > 0. MT act also

on the upper half-plane U. On D := D ∪ ∂D we get disc Möbius transformations M̂ defined by
M̂(a,b,c,d)(z) = d◦M(a,b,c,d)◦d

−1(z) = (αz+β)/(βz+α), where α = (a+d)+(b−c)i, β = (b+c)+(a−d)i.
Define the norm of a Möbius transformation M = M(a,b,c,d) by ||M || := (a2 + b2 + c2 +d2)/(ad− bc). We
have ||M || ≥ 2 for each M , and ||M || = 2 iff M is a rotation, i.e., if M = Rα = M(cos α

2 ,sin α
2 ,− sin α

2 ,cos α
2 )

for some α. The circle derivation, the expansion interval and the expansion quotient of M are
defined by

M•(x) := lim
y→x

̺(M(y),M(x))

̺(y, x)
= |M̂ ′(d(x))| =

det(M) · ||x||2
||M(x)||2 ,

V(M) := {x ∈ R : (M−1)•(x) > 1},

Q(M) := max{M•(x) : x ∈ R} = 1
2 (||M || +

√
||M ||2 − 4) =

1 + |M̂(0)|
1 − |M̂(0)|

We have (MN)•(x) = M•(N(x)) · N•(x). If M is a rotation, then M•(x) = 1 and V(M) is empty.
Otherwise V(M) is a nonempty interval. The square of the trace of M is tr2(M(a,b,c,d)) = (a+d)2/(ad−
bc). An MT is hyperbolic if tr2(M) > 4, parabolic if tr2(M) = 4 and elliptic if tr2(M) < 4. A
hyperbolic MT has a stable fixed point sM ∈ R with M•(sM ) < 1 and un unstable fixed point uM ∈ R

with M•(uM ) ·M•(sM ) = 1. A parabolic MT has a unique fixed point sM with M•(sM ) = 1. An elliptic
MT has no fixed point in R.

3 Möbius number systems

For a finite alphabet A denote by A∗ :=
⋃

m≥0 Am the set of finite words and by A+ := A∗ \ {λ} the set

of finite non-empty words. The length of a word u = u0 . . . um−1 ∈ Am is |u| := m. We denote by AN the
Cantor space of infinite words equipped with the metric d(u, v) := 2−k, where k = min{i ≥ 0 : ui 6= vi}.
We say that v ∈ A∗ is a subword of u ∈ A∗ ∪ AN and write v ⊑ u, if v = u[i,j) = ui . . . uj−1 for some

0 ≤ i ≤ j ≤ |u|. The cylinder of u ∈ An is the set [u] := {v ∈ AN : v[0,n) = u}. Given u ∈ Am, v ∈ Ap,

denote by u.v ∈ AN the periodic word with preperiod u and period v defined by (u.v)i = ui for i < n
and (u.v)n+km+i = vi for i < m, k ≥ 0. The set of periodic words is denoted by PA := {u ∈ AN : ∃m ≥
0,∃p > 0, σm+p(u) = σm(u)}, where the shift map σ : AN → AN is defined by σ(u)i = ui+1. A subshift
is a nonempty set Σ ⊆ AN which is closed and σ-invariant, i.e., σ(Σ) ⊆ Σ. For a subshift Σ there exists
a set D ⊆ A+ of forbidden words such that Σ = ΣD := {x ∈ AN : ∀u ⊑ x, u 6∈ D}. A subshift is
uniquely determined by its language L(Σ) := {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}. A labelled graph over A is a
structure G = (V,E, s, t, l), where V = |G| is the set of vertices, E is the set of edges, s, t : E → V are
the source and target maps, and l : E → A is a labelling function. The subshift ΣG ⊆ AN of G consists
of all labels of paths of G. A subshift is sofic, if it is the subshift of a finite labelled graph. A subshift is
of finite type (SFT), if the set D of its forbidden words is finite (see Lind and Marcus [8]).
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An iterative system is a continuous map F : A∗ × X → X, or a family of continuous maps
(Fu : X → X)u∈A∗ on a compact metric space X satisfying Fuv = Fu ◦Fv, and Fλ = Id. It is determined
by generators (Fa : X → X)a∈A. Topological dynamics of Möbius iterative systems has been investigated
in Kůrka [5].

Definition 1 (Kůrka [6]) We say that F : A∗ × R → R, is a Möbius iterative system, if all
Fa : R → R are orientation-preserving Möbius transformations. The convergence space XF ⊆ AN and
the symbolic representation Φ : XF → R are defined by

XF := {u ∈ AN : lim
n→∞

Fu[0,n)
(i) ∈ R},

Φ(u) := lim
n→∞

Fu[0,n)
(i),

where i ∈ U is the imaginary unit. If Σ ⊆ XF is a subshift such that Φ : Σ → R is continuous and
surjective, then we say that (F,Σ) is a Möbius number system. We say that a Möbius number system
is redundant, if for every continuous map g : R → R there exists a continuous map f : Σ → Σ such that
Φf = gΦ. An interval almost-cover for F is a family of open intervals W = {Wa : a ∈ A} such that⋃

a∈A Wa = R. If Wa are mutually disjoint, we say that W is an interval partition. The expansion
subshift SW of W is defined by

SW = {u ∈ AN : ∀k > 0,Wu[0,k)
6= ∅}, where

Wu = Wu0
∩ Fu0

(Wu1
) ∩ Fu[0,2)

(Wu2
) ∩ · · · ∩ Fu[0,n)

(Wun
), u ∈ An+1

If u ∈ XF , then Φ(u) = limn→∞ Fu[0,n)
(z) for every z ∈ U, and dΦ(u) = limn→∞ F̂u[0,n)

(z) for every

z ∈ D (see Kazda [2]). For v ∈ A+, u ∈ AN we have vu ∈ XF iff u ∈ XF and then Φ(vu) = Fv(Φ(u)),
so XF is dense in AN. If u.v ∈ P is a periodic word with period u, then u.v ∈ XF iff Fv is not elliptic.
Redundancy is necessary for the existence of exact real arithmetical algorithms (see Vuillemin [10] or
Kůrka and Kazda [7]).

Proposition 2 (Kůrka and Kazda [7]) Let W be an interval almost-cover for F and assume that for
each u ∈ Am, a ∈ A we have Wu ∩ F−1

a (Wa) 6= ∅ ⇒ Wu ⊆ F−1
a (Wa). Then SW is a SFT of order

m + 1.

If B ⊂ A+ is a finite set and W = {Wu : u ∈ B} an interval almost-cover, then we regard
BN as a subset of AN and identify the subshift SW ⊆ BN ⊂ AN with the subshift of AN defined by
SW,A = {σn(u) : u ∈ SW , n ≥ 0}.

Theorem 3 (Kůrka and Kazda [7]) Let F be a Möbius iterative system and B ⊂ A+ a finite set such
that W = {V(Fu) : u ∈ B} is an almost-cover of R. Then (F,SW,A) is a Möbius number system. If W
is a cover of R, then (F,SW,A) is redundant.

We get a stronger condition if we evaluate circle derivations of F−1
u on their intervals Wu. Given a Möbius

iterative system F : A∗ × R → R and an interval almost-cover W = {Wa : a ∈ A}, define

q(u) := inf{(F−1
u )•(x) : x ∈ Wu}

Qn(W) := min{q(u) : u ∈ L(SW) ∩ An}
Q(W) := lim

n→∞

n
√

Qn(W)

L(W) := sup{r > 0 : ∀x ∈ R,∃a ∈ A,Br/2(x) ⊆ Wa}

where Br/2(x) = {y ∈ R : ̺(y, x) < r/2}. We have Qm+n(W) ≥ Qm(W) ·Qn(W), so the limit in Q(W)

exists and Q(W) ≥ n
√

Qn(W) for each n. We call Q(W) the expansion quotient of W and L(W) the
Lebesgue number of W. The expansion quotient Q(W) expresses the rate of convergence of Φ. For
each n we have max{||Wu|| : u ∈ L(SW)∩An} ≤ 2π/Qn(W). The Lebesgue number L(W) is a measure
of redundancy of the system.

Theorem 4 (Kůrka and Kazda [7]) Let F be a Möbius iterative system and W an interval almost-
cover for F . If Qn(W) ≥ 1 for some n, and if no Fu with u ∈ L(SW) ∩ An is a rotation, then (F,SW)
is a Möbius number system, and Φ([u] ∩ SW) = Wu for each u ∈ L(SW). If W is a cover of R, then
(F,SW) is redundant. Conversely, if (F,SW) is a Möbius number system and if Φ([u] ∩ SW) = Wu for
each u ∈ L(SW), then Q(W) ≥ 1.
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4 Rational Möbius number systems

We investigate expansions of rational numbers in Möbius number system whose transformations have
integer entries. To analyze the cancellations which occur during expansions, we work with the matrices
which represent the transformations, rather than with the transformations themselves. Denote by Z the
set of integers and by Q̂ := Z2 \ { 0

0}. For x = x0

x1
∈ Q̂ we denote by gcd(x) > 0 the greatest common

divisor of x0, x1. Denote by Q = {x ∈ Q̂ : gcd(x) = 1}. Each rational number has two representations

in Q. For each m > 0 we have the map dm : Q̂ → Q̂ defined by dm(x) = x0/m
x1/m if m divides gcd(x),

and dm(x) = x otherwise. We have the map d : Q̂ → Q defined by d(x) = x0/ gcd(x)
x1/ gcd(x) . Denote by

gcd(M(a,b,c,d)) = gcd(a, b, c, d) > 0 the greatest common divisor of the entries of a matrix M ∈ GL(Z, 2)
with integer entries. We consider the subgroups

M̂ = {M ∈ GL(Z, 2) : det(M) > 0} ,

M = {M ∈ M̂ : gcd(M) = 1},
Mp = {M ∈ M̂ : ∃n ≥ 0,det(M) = pn},

so M1 is the modular group, and we call M2 the bimodular group. We have a map d : M̂ → M
given by d(M(a,b,c,d)) = M(a/g,b/g,c/g,d/g), where g = gcd(a, b, c, d). An MT M ∈ M acts on Q̂ by

multiplication M(a,b,c,d)(x) = ax0+bx1

cx0+dx1
. The composition dM : Q

M→ Q̂
d→ Q acts on Q.

Definition 5 We say that F : A∗ × R → R is an integer Möbius iterative system, if Fa ∈ M for
each a ∈ A. We say that F is rational, if every rational has a periodic expansion, i.e., if Q ⊆ Φ(P).
We say that an integer Möbius number system (F,Σ) is rational, if Q ⊆ Φ(PA ∩ Σ). Given an interval
almost-cover W = {Wa : a ∈ A} for F , define the labelled rational expansion graph with vertices
(x, s) ∈ Q × {−, 0,+} and edges

(x, s)
a→ (d(F−1

a x), s), if x ∈ Wa & s ∈ {−, 0,+}
(x, s)

a→ (d(F−1
a x),−), if x = r(Wa) & s ∈ {−, 0}

(x, s)
a→ (d(F−1

a x),+), if x = l(Wa) & s ∈ {0,+}

If F is an integer Möbius number system and u.v ∈ PA ∩ XF is a periodic word, then Φ(u.v) is either
rational or quadratic. This follows from the fact that Φ(.v) satisfies the quadratic equation Fv(Φ(.v)) =
Φ(.v).

Proposition 6 If W is an almost-cover and (F,ΣW) is a Möbius number system such that Φ([u]∩SW) =
Wu for each u ∈ L(SW), then for each x ∈ Q there exists an infinite path with source (x, 0). A word
u ∈ AN is the label of such a path iff u ∈ XF and Φ(u) = x.

Proof: Let u be the label of a path with source (x, 0) and denote by xn = F−1
u[0,n)

(x), so xn ∈ Wun
. If

xi = l(Wui
) for some i, then xj 6= r(Wuj

) for all j > i. It follows that u ∈ SW . Since x ∈ Wu[0,n)
for each

n, we get Φ(u) = x. Conversely, if Φ(u) = x, then x ∈ Wu[0,n)
for each n. Since u ∈ SW , there exists a

path with source (x, 0) and label u.

Definition 7 The rational expansion interval of an MT M ∈ M is defined by

R(M) = {x ∈ R : (M−1)•(x) > det(M)}

Note that if x ∈ R(M) and y = M−1x, then ||y|| ≤ ||x||.

Proposition 8 For each M ∈ M we have either R(M) ⊆ (0,∞) or R(M) ⊆ (∞, 0), and R(M)
is nonempty iff ||M || > det(M) + det(M)−1. Moreover we have the symmetries R(M(c,d,−a,−b)) =
R(M(a,b,c,d)), R(M(d,−c,−b,a)) = −1/R(M(a,b,c,d)), R(M(a,−b,−c,d)) = −R(M(a,b,c,d)), R(M(d,c,b,a)) =
1/R(M(a,b,c,d)), where −1/(x, y) = (−1/x,−1/y), −(x, y) = (−y,−x), 1/(x, y) = (1/y, 1/x).

Proof: If M = M(a,b,c,d), then M•(0) = det(M)/(b2 + d2) ≤ det(M) and M•(∞) = det(M)/(a2 + c2) ≤
det(M) so neither 0 nor ∞ belongs to R(M). The rest follows from the formula for M•(x).
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Theorem 9 Let F : A∗ × R → R be an integer Möbius iterative system. If B ⊂ A+ is a finite set such
that W = {R((d(Fu)) : u ∈ B} is an almost-cover of R, then (F,SW,A) is a rational Möbius number
system. In particular, if R = {R(Fa) : a ∈ A} is an almost-cover, then (F,SR) is a rational Möbius
number system.

Proof: Modify the rational expansion graph of Definition 5 so that we have only edges (x, s)
u→ (y, t)

labelled by u ∈ B provided x ∈ R(dFu) (and analogous conditions as in Definition 5 when x is an endpoint
of R(dFu)). In this case ||y|| = ||d(F−1

u x)|| ≤ ||F−1
u x|| ≤ ||x||. Since there is only a finite number of

y ∈ Q with ||y|| ≤ ||x||, there exists a periodic word u.v such that we get a path (x, t)
u→ (y, s)

v→ (y, s),
so u.v ∈ XF and Φ(u.v) = x. Since R(M) ⊆ V(M), (F,SW,A) is a rational Möbius number system.

5 Residue classes

To show that some integer Möbius number system are not rational, we consider dynamics of integer
Möbius iterative system in residue classes, which captures the cancellation of rationals during expansion.
Given a positive integer m, we have the ring Zm = {x ∈ Z : 0 ≤ x < m} of residue classes modulo m, and
the map mm : Z2 → Z2

m given by mm(x) = x0 mod m
x1 mod m . Denote by Qm = {x ∈ Z2

m : gcd(x0, x1,m) = 1}
and Qm = Qm ∪ {0

0}. For each integer matrix M ∈ M and m > 0, the composition mmM : Z2
m

M→
Z2 mm→ Z2

m acts on Z2
m.

Definition 10 Given an integer Möbius iterative system F and m > 0, we define the residue expansion
graph Gm of F , whose vertices are |Gm| = Z2

m, and whose labelled edges are x
a→ mm(F−1

a x).

Proposition 11 If M ∈ M, p is a prime and k > 0 is such that pk does not divide det(M), then
mpkM(Qpk) ⊆ Qpk , i.e., if x ∈ Qpk , then mpk(Mx) 6= 0

0 .

Proof: Let M = M(a,b,c,d) and assume that pk does not divide ad − bc. For x ∈ Qpk set y = Mx and

assume that pk divides both y0 = ax0 + bx1 and y1 = cx0 + dx1. Then pk divides (ax0 + bx1)d − (cx0 +
dx1)b = (ad − bc)x0, so p divides x0. Similarly pk divides −(ax0 + bx1)c + (cx0 + dx1)a = (ad − bc)x1,
so p divides x1 and this is a contradiction. Thus mpk(y) 6= 0

0 .

Proposition 11 says that in the rational expansion graph, the rationals are cancellated only by those
primes which divide some det(Fa). If (x, s)

a→ (d(F−1
a x), t), and m = gcd(F−1

a x), then each prime p which

divides m, divides some det(Fa), and then, mp(x)
a→ 0

0 in Gp. On the other hand, if mp(x)
a→ y(p) 6= 0

0

for each prime p which divides some det(Fa), then gcd(F−1
a x) = 1, so we have (x, s)

a→ (F−1
a (x), t) in the

rational expansion graph.

Theorem 12 Let (F,Σ) be an integer Möbius number system such that for each a we have R(Fa) = ∅,
and Fa is not a rotation. Assume that for each prime p which divides some det(Fa) there exists a labelled

graph Gp with vertices |Gp| ⊆ Qp and labelled edges x
a→ mp(F

−1
a x), such that ΣGp

⊆ Σ. Then (F,Σ) is
not rational.

Proof: Since Fa is not rotation, the maximum of the function (F−1
a )•(x) is attained at a unique point

x(a) ∈ R and ||F−1
a x|| > ||x|| for x 6= x(a). There exists a point x ∈ Q such that ||x|| > max{||x(a)|| :

a ∈ A, x(a) ∈ Q} and moreover, for each prime p which divides some det(Fa) we have mp(x) ∈ |Gp|.
Then in any expansion (x, t) = (x(0), t0)

u0→ (x(1), t1)
u1→ (x(2), t2) · · · no cancellation ever occurs, so we

have x(j+1) = F−1
uj

(x(j)) ∈ Q, and ||x(0)|| < ||x(1)|| < ||x(2)|| < · · ·. Thus u cannot be periodic.

6 Hyperbolic rectangle systems

Definition 13 We say that (F,Σ) is a hyperbolic rectangle system with quotients p, q > 1 (in
horizontal and vertical directions), if its alphabet is A = {1, 0, 1, 0} and the transformations are

F1(x) =
(q + 1)x + (1 − q)

(1 − q)x + (q + 1)
, F0(x) =

x

p
, F1(x) =

(q + 1)x + (q − 1)

(q − 1)x + (q + 1)
, F0(x) = px

If p = q, we say that (F,Σ) is a hyperbolic square system.
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Figure 1: The means F̂a(0) of the biternary rectangle system with (p, q) = (2, 3) (left) and the biquintary
rectangle system with (p, q) = (2, 5) (right)

Thus all Fa are hyperbolic, the stable and unstable fixed points are s(F1) = u(F1) = −1, s(F0) =
u(F0) = 0, s(F1) = u(F1) = 1, s(F0) = u(F0) = ∞. The expansion quotients are Q(F0) = Q(F0) = p,
Q(F1) = Q(F1) = q, and the expansion intervals are

V(F0) =

(
− 1√

p
,

1√
p

)
, V(F1) =

(√
q − 1

√
q + 1

,

√
q + 1

√
q − 1

)
,

V(F1) = −V(F1), V(F0) = 1/V(F0). The expansion intervals almost-cover R iff
√

pq ≤ √
p+

√
q+1, and

the system is redundant, provided this inequality is strict. A particularly interesting case is (p, q) = (4, 9),
when Fa generate a Fuchsian group with noncompact fundamental domain (see Beardon [1]). If p, q ∈ Q,
then we get an integer Möbius iterative system with matrices in M

F1 =

[
r0 −r1

−r1 r0

]
, F0 =

[
p1 0
0 p0

]
, F1 =

[
r0 r1

r1 r0

]
, F0 =

[
p0 0
0 p1

]

where r0 = q0 + q1, r1 = q0 − q1 if 2|q0q1, and r0 = (q0 + q1)/2, r1 = (q0 − q1)/2 if both q0 and q1 are
odd. We have R(Fa) = ∅ for each a ∈ A. Since F1 = F−1

1 and F0 = F−1
0 a subshift Σ such that (F,Σ) is

a Möbius number system should have forbidden words D = {11, 00, 11, 00}.

Proposition 14 Let F be a hyperbolic square system with rational p = q. If m is an odd prime which
divides either q0 or q1, then there exists a subgraph Gm of Gm with |Gm| ⊆ Qm, whose subshift ΣGm

has
forbidden words D = {11, 00, 11, 00}.

0/x -y/y

z/z w/0
0-

1 

1-

0 

0 1 1- 0 

1 0-

0 1- 0/x -y/y

z/z w/0
0 

1-

1 

0-

0- 1- 1 0-

1- 0 

0- 1 

Figure 2: The graphs for ΣD. The edges are full for a ∈ {1, 1} and dashed for a ∈ {0, 0}.

Proof: We have either r0 = q0 + q1, r1 = q0 − q1 if 2|q0q1, and r0 = (q0 + q1)/2, r1 = (q0 − q1)/2 if both
q0 and q1 are odd. In either case we have gcd(r0, q0) = gcd(r1, q0) = gcd(q1, q0) = 1, so gcd(r0,m) =
gcd(r1,m) = 1. Define the vertices of Gm by

|Gm| = {x ∈ Qm : x0 = 0 ∨ x1 = 0 ∨ x0 = x1 ∨ x0 + x1 = 0},
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where the equalities are modulo m. Consider labelled edges

0
x

1→ r1x
r0x , 0

x

0→ 0
q1x , 0

x

1→ −r1x
r0x , 0

x

0→ 0
q0x ,

x
x

1→ (r0+r1)x
(r0+r1)x

, x
x

0→ q0x
q1x , x

x

1→ (r0−r1)x
(r0−r1)x

, x
x

0→ q1x
q0x ,

x
0

1→ r0x
r1x , x

0

0→ q0x
0 , x

0

1→ r0x
−r1x , x

0

0→ q1x
0 ,

−x
x

1→ (r1−r0)x
(r0−r1)x

, −x
x

0→ −q0x
q1x , −x

x

1→ −(r0+r1)x
−(r0+r1)x

, −x
x

0→ −q1x
q0x ,

If m divides q0 then m divides also r0 + r1, gcd(m, q1) = gcd(m, r0 − r1) = 1, and we take as edges of
Gm only those which occur in the graph in Figure 2 left. For example, the last edge in the first row
0
x

0→ 0
q0x = 0

0 is excluded from Gm. It is easy to see that the subshift of the graph is ΣGm
= ΣD. If m

divides q1 then m divides also r0 − r1, gcd(m, q0) = gcd(m, r0 + r1) = 1, and we take as edges of Gm only
those which occur in the graph in Figure 2 right. We get again ΣGm

= ΣD (see Figure 3 bottom left and
right).

0/1

1/0

1/1

0/1

0/2

1/0

1/1

1/2

2/0

2/1

2/2

0/1

0/2

0/3

0/4

1/0

1/1

1/4

2/0

2/2

2/3

3/0

3/2

3/3

4/0

4/1

4/4

Figure 3: Subgraphs of the residue graphs for the hyperbolic square system with p = q = 2 (upper left),
p = q = 3 (bottom left) and p = q = 5 (right). The edges are full for a ∈ {1, 1} and dashed for a ∈ {0, 0}.
A self-edge x

a→ x is indicated by the circle around x.

Proposition 15 Let F be a hyperbolic square system with rational p = q and assume that 2 divides q0q1.
Then there exists a subgraph G2 of G2 with vertices |G2| = Q2, whose subshift ΣG2

has forbidden words
D′ = {11, 00, 11, 00, 11, 11}.

Proof: The edges of G2 are (see Figure 3 top left)

0

1

1→ 1

1
,

0

1

0→ 0

1
,

0

1

1→ 1

1
,

1

1

0→ 0

1
,

1

1

0→ 1

0
,

1

0

1→ 1

1
,

1

0

1→ 1

1
,

1

0

0→ 1

0
if m2(q) =

0

1
,

0

1

1→ 1

1
,

0

1

1→ 1

1
,

0

1

0→ 0

1
,

1

1

0→ 1

0
,

1

1

0→ 0

1

1

0

1→ 1

1
,

1

0

0→ 1

0
,

1

0

1→ 1

1
if m2(q) =

1

0
.

Theorem 16 No integer hyperbolic square system (F,Σ) with Σ ⊆ Σ{11,00,11,00} is rational.

Proof: It is easy to see that R(Fa) = ∅ for all a ∈ A. If both q0 and q1 are odd, the claim follows from
Theorem 12 and Proposition 14. Assume now that q0q1 is even, so r0 = q0 + q1, r1 = q0 − q1. For n > 1,
the product matrices F1

n = (F1)
n, F1n = (F1)

n have all entries even. After cancellation we get matrices
with odd entries

dF1
n =

[
qn
0 + qn

1 qn
1 − qn

0

qn
1 − qn

0 qn
0 + qn

1

]
, dF1n =

[
qn
0 + qn

1 qn
0 − qn

1

qn
0 − qn

1 qn
0 + qn

1

]

and the rational expansion intervals of these matrices are empty as well. We modify the expansion graph
so that the multiplication by n consecutive F1 or F1 are replaced by multiplication by dFn

1
or dFn

1 . In the
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u Fu R(dFu) u Fu R(dFu)
01001 (30, 12,−6, 0) ( 1

0 ,− 14
5 ) 010 (8,−2,−2, 2) (−8,−2)

101 (9,−6,−6, 6) (−2,− 6
7 ) 101 (6,−6,−6, 9) (− 7

6 ,− 1
2 )

010 (2,−2,−2, 8) (− 1
2 ,− 1

8 ) 01001 (0,−6, 12, 30) (− 5
14 , 0)

01001 (0, 6,−12, 30) (0, 5
14 ) 010 (2, 2, 2, 8) ( 1

8 , 1
2 )

101 (6, 6, 6, 9) ( 1
2 , 7

6 ) 101 (9, 6, 6, 6) ( 6
7 , 2)

010 (8, 2, 2, 2) (2, 8) 01001 (30,−12, 6, 0) ( 14
5 , 1

0 )

Table 1: Rational expansion intervals of the biternary rectangle system

corresponding residue 2 expansion graph, all matrices dFn
1

and dFn
1 are represented by the same matrix

(1, 1, 1, 1). Thus we can represent words 1
n

and 1n by letters 1 and 1, so that a path in the modified
expansion graph on Q maps to a path with forbidden words D′ = {11, 00, 11, 00, 11, 11}. By Proposition
15, it follows that if dm(x) ∈ |Gm| for all primes p which divide some det(Fa), then in the modified
expansion graph no cancellation ever occurs, and the norm ||x|| increases during the expansion of x, so
the expansion of x cannot be periodic.

Proposition 17 The hyperbolic rectangle systems with parameters (2, 3), (3, 2), (4, 3), (3, 4), (2, 5), (5, 2)
are rational.

Proof: In each case, a finite set B ⊂ A+ can be found such that {R(dFu) : u ∈ B} is an almost-cover
of R. In the case of biternary system with (p, q) = (2, 3) such a cover is given in Table 1.

In Figure 1 we show the biternary system with (p, q) = (2, 3) (left) and the biquintary system with
(p, q) = (2, 5) (right), both with the interval partition W = ((−2,− 1

2 ), (− 1
2 , 1

2 ), ( 1
2 , 2), (2,−2)). In the

case of biternary system we get a sofic subshift SW = {1, 0}N ∪{0, 1}N ∪{1, 0}N ∪{0, 1}N which is a union
of four full shifts, one for each quadrant: Φ({0, 1}N) = [0, 1], Φ({1, 0}N) = [1,∞], Φ({0, 1}N) = [∞,−1],

Φ({1, 0}N) = [−1, 0]. Figure 1 shows the means F̂u(0) of words u ∈ L(SW) in the unit disc D. The curves
between these means are constructed as follows. For each MT M there exists a family of MT (M t)t∈R

such that M0 = Id, M1 = M , and M t+s = M tMs. In Figure 1, each mean F̂u(0) is joined to F̂ua(0) by

the curve (F̂uF̂ t
a(0))0≤t≤1. The labels u ∈ A+ at F̂u(0) are written in the direction of the tangent vectors

F̂ ′
u(0).

7 Modular systems

We say that (F,Σ) is a modular Möbius number system if it consists of modular transformations
Fa ∈ M1 with unit determinant. In modular systems we have V(Fa) = R(Fa), so the condition for
the convergence of Theorem 3 coincides with the condition for rationality of Theorem 9. Since R(Fa) is
included either in (0,∞) or (∞, 0), the condition for redundancy from Theorems 3 and 4 never applies.

Theorem 18 If (F,SW) is a modular Möbius number system such that Φ([u] ∩ SW) = Wu for each
u ∈ L(SW), then Q(W) = 1 and the system is not redundant.

Proof: By Theorem 4 we have Q(W) ≥ 1. By Proposition 8, 0 and ∞ do not belong to any R(Fa),
so Q(W) ≤ 1, and therefore Q(W) = 1. Since Φ : SW → R is continuous, by compactness there exists
u ∈ SW , such that for each n > 0 the set Φ([u[0,n)]) contains an interval, whose closure contains Φ(u).

Denote by a := Φ(u) and consider a continuous function g : R → R, which on a neighbourhood of a has
the form g(x) = (x − a) sin 1/(x − a), so gΦ([u[0,n)]) contains 0 as an inner point. Let f : SW → SW be
continuous function with Φf = gΦ. By Proposition 8, for each u ∈ L(Σ) we have either Wu ⊆ (0,∞)
or Wu ⊆ (∞, 0), so for each n there exists k such that gΦ([u[0,n)]) ⊆ Φ([f(u)[0,k)]) ⊆ Wf(u)[0,k)

which is

included either in [0,∞] or in [∞, 0]. This is a contradiction.

Modular systems are closely connected to continued fractions. In Kůrka [6, 4] we give examples
of modular systems with transformations F1(x) = x − 1, F0 = −1/x, and F1(x) = x + 1. We have
R(F1) = (∞,− 1

2 ), R(F1) = (1
2 ,∞), but R(F0) = ∅, since F0 is a rotation. In the present context we
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Figure 4: The elliptic (left) and the parabolic (right) modular systems: means F̂a(0) (top) and circle
derivations (F−1

a )•(x) (bottom)

a Fa R(Fa) F−1
a (Wa) a Fa R(Fa) F−1

a (Wa)
1 (1, 1,−1, 0) (∞,− 1

2 ) (0,∞) 1 (1,−1, 0, 1) (∞,− 1
2 ) (∞, 0)

0 (0,−1, 1, 1) (−2, 0) (0,∞) 0 (1, 0,−1, 1) (−2, 0) (∞, 0)
0 (0, 1,−1, 1) (0, 2) (∞, 0) 0 (1, 0, 1, 1) (0, 2) (0,∞)
1 (1,−1, 1, 0) ( 1

2 ,∞) (∞, 0) 1 (1, 1, 0, 1) ( 1
2 ,∞) (0,∞)

1 (2, 1,−1, 0) (∞,−1) (0,−1) 1 (1,−2, 0, 1) (∞,−1) (∞, 1)
0 (0,−1, 1, 2) (−1, 0) (−1,∞) 0 (1, 0,−2, 1) (−1, 0) (1, 0)
0 (0, 1,−1, 2) (0, 1) (∞, 1) 0 (1, 0, 2, 1) (0, 1) (0,−1)
1 (2,−1, 1, 0) (1,∞) (1, 0) 1 (1, 2, 0, 1) (1,∞) (−1,∞)

Table 2: Modular transformations

consider rather systems whose transformations have the same expansion quotients and the same lengths
of their expansion intervals.

Example 1 The elliptic modular system consists of the alphabet A = {1, 0, 0, 1}, transformations
with matrices

F1 =

[
1 1

−1 0

]
, F0 =

[
0 −1
1 1

]
, F0 =

[
0 1

−1 1

]
, F1 =

[
1 −1
1 0

]
,

and the interval partition W with W1 = (∞,−1), W0 = (−1, 0), W0 = (0, 1), W1 = (1,∞).

All Fa are elliptic with F 3
a = Id, and F10 = F10 = Id. The rational expansion intervals and the preimages

of Wa can be seen in Table 2 top left. We see that W satisfies the condition of Proposition 2, so SW is a
SFT of order 2 with forbidden words 00, 01, 10, 11, 11, 10, 01, 00. Thus u ∈ L(SW) iff consecutive letters
ui, ui+1 belong to different subalphabets A− = {1, 0}, A+ = {0, 1}. In Figure 4 we show the means (top
left) and the circle derivations (bottom left) of all F−1

a evaluated at x = tan t
2 = d

−1(eit) for t ∈ (−π, π).

Example 2 The parabolic modular system consists of the alphabet A = {1, 0, 0, 1}, transformations

F1 =

[
1 −1
0 1

]
, F0 =

[
1 0

−1 1

]
, F0 =

[
1 0
1 1

]
, F1 =

[
1 1
0 1

]
,

9



1/4 0000.1 1/3 000.1 2/5 0010.1 1/2 00.1 3/5 0100.1
2/3 010.1 3/4 0110.1 1/1 0.1 4/3 1000.1 3/2 100.1
5/3 1010.1 2/1 10.1 5/2 1100.1 3/1 110.1 4/1 1110.1

1/4
01/3

0 2/51
1/2

0
3/5

02/31
3/41

1/1
4/3

03/2
0 5/31

2/1
1

5/2
03/11

4/11

1/1

1/2

0 

2/1
1 

1/3
0 

3/2 1 

2/3
0 

3/1 1 

1/4
0 

4/3 1 
3/5

0 
5/2 1 
2/5

0 
5/3 1 
3/4

0 
4/1 1 

1/0-

0/1+

0 

1 

1 

0 

Figure 5: The Stern-Brocot tree (left) and the expansions of Farey fractions in the parabolic modular
system (right). The vertex (x, s) of the expansion graph is written as xs provided s 6= 0. A self-edge

(x, s)
a→ (x, s) is indicated by a circle around (x, s).

and the interval partition W with W1 = (∞,−1), W0 = (−1, 0), W0 = (0, 1), W1 = (1,∞).

All Fa are parabolic with fixed points ∞ or 0, and F11 = F00 = Id. Because R(M(a,b,c,d)) = R(M(c,d,−a,−b)),
the system has the same rational expansion intervals as the elliptic modular system of Example 1. The
subshift SW = {0, 1}N ∪ {1, 0}N is of finite type. Negative numbers have expansions in the alphabet
A− = {1, 0} and positive numbers have expansions in the alphabet A+ = {0, 1} The parabolic modular
system expands rational numbers according to the Stern-Brocot tree, which systematically enumerates
Farey fractions (see Figure 5). If u ∈ A∗

+ is the address of x in the Stern-Brocot tree, then x has exactly
two expansions u0.1 and u1.0. This is proved in M.Niqui [9]. There are two more modular systems
whose transformations are given in Table 2 bottom left and bottom right. In both these systems the
rational expansion intervals coincide with the intervals of W, and their subshifts SW are of order two
with forbidden words D = {u ∈ A2 : Fu = Id}.

8 Bimodular systems

Besides being nonredundant, modular systems are slowly converging since they have the expansion quo-
tient Q(W) = 1. This is why nonmodular systems are more convenient for expansions of numbers and
for arithmetical algorithms. If F : A∗ × R → R is an integer Möbius iterative system such that no Fa is
modular and if R = {R(Fa) : a ∈ A} is an almost-cover of R, then V = {V(Fa) : a ∈ A} is a cover,
since R(Fa) ⊂ intV(Fa), so (F,SV) is a redundant Möbius number system. If we require det(Fa) > 1
for all transformations of the system, then we need at least eight transformations.

Proposition 19 For k = 1, 2, 3 the rational expansion intervals of the following eight matrices almost-
cover R: [

1 0
±k 2

]
,

[
2 0

±k 1

]
,

[
1 ±k
0 2

]
,

[
2 ±k
0 1

]

Proof: The endpoints of R(M(1,0,k,2)) are 0 and 2k/(k2 + 3), the endpoints of R(M(2,0,k,1)) are 1/k and
3/k, the endpoints of R(M(1,k,0,2)) are k/3 and k, the endpoints of R(M(2,k,0,1)) are (k2 + 3)/2k and ∞,

The order of the rational expansion intervals (or of points where the maxima of the circle derivation
are attained) of the transformations from Proposition 19 depends on k. In all three cases we use the
same alphabet A = {3, 2, 1, 0, 0, 1, 2, 3} and the canonical partition W = (Wa)a∈A with W3 = (∞,−2),
W2 = (−2,−1), W1 = (−1,− 1

2 ), W0 = (− 1
2 , 0), W0 = (0, 1

2 ), W1 = (1
2 , 1), W2 = (1, 2), W3 = (2,∞).

Definition 20 For k = 1, 2, 3, the bimodular k-octanic system (F,SW) consists of the alphabet
A = {3, 2, 1, 0, 0, 1, 2, 3}, the canonical partition W and the transformations from Proposition 19 whose
assignments to the alphabet A are in Figures 6 and 7.
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Figure 6: The bimodular k-octanic systems with k = 1 (left) and k = 2 (right): means(top) and circle
derivations (bottom)

In all three cases, W satisfies the conditions of Proposition 2, so SW is a SFT of order 2. For
k = 1, 2 the positive numbers can be expressed in the alphabet A+ = {0, 1, 2, 3}, and negative numbers
in the alphabet A− = {3, 2, 1, 0}. In both cases, the subshift can be written as a disjoint union SW =
(ΣW ∩ AN

−) ∪ (ΣW ∩ AN
+) with forbidden words of the positive part D = {03, 12, 13, 20, 21, 30} for k = 1

and D = {10, 23} for k = 2. Expansions of Farey fractions in these systems can be seen in Table
3. The expansion graph for the 2-octanic system is in Figure 8. All three systems have symmetries
n, r, nr : A → A, and ik : A → A which depends on k:

3 2 1 0 0 1 2 3
i1 1 0 3 2 2 3 0 1

i2, i3 2 3 0 1 1 0 3 2
n 3 2 1 0 0 1 2 3
r 0 1 2 3 3 2 1 0
nr 0 1 2 3 3 2 1 0

Then Fi(a) = F−1
a , Wn(a) = −Wa, Wr(a) = 1/Wa, and Wnr(a) = −1/Wa. It follows that if Φ(u) = x,

then Φ(n(u)) = −x, Φ(r(u)) = 1/x, and Φ(nr(u)) = −1/x. All transformations Fa are hyperbolic with
stable fixed points ∞, −k, −1/k, 0, 0, 1/k, k, ∞.

Besides these three systems (F,SW) with the canonical partition W, we may consider the systems
(F,SR) with the rational expansion almost-cover R = (R(Fa))a∈A, in which the rational numbers have
more expansions, possibly shorter than in the canonical systems. For all three systems we have Q(W) =
Q(R) = 2 but L(W) = L(R) = 0, so neither of these systems is redundant. We get redundant systems
(F,SV) with the expansion intervals V = (V(Fa))a∈A (see Figure 9). For k = 1 we have Q(V) = 1,
L(V) = 1.287 and V has rational endpoints 0, ± 1

3 , ± 1
2 , ±1, ±2, ±3, ∞. For k = 2 we have Q(V) =

1.24, L(V) = 0.77 and for k = 3 we get Q(V) = 1.35, L(V) = 0.53, but these covers do not have
rational endpoints. Nevertheless there are many interval covers with rational endpoints, positive Lebesgue
numbers and expansion quotients greater than one, and any of these covers would be suitable for the
arithmetical algorithms.
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Figure 7: The bimodular 3-octanic system: means(left) and circle derivations (right)
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a→ (x, s) is indicated by a circle around (x, s).
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