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STEMS AND SPECTRAL SEQUENCES

HANS-JOACHIM BAUES AND DAVID BLANC

Abstract. We introduce the category Pstem[n] of n-stems, with a functor P [n]
from spaces to Pstem[n]. This can be thought of as the n-th order homotopy
groups of a space. We show how to associate to each simplicial n-stem Q• an
(n+ 1)-truncated spectral sequence. Moreover, if Q• = P [n]X• is the Postnikov
n-stem of a simplicial space X•, the truncated spectral sequence for Q• is the
truncation of the usual homotopy spectral sequence of X•. Similar results are also
proven for cosimplicial n-stems. They are helpful for computations, since n-stems
in low degrees have good algebraic models.

0. Introduction

Many of the spectral sequences of algebraic topology arise as the homotopy spectral
sequence of a (co)simplicial space – including the spectral sequence of a double
complex, the (stable or unstable) Adams spectral sequence, the Eilenberg-Moore
spectral sequence, and so on (see §4.14). Given a simplicial space X•, the E2-
term of its homotopy spectral sequence has the form E2

s,t = πsπtX•, so it may be
computed by applying the homotopy group functor dimensionwise to X•.

In this paper we show that the higher terms of this spectral sequence are obtained
analogously by applying ’higher homotopy group’ functors to X•. These functors
are given explicitly in the form of certain Postnikov stems, defined in Section 1; the
Postnikov 0-stem of a space is equivalent to its homotopy groups.

We then show how the Er-term of the homotopy spectral sequence of a simplicial
space X• can be described in terms of the (r− 2)-Postnikov stem of X•, for each
r ≥ 2 (see Theorem 3.14) – and similarly for the homotopy spectral sequence of a
cosimplicial space X• (see Theorem 4.12).

As an application for the present paper, in [BB2] we generalize the first author’s
result with Mamuka Jibladze (in [BJ]), which shows that the E3-term of the stable
Adams spectral sequence can be identified as a certain secondary derived functor Ext.
We do this by showing how to define in general the higher order derived functors of
a continuous functor F : C → T∗, by applying F to a simplicial resolution W• in
C, and taking Postnikov n-stems of FW•.

0.1. Notation and conventions. The category of pointed connected topological
spaces will be denoted by T∗; that of pointed sets by Set∗; that of groups by Gp.
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For any category C, sC denotes the category of simplicial objects over C, and cC
that of cosimplicial objects over C. However, we abbreviate sSet to S, sSet∗ to
S∗, and sGp to G. The constant (co)simplicial object on an object X ∈ C is
written c(X)• ∈ sC (respectively, c(X)• ∈ cC). For any small indexing category
I, the category of functors I → C is denoted by CI .

0.2. Acknowledgements. We wishe to thank the referee for his or her careful reading
of the paper and helpful comments on it.

1. Postnikov stems

The Postnikov system of a topological space (or simplicial set) X is the tower of
fibrations:

(1.1) . . . → P n+1X
pn+1

−−→ P nX
pn

−→ P n−1X . . . P 1X
p1

−→ P 0X ,

equipped with maps qn : X → P nX (with pn ◦ qn = qn−1), which induce
isomorphisms on homotopy groups in degrees ≤ n. Here P nX is n-coconnected
(that is, πiP

nX = 0 for i > n) and πip
n is an isomorphism for i < n. The

fiber of the map pn : P nX → P n−1X is the Eilenberg-Mac Lane space K(πnX, n),
so the fibers are determined up to homotopy by π∗X . Thus a generalization of the
homotopy groups of X is provided by the following notion:

1.2. Definition. For any n ≥ 0, a Postnikov n-stem in T∗ is a tower:

(1.3) Q :=
(

. . . → Qk+1
qk+1
−−→ Qk

qk−→ Qk−1 . . . Q0

)

in T
(N,≤)
∗ , in which Qk is (k − 1)-connected and (n + k)-coconnected (so that

πi(Qk) = 0 for i < k or i > n + k) and πi(qk) is an isomorphism for
k ≤ i < n + k. Here (N,≤) is the usual linearly ordered category of the natural
numbers. The space Qk is called the k-th n-window of Q.

Such an n-stem is thus a collection of overlapping (k− 1)-connected n+ k-types,
which may be depicted for n = 2 as follows:

. . . ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗ . . .

where each row exhibits the n + 1 non-trivial homotopy groups (denoted by ∗) of
one n-window, and all those in the i-th column (corresponding to πi) are isomorphic.

We denote by Pstem[n] the full subcategory of Postnikov n-stems in the functor

category T
(N,≤)
∗ (with model category structure on the latter as in [Hi, 11.6]). Thus

the morphisms in Pstem[n] are given by strictly commuting maps of towers, and
f : Q → Q′ is a weak equivalence (respectively, a fibration) if each fk : Qk → Q′

k is
such. This lets us define the homotopy category of Postnikov n-stems, hoPstem[n],

as a full sub-category of ho T
(N,≤)
∗ .

The category Pstem[n] is pointed, has products, and is equipped with canonical
functors
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(1.4)

T∗

P[n]&&LLLLLLLLLLL

P[n−1]))
P[0]

++
. . . Pstem[n]

P[n−1]

// Pstem[n− 1]
P[n−2]

// . . .
P[0]

// Pstem[0]

which preserve products and weak equivalences.

1.5. Remark. The sequence of functors (1.4) is described by a commuting diagram,
in which we may take all maps to be fibrations:

(1.6)

. . . // Qn+k+1
k+1

88qqqqqqqqqqq

pn
k+1

��

qn
k+1 // Qn+k

k

88qqqqqqqqqqqq

pn
k

��

qn
k // Qn+k−1

k−1

::uuuuuuuuu

pn
k−1

��

//

::uuuuuuuuu

. . . // Qn
0

pn0
��

. . . // Qn+k
k+1

pn−1
k+1

��

qn−1
k+1 //

rn−1
k+1

::ttttttttt

Qn+k−1
k

pn−1
k

��

qn−1
k //

rn−1
k

::ttttttttt

Qn+k−2
k−1

pn−1
k−1

��

//

<<yyyyyyyyyy

. . . // Qn−1
0

pn0
��

. . . // Qn+k−1
k+1

qn−2
k+1 //

rn−2
k+1

::ttttttttt

Qn+k−2
k

qn−2
k //

rn−2
k

::ttttttttt

Qn+k−3
k−1

//

<<yyyyyyyyyy

. . . // Qn−2
0

. . . // Qk+1
k+1

q0
k+1 // Qk

k

q0
k // Qk−1

k−1
// . . . // Q0

0

Here πiQ
n
k = 0 for i < k or i > n, and all maps induce isomorphisms in πi

whenever possible. Thus:

(a) The k-th column (from the right) is the Postnikov tower for Qk := limnQ
n
k .

(b) The diagonals are the dual Postnikov system of connected covers for Qj
0.

(c) The n-th row (from the bottom) is a Postnikov n-stem.
(d) In particular, each space in the 0-stem (the bottom row) is an Eilenberg-

Mac Lane space, and the maps q0k are nullhomotopic. Thus the homotopy
type of the bottom line in hoPstem[0] is determined by the collection of
homotopy groups {πkQ

k
k}

∞
k=0.

1.7. Definition. The motivating example of a Postnikov n-stem is a realizable one,
associated to a space X ∈ T∗, and denoted by P[n]X , with (P [n]X)k := P n+kX〈k〉.
As usual, Y 〈k〉 denotes the (k − 1)-connected cover of a space Y ∈ T∗. Each
fibration qk : (P [n]X)k → (P [n]X)k−1 fits into a commuting triangle of fibrations:

(1.8)

P n+k+1X〈k + 1〉
p

))RRRRRRRRRRRRR

q // P n+kX〈k〉

P n+kX〈k + 1〉

r
66nnnnnnnnnnnn
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in which the maps p and r are the fibration of (1.1) and the covering map, re-
spectively. See [BB1, §10.5] for a natural context in which non-realizable Postnikov
n-stems arise.

1.9. Examples of stems. The functor P[0]∗ : T∗ → hoPstem[0] induced by
P[0] is equivalent to the homotopy group functor: in fact, the homotopy groups of
a space define a functor π∗ : T∗ → K into the product category K :=

∏∞

i=0 Ki,
where K0 = Set∗, K1 = Gp, and Ki = AbGp, for i ≥ 2. Moreover, there is
an equivalence of categories ϑ : K ≡ hoPstem[0], such that the functor P[0]∗ is
equivalent to the composite functor ϑ ◦ π∗ : T∗ → K.

Similarly, the functor T∗ → hoPstem[1] induced by P[1] is equivalent to the
secondary homotopy group functor of [BM, §4], in the sense that each secondary
homotopy group πn,∗X completely determines the n-th 1-window of X . Using the
results on secondary homotopy groups in [BM], one obtains a homotopy category of
algebraic 1-stems which is equivalent to hoPstem[1].

A category of algebraic models for 2-stems is only partially known. The homotopy
classification of (k − 1)-conected (k + 2)-types is described for all k in [Ba]; this
theory can be used to classify homotopy types of Postnikov 2-stems.

2. The spectral sequence of a simplicial space

We begin with the construction of the homotopy spectral sequence for a simplicial
space (cf. [Q], [BF, Theorem B.5], and [BK1, X,§6]), using the version given by Dwyer,
Kan, and Stover in [DKSt2, §8] (see also [Bou2, §2,5], [Bou1], and [DKSt1, §3.6]).
For this purpose, we require some explicit constructions for the E2-model category of
simplicial spaces.

2.1.Definition. Given a simplicial object X• ∈ sC, over a complete pointed category
C, for each n ≥ 1 define its n-cycles object to be

ZnX• := {x ∈ Xn | dix = ∗ for i = 0, . . . , n} .

Similarly, the the n-chains object for X• is

CnX• := {x ∈ Xn | dix = ∗ for i = 1, . . . , n}

Set Z0X• := X0. We denote the map d0|CnX•
: CnX• → Zn−1X• by dXn

0 .

2.2. Notation. For any non-negatively graded object T∗, we write ΩT∗ for the
graded object with (ΩT∗)j := Tj+1 for all j ≥ 0. The notation is motivated by
the natural isomorphism of graded groups π∗ΩX ∼= Ω(π∗X) for X ∈ T∗.

2.3. Definition. Now assume that C is a pointed model category of spaces, such as
T∗ or G, and X• is a Reedy fibrant simplicial object over C – that is, for each
n ≥ 1, the universal face map δn : Xn → MnX• into the n-th matching object of
X• is a fibration (see [Hi, 15.3]). The map d0 = dXn

0 then fits into a fibration
sequence in C:

(2.4) · · ·ΩZnX• → Zn+1X•

jX•

n+1
−−→ Cn+1X•

d
Xn+1
0−−−−→ ZnX•

(see [DKSt2, Prop. 5.7]).
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For each n ≥ 0, the n-th natural homotopy group of the simplicial space X•,
denoted by π♮

nX• = π♮
n,∗X•, the cokernel of the map (d

Xn+1

0 )# (induced on

homotopy groups by d
Xn+1

0 ). Note that the cokernel of a maps of groups or pointed
sets is generally just a pointed set.

We thus have an exact sequence of graded groups:

(2.5) π∗Cn+1X•

(d
Xn+1
0 )#

−−−−−−→ π∗ZnX•
ϑ̂n−→ π♮

n,∗X• → 0 .

Together the groups (π♮
n,kX•)

∞
n,k=0 constitute the bigraded homotopy groups of

[DKSt2, §5.1].

2.6. Construction of the spiral sequence. Applying the functor π∗ to the fi-
bration sequence (2.4) yields a long exact sequence, with connecting homomorphism
∂# : Ωπ∗ZnX• = π∗ΩZnX• → π∗Zn+1X•. Note that the inclusion ι : CnX• →֒ Xn

induces an isomorphism ι⋆ : π∗CnX•
∼= Cn(π∗X•) for each n ≥ 0 (see [Bl3, Prop.

2.7]). From (2.5) we see that:

Ωπ♮
nX• = ΩCoker (d

Xn+1

0 )# ∼= Im ∂# ∼= Ker (jX•

n+1)# ⊆ π∗Zn+1X• ,

so we obtain a commutative diagram with exact rows and columns:

(2.7)

0

��

0

��

0

��
0 // Ker (jn)∗

� � //
� _

��

Bn+1X•� _

��

(jn)∗ // // Bn+1π∗X•
//

� _

��

0

��
0 // Ωπ♮

n−1X•
� �
ℓn−1 //

����

sn

&&LLLLLLLLLL
π∗ZnX•

ϑ̂n

��

(jX•

n )# // Znπ∗X•
// //

ϑn

��

Coker hn
//

=

��

0

0 // Ker hn
� � //

��

π♮
nX•

��

hn // πnπ∗X•
// //

��

Coker hn
//

��

0

0 0 0 0

in which Bn+1X• := Im (d
Xn+2

0 )# ⊆ π∗ZnX• and Bn+1π∗Xn+2 := Im d
π∗Xn+2

0 are
the respective boundary objects. Note that the map (jX•

n )# : π∗ZnX• → π∗CnX•

induced by the inclusion jX•

n of (2.4) above in fact factors through Znπ∗X•, as
indicated in the middle row of (2.7).

This defines the map of graded groups hn : π♮
nX• → πn(π∗X•). Note that for n = 0

the map ι̂⋆ is an isomorphism, so h0 is, too. The map sn : Ωπ♮
n−1X• → π♮

nX• is
the composite of the inclusion ℓn−1 : Ker (jX•

n )# →֒ π∗ZnX• with the quotient map

ϑ̂n : π∗ZnX• → π♮
nX• of (2.5), using the natural identification of Ωπ♮

nX• with
Ker (jX•

n+1)#.
The map ∂n+2 : πn+2π∗X• → Ωπ♮

nX• is induced by the composite

(2.8) Zn+2π∗X• ⊆ Cn+2π∗X•
∼= π∗Cn+2X•

(d
Xn+2
0 )#

−−−−−−→ π∗Zn+1X• ,
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which actually lands in Ker (jX•

n+1)# by the exactness of the long exact sequence
for the fibration (2.4).

These maps sn, hn, and ∂n fit into a spiral long exact sequence:

. . . → Ωπ♮
n−1X•

sn−→ π♮
nX•

hn−→ πnπ∗X•
∂n−→ Ωπ♮

n−2X•

sn−1
−−→ π♮

n−1X• → . . . → π♮
0X•

∼=
−→ π0π∗X•

(2.9)

(cf. [DKSt2, 8.1]).

2.10. The spectral sequence of a simplicial space. For any simplicial space
X• ∈ sT∗ (or bisimplicial set), Bousfield and Friedlander showed that there is a
first-quadrant spectral sequence of the form

(2.11) E2
s,t = πsπtX• ⇒ πs+t‖X•‖ ,

where ‖X•‖ ∈ T∗ is the realization (or the diagonal, in the case of X• ∈ sS∗). The
spectral sequence is always defined, but X• must satisfy certain “Kan conditions”
to guaranteee convergence – see [BF, Theorem B.5].

In [DKSt2, §8.4], Dwyer, Kan and Stover showed that (2.11) coincides up to
sign, from the E2-term on, with the spectral sequence associated to the exact couple
of (2.4), which we call the spiral spectral sequence for X•.

If we assume that each Xn is connected, by taking loops (or applying Kan’s
functor G, if X• ∈ sS∗), we may replace X• by a bisimplicial group GX• ∈ sG,
and then (2.11) becomes the spectral sequence of [Q].

3. Simplicial stems and truncated spectral sequences

As noted in §1.9, the E2-term of any of the above equivalent spectral sequences for
a simplicial space X• is determined explicitly by the simplicial 0-stem of X•.

Our goal is to extend this description to the higher terms of the spectral sequence.
For this purpose, fix n ≥ 0, and consider a simplicial Postnikov n-stem Q• (which
need not be realizable as P[n]X• for some simplicial space X•). This is equivalent
to having a collection of simplicial spaces Qn+k

• 〈k〉 for each k ≥ 0, equipped with
maps as in (1.3), with πiQ

n+k
• 〈k〉 = 0 for i < k or i > n+ k.

We assume that Q• is Reedy fibrant in the sense that for each k ≥ 0, the
simplicial space Qn+k

• 〈k〉 is Reedy fibrant. In this case, the “n-stem version”
of the spiral long exact sequence is defined as follows: for each t, i, k ≥ 0, set

π
♮ (k,n)
t,i Q• := π♮

t,i+kQ
n+k
• 〈k〉 and

(3.1) π
(k,n)
i Q• := πi+kQ

n+k
• 〈k〉 =

{

πi+kQ• if 0 ≤ i ≤ n

0 otherwise.

Note that the (i + k)-th homotopy group πi+kQ• of a Postnikov n-stem Q• is
well-defined, and coincides with πi+kX• for 0 ≤ i ≤ n when Q• = P[n]X•.
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3.2. Definition. The collection of long exact sequences (2.9) for Qn+k
• 〈k〉 (indexed

by k ≥ 0):

(3.3) . . .Ωπ
♮ (k,n)
t−1,∗ Q•

s
(k,n)
t // π

♮ (k,n)
t,∗ Q•

h
(k,n)
t // πtπ

(k,n)
∗ Q•

∂
(k,n)
t // Ωπ

♮ (k,n)
t−2,∗ Q• . . . ,

together with the maps between adjacent k-windows induced by the map q in (1.6),
will be called the spiral n-system of Q•. When Q• = P[n]X•, we will refer to this
simply as the spiral n-system of X•.

3.4. Remark. Using the exactness of (3.3), definition (3.1) implies that:

(3.5) π
♮ (k,n)
t,i Q• = π♮

t,iQ
n+k
• 〈k〉 = 0 for i > n ,

by induction on t ≥ 0. Note, however, that while the groups π
(k,n)
i Q• are explicitly

described by (3.1), the dependence of π
♮ (k,n)
t,i Q• on k and n requires more care.

3.6. The E2-term of the spectral sequence. The spiral 0-system of a simplicial

Postnikov 0-stem Q• reduces to a series of isomorphisms ht : π
♮ (k,0)
t,∗ Q•

∼= πtπ
(k,0)
∗ Q•

(for each k ≥ 0). When Q• = P[0]X• is the Postnikov 0-stem of a simplicial space
X•, this allows us to identify the E2

t,k-term of the spiral spectral sequence for X•,
which is:

πtπkX• = πtπkP
0+kX•〈k〉 = πtπk(P [0]X•)k = πtπ

(k,0)
∗ P[0]X• = πtπ

(k,0)
∗ Q•,

with π
♮ (k,0)
t,∗ Q• = π

♮ (k,0)
t,∗ P[0]X•.

The first interesting case is the spiral 1-system, for which we have:

3.7. Proposition. The E3-term of the spiral spectral sequence for a simplicial space
X• is determined by the spiral 1-system of X•. In fact, d2t,k may be identified

with ∂
(k,1)
t : πtπkX• → Ωπ

♮ (k,1)
t−2,0 X•, while E3

t,k is the image of the composite map

(3.8) π
♮ (k,1)
t,0 X•

h
(k,1)
t // πtπkX•

∼= πtπ
(k−1,1)
1 X• π

♮ (k−1,1)
t,1 X•∼=

h
(k−1,1)
too

s
(k−1,1)
t+1 // π

♮ (k−1,1)
t+1,0 X• .

Observe that (3.8) involves maps from different windows of the spiral 1-system,
implicitly identified using the isomorphisms induced by the map q in (1.6).

Proof. Because n = 1 throughout, we abbreviate π
♮ (k,1)
t,i Q• to π

♮ (k)
t,i Q•, and

π
(k,1)
i Q• to π

(k)
i Q•, observing that π

(k)
i Q• is simply πi+kX• for i = 0, 1, and

zero otherwise, since Q• = P[1]X•. Thus the spiral 1-system (3.3) is non-trivial
for each t ≥ 1 in (internal) degrees i = 0, 1 only, and we can write it in two rows:

0 −→ π
♮ (k)
t,1 Q•

∼=
−−→ πtπ

(k)
1 Q• −→ 0 −→ π

♮ (k)
t−1,1Q•

∼=
−−→ πt−1π

(k)
1 Q•

Ωπ
♮ (k)
t−1,0Q•

st−→ π
♮ (k)
t,0 Q•

ht−→ πtπ
(k)
0 Q•

∂t−→ Ωπ
♮ (k)
t−2,0Q•

st−1
−−→ π

♮ (k)
t−1,0Q•

ht−1
−−→ πt−1π

(k)
0 Q•

Since Q• := P[1]X• is the simplicial Postnikov 1-stem of X•, we actually have
a collection of two-row long exact sequences, one for each k-window of P[1]X•.
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For each such k-window Pk[1]X•, we can use the top row to identify

Ωπ
♮ (k)
t,0 Q• = Ωπ♮

t,0Pk[1]X• = π♮
t,1Pk[1]X• = π

♮ (k)
t,1 Q•

with πtπ
(k)
1 Q• = πtπ

(1)
t Pk[1]X• = πtπk+1X•, so the bottom row reduces to:

(3.9) πt−1πk+1X•
-s

(k,1)
t

@
@@R

@
@@R

π
♮ (k)
t,0 Q•

-h
(k,1)
t

@
@@R

@
@@R

πtπkX•
-∂

(k,1)
t

@
@@R

@
@@R

πt−2πk+1X•

Im (s
(k,1)
t )

�
��

�
Im (h

(k,1)
t )

=
Ker (∂

(k,1)
t )

�
��

�
Im (∂

(k,1)
t )

�
��

�

Note that the following part of the E1-term of the exact couple for the fibration
sequence Cn+1P

1ΩiX• → ZnP
1ΩiX•, (as in (2.4)):

π1Zt−1P
1ΩkX•

(jt−1)#//

∂∗

��

π1Ct−1P
1ΩkX•

(dt−1
0 )#// π1Zt−2P

1ΩkX•

(jt−2)# //

))SSSSSSSSSSSSSSS

∂∗

))

����

π1Ct−2X• → . . .

Ωπ
♮ (k)
t−2,0X• = π

♮ (k)
t−2,1X•

� _

��

h
(k+1,1)
t−2,1

∼= ))TTTTTTTTTTTTTT
Zt−2π1P

1ΩkX•

?�

inc

OO

ϑt−2
����

πt−2πk+1X•

π0ZtP
1ΩkX•

(jt)# //

((RRRRRRRRRRRRRR

ϑ̂t����

π0CtP
1ΩkX•

(dt0)# // π0Zt−1P
1ΩkX•

(jt−1)#//

))SSSSSSSSSSSSSSSS

ϑ̂t−1����

π0Ct−1P
1ΩkX• → . . .

π
♮ (k)
t,0 X•

h
(k,1)
t

((RRRRRRRRRRRRRR
ZtπkX•

?�

inc

OO

ϑt
����

π
♮ (k)
t−1,0X•

h
(k,1)
t−1

))TTTTTTTTTTTTTTTT
Zt−1πkX•

?�

inc

OO

ϑt−1
����

πtπkX•

∂
(k,1)
t,0

EE
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

πt−1πkX•

is naturally isomorphic to the exact couple for Cn+1Ω
kX• → ZnΩ

kX•, since Cn+1

and Zn are limits, so they commute with P 1, and then π1P
1Zt−1Ω

kX•
∼=

π1Zt−1Ω
kX•, and so on. This does not imply, of course, that π

♮ (k)
t,1 X•

∼= π♮
t,k+1X•.

We therefore see from (2.7) and (2.8) that the differential d2t,k : E
2
t,k → E2

t−2,k+1

may be identified with:
(3.10)

πtπkX•
∼= πtπ

(k,1)
0 X•

∂
(k,1)
t,0

−−−→ Ωπ
♮ (k)
t−2,0X• = π

♮ (k)
t−2,1X•

ht∼= πt−2π
(k,1)
1 X•

∼= πt−2πk+1X•
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Now by definition, E3
t,k fits into a commutative diagram:

(3.11)

E2
t+2,k−1

d2
t+2,k−1 //

r
����

E2
t,k

q // // Coker (d2t+2,k−1)

Im (d2t+2,k−1)
� � ℓ // Ker (d2t,k)

?�

j

OO

s // // E3
t,k

?�

κ

OO

with exact rows, ℓ j and κ monic, and thus E3
t,k

∼= Im (q ◦ j).

From the exactness of (3.3) (together with (3.9)) we see that Coker (d2t+2,k−1) =

Coker (∂
(k−1,1)
t+2 ) = Im (s

(k−1,1)
t+1 ) and Ker (d2t,k) = Ker (∂

(k,1)
t ) = Im (h

(k,1)
t ), so E3

t,k =
Im (q ◦ j) is indeed the image of the map in (3.8). �

3.12. Definition. An r-truncated spectral sequence is one defined up to and including
the Er-term, together with the differential dn : Er

t,i → Er
t−r−1,t+r, but without

requiring that dr ◦ dr = 0 (so the Er+1-term is defined in terms of the r-truncated
spectral sequence only if drdr = 0).

The main example is the n-truncation of an (ordinary) spectral sequence (such as
that of a simplicial space). In this case we do have dr ◦ dr = 0, of course.

3.13. Corollary. Any Reedy fibrant simplicial Postnikov 1-stem has a well-defined
2-truncated spiral spectral sequence. Moreover, if Q• = P[1]X• for some simplicial
space X•, this 2-truncated spectral sequence coincides with the 2-truncation of the
Bousfield-Friedlander spectral sequence for X•.

In general, we have a less explicit description of the higher terms in the spiral
spectral sequence:

3.14. Theorem. For each r ≥ 0, the Er+2-term of the spiral spectral sequence for
a simplicial space X• is determined by the spiral r-system of X•. Moreover, for
any α ∈ Er+1

t,i , we have dr+1
t,i (α) = β ∈ Er+1

t−r−1,i+r if and only if α and β have

representatives ā ∈ πtπiX• and b̄ ∈ πt−r−1πi+rX•, respectively, such that:

(3.15) (s
(i,r)
t−2,1) ◦ (s

(i,r)
t−3,2) ◦ · · · ◦ (s

(i,r)
t−r,r−1) ◦ (h

(i,r)
t−r−1,r)

−1(b̄) = ∂
(i,r)
t,0 (ā)

Proof. We naturally identify π
♮ (i,r)
t,k X• with π

♮ (i,r−s)
t,k+s X• for k ≥ s, and similarly

for the maps in (3.3), so the spiral (r − 1)-system embeds in the spiral r-system
(with an index shift).
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Again we write out the E1-term of the spiral exact couple:

πrCt−rP
rΩiX•

(dt−r
0 )# // πrZt−r−1P

rΩiX•

(jt−r−1)#//

(jX•

t−r−1)#

**UUUUUUUUUUUUUUUU

ϑ̂t−r−1����

πrCt−r−1P
rΩiX•

Ωπ
♮ (i,r)
t−r−1,r−1X• = π

♮ (i,r)
t−r−1,rX•

� _

ℓt−r−1,r

��

h
(i,r)
t−r−1,r

∼= **UUUUUUUUUUUUUU
Zt−r−1πi+rX•

?�

inc

OO

ϑt−r−1����
πt−r−1πi+rX•

πr−1Ct−r+1P
rΩiX•

(dt−r+1
0 )# // πr−1Zt−rP

rΩiX•

(jt−r)# // πr−1Ct−rP
rΩiX•

...
...

...

π2Ct−2P
rΩiX•

(dt−2
0 )# // π2Zt−3P

rΩiX•

(jt−3)# //

(jX•

t−3)#

**UUUUUUUUUUUUUUUU

ϑ̂t−3����

π2Ct−3P
rΩiX•

Ωπ
♮ (i,r)
t−3,1X• = π

♮ (i,r)
t−3,2X•

s
(i,r)
t−3,1

++

� _

ℓt−3,2

��

h
(i,r)
t−3,2

**UUUUUUUUUUUUUUUU
Zt−3πi+2X•

?�

inc

OO

ϑt−3����
πt−3πi+2X•

π1Ct−1P
rΩiX•

(dt−1
0 )# // π1Zt−2P

rΩiX•

(jt−2)# //

(jX•

t−2)#

**UUUUUUUUUUUUUUUU

ϑ̂t−2����

π1Ct−2P
rΩiX•

Ωπ
♮ (i,r)
t−2,0X• = π

♮ (i,r)
t−2,1X•

� _

ℓt−2,1

��

h
(i,r)
t−2,1

**UUUUUUUUUUUUUUUU
Zt−2πi+1X•

?�

inc

OO

ϑt−2����
πt−2πi+1X•

π0ZtP
rΩiX•

(jt)# //

(jX•

t )#

))TTTTTTTTTTTTTTT

ϑ̂t����

π0CtP
rΩiX•

(dt0)# // π0Zt−1P
rΩiX•

(jt−1)#// π0Ct−1P
rΩiX• → . . .

π
♮ (i)
t,0 X•

h
(i,r)
t

**TTTTTTTTTTTTTTTT
ZtπiX•

?�

inc

OO

ϑt ����
πtπiX•

∂
(i,r)
t,0

BB
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

The differential dr+1
t,i : Er+1

t,i → Er+1
t−r−1,i+r may then be described as a “relation” (cf.

[BK3, §3.1]) in the usual way:
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Given a class α ∈ Er+1
t,i , choose a representative for it a ∈ E1

t,i = π0CtP
rΩiX•.

Since it is a cycle for d1t,i = (jt−1)# ◦ (dt0)#, it lies in ZtπiX• and thus represents

an element ā ∈ πtπiX• = E2
t,i. From the exactness of the middle row of (2.7) we

see that (dt0)#(a) ∈ Ker ((jt−1)#) = Ωπ
♮ (i,r)
t−2,0X•, and in fact (dt0)#(a) represents

∂
(i,r)
t,0 (ā). Since ϑ̂t−2 is surjective, we can choose et−2 ∈ π1Zt−2P

rΩiX• mapping

to (dt0)#(a). Because d2t,i(ā) = h
(i,r)
t−2,1 ◦ ∂

(i,r)
t,0 (ā), as in the proof of Proposition 3.7

(though h
(i,r)
t−2,1 need no longer be an isomorphism!), we see that it is represented

by (jt−2)∗(et−2). If r = 1, we are done. Otherwise, we know that d2t,i(ā) = 0,
so we can choose et−2 so that (jt−2)∗(et−2) = 0, using exactness of the third

column of of (2.7). Again this implies that et−2 ∈ Ker ((jt−2)#) = Ωπ
♮ (i,r)
t−3,1X•,

and d3t,i(〈a〉) is represented by h
(i,r)
t−3,2(et−2). Moreover, we see from (2.7) that

s
(i,r)
t−3,1(et−2) = ∂

(i,r)
t,0 (ā), using the identification Ωπ

♮ (i,r)
t−2,0X• = π

♮ (i,r)
t−2,1X•.

Choosing a lift to et−3 ∈ π2Zt−3P
rΩiX•, we may assume that (jt−3)∗(et−3) = 0,

so et−3 ∈ Ωπ
♮ (i,r)
t−4,2X• and s

(i,r)
t−4,2(et−3) = et−2. Continuing in this way, we finally

reach et−r−1 ∈ Ωπ
♮ (i,r)
t−r−1,r−1X• with s

(i,r)
t−r−2,r(et−r−1) = et−r, and so on, and see that

dr+1
t,i (〈a〉) is represented by h

(i,r)
t−r−1,r(et−r−1). Since (as in the proof of Proposition

3.7) h
(i,r)
t−r−1,r is an isomorphism, we deduce that dr+1

t,i (α) is as in (3.15). �

3.16. Remark. From the exactness of (3.3) we have Im (∂
(i,r)
t,0 ) = Ker (s

(i,r)
t−1,0),

so the image of dr+1
t,i as described in (3.15) is Ker (σr+1

t,i ), where σr+1
t,i :=

(s
(i,r)
t−1,0) ◦ (s

(i,r)
t−2,1) ◦ (s

(i,r)
t−3,2) ◦ · · · ◦ (s

(i,r)
t−r,r−1). Therefore, Er+1

t+r−1,i+r embeds naturally

in Im (σr+1
t,i ).

3.17. Corollary. Every Reedy fibrant simplicial Postnikov r-stem has a well-defined
(r + 1)-truncated spiral spectral sequence. If Q• = P[r]X• for some simplicial
space X•, this truncated spectral sequence coincides with the (r + 1)-truncation of
the Bousfield-Friedlander spectral sequence for X•.

Thus the bigraded homomorophism

dr+1 ◦ dr+1 : Er
t,i → Er+1

t−2r−2,i+2r (t ≥ 2r + 2, i ≥ 0)

serves as the first obstruction to the realizablity of the simplicial Postnikov r-stem
Q• by a simplicial space X•.

4. A cosimplicial version

There are actually four variants of the above spectral sequence which we might
consider, for a simplicial or cosimplicial object over simplicial or cosimplicial sets.
The case of bicosimplicial sets is in principle strictly dual to that of bisimplicial sets,
but because the category of cosimplicial sets has no (known) useful model category
structure, we must restrict to bicosimplicial abelian groups – or equivalently, ordinary
double complexes. Thus the main new case of interest is that of cosimplicial simplicial
sets, or cosimplicial spaces.
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4.1. The spectral sequence of a cosimplicial space. If X• ∈ cS∗ is a fibrant
cosimplicial pointed space with total space TotX•, there are various constructions
for the homotopy spectral sequence of X•:

(a) Using the tower of fibrations for (Totn X
•)∞n=0 (cf. [BK1, X,§6]).

(b) Using “relations” on the normalized cochains NnπtX
• := πtX

n ∩ Ker (s0) ∩
. . . ∩Ker (sn−1) (cf. [BK3, §7]).

(c) Using a cofibration sequence dualizing (2.4) (cf. [R, §3]).

Bousfield and Kan showed that the result is essentially unique (see [BK3]). Since
the main ingredient needed for to define the spiral exact couple is the diagram (2.7),
we use the first approach:

4.2.Definition. For any Reedy fibrant cosimplicial pointed space X• ∈ cS∗, consider
the fibration sequence

(4.3) FnX
• jn
−→ Totn X

• pn
−→ Totn−1X

• ,

where TotnX
• := mapcS∗

(skn ∆, X•) and the fibration pn is induced by the
inclusion of cosimplicial spaces skn−1∆ →֒ skn∆.

The cokernel of (jn)# : π∗FnX
• →֒ π∗Totn X

• is called the n-th natural (graded)
cohomotopy group of X•, and denoted by πn

♮ ∗X
•.

4.4. Remark. We may identify FnX
• with the looped normalized cochain object

ΩnNnX•, where

(4.5) NnX• := Xn ∩Ker (s0) ∩ . . . ∩Ker (sn−1) ,

and π∗N
nX• with Nnπ∗X

• (see [BK1, X, Proposition 6.3]).
Moreover, the composite

π∗+1Ω
nNnX• ∼= π∗+1FnX

• (jn)#
−−−→ π∗+1TotnX

• ∂n−→ π∗Fn+1X
• ∼= π∗Ω

n+1Nn+1X•

(where ∂n is the connecting homomotphism for the (4.3)), may then be identified
with the differential

(4.6) δn :=
n

∑

i=0

(−1)idi : Nnπ∗X
• → Nn+1π∗X

• ,

for the normalized cochain complex N∗π∗X
•, so that

(4.7) Ker (δn)/Coker (δn+1) ∼= πnπ∗X
•

(cf. [BK1, X, §7.2]).

4.8. Proposition. For any pointed cosimplicial space X• there is a natural spiral
long exact sequence:

. . . → Ωπn−1
♮ ∗ X• sn

−→ πn
♮ ∗X

• hn

−→ πnπ∗X
• ∂n

−→ Ωπn−2
♮ ∗ X•

sn−1

−−→ πn−1
♮ ∗ X• → . . . → π0

♮ ∗X
•

∼=
−→ π0π∗X

•
(4.9)
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Proof. By choosing a fibrant replacement in the model category of cosimplicial sim-
plicial sets defined in [BK1, X, §5], if necessary, we may assume that X• is Reedy
fibrant. We then obtain a commutative diagram as in (2.7) with exact rows and
columns:

(4.10)

0

��

0

��

0

��

0 // Ker (jn)∗
� � //

� _

��

Bn+1X•
� _

��

(jn)∗ // // Bn+1π∗X
• //

� _

��

0

��
0 // Ωπn−1

♮ ∗ X• � �
ℓn−1 //

����

sn

&&NNNNNNNNNNN
π∗ TotnX

•

ϑ̂n

��

(jX
•

n )# // Znπ∗X
• // //

ϑn

��

Coker hn //

=

��

0

0 // Ker hn � � //

��

πn
♮ ∗X

•

��

hn // πnπ∗X
• // //

��

Coker hn //

��

0

0 0 0 0

in which Bn+1X• := Im (jn+1)# ⊆ π∗Totn X
• and Bn+1π∗X

• := Im (δn+1) =
Im (∂n+1 ◦ (jn+1)#) are the respective coboundary objects.

The construction of the maps hn, sn, and ∂n, and the proof of the exactness of
(4.9), are then precisely as in §2.6. �

4.11. Definition. The spiral n-system of a pointed cosimplicial space X• ∈ cS∗ is
defined to be the collection of long exact sequences (4.9) for the Postnikov n-stem
functor P[n] applied to X•, one for each k-window of P[n]X•.

As in Definition 3.2, this may actually be defined for a cosimplicial Postnikov n-
stem P•, not necessarily realizable as P• = P[n]X•.

By construction, the homotopy spectral sequence of a (fibrant) cosimplicial space
X•, obtained as in (4.1), is associated to the spiral exact couple (4.9). The
proofs of Proposition 3.7 and Theorem 3.14 use only the description of the spiral
exact couple for X• derived from (4.10), so by using (4.10) instead we can prove
their analogues in the cosimplicial case, and show:

4.12. Theorem. The Er+2-term of the homotopy spectral sequence for a cosimplicial
space X• is determined by the spiral r-system of X•.

An analogue of Corollary 3.17 also holds, as well as:

4.13. Proposition. The differential dt,i2 : Et,i
2 → Et+2,i+1

2 may be identified with
∂t
(i,1) : π

tπiX
• → Ωπt+2,0

♮ (i) X•.

4.14. Examples. As noted in the introduction, many commonly used spectral se-
quences arise as the spiral spectral sequence of an appropriate (co)simplicial space, so
Theorems 3.14 and 4.12 allow us to extract their Er- or Er-terms from the appropriate
spiral systems. For instance:
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(a) Segal’s homology spectral sequence (cf. [Se]), the van Kampen spectral se-
quence (cf. [St]), and the Hurewicz spectral sequence (cf. [Bl1]) are constructed
using bisimplicial sets.

(b) The unstable Adams spectral sequences of [BCKQRS, BK2] and [BCM, §4],
Rector’s version of the Eilenberg-Moore spectral sequence (cf. [R]), and An-
derson’s generalization of the latter (cf. [An]) are all associated to cosimplicial
spaces.

(c) The usual construction of the stable Adams spectral sequence for πs
∗X ⊗Z/p

(cf. [Ad, §3]) uses a tower of (co)fibrations, rather than a cosimplicial space,
but when X is finite dimensional, it agrees in a range with the unstable version
for ΣNX , so Theorem 4.12 applies stably, too.
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