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Abstract

Motivated by algebraic structures appearing in Rational Conformal
Field Theory we study a construction associating to an algebra in a
monoidal category a commutative algebra (full centre) in the monoidal
centre of the monoidal category. We establish Morita invariance of this
construction by extending it to module categories.

As an example we treat the case of group-theoretical categories.
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1 Introduction

The notion of vector space with an associative product, i.e. an associative alge-
bra, plays at important role in many parts of mathematics. Centre of algebra
is an important invariant. For example, it tells when algebras can be Morita
equivalent: if two algebras are Morita equivalent their centers are isomorphic
(this follows from the fact that the centre of an algebra can be derived from
the category of its modules). The notion of an algebra (and its module) can
be transported to the much more general environment of monoidal categories.
There it also plays an important role, capturing very diverse constructions (e.g.
the notion of a monad is just a reincarnation of algebra). Although very straight-
forward with algebras and modules, the transportation of notions to the world
of monoidal categories becomes less trivial with the centre. Without assuming
commutativity of the tensor product it becomes hard to even define what is
for an algebra to be commutative. Even with a commutativity assumption the
situation is quite interesting, e.g. in a braided monoidal category there are two
notions (left and right) of centre of an algebra.

Our motivation for studying (and even defining) centers of algebras comes
from Rational Conformal Field Theories (RCFTs). It was known for quite a
while that a lot of information about the chiral half of a RCFT is contained in
a certain monoidal category. Axiomatised in [9, 15] under the name of modu-
lar category, they were studied extensively by mathematicians and theoretical
physicists. Recently it was realised that certain algebras (more precisely their
categories of modules) in the chiral modular category of an RCFT correspond to
a consistent set of its boundary conditions, while certain commutative algebras
in the monoidal centre of the chiral modular category describe the RCFT in the
bulk, i.e. the full RCFT (see [7] and references therein). The transition from
algebras in a modular category to commutative algebras in its monoidal centre
was studied in [5, 7] under the name of full centre. Although working very well
(e.g. being Morita invariant) the construction uses heavily specific properties of
algebras and modular categories.

In this paper we present a construction (also named full centre), which asso-
ciates to an algebra in a monoidal category a commutative algebra (full centre)
in the monoidal centre of the monoidal category (section 4). Based on a uni-
versal property, the construction is quite general. We prove that full centre is
Morita invariant by extending the definition from algebras to module categories
over a monoidal category (section 4). We also show that, when applied to alge-
bras in a modular category, our construction give the right answer (section 4).
We conclude by looking at a case where the category is not modular, i.e. we
describe full centers of separable algebras in categories of group-graded vector
spaces and categories of representations of a group (section 9).

For the definitions of monoidal categories and monoidal functors see [8].
Throughout the paper we assume that all monoidal categories are strict. This
assumption is in fact inessential, it is made for simplicity and can be lifted
without a problem. The term “monoidal functor” means strong (otherwise we
use “lax monoidal functor”). We also assume that all monoidal functors are
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strong. We will often omit (especially in big diagrams) the tensor product sign,
e.g. XY will mean X⊗Y , X2 will mean X⊗2 and fg will mean f⊗g for objects
X,Y and morphisms f, g of a monoidal category.
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2 Algebras in monoidal categories

An (associative, unital) algebra in a (strict) monoidal category C is a triple
(A, µ, ι) consisting of an object A ∈ C together with a multiplication µ : A⊗A →
A and a unit map ι : I → A, satisfying associativity and unit axioms:

A⊗2

µ

!!C
CC

CC
CC

C

A⊗3

A⊗µ
<<xxxxxxxx

µ⊗A ""F
FF

FFF
FF A

A⊗2

µ

=={{{{{{{{

A
ι⊗A //

1 !!C
CC

CC
CC

C A⊗2

µ

��
A

A

A⊗ι

��

1

!!C
CC

CC
CC

C

A⊗2
µ

// A

Where it will not cause confusion we will be talking about an algebra A, sup-
pressing its multiplication and unit maps.
A morphism of algebras f : A → B is a (unital) homomorphism if the following
diagrams commute

A⊗2
ff //

µ

��

B⊗2

µ

��
A

f
// B

I
ι //

ι
��?

??
??

??
? A

f

��
B
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An algebraC in a braided monoidal categoryD is commutative if the diagram

C ⊗ C
cC,C //

µ
##F

FF
FF

FF
FF

C ⊗ C

µ
{{xx

xx
xx

xx
x

C

The unit object I of a monoidal category has a canonical structure of an
algebra. Here we another example of algebras, which will be used extensively.
Recall (say from [8]) that an object T of a category C is terminal if for any
object X ∈ C there is exactly one morphism X → T .

Lemma 2.1. The terminal object of a monoidal category is an algebra.
The terminal object of a braided monoidal category is a commutative algebra.

Proof. Let T be the terminal object. The unique morphisms I → T , T ⊗ T →
T turn it into an algebra. Indeed, the axioms follow from the uniqueness of
morphisms into T .

Let F : C → D be a functor and A ∈ D be an object. Comma category
F↓A (see [8]) is the category of pairs (X, x), where X is an object of C and
x : F (X) → A is a morphism in D. Morphisms of pairs are morphisms of the first
components, compatible with the second components. Note that if the functor
F is monoidal (assuming that C,D are monoidal) and A is an algebra then the
comma-category F↓A is monoidal with the tensor product (X, x) ⊗ (Y, y) =
(X ⊗ Y, x⊗ y), where x⊗ y is the composition

F (X ⊗ Y )
FX,Y // F (X)⊗ F (Y )

xy // A⊗A
µ // A .

The unit object is (I, i), where i is the composition

F (I) // I
ι // A .

The forgetful functor F↓A → C and the evaluation functor F↓A → D are
monoidal. The following statement will also be used throughout.

Lemma 2.2. Let F : C → D be a monoidal functor and A be an algebra in D.
Let (B, b) be an algebra in the comma category F↓A. Then b : F (B) → A is a
homomorphism of algebras in D.

Proof. Follows from the definition of morphisms and tensor product in comma
category:

F (B)⊗ F (B)
bb //

µF (B)

((

A⊗A

µA

��
F (B ⊗B)

FB,B

ggOOOOOOOOOOO
bb //

F (µB)

��

A

F (B)

b

99sssssssssss
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3 Monoidal centre of a category

Here we recall (from [6]) the construction and basic properties of monoidal
centre of a monoidal category.

The monoidal centre Z(C) of a monoidal category C is the category of pairs
(Z, z), where Z ∈ C and z stands for a natural collection of isomorphisms
zX : Z ⊗X → X ⊗ Z (half braidings), such that zI = 1 and the diagram

Z ⊗ (X ⊗ Y )
zX⊗Y //

aZ,X,Y

vvnnnnnnnnnnnn
(X ⊗ Y )⊗ Z

(Z ⊗X)⊗ Y

zX⊗Y ((PPPPPPPPPPPP
X ⊗ (Y ⊗ Z)

aX,Y,Z

hhPPPPPPPPPPPP

(X ⊗ Z)⊗ Y
a
−1
X,Z,Y

// X ⊗ (Z ⊗ Y )

X⊗zY

66nnnnnnnnnnnn

commutes for all X,Y ∈ C. Morphisms in Z(C) are morphisms of first com-
ponents (in C), compatible, in a natural way, with second components. The
category Z(C) is monoidal with respect to the tensor product

(Z, z)⊗ (W,w) = (Z ⊗W, z|w),

where z|w is defined by

(Z ⊗W )⊗X
(z|w)X // X ⊗ (Z ⊗W )

aX,Z,W

((QQQQQQQQQQQQ

Z ⊗ (W ⊗X)

aZ,W,X

66mmmmmmmmmmmm

Z⊗wX ((QQQQQQQQQQQQ
(X ⊗ Z)⊗W

Z ⊗ (X ⊗W )
aZ,X,W

// (Z ⊗X)⊗W

zX⊗W

66mmmmmmmmmmmm

Moreover Z(C) is a braided monoidal category with the braiding

c(X,x),(Y,y) = xY .

The forgetful functor

F : Z(C) → C, (Z, z) 7→ Z

is clearly faithful and monoidal (with the monoidal structure being the identity).
In what follows we, when speaking about objects of the monoidal centre, will
often omit the half braiding, e.g. instead of (Z, z) we will have Z (suppressing
the half braiding z).
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4 Full centre of an algebra

Let A be an algebra in a monoidal category C. The full centre Z(A) of A is an
object of the monoidal centre Z(C) together with a morphism Z(A) → A in C,
terminal among pairs (Z, ζ), where Z ∈ Z(C) and ζ : Z → A is a morphism in
C such that the following diagram commutes:

Z ⊗A
ζA //

zA

��

A⊗A
µ

""F
FF

FF
FF

FF

A

A⊗ Z
Aζ

// A⊗A

µ

<<xxxxxxxxx

(1)

Here zA is the half-braiding of Z as an object of Z(C). The terminality condition
means that for any such pair (Z, ζ) there is a unique morphism Z → Z(A) in
the monoidal centre Z(C), which makes the diagram

Z //

ζ ��>
>>

>>
>>

> Z(A)

}}zz
zz

zz
zz

A

commute.

Proposition 4.1. The full centre Z(A) has a unique structure of an algebra in
Z(C) such that the morphism Z(A) → A is a homomorphism of algebras in C.
Moreover Z(A) is a commutative algebra in Z(C).

Proof. The pair (I, ι), where ι : I → A is the unit map, satisfies to the condition
(1) because the diagram

I ⊗A
ιA //

��

""E
EEEEEEE A⊗ A

µ

""F
FF

FF
FF

FF

A
1 // A

A⊗ I
Aι

//

<<yyyyyyyy
A⊗ A

µ

<<xxxxxxxxx

commutes. Hence there is a unique morphism I → Z(A) such that the diagram

I //

ι
��=

==
==

==
= Z(A)

ζ
}}zz

zz
zz

zz

A
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commutes.
Similarly, the morphism

Z(A)⊗2
ζζ // A⊗2

µ // A

satisfies condition (1). Indeed the diagram

Z(A)⊗2A
ζζ1 //

(z|z)A

��

1zA

��

ζ11

''NNNNNNNNNNN A⊗3
µ1 //

1µ

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

A⊗2

µ

��*
**

**
**

**
**

**
**

**
**

**
**

AZ(A)A

1ζ1

::uuuuuuuuuu

1zA

��
A⊗2Z(A)

11ζ

$$I
IIIIIIII A⊗2

µ

  A
AA

AA
AA

A

Z(A)AZ(A)

zA1

��

ζ11
77ppppppppppp

11ζ

''NNNNNNNNNNN A⊗3

µ1
''OOOOOOOOOOOOO

1µ

77ppppppppppppp
A

Z(A)A⊗2

ζ11
::uuuuuuuuu

zA1

��

A⊗2

µ

>>}}}}}}}}

AZ(A)A

1ζ1

$$II
II

II
II

II

AZ(A)⊗2
1ζζ

//
11ζ

77ppppppppppp

A⊗3
1µ //

µ1

??�������������������
A⊗2

µ

II�����������������������

commutes. Thus, by the universal property, there is a unique morphism Z(A)⊗2 →
Z(A) such that the diagram

Z(A)⊗2 //

ζζ

��

Z(A)

ζ

��
A⊗2

µ
// A

commutes.
Associativity, commutativity and unit axioms for Z(A) follow from the

uniqueness property. To prove associativity all we need to do it to show that
the compositions

Z(A)⊗3 µ1 // Z(A)⊗2 µ // Z(A)

Z(A)⊗3
µ1 // Z(A)⊗2

µ // Z(A)
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coincide after being composed with ζ. This is guaranteed by the commutative
diagram:

Z(A)⊗2
µ //

ζζ
((QQQQQQQQQQQQQ
Z(A)

ζ

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

A⊗2

µ

''NNNNNNNNNNNNN

Z(A)⊗3

µ1

<<zzzzzzzzzzzzzzzzzzzz
ζζζ //

1µ

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

D A⊗3

µ1

66mmmmmmmmmmmmmm

1µ

((QQQQQQQQQQQQQQ A

A⊗2

µ

77ppppppppppppp

Z(A)⊗2

ζζ

66mmmmmmmmmmmmm

µ
// Z(A)

ζ

@@������������������

Similarly, to prove commutativity we need to show that µzZ(A) : Z(A)⊗2 →
Z(A) coincides with µ : Z(A)⊗2 → Z(A) after being composed with ζ. This
follows from commutativity of the diagram:

Z(A)⊗2
µ //

1ζ %%J
JJJJJJJJ

zZ(A)

��

Z(A)

ζ

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

Z(A)A
ζ1 //

zA

��

A⊗2

µ

**UUUUUUUUUUUUUUUUUUUUUUU

A

AZ(A)
1ζ

// A⊗2

µ

44iiiiiiiiiiiiiiiiiiiiiii

Z(A)⊗2
µ //

ζ1

99ttttttttt
Z(A)

ζ

@@������������������

Finally, for (one of) the unit axioms it is enough to check that, after composing
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with ζ, µ(ι1) coincides with ζ. This is guaranteed by the commutative diagram:

Z(A)
ζ //

ζ

**TTTTTTTTTTTTTTTTTTTTT

ι1

��9
99

99
99

99
99

99
99

9

ι1

��

A

A

ι1

��

1

77nnnnnnnnnnnnnnn

AZ(A)

1ζ

##H
HH

HH
HH

HH

A⊗2

µ

DD																									

Z(A)⊗2

ζ1

BB���������������� ζζ

44jjjjjjjjjjjjjjjjjj

µ
// Z(A)

ζ

OO

Remark 4.2.

Note that the category Z(A) of pairs (Z, ζ), where Z belongs to Z(C) and
ζ : Z → A satisfies condition (1), is a full monoidal subcategory of the comma
category F↓A for the forgetful functor F : Z(C) → C. Indeed, tensor product
(ZT, ζτ) of two such pairs (Z, ζ) and (T, τ) again has this property:

ZTA
ζτ1 //

(z|t)A

��

1tA

��

ζ11

$$I
IIIIIIII A⊗3

µ1 //

1µ

  @
@@

@@
@@

@@
@@

@@
@@

@@
@ A⊗2

µ

��+
++

++
++

++
++

++
++

++
++

++
+

ATA

1τ1
;;vvvvvvvvv

1tA

��
A⊗2T

11τ

##H
HH

HH
HH

HH
A⊗2

µ

!!C
CC

CC
CC

C

ZAT

zA1

��

ζ11
::vvvvvvvvv

11τ

$$H
HHHHHHHH A⊗3

µ1
''OOOOOOOOOOOOO

1µ

77ooooooooooooo
A

ZA⊗2

ζ11
;;vvvvvvvvv

zA1

��

A⊗2

µ

=={{{{{{{{

AZA
1ζ1

##H
HH

HH
HH

HH

AZT
1ζτ

//
11τ

::uuuuuuuuu
A⊗3

1µ //

µ1

>>~~~~~~~~~~~~~~~~~~
A⊗2

µ

II����������������������

9



Now the major part of proposition 4.1 follows from lemmas 2.1,2.2.

5 Left centres

Now let D be a braided monoidal category. Following [11, 16] we define the
left centre Cl(B) of an algebra B in D as the terminal object in the category of
morphisms y : Y → B such that the following diagram commutes:

Y ⊗B
yB //

cY,B

��

B ⊗B
µ

##F
FF

FF
FF

FF

B

B ⊗ Y
By

// B ⊗B

µ

;;xxxxxxxxx

(2)

Similarly, one can define the right centre of an algebra in a braided monoidal
category.

Proposition 5.1. The left centre Cl(B) has a unique structure of algebra in
D such that the morphism Cl(B) → B is a homomorphism of algebras in D.
Moreover Cl(B) is a commutative algebra in D.
Similarly for the right centre.

Proof. Analogous to the proof of .

Remark 5.2.

The major part of proposition 5.1 follows from lemmas 2.1,2.2 if we note
that the category Cl(B) of pairs (Y, y), with y : Y → B satisfying condition (2),
is a full monoidal subcategory of the comma category idZ(D)↓B for the identity
functor id : Z(D) → Z(D).

Now assume that the forgetful functor F : Z(C) → C has a right adjoint
R : C → Z(C) with the natural transformations of the adjunction:

αU : U → RF (U), βX : FR(X) → X, U ∈ Z(C), X ∈ C.

Note that R is automatically lax monoidal, i.e. it is equipped with the morphism
I → R(I) and the natural transformation RX,Y : R(X) ⊗ R(Y ) → R(X ⊗
Y ), which satisfy usual coherence axioms of a monoidal functor, but are not
necessarily isomorphisms.
Indeed, the morphism is given by the composite

I
αI // RF (I) // R(I)

10



while the natural transformation is

R(X)⊗R(Y )

αR(X)R(Y )

��

R(X ⊗ Y )

RF (R(X)⊗R(Y ))
R(FR(X),R(Y ))// R(FR(X)⊗ FR(Y ))

R(βXβY )

OO

Here FU,V : F (U⊗V ) → F (U)⊗F (V ) is the natural isomorphism (the monoidal
structure of F ), which is in fact the identity for the forgetful functor F .

The following statement is well-known. We add a proof for the sake of
completeness.

Lemma 5.3. The adjunction natural transformations α and β are monoidal.

Proof. Monoidality of β follows from the commutative diagram:

XY

RF (XY )
αXY

//

R(F (X)F (Y ))

R(FX,Y )

��

R(F (X)F (Y ))
RRRRRRRRRRR

RRRRRRRRRRR

R(FRF (X)FRF (Y ))

R(F (αX )F (αY ))

�� R(βF (X)βF (Y ))

55lllllllllll

RF (RF (X)RF (Y ))

RF (αXαY )

��

R(FRF (X),RF (Y )) **TTTTTTTTTTTTT

RF (X)RF (Y )

αXαY

..

RF (X),F (Y )

LL

αRF (X)RF (Y )

VV

11



Monoidality of β follows from the commutative diagram:

F (R(X)R(Y ))

FR(XY )

F (RX,Y )

66

XY

βXY

��

FR(X)FR(Y )

FR(X),R(Y )

(( βXβY

AA

FRF (R(X)R(Y ))
F (αR(X)R(Y ))

55lllllllllll
FR(FR(X)FR(Y ))

FR(FR(X),R(Y ))

**TTTTTTTTTTTTT

FR(βXβY )

jj

βFR(X),FR(Y )

uu

F (R(X)R(Y ))

βF (R(X)R(Y ))

��

RRRRRRRRRRR

RRRRRRRRRRR

The lax monoidal structure on R allows us to transport algebras from C to
Z(C). If A is an algebra in C, R(A) is an algebra in Z(C) with the unit map

I // R(I)
R(ιA) // R(A)

and the multiplication

R(A)⊗R(A) // R(A⊗A)
R(µA)// R(A)

Theorem 5.4. Suppose that the natural transformation β of the adjunction is
epi. Then for any algebra A in a monoidal category C

Z(A) = Cl(R(A)).

Proof. We are going to show that the adjunction

C(F (Z), X) ≃ Z(C)(Z,R(X))

defines a monoidal equivalence between Z(A) and Cl(R(A)). We start by con-
structing the functor Z(A) → Cl(R(A)).
Let Z ∈ Z(C) and f : F (Z) → A satisfy condition (1). Then the adjoint
morphism f̃ : Z → R(A), which is given by the composite

Z
αZ // RF (Z)

R(f) // R(A),

12



satisfies condition (2):

ZR(A)

zR(A)

��

f̃1

**

αZ1
// RF (Z)R(A)

R(f)1
//

��

R(A)⊗2

�� µ

��

R(F (Z)A)
R(f1)

//

R(zA)

��

R(A⊗2)

R(µ) $$I
IIIIII

II

R(A)

R(AF (Z))
R(1f) // R(A⊗2)

R(µ)
::uuuuuuuuu

R(A)Z

1f̃

44
1αZ // R(A)RF (Z)

1R(f) //

OO

R(A)⊗2

OO
µ

MM

Here commutativity of the left rectangular face follows from the commutativity

13



of

ZR(A)

R(A)Z

zR(A)

��
R(A)RF (Z)

1αZ

//

R(AF (Z))
FF

RF (R(A)RF (Z))

αR(A)RF (Z)

[[7777777777

R(FR(A)FRF (Z))
CC������

R(βAβF(Z))

11cccccccccccc

R(FR(A)F (Z))

R(1βF (Z))

CC������

R(βA1)

,,XXXXXXXX

RF (R(A)Z)

αR(A)Z

CC������

RF (1αZ )
22eeeee

R(FR(A)F (Z))
CC����

R(1F (αZ ))

33hhhhhhhh

RF (ZR(A))

αZR(A)

��7
77

77
7

RF (zR(A))

��

R(F (Z)FR(A))
��7

77

R(zFR(A))

��

R(F (Z)FR(A))

R(F (Z)A)

R(1βA)

33hhhhhhhhhh

R(zA)

��

R(FRF (Z)FR(A))

R(F (αZ )1)

))SSSSSSSSSSSS

R(βF (Z)βA)

--[[[[[[[[[[[
R(βF (Z)1)

��4
44

44
44

RF (RF (Z)R(A))

RF (αZ1),,YYYY

��4
44

44
44

4

RF (Z)R(A)
αZ1 //

αRF (Z)R(A)

����
��

��
��

�

��

which, in its turn, follows from commutativity of

F (ZU) //

F (zU )

��

F (Z)F (U)

zF (U)

��
F (UZ) // F (U)F (Z)

(second left curved square in the diagram above).
Thus we have a functor

Z(A) → Cl(R(A)), (Z, ζ) 7→ (Z, ζ).

Its monoidal property follows from monoidality of F (and R).
We conclude by constructing a quasi-inverse functor Cl(R(A)) → Z(A). For

an object of Cl(R(A)), which is an object Z ∈ Z(C) and a morphism g : Z →
R(A), define g̃ : F (Z) → A as the composition

F (Z)
F (g) // FR(A)

βA // A.

14



The following diagram (together with the fact that β is epi) shows that for g,
satisfying condition (2), g̃ satisfies condition (1):

F (Z)FR(A)

F (Z)A

1βA

]];;;;;;;;;

AF (Z)

zA

��
AFR(A)

1F (g) // A2
1βA //

A

µ

KK

1g̃

44

FR(A)F (Z)

zFR(A)

��

βA1

����
��

��
��

��
FR(A)2

1F (g) //

βA1

����
��

��
��

��
�

β2
A

��;
;;

;;
;;

;;
;;

F (R(A)2)AA����������

FR(A)

F (µ)

AA�����������

βA //

F (R(A)Z)AA�����������

F (1g) //

F (ZR(A))
��;

;;
;;

;;
;;

F (zR(A))

��

F (R(A)2)
F (g1) //

F (µ)

��;
;;

;;
;;

;;
;;

FR(A)2
F (g)1 //

��;
;;

;;
;;

;;
;

A2

β2
A

AA����������

µ

��

FR(A)A

1βA

]];;;;;;;;;;

βA1 //F (g)1 //

g̃1

**

Here commutativity of the rightmost cells of the diagram is equivalent to the
fact that βA : FR(A) → A is a homomorphism of algebras, which follows from
lemma 5.3.

6 Morita invariance

A right module over an algebra A is a pair (M, ν), where M is an object of C
and ν : M ⊗A → M is a morphism (action map), such that

ν(ν ⊗A) = ν(M ⊗ µ).

A homomorphism of right A-modules M → N is a morphism f : M → N in C
such that

νN (f ⊗A) = fνM .
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Right modules over an algebra A ∈ C together with module homomorphisms
form a category CA. The forgetful functor CA → C has a right adjoint, which
sends an object X ∈ C into the free A-module X ⊗A, with A-module structure
defined by

X ⊗A⊗A
Iµ // X ⊗ A.

Since the action map M ⊗ A → M is an epimorphism of right A-modules any
right A-module is a quotient of a free module.

Categories of modules over algebras are examples of module categories. A
(left) module category [13] over a monoidal category C is a category M together
with a functor (an action functor):

C ×M → M, (X,M) 7→ X ∗M,

and a functorial isomorphism

aX,Y,M : X ∗ (Y ∗M) → (X ⊗ Y ) ∗M, X, Y ∈ C, M ∈ M,

such that the diagram

X ∗ (Y ∗ (Z ∗M))

(X ⊗ Y ) ∗ (Z ∗M)
aX,Y,Z∗M

66nnnnnnnnnnn
((X ⊗ Y )⊗ Z) ∗M

aXY,Z,M

((PPPPPPPPPPP

X ∗ ((Y ⊗ Z) ∗M)

X∗aY,Z,M

��3
33

33
33

(X ⊗ (Y ⊗ Z)) ∗M
aX,Y Z,M

//

αX,Y,Z∗M

EE�������

commutes for anyX,Y, Z ∈ C, M ∈ M. Here, for aesthetic reason, we insert the
associator α for the tensor product in C. Equivalently M is a module category
over C if there is given a monoidal functor C → End(M) to the monoidal
category End(M) of endofunctors of M (with monoidal structure given by
composition of functors).
A functor F : M → N between C-module categories is a C-module functor if it
comes equipped with a natural collection of isomorphisms FX,M : F (X ∗M) →
X ∗ F (M) such that the following diagram commutes:

F (X ∗ (Y ∗M))

F ((X ⊗ Y ) ∗M)
F (aX,Y,M )

66nnnnnnnnnnn
(X ⊗ Y ) ∗ F (M)

FXY,M

((PPPPPPPPPPP

X ∗ F (Y ∗M)

FX,Y ∗M

��3
33

33
33

X ∗ (Y ∗ F (M))
X∗FY,M

//

aX,Y,M

EE�������

16



Clearly, C-module structures on functors are composable: the composite of two
C-module functors has a canonical structure of C-module functor.
Note that if (M, ν) is a right module over an algebra A in a monoidal category
C then for any X ∈ C the tensor product X ⊗M has a structure of a A-module
X⊗ : ν : X ⊗M ⊗A → X ⊗M . Thus the category of (right) modules CA over
an algebra A in a monoidal category C is a left C-module category with respect
to the action functor

C × CA → CA, (X, (M, ν)) 7→ (X ⊗M,X ⊗ ν).

The forgetful functor CA → C and its right adjoint have natural C-module struc-
tures, giving an adjoint pair of C-module functors.

Let M be a C-module category. With an object (Z, z) of the monoidal centre
of C one can associate a functor

M → M, M 7→ Z ∗M,

which comes equipped with a C-module structure

Z ∗ (X ∗M)
aZ,X,M// (Z ⊗X) ∗M

zX∗M // (X ⊗ Z) ∗M
a
−1
X,Z,M // X ∗ (Z ∗M)

Denote by EndC(M) the monoidal category of C-module endofunctors of C-
module category M. The above construction defines a monoidal functor E :
Z(C) → EndC(M).

Two algebras A,B in a monoidal category C are said to be Morita equivalent
if their categories of right modules are equivalent as module categories over
C. Here we are going to show that the full centre is an invariant of Morita
equivalence. We will do it by extending the notion of full centre from algebras
to module categories.

The centre of a (left) module category M over a monoidal category C is
the object Z(M) terminal in the comma category E↓I, corresponding to the
monoidal functor E : Z(C) → EndC(M) and the (unit) algebra I ∈ EndC(M).
In other words, the centre Z(M) is the terminal object among pairs (Z, f),
where Z ∈ Z(C) and fM : Z ∗ M → M is a collection of morphisms in M,
natural in M , such that the following diagram commutes (for any X ∈ C and
M ∈ M):

(Z ⊗X) ∗M
a
−1
Z,X,M //

zX∗M

��

Z ∗ (X ∗M)
fX∗M

&&NNNNNNNNNNN

X ∗M

(X ⊗ Z) ∗M
a
−1
X,Z,M

// X ∗ (Z ∗M)

X∗fM

88ppppppppppp

(3)

17



Proposition 6.1. The centre Z(M) of a module category M over a monoidal
category C is a commutative algebra in Z(C).

Proof. analogous to the proof of proposition 4.1.

Theorem 6.2. Let A be an algebra in a monoidal category C. Then

Z(CA) = Z(A).

Proof. it is enough to show that the comma category E↓I is monoidally equiv-
alent to the category Z(A) from remark 4.2. We start by defining a functor
P : E↓I → Z(A). For (Z, z) ∈ Z(C) with a natural collection fM : Z⊗M → M
of morphisms of A-modules define a morphism f : Z → A in C to be the com-
posite:

Z
1ι // Z ⊗A

fA // A.

Commutativity of the following diagram shows that the morphism f satisfies
condition (1):

ZA
f1 //

11ι

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

zA

��

1ι1

))SSSSSSSSSSSSSSSSS A2

µ

��0
00

00
00

00
00

00
00

ZA2

fA1

<<yyyyyyyy

1µ ""F
FF

FF
FF

F

ZA
fA // A

AZA

1fA
))SSSSSSSSSSSSSSSSS ZA2

zA1oo
1µ

<<xxxxxxxx

f
A2

""E
EE

EE
EE

E

AZ
1f

//

11ι

<<xxxxxxxxx
A2

µ

FF���������������

Here the left top square commutes by A-linearity of f∗, which says that the
diagram

ZMA
fM1 //

1ν

��

MA

ν

��
ZM

fM

// M

commutes for all M ∈ CA, while the triangle in the middle bottom of the
diagram commutes by the C-module property of f∗, which is equivalent to the

18



commutativity of the diagram

ZXM
fXM //

zX1 %%JJJJJJJJJ XM

XZM

1fM

::uuuuuuuuu

for all M ∈ CA and X ∈ C. We set P (Z, f) = (Z, f).
Now we construct the functor Q : Z(A) → E↓I. For (Z, z) ∈ Z(C) with a

morphism g : Z → A in C define g̃M as the composite:

ZM
zM // MZ

1g // MA
ν // M

The condition (1) for g implies that g̃M is a morphism of A-modules:

ZMA
zM1 //

zMA
$$I

IIIIIIII

1ν

��

MZA
1g1 // MA2 ν1 //

1µ

##G
GG

GG
GG

GG
MA

ν

��

MAZ

1zA

OO

11g //

ν1

��

MA2
1µ //

ν1

��

MA
ν

##F
FF

FF
FF

FF

ZM zM
// MZ

1g
// MA ν

// M

Obviously the collection g̃M is natural in M ∈ CA. The C-module property of g̃
is almost self-evident:

ZXM
zXM

%%J
JJJJJJJJ

zX1

��

XMZ
11g // XMA

1ν // XM

XZM

1zM

99ttttttttt

We set Q(Z, g) = (Z, g̃).
It is easy to see that the constructed functors are quasi-inverse to each other.

Indeed, it follows from commutativity of the diagram:

Z
1ι

||zzz
zzzz

z
ι1

��

f // A

ι1

��

1

  A
AA

AA
AA

A

ZA zA
// AZ

1f
// A2

µ
// A

that f̃ = f , i.e. the composition PQ is the identity.
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Similarly the diagram

MZ
1f //

11ι

$$J
JJJJJJJJ MA

ν

""E
EE

EE
EE

E

ZM

zM

::vvvvvvvvv

11ι

$$H
HH

HH
HH

HH

1

88

MZA

1fA
::vvvvvvvvv

M

ZMA

fMA

GG

zM1
::ttttttttt

1ν
// ZM

fM

<<yyyyyyyy

implies that f̃ = f , i.e. the composition QP is the identity.

We immediately have the following.

Corollary 6.3. The full centre of an algebra is Morita invariant.

7 Braided case

Recall (from [6]) that for a braided monoidal C the tensor product functor

T : C × C → C, (X,Y ) 7→ X ⊗ Y

is monoidal, with monoidal structure

T ((X,Y )⊗ (Z,W ))
T(X,Y ),(Z,W ) // T (X,Y )⊗ T (Z,W )

XZYW
1cZ,Y 1 // XY ZW

(4)

It turns out that this functor can be lifted to a monoidal functor C ×C → Z(C).
To construct this functor note that the braiding cX,Y : X ⊗ Y → Y ⊗X allows
us to define braided monoidal functors

ι+ : C → Z(C), X 7→ (X, cX,−),

ι− : C → Z(C), X 7→ (X, c−1
−,X).

These functors split the forgetful functor F :

Fι± ≃ IdC ,

with the natural isomorphism being the identity.
We can combine the functors ι± into one

C × C → Z(C), (X,Y ) 7→ ι+(X)⊗ ι−(Y ).

The following lemma (essentially contained in [10]) says that this functor is
monoidal, with the monoidal structure (4).
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Lemma 7.1. The following diagram of monoidal functors commutes

C × C

T
!!D

DD
DD

DD
DD

// Z(C)

F
}}{{

{{
{{

{{

C

Proof. We need to show that 1cZ,Y 1 gives rise to a morphism

ι+(XZ)⊗ ι−(YW ) → ι+(X)⊗ ι−(Y )⊗ ι+(Z)⊗ ι−(W )

in Z(C). Monoidality of ι± reduces it to the statement that cZ,Y is a morphism
ι+(Z) ⊗ ι−(W ) → ι−(W ) ⊗ ι+(Z) in Z(C), which follows from commutative
diagram (here U is an object of C):

ZWU
(cZ,−|c−1

−,W
)U

//

cZ,W 1

��

cZ,WU

��7
77

77
77

77
77

77
77

7 UZW

1cZ,W

��

ZUW

1cU,W

eeJJJJJJJJJ cZ,U1

99ttttttttt

cZ,UW

��7
77

77
77

77
77

77
77

7

WUZ

WZU

1cZ,U

99ttttttttt

(c−1
−,W

|cZ,−)U

// UWZ

cU,W 1

eeJJJJJJJJJ

Let M be a module category over a braided monoidal C. Following [11]
define two functors (α-inductions) α± : C → EndC(M) by α±(X)(M) = X ∗M
with C-module structures:

α+(X)(Y ∗M)
α+(X)Y,M // Y ∗ α+(X)(M)

X ∗ (Y ∗M)

aX,Y,M

��

Y ∗ (X ∗M)

aY,X,M

��
(X ⊗ Y ) ∗M

cX,Y ∗1
// (Y ⊗X) ∗M
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α−(X)(Y ∗M)
α−(X)Y,M // Y ∗ α−(X)(M)

X ∗ (Y ∗M)

aX,Y,M

��

Y ∗ (X ∗M)

aY,X,M

��
(X ⊗ Y ) ∗M

c
−1
Y,X

∗1

// (Y ⊗X) ∗M

Lemma 7.2. The following diagram of monoidal functors commutes

C × C

α+×α− %%KKKKKKKKKK
ι+×ι− // Z(C)

Eyyttttttttt

EndC(M)

Proof. this follows from the fact that the composite E◦ι± coincides with α±.

Proposition 7.3. Let M be a module category over a braided monoidal category
C. Then we have isomorphisms of Hom-spaces:

Z(C)(ι+(X)⊗ ι−(Y ), Z(M)) ≃ EndC(M)(α+(X) ◦ α−(Y ), I).

Proof. By the universal property of Z(M), Z(C)(ι+(X) ⊗ ι−(Y ), Z(M)) coin-
cides with EndC(M)(E(ι+(X)⊗ι−(Y )), I), which coincides with EndC(M)(α+(X)◦
α−(Y ), I) by lemma 7.2.

This formula first appeared in the context of modular categories (see [5]),
where it allows effective computation of the full centre.

8 Modular case

From now on we fix a ground field k. In this section all categories will be k-linear
and finite (all hom-sets are finite dimensional vector spaces over k, composition
is k-bilinear). The tensor product functor is bi-linear (linear in each argument).
Slightly abusing the term we will call such categories tensor. All functors will
be assumed k-linear (effect on morphisms is linear over k).

An object X∨ is (left) dual to X ∈ C if there exist morphisms coev : I →
X ⊗X∨, ev : X∨ ⊗X → I such that the compositions

X
coevX // X ⊗X∨ ⊗X

Xev // X (5)

X∨
Xcoev // X∨ ⊗X ⊗X∨

evX // X∨ (6)

are equal to the identity morphisms. A monoidal category is (left) rigid if all
its objects have (left) duals.
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A rigid braided monoidal category C is ribbon (or tortile [14, 15]) if it is
equipped with a natural collection of isomorphisms θX : X → X , satisfying the
coherence axiom, which says that the diagram

X ⊗ Y
θX⊗Y //

cX,Y

��

X ⊗ Y

Y ⊗X
θY ⊗θX// X ⊗ Y

cY,X

OO (7)

commutes for all X,Y ∈ C, and such that θX∨ = θ∨

X (the self-duality axiom).
Define the trace tr(f) of an endomorphism f : X → X in a ribbon category

C as the composition

1
coevX// X ⊗X∨

θXf⊗X∨

// X ⊗X∨
cX,X∨

// X∨ ⊗X
evX // 1

The trace has the following properties (see [15] for the proof):

tr(fg) = tr(gf), f : X → Y, g : Y → X,

tr(f ⊗ g) = tr(f)tr(g), f : X → X, g : Y → Y,

tr(λ) = λ, λ : 1 → 1,

See [6, 15] for details and proofs.
There is a weaker notion (which does not require the presence of braiding) of
so-called spherical monoidal category, where traces exist and have the right
properties (see [1]).

Recall that the Deligne tensor product C⊠D of two abelian k-linear categories
is the abelian envelope of the tensor product of C and D as k-linear categories (or
Vect-enriched categories), i.e. category with objects being pairs (X,Y ), X ∈
C, Y ∈ D and hom spaces (from (X,Y ) to (Z,W ))) C(X,Z)⊗D(Y,W ).

We call a braided monoidal category C non-degenerate if the functor C⊠C →
Z(C) is an equivalence.

Following [15] we call a ribbon (spherical) category C pure if the bilinear
pairing

C(X,Y )⊗ C(Y,X) → k, f ⊗ g 7→ tr(fg)

is non-degenerate for any X,Y ∈ C. Denote by coev ∈ C(X,Y ) ⊗ C(Y,X)
the canonical element of this pairing, which exists due to finite dimensiality of
C(X,Y ).

We will need the notion of (k-linear or Vect-enriched) coend of a functor

S : Cop × C → D which we denote
∫ Y

S(Y, Y ) (see [8, 4] for details).

Proposition 8.1. Let C be a pure ribbon (spherical) category. Then the tensor
product functor T : C ⊠ C → C has the right adjoint:

R : C → C ⊠ C, R(X) =

∫ Y

(X ⊗ Y ∨)⊠ Y = (X ⊠ I)⊗ R̃,

where R̃ =
∫ Y

Y ∨ ⊠ Y .
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Proof. We need to define the adjunction natural transformations: TR → I, I →
RT .
The transformation TR → I is

TR(X) →

∫ Y

T ((X ⊗ Y ∨)⊠ Y ) =

∫ Y

X ⊗ Y ∨ ⊗ Y = X.

By the universal property of coend (see [8]) to define

IX ⊠ Y → RT (X ⊠ Y ) = R(X ⊗ Y ) =

∫ Z

(X ⊗ Y ⊗ Z∨)⊠ Z

it is enough to present a dinatural collection of morphisms (X⊗Y ⊗Z∨)⊠Z →
X ⊠ Y . By the definition of ⊠

C ⊠ C((X ⊗ Y ⊗ Z∨)⊠ Z,X ⊠ Y ) = C(X ⊗ Y ⊗ Z∨, X)⊗ C(Z, Y ).

The later coincides with C(X ⊗ Y,X ⊗ Z) ⊗ C(Z, Y ). Now take the canonical
element coev ∈ C(Y, Z)⊗C(Z, Y ) and consider its image under the map C(Y, Z)⊗
C(Z, Y ) → C(X ⊗ Y,X ⊗ Z)⊗ C(Z, Y ), induced by tensoring with the identity
morphism on X . Dinaturality of this collection is straightforward as well as the
adjunction axioms.

Remark 8.2.

If C is semi-simple the coend
∫ Y

Y ∨ ⊠ Y always exists and coincides with
⊕Y ∈Irr(C)Y

∨ ⊠Y , where the sum runs over the representatives of the set Irr(C)
of isomorphism classes of simple objects of C. In particular, the transformation
β : TR → I of the adjunction is epi.

Slightly changing the definition from [15] we call a semisimple monoidal
category category modular if it is rigid, braided, ribbon and non-degenerate.

Thus for an algebra A in a modular category C we have the following de-
scription of the full centre:

Z(A) = Cl(ι+(A)⊗ R̃),

which was used as the definition in [5, 7].

9 Examples

Here we treat as examples the categories of vector spaces, graded by a group,
and categories of representation of a group.

Let G be a group. Denote by C(G) the category of G-graded vector spaces.
This category is monoidal with respect to the tensor product of graded vector
spaces: for V = ⊕g∈GVg, U = ⊕g∈GUg

V ⊗ U = ⊕g∈G(V ⊗ U)g, (V ⊗ U)g = ⊕g1g2=gVg1 ⊗ Ug2 .
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An algebra in C(G) is just a G-graded algebra, i.e. a G-graded vector space
A = ⊕g∈GAg with multiplication, which preserves grading AfAg ⊂ Afg.

We call a G-action on a vector space V compatible with a G-grading V =
⊕g∈GVg if f(Vg) = Vfgf−1 . The following result is well-know (see for example
[3] for the proof).

Proposition 9.1. The monoidal centre Z(C(G)) is isomorphic, as braided
monoidal category, to the category Z(G), whose objects are G-graded vector
spaces X = ⊕g∈GXg together with a compatible G-action and with morphisms,
which are graded and action preserving homomorphisms of vector spaces. The
tensor product in Z(G) is the tensor product of G-graded vector spaces with the
G-action defined by

f(x⊗ y) = f(x) ⊗ f(y), x ∈ X, y ∈ Y. (8)

The monoidal unit is I = Ie = k with trivial G-action.
The braiding is given by

cX,Y (x⊗ y) = f(y)⊗ x, x ∈ Xf , y ∈ Y. (9)

For Z ∈ Z(G) and U ∈ C(G) the half-braiding zU : Z ⊗ U → U ⊗ Z is given by

zU (z ⊗ u) = u⊗ g−1(z), u ∈ Ug. (10)

As an immediate application we have the following (see [3] for details).

Corollary 9.2. An algebra in the category Z(G) is a G-graded associative al-
gebra C together with a G-action such that

f(ab) = f(a)f(b), a, b ∈ C. (11)

An algebra C in the category Z(G) is commutative iff

ab = f(b)a, ∀a ∈ Cf , b ∈ C. (12)

For a homogeneous element v of a G-graded vector space V the notation |v|
will denote its degree in G, i.e. v ∈ V|v|.

Proposition 9.3. Let A be an algebra in C(G) (a graded G-algebra). The
full centre of A as an object of Z(G) is the subspace of the space of functions
G → A with homogeneous values: Let A be a G-graded algebra. The full centre
of A as an object of Z(G) is the subspace of the space of functions G → A with
homogeneous values:

Z(A) = {z : G → A| az(g) = z(hg)a, ∀a ∈ Ah}.

The G-grading on Z(A) is given by

Z(A)f = {z ∈ Z(A)| |z(g)| = g|z(e)|g−1 = gfg−1}.

The G-action is g(z)(f) = z(g−1f).
newline The map Z(A) → A is the evaluation z 7→ z(e).
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Proof. the condition (1) for the map Z(A) → A is equivalent to z(e)a =
ag−1(z)(e) for any z ∈ Z(A) and a ∈ Ag:

z ⊗ a � //
_

��

z(e)⊗ a � // z(e)a

a⊗ g−1(z)
� // a⊗ g−1(z)(e)

� // ag−1(z)(e)

Thus condition (1) follows from the definition of Z(A): ag−1(z)(e) = az(g) =
z(e)a.
Let Z be an object of Z(G) and ζ : Z → A be a homorphism of G-graded
vector spaces. Condition (1) implies that ζ(z)a = aζ(g−1(z)) for any z ∈ Zg

and a ∈ A:

z ⊗ a
� //

_

��

ζ(z)⊗ a
� // ζ(z)a

a⊗ g−1(z)
� // a⊗ ζ(g−1(z))

� // aζ(g−1(z))

Now we can define a morphism Z → Z(A) in Z(G) by z 7→ z, where z : G → A
is given by z(g) = ζ(g−1(z)).

By proposition 4.1, Z(A) is a (commutative) algebra in Z(C). Indeed, the
multiplication in Z(A) is the componentwise product of functions (zw)(g) =
z(g)w(g).

We will be interested in a special class of algebras. An algebra (A, µ, ι) in a
rigid braided monoidal category C is called separable if the following composition
(denoted e : A⊗A → 1) is a non-degenerate pairing:

A⊗A
µ // A

ǫ // 1.

Here ǫ is the composition

A
IcoevA // A⊗A⊗A∗

µI // A⊗A∗
cA,A∗

// A∗ ⊗A
evA // 1,

where coevA and evA are duality morphisms for A. Non-degeneracy of e means
that there is a morphism coev : 1 → A⊗A such that the composition

A
Icoev// A⊗3 eI // A

is the identity. It also implies that the similar composition

A
coevI // A⊗3 Ie // A

is also the identity.
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It is known that isomorphism (Morita) classes of indecomposable separable
algebras in C(G) correspond to pairs (H, γ), where H ⊂ G is a subgroup and
γ ∈ H2(H, k∗) is a second cohomology class with values in the group of invertible
elements of the ground field. The class of (H, γ) is represented by the skew group
algebra k[H, γ]. As a vector space k[H, γ] is spanned by H , with multiplication
defined on the basis eg, g ∈ G by:

efeg = γ(f, g)efg.

Here we use the symbol γ for the cohomology class as well as its representing
2-cocycle.

Indecomposable commutative separable algebras in Z(G) were classified in
[3]. Here we briefly describe the result. Note that the identity component Ae of
an indecomposable commutative separable algebra A ∈ Z(G) is a commutative
separable algebra equipped with a G-action. It is well-known that such algebras
are algebras of functions on transitive finite G-sets and are labelled by conjugacy
classes of finite index subgroups of G (stabilisers of G-sets). For a minimal
idempotent p in Ae the algebra pA is an indecomposable commutative separable
algebra in Z(StG(p)) with trivial component pAe = k. As such it is a skew group
algebra k[F, γ], where F ⊳H = StG(p) is a normal subgroup. The H-action on
k[F, γ] is given by a function ε : H × F → k∗;

h(ef) = εh(f)ehfh−1 .

Thus we have the following (see [3] for details).

Theorem 9.4. Indecomposable commutative separable algebras in Z(G) are
of the form A(H,F, γ, ε), where as a vector space, it is spanned by ag,f , with
g ∈ G, f ∈ F , modulo the relations

agh,f = εh(f)ag,hfh−1 , ∀h ∈ H,

with the G-grading, given by |ag,f | = gfg−1, the G-action g′(ag,f ) = ag′g,f and
the multiplication

ag,fag′,f ′ = δg,g′γ(f, f ′)ag,ff ′ .

Note that when H = F the function ε is completely defined by γ (see [3] for
details). Thus we use the notation A(H,H, γ) for A(H,H, γ, ε).

Now we calculate full centres of indecomposable separable algebras in C(G).

Proposition 9.5. Z(k[H, γ]) = A(H,H, γ).

Proof. Let z : G → A be an element of Z(k[H, γ])f . Since the values of z are
homogeneous and |z(g)| = gfg−1, it should have the form z(g) = η(g)egfg−1 for
some function η : G → k with the support in {g ∈ G| gfg−1 ∈ H}.
The condition az(g) = z(hg)a, ∀a ∈ Ah is equivalent to the equation

γ(h, gfg−1)η(g) = η(hg)γ(hgfg−1h−1, h). (13)
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Indeed, for a = eh

az(g) = ehη(g)egfg−1 = γ(h, gfg−1)η(g)ehgfg−1

should coincide with

z(hg)a = η(hg)ehgfg−1h−1eh = η(hg)γ(hgfg−1h−1, h)ehgfg−1

In particular, for |z| = f = e, z(g) = η(g)ee with η(hg) = η(g). So Z(k[H, γ])e
coincides with the algebra k(G/H) of functions on the G-set G/H .
Let p be the δ-function of H . Then pZ(k[H, γ]) coincides with k[H, γ]. Indeed,
the support of z ∈ pZ(k[H, γ]) is always in H and solutions of the equation (13)
do exist and are determined by η(f). For f ∈ H define ηf : H → k by

ηf (h) = γ(h, f)γ−1(hfh−1, h).

Then the map
k[H, γ] → pZ(k[H, γ]), ef 7→ zf ,

where zf(h) = ηf (h)ehfh−1 , is an isomorphism.

For example, the unit algebra I ∈ C(G) corresponds to the pair ({e}, 1):
I = k[{e}, 1]. Thus Z(I) = A({e}, {e}, 1).

Now we will deal with another series of examples. Denote by Rep(G) the
category of representations of G over the ground field k. Note that Rep(G) is
a symmetric tensor category over k. It is well-known that the monoidal centre
Z(Rep(G)) is equivalent (as a braided monoidal category) to Z(G) (see for
example [12]).

An algebra A in Rep(G) (a G-algebra) is just an (associative, unital) algebra
with an action of G by algebra automorphisms.

Proposition 9.6. The full centre Z(A) ∈ Z(G) of an algebra A ∈ Rep(G) has
the form Z(A) = ⊕g∈GZg(A), where

Zg(A) = {x ∈ A| xa = g(a)x ∀a ∈ A}

with the G action, induced from A.

Proof. First we show that Z(A) is an object of Z(G). Indeed, f(Zg(A)) =
Zfgf−1(A):

f(x)a = f(xf−1(a)) = f(gf−1(a)x) = fgf−1(a)f(x).

The morphism Z(A) → A is the direct sum of embeddings Zg(A) ⊂ A.
The diagram (1) commutes by the definition of Z(A):

x⊗ a
� //

_

��

x⊗ a
� // xa

g(a)⊗ x � // g(a)⊗ x � // g(a)x
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Terminality of Z(A) is also quite straightforward. For ζ : Z = ⊕g∈GZg → A
and z ∈ Zg the condition (1) implies that ζ(z) ∈ Zg(A):

z ⊗ a
� //

_

��

ζ(z)⊗ a
� // ζ(z)a

g(a)⊗ z
� // g(a)⊗ ζ(z)

� // g(a)ζ(z)

Proposition 4.1 implies that Z(A) is a (commutative) algebra in Z(C), which
can be checked directly. Indeed, Zf (A)Zg(A) ⊂ Zfg(A)

xya = xg(a)y = fg(a)xy, x ∈ Zf (A), y ∈ Zg(A), a ∈ A.

It is known (see for example [12]) that Morita classes of indecomposable
algebras in Rep(G) are in 1-to-1 correspondence with Morita classes of inde-
composable separable algebras in C(G), i.e. they correspond to pairs (H, γ),
where H ⊂ G is a subgroup and γ ∈ H2(H, k∗). A representative for the
class, corresponding to a pair (H, γ), can be constructed as follows. Let V be
an irreducible projective representation of H with the Schur multiplier γ, i.e.
there is given a homomorphism of algebras ρ : k[H, γ] → End(V ) such that the
centraliser of the image of ρ is trivial. Then End(V ) is an H-algebra. Define
A(H, γ) to be the G-algebra, induced from the H-algebra End(V ):

A(H, γ) = indGH(End(V )) = {a : G → End(V )| a(hg) = h(a(g)), ∀h ∈ H},

with the G-action given by f(a)(g) = a(gf) (see [2] for details).

Proposition 9.7. Z(A(H, γ)) = A(H,H, γ).

Proof. By the definition of the full centre of a G-algebra, Ze(A) is the ordinary
centre, i.e. the centre of A as an algebra in the category of vector spaces. Thus

Ze(A(H, γ)) = indGH(Z(End(V )) = indGH(k) = k(G/H).

Let p ∈ Ze(A(H, γ)) be the δ-function of H . Note that

pA(H, γ) = indHH(End(V )) = End(V ).

Thus pZ(A(H, γ)), which coincides with the full centre Z(End(V )) of the H-
algebra End(V ), is isomorphic to k[H, γ]. Indeed, ρ(eh) belongs to Zh(End(V )),
so ρ defines a homomorphism k[H, γ] → End(V ) of algebras in Z(H). Since
Ze(End(V )) = k and since ρ(eh)

−1Zh(End(V )) = Ze(End(V )), this is an iso-
morphism.

For example, the unit algebra I ∈ Rep(G) corresponds to the pair (G, 1).
Thus Z(I) = A(G,G, 1).
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Remark 9.8.

It can be seen from propositions 9.5,9.6, that the only indecomposable com-
mutative algebras in Z(G), that appear as full centres, are those of the form
A(H,H, γ). This is related to the fact that they have trivial categories of so-
called local (or dyslectic) modules (see [3] for details). An explanation of this
will be given in a subsequent paper.
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