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Abstract

The pentagram map is a projectively natural transformation defined on (twisted) poly-
gons. A twisted polygon is a map from Z into RP2 that is periodic modulo a projective
transformation called the monodromy. We find a Poisson structure on the space of twisted
polygons and show that the pentagram map relative to this Poisson structure is completely
integrable. For certain families of twisted polygons, such as those we call universally convex,
we translate the integrability into a statement about the quasi-periodic motion for the dy-
namics of the pentagram map. We also explain how the pentagram map, in the continuous
limit, corresponds to the classical Boussinesq equation. The Poisson structure we attach to
the pentagram map is a discrete version of the first Poisson structure associated with the
Boussinesq equation. A research announcement of this work appeared in [16].
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1 Introduction

The notion of integrability is one of the oldest and most fundamental notions in mathematics.
The origins of integrability lie in classical geometry and the development of the general theory is
always stimulated by the study of concrete integrable systems. The purpose of this paper is to
study one particular dynamical system that has a simple and natural geometric meaning and to
prove its integrability. Our main tools are mostly geometric: the Poisson structure, first integrals
and the corresponding Lagrangian foliation. We believe that our result opens doors for further
developments involving other approaches, such as Lax representation, algebraic-geometric and
complex analysis methods, Bäcklund transformations; we also expect further generalizations and
relations to other fields of modern mathematics, such as cluster algebras theory.

The pentagram map, T , was introduced in [19], and further studied in [20] and [21]. Origi-
nally, the map was defined for convex closed n-gons. Given such an n-gon P , the corresponding
n-gon T (P ) is the convex hull of the intersection points of consequtive shortest diagonals of P .
Figure 1 shows the situation for a convex pentagon and a convex hexagon. One may consider
the map as defined either on unlabelled polygons or on labelled polygons. Later on, we shall
consider the labelled case in detail.
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Figure 1: The pentagram map defined on a pentagon and a hexagon

The pentagram map already has some surprising features in the cases n = 5 and n = 6.
When P is a pentagon, there is a projective transformation carrying P to T (P ). This is a
classical result, cf. [15]; one of us learned of this result from John Conway in 1987. When P
is a hexagon, there is a projective transformation carrying P to T 2(P ). It is not clear whether
this result was well-known to classical projective geometers, but it is easy enough to prove. The
name pentagram map stems from the fact that the pentagon is the simplest kind of polygon for
which the map is defined.

Letting Cn denote the space of convex n-gons modulo projective transformations, we can
say that the pentagram map is periodic on Cn for n = 5, 6. The pentagram map certainly is
not periodic on Cn for n ≥ 7. Computer experiments suggest that the pentagram map on Cn
in general displays the kind of quasi-periodic motion one sees in completely integrable systems.
Indeed, this was conjectured (somewhat loosely) in [21]. See the remarks following Theorem 1.2
in [21].

It is the purpose of this paper to establish the complete integrability conjectured in [21] and
to explain the underlying quasi-periodic motion. However, rather than work with closed n-gons,
we will work with what we call twisted n-gons. A twisted n-gon is a map φ : Z→ RP2 such that
that

φ(k + n) = M ◦ φ(k); ∀k.

Here M is some projective automorphism of RP2. We call M the monodromy . For technical
reasons, we require that every 3 consecutive points in the image are in general position – i.e., not
collinear. When M is the identity, we recover the notion of a closed n-gon. Two twisted n-gons
φ1 and φ2 are equivalent if there is some projective transformation Ψ such that Ψ◦φ1 = φ2. The
two monodromies satisfy M2 = ΨM1Ψ−1. Let Pn denote the space of twisted n-gons modulo
equivalence.
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Let us emphasise that the full space of twisted n-gons (rather than the geometrically natural
but more restricted space of closed n-gons) is much more natural in the general context of the
integrable systems theory. Indeed, in the “smooth case” it is natural to consider the full space
of linear differential equations; the monodromy then plays an essential rôle in producing the
invariants. This viewpoint is adopted by many authors (see [9, 14] and references therein) and
this is precisely our viewpoint in the discrete case.

The pentagram map is generically defined on Pn. However, the lack of convexity makes it
possible that the pentagram map is not defined on some particular point of Pn, or that the
image of a point in Pn under the pentagram map no longer belongs to Pn. That is, we can lose
the 3-in-a-row property that characterizes twisted polygons. We will put coordinates in Pn so
that the pentagram map becomes a rational map. At least when n is not divisible by 3, the
space Pn is diffeomorphic to R2n. When n is divisible by 3, the topology of the space is trickier,
but nonetheless large open subsets of Pn in this case are still diffeomorphic to open subsets of
R2n. (Since our map is only generically defined, the fine points of the global topology of Pn are
not so significant.)

The action of the pentagram map in Pn was studied extensively in [21]. In that paper, it
was shown that for every n this map has a family of invariant functions, the so-called weighted
monodromy invariants. There are exactly 2[n/2] + 2 algebraically independent invariants. Here
[n/2] denotes the floor of n/2. When n is odd, there are two exceptional monodromy functions
that are somewhat unlike the rest. When n is even, there are 4 such exceptional monodromy
functions. We will recall the explicit construction of these invariants in the next section, and
sketch the proofs of some of their properties. Later on in the paper, we shall give a new treatment
of these invariants.

Here is the main result of this paper.

Theorem 1 There exists a Poisson structure on Pn having co-rank 2 when n is odd and co-
rank 4 when n is even. The exceptional monodromy functions generically span the null space of
the Poisson structure, and the remaining monodromy invariants Poisson-commute. Finally, the
Poisson structure is invariant under the pentagram map.

The exceptional monodromy functions are precisely the Casimir functions for the Poisson
structure. The generic level set of the Casimir functions is a smooth symplectic manifold. Indeed,
as long as we keep all the values of the Casimir functions nonzero, the corresponding level sets
are smooth symplectic manifolds. The remaining monodromy invariants, when restricted to the
symplectic level sets, define a singular Lagrangian foliation. Generically, the dimension of the
Lagrangian leaves is precisely the same as the number of remaining monodromy invariants. This
is the classical picture of Arnold-Liouville complete integrability.

As usual in this setting, the complete integrability gives an invariant affine structure to
every smooth leaf of the Lagrangian foliation. Relative to this structure, the pentagram map is
a translation. Hence
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Corollary 1.1 Suppose that P is a twisted n-gon that lies on a smooth Lagrangian leaf and has
a periodic orbit under the pentagram map. If P ′ is any twisted n-gon on the same leaf, then P ′

also has a periodic orbit with the same period, provided that the orbit of P ′ is well-defined.

Remark 1.2 In the result above, one can replace the word periodic with ε-periodic. By this
we mean that we fix a Euclidean metric on the leaf and measure distances with respect to this
metric.

We shall not analyze the behavior of the pentagram map on Cn. One of the difficulties in
analyzing the space Cn of closed convex polygons modulo projective transformations is that this
space has positive codimension in Pn (codimension 8). We do not know in enough detail how the
Lagrangian singular foliation intersects Cn, and so we cannot appeal to the structure that exists
on generic leaves. How the monodromy invariants behave when restricted to Cn is a subtle and
interesting question that we do not yet fully know how to answer (see Theorem 4 for a partial
result). We hope to tackle the case of closed n-gons in a sequel paper.

One geometric setting where our machine works perfectly is the case of universally convex
n-gons. This is our term for a twisted n-gon whose image in RP2 is strictly convex. The
monodromy of a universally convex n-gon is necessarily an element of PGL3(R) that lifts to
a diagonalizable matrix in SL3(R). A universally convex polygon essentially follows along one
branch of a hyperbola-like curve. Let Un denote the space of universally convex n-gons, modulo
equivalence. We will prove that Un is an open subset of Pn locally diffeomorphic to R2n. Further,
we will see that the pentagram map is a self-diffeomorphism of U2n. Finally, we will see that
every leaf in the Lagrangian foliation intersects Un in a compact set.

Combining these results with our Main Theorem and some elementary differential topology,
we arrive at the following result.

Theorem 2 Almost every point of Un lies on a smooth torus that has a T -invariant affine
structure. Hence, the orbit of almost every universally convex n-gon undergoes quasi-periodic
motion under the pentagram map.

We will prove a variant of Theorem 2 for a different family of twisted n-gons. See Theorem 3.
The general idea is that certain points of Pn can be interpreted as embedded, homologically
nontrivial, locally convex polygons on projective cylinders, and suitable choices of geometric
structure give us the compactness we need for the proof.

Here we place our results in a context. First of all, it seems that there is some connection
between our work and cluster algebras. On the one hand, the space of twisted polygons is known
as an example of cluster manifold, see [7, 6] and discussion in the end of this paper. This implies
in particular that Pn is equipped with a canonical Poisson structure, see [10]. We do not know
if the Poisson structure constructed in this paper coincides with the canonical cluster Poisson
structure. On the other hand, it was shown in [21] that a certain change of coordinates brings
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the pentagram map rather closely in line with the octahedral recurrence, which is one of the
prime examples in the theory of cluster algebras, see [18, 11, 22].

Second of all, there is a close connection between the pentagram map and integrable P.D.E.s.
In the last part of this paper we consider the continuous limit of the pentagram map. We
show that this limit is precisely the classical Boussinesq equation which is one of the best
known infinite-dimensional integrable systems. Moreover, we argue that the Poisson bracket
constructed in the present paper is a discrete analog of so-called first Poisson structure of the
Boussinesq equation. We remark that a connection to the Boussinesq equation was mentioned
in [19], but no derivation was given.

Discrete integrable systems is an actively developing subject, see, e.g., [26] and the books
[23, 5]. The paper [4] discusses a well-known discrete version (but with continuous time) of
the Boussinesq equation; see [25] (and references therein) for a lattice version of this equation.
See [9] (and references therein) for a general theory of integrable difference equations. Let us
stress that the r-matrix Poisson brackets considered in [9] are analogous to the second (i.e.,
the Gelfand-Dickey) Poisson bracket. A geometric interpretation of all the discrete integrable
systems considered in the above references is unclear.

In the geometrical setting which is more close to our viewpoint, see [5] for many interesting
examples. The papers [1, 2] considers a discrete integrable systems on the space of n-gons,
different from the pentagram map. The recent paper [13] considers a discrete integrable systems
in the setting of projective differential geometry; some of the formulas in this paper are close to
ours. Finally, we mention [12, 14] for discrete and continuous integrable systems related both
to Poisson geometry and projective differential geometry on the projective line.

We turn now to a description of the contents of the paper. Essentially, our plan is to make
a bee-line for all our main results, quoting earlier work as much as possible. Then, once the
results are all in place, we will consider the situation from another point of view, proving many
of the results quoted in the beginning.

One of the disadvantages of the paper [21] is that many of the calculations are ad hoc and
done with the help of a computer. Even though the calculations are correct, one is not given
much insight into where they come from. In this paper, we derive everything in an elementary
way, using an analogy between twisted polygons and solutions to periodic ordinary differential
equations.

One might say that this paper is organized along the lines of first the facts, then the reasons.
Accordingly, there is a certain redundancy in our treatment. For instance, we introduce two
natural coordinate systems in Pn. In the first coordinate system, which comes from [21], most
of the formulas are simpler. However, the second coordinate system, which is new, serves as a
kind of engine that drives all the derivations in both coordinate systems; this coordinate system
is better for computation of the monodromy too. Also, we discovered the invariant Poisson
structure by thinking about the second coordinate system.

In §2 we introduce the first coordinate system, describe the monodromy invariants, and
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establish the Main Theorem. In §3 we apply the main theorem to universally convex polygons
and other families of twisted polygons. In §4 we introduce the second coordinate system. In
§4 and 5 we use the second coordinate system to derive many of the results we simply quoted
in §2. Finally, in §6 we use the second coordinate system to derive the continuous limit of the
pentagram map.

2 Proof of the Main Theorem

2.1 Coordinates for the space

In this section, we introduce our first coordinate system on the space of twisted polygons. As
we mentioned in the introduction, a twisted n-gon is a map φ : Z→ RP2 such that

φ(n+ k) = M ◦ φ(k) (2.1)

for some projective transformation M and all k. We let vi = φ(i). Thus, the vertices of our
twisted polygon are naturally ...vi−1, vi, vi+1, .... Our standing assumption is that vi−1, vi, vi+1

are in general position for all i, but sometimes this assumption alone will not be sufficient for
our constructions.

The cross ratio is the most basic invariant in projective geometry. Given four points
t1, t2, t3, t4 ∈ RP1, the cross-ratio [t1, t2, t3, t4] is their unique projective invariant. The explicit
formula is as follows. Choose an arbitrary affine parameter, then

[t1, t2, t3, t4] =
(t1 − t2) (t3 − t4)
(t1 − t3) (t2 − t4)

. (2.2)

This expression is independent of the choice of the affine parameter, and is invariant under the
action of PGL(2,R) on RP1.

Remark 2.1 Many authors define the cross ratio as the multiplicative inverse of the formula
in Equation 2.2. Our definition, while perhaps less common, better suits our purposes.

The cross-ratio was used in [21] to define a coordinate system on the space of twisted n-
gons. As the reader will see from the definition, the construction requires somewhat more than
3 points in a row to be in general position. Thus, these coordinates are not entirely defined on
our space Pn. However, they are generically defined on our space, and this is sufficient for all
our purposes.

The construction is as follows, see Figure 2. We associate to every vertex vi two numbers:

xi = [vi−2, vi−1, ((vi−2, vi−1) ∩ (vi, vi+1)) , ((vi−2, vi−1) ∩ (vi+1, vi+2))]

yi = [((vi−2, vi−1) ∩ (vi+1, vi+2)) , ((vi−1, vi) ∩ (vi+1, vi+2)) , vi+1, vi+2]
(2.3)
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Figure 2: Points involved in the definition of the invariants

called the left and right corner cross-ratios. We often call our coordinates the corner invariants.
Clearly, the construction is PGL(3,R)-invariant and, in particular, xi+n = xi and yi+n = yi.

We therefore obtain a (local) coordinate system that is generically defined on the space Pn. In
[21], §4.2, we show how to reconstruct a twisted n-gon from its sequence of invariants. The
reconstruction is only canonical up to projective equivalence. Thus, an attempt to reconstruct
φ from x1, y1, ... perhaps would lead to an unequal but equivalent twisted polygon. This does
not bother us. The following lemma is nearly obvious.

Lemma 2.2 At generic points, the space Pn is locally diffeomorphic to R2n.

Proof. We can perturb our sequence x1, y1, ... in any way we like to get a new sequence
x′1, y

′
1, .... If the perturbation is small, we can reconstruct a new twisted n-gon φ′ that is near φ

in the following sense. There is a projective transformation Ψ such that n-consecutive vertices
of Ψ(φ′) are close to the corresponding n consecutive vertices of φ. In fact, if we normalize
so that a certain quadruple of consecutive points of Ψ(φ′) match the corresponding points of
φ, then the remaining points vary smoothly and algebraically with the coordinates. The map
(x′1, y

′
2, ..., x

′
n, y
′
n)→ [φ′] (the class of φ′) gives the local diffeomorphism. 2

Remark 2.3 (i) Later on in the paper, we will introduce new coordinates on all of Pn and show,
with these new coordinates, that Pn is globally diffeomorphic to R2n when n is not divisible by

8



3.
(ii) The actual lettering we use here to define our coordinates is different from the lettering used
in [21]. Here is the correspondense:

...p1, q2, p3, q4... ⇐⇒ ..., x1, y1, x2, y2, ...

2.2 A formula for the map

In this section, we express the pentagram map in the coordinates we have introduced in the
previous section. To save words later, we say now that we will work with generic elements of Pn,
so that all constructions are well-defined. Let φ ∈ Pn. Consider the image, T (φ), of φ under the
pentagram map. One difficulty in making this definition is that there are two natural choices
for labelling T (φ), the left choice and the right choice. These choices are shown in Figure 3. In
the picture, the black dots represent the vertices of φ and the white dots represent the vertices
of T (φ). The labelling continues in the obvious way.

5

2

3

4

5

4

1

right

2
2

3

4

5

3
4

1

left

3

Figure 3: Left and right labelling schemes

If one considers the square of the pentagram map, the difficulty in making this choice goes
away. However, for most of our calculations it is convenient for us to arbitrarily choose right
over left and consider the pentagram map itself and not the square of the map. Henceforth, we
make this choice.

Lemma 2.4 Suppose the coordinates for φ are x1, y1, ... then the coordinates for T (φ) are

T ∗xi = xi
1− xi−1 yi−1

1− xi+1 yi+1
, T ∗yi = yi+1

1− xi+2 yi+2

1− xi yi
, (2.4)
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where T ∗ is the standard pull-back of the (coordinate) functions by the map T .

In [21], Equation 7, we express the squared pentagram map as the product of two involutions
on R2n, and give coordinates. From this equation one can deduce the formula in Lemma 2.4 for
the pentagram map itself. Alternatively, later in the paper we will give a self-contained proof of
Lemma 2.4.

Lemma 2.4 has two corollaries, which we mention here. These corollaries are almost imme-
diate from the formula. First, there is an interesting scaling symmetry of the pentagram map.
We have a rescaling operation on R2n, given by the expression

Rt : (x1, y1, ..., xn, yn)→ (tx1, t
−1y1, ..., txn, t

−1yn). (2.5)

Corollary 2.5 The pentagram map commutes with the rescaling operation.

Second, the formula for the pentagram map exhibits rather quickly some invariants of the
pentagram map. When n is odd, define

On =
n∏
i=1

xi; En =
n∏
i=1

yi. (2.6)

When n is even, define

On/2 =
∏
i even

xi +
∏
i odd

xi, En/2 =
∏
i even

yi +
∏
i odd

yi. (2.7)

The products in this last equation run from 1 to n.

Corollary 2.6 When n is odd, the functions On and En are invariant under the pentagram
map. When n is even, the functions On/2 and En/2 are also invariant under the pentagram
map.

These functions are precisely the exceptional invariants we mentioned in the introduction.
They turn out to be the Casimirs for our Poisson structure.

2.3 The monodromy invariants

In this section we introduce the invariants of the pentagram map that arise in Theorem 1.
The invariants of the pentagram map were defined and studied in [21]. In this section we

recall the original definition. Later on in the paper, we shall take a different point of view and
give self-contained derivations of everything we say here.
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As above, let φ be a twisted n-gon with invariants x1, y1, .... Let M be the monodromy of φ.
We lift M to an element of GL3(R). By slightly abusing notation, we also denote this matrix
by M . The two quantities

Ω1 =
trace3(M)

det(M)
; Ω2 =

trace3(M−1)
det(M−1)

; (2.8)

enjoy 3 properties.

• Ω1 and Ω2 are independent of the lift of M .

• Ω1 and Ω2 only depend on the conjugacy class of M .

• Ω1 and Ω2 are rational functions in the corner invariants.

We define
Ω̃1 = O2

nEnΩ1; Ω̃2 = OnE
2
nΩ2. (2.9)

In [21] it is shown that Ω̃1 and Ω̃2 are polynomials in the corner invariants. Since the pentagram
map preserves the monodromy, and On and En are invariants, the two functions Ω̃1 and Ω̃2 are
also invariants.

We say that a polynomial in the corner invariants has weight k if we have the following
equation

R∗t (P ) = tkP. (2.10)

here R∗t denotes the natural operation on polynomials defined by the rescaling operation (2.5).
For instance, On has weight n and En has weight −n. In [21] it is shown that

Ω̃1 =
[n/2]∑
k=1

Ok; Ω̃2 =
[n/2]∑
k=1

Ek (2.11)

where Ok has weight k and Ek has weight −k. Since the pentagram map commutes with
the rescaling operation and preserves Ω̃1 and Ω̃2, it also preserves their “weighted homogeneous
parts”. That is, the functions O1, E1, O2, E2, ... are also invariants of the pentagram map. These
are the monodromy invariants. They are all nontrivial polynomials.

Algebraic Independence: In [21], §6, it is shown that the monodromy invariants are al-
gebraically independent provided that, in the even case, we ignore On/2 and En/2. We will not
reproduce the proof in this paper, so here we include a brief description of the argument. Since
we are mainly trying to give the reader a feel for the argument, we will explain a variant of
the method in [21]. Let f1, ..., fk be the complete list of invariants we have described above.
Here k = 2[n/2] + 2. If our functions were not algebraically independent, then the gradients
∇f1, ...,∇fk would never be linearly independent. To rule this out, we just have to establish the
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linear independence at a single point. One can check this at the point (1, ω, ..., ω2n), where ω
is a (4n)th root of unity. The actual method in [21] is similar to this, but uses a trick to make
the calculation easier. Given the formulas for the invariants we present below, this calculation
is really just a matter of combinatorics. Perhaps an easier calculation can be made for the point
(0, 1, ..., 1), which also seems to work for all n.

2.4 Formulas for the invariants

In this section, we recall the explicit formulas for the monodromy invariants given in [21]. Later
on in the paper, we will give a self-contained derivation of the formulas. From the point of
view of our main theorems, we do not need to know the formulas, but only their algebraic
independence and Lemma 2.8 below.

We introduce the monomials
Xi := xi yi xi+1. (2.12)

1. We call two monomials Xi and Xj consecutive if j ∈ {i− 2, i− 1, i, i+ 1, i+ 2} ;

2. we call Xi and xj consecutive if j ∈ {i− 1, i, i+ 1, i+ 2} ;

3. we call xi and xi+1 consecutive.

Let O(X,x) be a monomial obtained by the product of the monomials Xi and xj , i.e.,

O = Xi1 · · ·Xis xj1 · · ·xjt .

Such a monomial is called admissible if no two of the indices are consecutive. For every admissible
monomial, we define the weight |O| and the sign sign(O) by

|O| := s+ t, sign(O) := (−1)t.

With these definitions, it turns out that

Ok =
∑
|O|=k

sign(O)O; k ∈
{

1, 2, . . . ,
[n

2

]}
(2.13)

The same formula works for Ek, if we make all the same definitions with x and y interchanged.

Example 2.7 For n = 5 one obtains the following polynomials

O1 =
5∑
i=1

(xi yi xi+1 − xi) , O2 =
5∑
i=1

(xi xi+2 − xi yi xi+1 xi+3)

together with O5.
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Now we mention the needed symmetry property. Let τ be the involution on the indices:

τ :
{
xi 7→ x1−i
yi 7→ y−i

modn (2.14)

Then τ acts on the variables, monomials and polynomials.

Lemma 2.8 One has τ(Ok) = Ok.

Proof. τ takes an admissible partition to an admissible one and does not change the number
of singletons involved. 2

2.5 The Poisson bracket

In this section, we introduce the Poisson bracket on Pn. Let C∞n denote the algebra of smooth
functions on R2n. A Poisson structure on C∞n is a map

{ , } : C∞n × C∞n → C∞n (2.15)

that obeys the following axioms.

1. Antisymmetry: {f, g} = −{g, f}

2. Linearity: {af1 + f2, g} = a{f1, g}+ {f2, g}.

3. Leibniz Identity: {f, g1g2} = g1{f, g2}+ g2{f, g1}.

4. Jacobi Identity: Σ{f1, {f2, f3}} = 0.

Here Σ denotes the cyclic sum.
We define the following Poisson bracket on the coordinate functions of R2n:

{xi, xi±1} = ∓xi xi+1, {yi, yi±1} = ±yi yi+1. (2.16)

All other brackets not explicitly mentioned above vanish. For instance

{xi, yj} = 0; ∀ i, j.

Once we have the definition on the coordinate functions, we use linearity and the Liebniz rule to
extend to all rational functions. Though it is not necessary for our purposes, we can extend to
all smooth functions by approximation. Our formula automatically builds in the anti-symmetry.
Finally, for a “homogeneous bracket” as we have defined, it is well-known (and an easy exercise)
to show that the Jacobi identity holds.

Henceforth we refer to the Poisson bracket as the one that we have defined above. Now we
come to one of the central results in the paper. This result is our main tool for establishing the
complete integrability and the quasi-periodic motion.

Lemma 2.9 The Poisson bracket is invariant with respect to the pentagram map.
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Proof. Let T ∗ denote the action of the pentagram map on rational functions. One has to prove
that for any two functions f and g one has {T ∗(f), T ∗(g)} = {f, g} and of course it suffices to
check this fact for the coordinate functions. We will use the explicit formula (2.4).

To simplify the formulas, we introduce the following notation: ϕi = 1 − xi yi. Lemma 2.4
then reads:

T ∗(xi) = xi
ϕi−1

ϕi+1
, T ∗(yi) = yi+1

ϕi+2

ϕi
.

One easily checks that {ϕi, ϕj} = 0 for all i, j. Next,

{xi, ϕj} = (δi,j−1 − δi,j+1)xi xj yj

{yi, ϕj} = (δi,j+1 − δi,j−1)xj yi yj .

In order to check the T -invariance of the bracket, one has to check that the relations between
the functions T ∗(xi) and T ∗(yj) are the same as for xi and yj . The first relation to check is:
{T ∗(xi), T ∗(yj)} = 0.

Indeed,

{T ∗(xi), T ∗(yj)} = {xi, ϕj+2}
yj+1 ϕi−1

ϕi+1 ϕj
− {xi, ϕj}

yj+1 ϕi−1 ϕj+2

ϕi+1 ϕ2
j

−{yj+1, ϕi−1}
xi ϕj+2

ϕi+1 ϕj
+ {yj+1, ϕi+1}

xi ϕi−1 ϕj+2

ϕ2
i+1 ϕj

= (δi,j+1 − δi,j+3)
xi xj+2 yj+2 yj+1 ϕi−1

ϕi+1 ϕj

− (δi,j−1 − δi,j+1)
xi xj yj yj+1 ϕi−1 ϕj+2

ϕi+1 ϕ2
j

− (δj+1,i − δj+1,i−2)
xi−1 yj+1 yi−1 xi ϕj+2

ϕi+1 ϕj

+ (δj+1,i+2 − δj+1,i)
xi+1 yj+1 yi+1 xi ϕi−1 ϕj+2

ϕ2
i+1 ϕj

= 0,

since the first term cancels with the third and the second with the last one.
One then computes {T ∗(xi), T ∗(xj)} and {T ∗(yi), T ∗(yj)}, the computations are similar to

the above one and will be omitted. 2

Two functions f and g are said to Poisson commute if {f, g} = 0.

Lemma 2.10 The monodromy invariants Poisson commute.
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Proof. Let τ by the involution on the indices defined at the end of the last section. We have
τ(Ok) = Ok by Lemma 2.8. We make the following claim: For all polynomials f(x, y) and
g(x, y), one has

{τ(f), τ(g)} = −{f, g}.

Assuming this claim, we have

{Ok, Ol} = {τ(Ok), τ(Ol)} = −{Ok, Ol},

hence the bracket is zero. The same argument works for {Ek, El} and {Ok, El}.
Now we prove our claim. It suffices to check the claim when f and g are monomials in

variables (x, y). In this case, we have: {f, g} = Cfg where C is the sum of ±1, corresponding
to “interactions” between factors xi in f and xj in g (resp. yi and yj). Whenever a factor xi
in f interacts with a factor xj in g (say, when j = i + 1, and the contribution is +1), there
will be an interaction of x−i in τ(f) and x−j in τ(g) yielding the opposite sign (in our example,
−j = −i− 1, and the contribution is −1). This establishes the claim, and hence the lemma. 2

A function f is called a Casimir for the Poisson bracket if f Poisson commutes with all other
functions. It suffices to check this condition on the coordinate functions. An easy calculation
yields the following lemma. We omit the details.

Lemma 2.11 The invariants in Equation 2.7 are Casimir functions for the Poisson bracket.

2.6 The corank of the structure

In this section, we compute the corank of our Poisson bracket on the space of twisted poly-
gons. The corank of a Poisson bracket on a smooth manifold is the codimension of the generic
symplectic leaves. These symplectic leaves can be locally described as levels Fi = const of the
Casimir functions. See [27] for the details.

For us, the only genericity condition we need is

xi 6= 0, yj 6= 0; ∀ i, j. (2.17)

Our next result refers to Equation 2.7.

Lemma 2.12 The Poisson bracket has corank 2 if n is odd and corank 4 if n is even.

Proof. The Poisson bracket is quadratic in coordinates (x, y). It is very easy to see that in
so-called logarithmic coordinates

pi = log xi, qi = log yi
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the bracket is given by a constant skew-symmetric matrix. More precisely, the bracket between
the p-coordinates is given by the marix

0 −1 0 . . . 1
1 0 −1 . . . 0
0 1 0 . . . 0
. . . . . .
−1 0 0 . . . 0


whose rank is n− 1, if n is odd and n− 2, if n is even. The bracket between the q-coordinates
is given by the opposite matrix. 2

The following corollary is immediate from the preceding result and Lemma 2.11.

Corollary 2.13 If n is odd, then the Casimir functions are of the form F (On, En). If n is even,
then the Casimir functions are of the form F (On/2, En/2, On, En). In both cases the generic
symplectic leaves of the Poisson structure have dimension 4[(n− 1)/2].

Remark 2.14 Computing the gradients, we see that a level set of the Casimir functions is
smooth as long as all the functions are nonzero. Thus, the generic level sets are smooth in quite
a strong sense.

2.7 The end of the proof

In this section, we finish the proof of Theorem 1. Let us summarize the situation. First we
consider the case when n is odd. On the space Pn we have a generically defined and T -invariant
Poisson bracked that is invariant under the pentagram map. This bracket has co-rank 2, and
the generic level set of the Casimir functions has dimension 4[n/2] = 2n−2. On the other hand,
after we exclude the two Casimirs, we have 2[n/2] = n− 1 algebraically independent invariants
that Poisson commute with each other. This gives us the classical Arnold-Liouville complete
integrability.

In the even case, our symplectic leaves have dimension 4[(n− 1)/2] = 2n− 4. The invariants
En/2 and On/2 are also Casimirs in this case. Once we exclude these, we have 2[(n−1)/2] = n−2
algebraically independent invariants. Thus, we get the same complete integrability as in the odd
case.

This completes the proof of our Main Theorem. In the next chapter, we consider geometric
situations where the Main Theorem leads to quasi-periodic dynamics of the pentagram map.

3 Quasi-periodic motion

In this chapter, we explain some geometric situations where our Main Theorem, an essentially
algebraic result, translates into quasi-periodic motion for the dynamics. The universally convex
polygons furnish our main example.
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3.1 Universally convex polygons

In this section, we define universally convex polygons and prove some basic results about them.
We say that a matrix M ∈ SL3(R) is strongly diagonalizable if it has 3 distinct positive

real eigenvalues. Such a matrix represents a projective transformation of RP2. We also let M
denote the action on RP2. Acting on RP2, the map M fixes 3 distinct points. These points,
corresponding to the eigenvectors, are in general position. M stabilizes the 3 lines determined by
these points, taken in pairs. The complement of the 3 lines is a union of 4 open triangles. Each
open triangle is preserved by the projective action. We call these triangles the M -triangles.

Let φ ∈ Pn be a twisted n-gon, with monodromy M . We call φ universally convex if

• M is a strongly diagonalizable matrix.

• φ(Z) is contained in one of the M -triangles.

• The polygonal arc obtained by connecting consecutive vertices of φ(Z) is convex.

The third condition requires more explanation. In RP2 there are two ways to connect points
by line segments. We require the connection to take place entirely inside the M -triangle that
contains φ(Z). This determines the method of connection uniquely.

We normalize so that M preserves the line at infinity and fixes the origin in R2. We further
normalize so that the action on R2 is given by a diagonal matrix with eigenvalues 0 < a < 1 < b.
This 2 × 2 diagonal matrix determines M . For convenience, we will usually work with this
auxilliary 2×2 matrix. We slightly abuse our notation, and also refer to this 2×2 matrix as M .
With our normalization, the M -triangles are the open quadrants in R2. Finally, we normalize
so that φ(Z) is contained in the positive open quadrant.

Lemma 3.1 Un is open in Pn.

Proof. Let φ be a universally convex n-gon and let φ′ be a small perturbation. Let M ′ be the
monodromy of φ′. If the perturbation is small, then M ′ remains strongly diagonalizable. We
can conjugate so that M ′ is normalized exactly as we have normalized M .

If the perturbation is small, the first n points of φ′(Z) remain in the open positive quadrant,
by continuity. But then all points of φ′(Z) remain in the open positive quadrant, by symmetry.
This is to say that φ′(Z) is contained in an M ′-triangle.

If the perturbation is small, then φ′(Z) is locally convex at some collection of n consecutive
vertices. But then φ′(Z) is a locally convex polygon, by symmetry. The only way that φ(Z)
could fail to be convex is that it wraps around on itself. But, the invariance under the 2 × 2
hyperbolic matrix precludes this possibility. Hence φ(Z) is convex. 2

Lemma 3.2 Un is invariant under the pentagram map.
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Proof. Applying the pentagram map to φ(Z) all at once, we see that the image is again strictly
convex and has the same monodromy. 2

3.2 The Hilbert perimeter

In this section, we introduce an invariant we call the Hilbert perimeter . This invariant plays a
useful role in our proof, given in the next section, that the level sets of the monodromy functions
in Un are compact.

As a prelude to our proof, we introduce another projective invariant – a function of the
Casimirs – which we call the Hilbert Perimeter . This invariant is also considered in [19], and
for similar purposes.

Referring to Figure 2, we define

zk = [(vi, vi−2), (vi, vi−1), (vi, vi+1), (vi, vi+2)]. (3.1)

We are taking the cross ratio of the slopes of the 4 lines in Figure 4.

i

v
i+1v

i−1

v
i−2

v

vi+2

Figure 4: Points involved in the definition of the invariants

We now define a “new” invariant

H =
1∏n
i=1 zi

(3.2)

Remark 3.3 Some readers will know that one can put a canonical metric inside any convex
shape, called the Hilbert metric. In case φ is a genuine convex polygon, the quantity − log(zk)
measures the Hilbert length of the thick line segment in Figure 4. (The reader who does not
know what the Hilbert metric is can take this as a definition.) Then log(H) is the Hilbert
perimeter of T (P ) with respect to the Hilbert metric on P . Hence the name.

Lemma 3.4 H = 1/(OnEn).
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Proof. This is a local calculation, which amounts to showing that zk = xkyk. The best way to
do the calculation is to normalize so that 4 of the points are the vertices of a square. We omit
the details. 2

3.3 Compactness of the level sets

In this section, we prove that the level sets of the monodromy functions in U are compact.
Let Un(M,H) denote the subset of Un consisting of elements whose monodromy is M and

whose Hilbert Perimeter is H. In this section we will prove that Un(M,H) is compact. For ease
of notation, we abbreviate this space by X.

Let φ ∈ X. We normalize so that M is as in Lemma 3.1. We also normalize so that
φ(0) = (1, 1). Then there are numbers (x, y) such that φ(n) = (x, y), independent of the choice
of φ. We can assume that x > 1 and y < 1. The portion of φ of interest to us, namely
φ({0, ..., n − 1}), lies entirely in the rectangle R whose two opposite corners are (1, 1) and
(x, y). Let (vi, vj) denote the line determined by vi and vj . Here vk = φ(k). In particular, let
Li = (vi, vi+1).

Lemma 3.5 Suppose that {φk} ∈ X is a sequence that does not converge on a subsequence to
another element of X. Then, passing to a subsequence we can arrange that at least one of the
two situations holds: there exists some i such that

• The angle between Li and Li+1 tends to 0 as k →∞ whereas the angle between Li+1 and
Li+2 does not;

• The points vi and vi+1 converge to a common point as k → ∞ whereas vi+2 converges to
a distinct point.

Proof. Suppose that there is some minimum distance ε between all points of φk in the rectangle
R. In this case, the angle between two consecutive segments must tend to 0 as k →∞. However,
not all angles between consecutive segments can converge to 0 because of the fixed monodromy.
The first case is now easy to arrange. If there is no such minimum ε, then two points coalesce,
on a subsequence. For the same reason as above, not all points can coalesce to the same point.
The second case is now easy to arrange. 2

Lemma 3.6 X is compact.

We will suppose we have the kind of sequence we had in the previous lemma and then derive
a contradiction. In the first case above, the slopes of the lines (vi+2, vi) and (vi+2, vi+1) converge
to each other as k →∞, but the common limit remains uniformly bounded away from the slopes
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of (vi+2, vi+3) and (vi+2, vi+4). Hence zi+2 → 0. Since zj ∈ (0, 1) for all j, we have H → ∞ in
this case. This is a contradiction.

To deal with the second case, we can assume that the first case cannot be arranged. That
is, we can assume that there is a uniform lower bound to the angles between two consecutive
lines Li and Li+1 for all indices and all k. But then the same situation as in Case 1 holds, and
we get the same contradiction. 2

3.4 Proof of Theorem 2

In this section, we finish the proof of Theorem 2.
Recall that the level sets of our Casimir functions give a (singular) foliation by symplectic

leaves. Note that all corner invariants are nonzero for points in Un. Hence, our singular symplec-
tic foliation intersects Un in leaves that are all smooth symplectic manifolds. Let k = [(n−1)/2].

Let M be a symplectic leaf. Note that M has dimension 4k. Consider the map

F = (O1, E1, ..., Ok, Ek), (3.3)

made from our algebraically independent monodromy invariants. Here we are excluding all the
Casimirs from the definition of F .

Say that a point p ∈ M is regular if dFp is surjective. Call M typical if some point of M
is regular. Given our algebraic independence result, and the fact that the coordinates of F are
polynomials, we see that almost every symplectic leaf is typical.

Lemma 3.7 If M is typical then almost every F -fiber of M is a smooth submanifold of M.

Proof. Let S = F (M) ⊂ R2k. Note that S has positive measure since dFp is nonsingular for
some p ∈ M. Let Σ ⊂ M denote the set of points p such that dFp is not surjective. Sard’s
theorem says that F (Σ) has measure 0. Hence, almost every fiber of M is disjoint from Σ. 2

LetM be a typical symplectic leaf, and let F be a smooth fiber of F . Then F has dimension
2k. Combining our Main Theorem with the standard facts about Arnold-Liouville complete
integrability (e.g., [3]), we see that the monodromy invariants give a canonical affine structure
to F . The pentagram map T preserves both F , and is a translation relative to this affine
structure. Any pre-compact orbit in F exhibits quasi-periodic motion.

Now, T also preserves the monodromy. But then each T -orbit in F is contained in one of our
spaces Un(H,M). Hence, the orbit is precompact. Hence, the orbit undergoes quasi-periodic
motion. Since this argument works for almost every F -fiber of almost every symplectic leaf in
Un, we see that almost every orbit in Un undergoes quasi-periodic motion under the pentagram
map.

This completes the proof of Theorem 2.
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Remark 3.8 We can say a bit more. For almost every choice of monodromy M , the intersection

F(M) = F ∩ Un(H,M) (3.4)

is a smooth compact submanifold and inherits an invariant affine structure from F . In this
situation, the restriction of T to F(M) is a translation in the affine structure.

3.5 Hyperbolic cylinders and tight polygons

In this section, we put Theorem 2 in a somewhat broader context. The material in this section
is a prelude to our proof, given in the next section, of a variant of Theorem 2.

Before we sketch variants of Theorem 2, we think about these polygons in a different way.
A projective cylinder is a topological cylinder that has coordinate charts into RP2 such that the
transition functions are restrictions of projective transformations. This is a classical example of
a geometric structure. See [24] or [17] for details.

Example 3.9 Suppose that M acts on R2 as a nontrivial diagonal matrix having eigenvalues
0 < a < 1 < b. Let Q denote the open positive quadrant. Then Q/M is a projective cylinder.
We call Q/M a hyperbolic cylinder .

Let Q/M be a hyperbolic cylinder. Call a polygon on Q/M tight if it has the following 3
properties.

• It is embedded;

• It is locally convex;

• It is homologically nontrivial.

Any universally convex polygon gives rise to a tight polygon onQ/M , whereM is the monodromy
normalized in the standard way. The converse is also true. Moreover, two tight polygons on Q/M
give rise to equivalent universally convex polygons iff some locally projective diffeomorphism of
Q/M carries one polygon to the other. We call such maps automorphisms of the cylinder, for
short.

Thus, we can think of the pentagram map as giving an iteration on the space of tight
polygons on a hyperbolic cylinder. There are 3 properties that give rise to our result about
periodic motion.

1. The image of a tight polygon under the pentagram map is another well-defined tight
polygon.

2. The space of tight polygons on a hyperbolic cylinder, modulo the projective automorphism
group, is compact.

21



3. The strongly diagonalizable elements are open in SL3(R).

The third condition guarantees that the set of all tight polygons on all hyperbolic cylinders is
an open subset of the set of all twisted polygons.

3.6 A related theorem

In this section we prove a variant of Theorem 2 for a different family of twisted polygons.
We start with a sector of angle θ in the plane, as shown in Figure 5, and glue the top edge

to the bottom edge by a similarity S that has dilation factor d. We omit the origin from the
sector. The quotient is the projective cylinder we call Σ(θ, d). When d = 1 we have a Euclidean
cone surface. When θ = 2π we have the punctured plane.

θ

(0,0)

Figure 5: The cylinder Σ(θ, d)

We consider the case when θ is small and d is close to 1. In this case, Σ(θ, d) admits tight
polygons for any n. (It is easiest to think about the case when n is large.) When developed out
in the plane, these tight polygons follow along logarithmic spirals.

Let S(θ, d) denote the subset of R2 consisting of pairs (θ′, d′) where

0 < θ′ < θ; 1 < d′ < d (3.5)

Define
Σ̂(d, 1) =

⋃
(θ′,d′)∈S(θ,d)

Σ(θ′, d′) (3.6)

One might say that Σ̂(θ, d) is the space of polygons that are more tightly coiled than those on
Σ(θ, d).

Theorem 3 Suppose that θ > 0 is sufficiently close to 0 and d > 1 is sufficiently close to 1.
Then almost every point of Σ̂(θ, d) lies on a smooth torus that has a T -invariant affine structure.
Hence, the orbit of almost every point of Σ̂(θ, d) undergoes quasi-periodic motion.
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Proof. Our proof amounts to verifying the three properties above for the points in our space.
We fix (θ, d) and let Σ̂ = Σ̂(θ, d).

1. Let P be a tight polygon on Σ(θ′, d′). If θ′ is sufficiently small and d′ is sufficiently close to
1, then each vertex v of P is much closer to its neighbors than it is to the origin. For this
reason, the pentagram map acts on, and preserves, the set of tight polygons on Σ(θ′, d′).
The same goes for the inverse of the pentagram map. Hence Σ̂ is a T -invariant subset of
Pn.

2. Let Z(θ′, d′, α) denote the space of tight polygons on Σ(θ′, d′) having Hilbert perimeter
α. We consider these tight polygons equivalent if there is a similarity of Σ(θ′, d′) that
carries one to the other. A proof very much like the compactness argument given in [19],
for closed polygons, shows that Z(θ′, d′, α) is compact for θ′ near 0 and d′ near 1 and α
arbitrary. Hence, the level sets of the Casimir functions intersect Σ̂ in compact sets.

3. The similarity S is the monodromy for our tight polygons. S lifts to an element of SL3(R)
that has one real eigenvalue and two complex conjugate eigenvalues. Small perturbations
of S have the same property. Hence, Σ̂ is open in Pn.

We have assembled all the ingredients necessary for the proof of Theorem 2. The same argument
as above now establishes the result. 2

Remark 3.10 The first property crucially uses the fact that θ is small. Consider the case
θ = 2π. It can certainly happen that P contains the origin in its hull but T (P ) does not. We
do not know the exact bounds on θ and d necessary for this construction.

4 Another coordinate system in space Pn
4.1 Polygons and difference equations

Consider two arbitrary n-periodic sequences (ai), (bi) with ai, bi ∈ R and i ∈ Z, such that
ai+n = ai, bi+n = bi. Assume that n 6= 3m. This will be our standing assumption whenever we
work with the (a, b)-coordinates; its meaning will become clear shortly. We shall associate to
these sequences a difference equation of the form

Vi+3 = ai Vi+2 + bi Vi+1 + Vi, (4.1)

for all i.
A solution V = (Vi) is a sequence of numbers Vi ∈ R satisfying (4.1). Recall a well-known

fact that the space of solutions of (4.1) is 3-dimensional (any solution is determined by the
initial conditions (V0, V1, V2)). We will often understand Vi as vectors in R3. The n-periodicity
then implies that there exists a matrix M ∈ SL(3,R) called the monodromy matrix, such that
Vi+n = M Vi.
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Proposition 4.1 If n is not divisible by 3 then the space Pn is isomorphic to the space of the
equations (4.1).

Proof. First note that since PGL(3,R) ∼= SL(3,R), every M ∈ PGL(3,R) corresponds to a
unique element of SL(3,R) that (abusing the notations) we also denote by M .

A. Let (vi), i ∈ Z be a sequence of points vi ∈ RP2 in general position with monodromy M .
Consider first an arbitrary lift of the points vi to vectors Ṽi ∈ R3 with the condition Ṽi+n =
M(Ṽi). The general position property implies that det(Ṽi, Ṽi+1, Ṽi+2) 6= 0 for all i. The vector
Ṽi+3 is then a linear combination of the linearly independent vectors Ṽi+2, Ṽi+1, Ṽi, that is,

Ṽi+3 = ai Ṽi+2 + bi Ṽi+1 + ci Ṽi,

for some n-periodic sequences (ai), (bi), (ci). We wish to rescale: Vi = tiṼi, so that

det(Vi, Vi+1, Vi+2) = 1 (4.2)

for all i. Condition (4.2) is equivalent to ci ≡ 1. One obtains the following system of equations
in (t1, . . . , tn):

titi+1ti+2 = 1/det(Ṽi, Ṽi+1, Ṽi+2), i = 1, . . . , n− 2

tn−1tnt1 = 1/ det(Ṽn−1, Ṽn, Ṽ1),

tnt1t2 = 1/ det(Ṽn, Ṽ1, Ṽ2)

This system has a unique solution if n is not divisible by 3. This means that any generic twisted
n-gon in RP2 has a unique lift to R3 satisfying (4.2). We proved that a twisted n-gon defines an
equation (4.1) with n-periodic ai, bi.

Furthermore, if (vi) and (v′i), i ∈ Z are two projectively equivalent twisted n-gons, then they
correspond to the same equation (4.1). Indeed, there exists A ∈ SL(3,R) such that A(vi) = v′i
for all i. One has, for the (unique) lift: V ′i = A(Vi). The sequence (V ′i ) then obviously satisfies
the same equation (4.1) as (Vi).

B. Conversely, let (Vi) be a sequence of vectors Vi ∈ R3 satisfying (4.1). Then every three
consecutive points satisfy (4.2) and, in particular, are linearly independent. Therefore, the
projection (vi) to RP2 satisfies the general position condition. Moreover, since the sequences
(ai), (bi) are n-periodic, (vi) satisfies vi+n = M(vi). It follows that every equation (4.1) defines
a generic twisted n-gon. A choice of initial conditions (V0, V1, V2) fixes a twisted polygon, a
different choice yields a projectively equivalent one. 2

Proposition 4.1 readily implies the next result.

Corollary 4.2 If n is not divisible by 3 then Pn = R2n.

We call the lift (Vi) of the sequence (vi) satisfying equation (4.1) with n-periodic (ai, bi)
canonical.
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Remark 4.3 The isomorphism between the space Pn and the space of difference equations
(4.1) (for n 6= 3m) goes back to the classical ideas of projective differential geometry. This is
a discrete version of the well-known isomorphism between the space of smooth non-degenerate
curves in RP2 and the space of linear differential equations, see [17] and references therein and
Section 6.1. The “arithmetic restriction” n 6= 3m is quite remarkable.

Equations (4.1) and their analogs were already used in [9] in the context of integrable systems;
in the RP1-case these equations were recently considered in [14] to study the discrete versions of
the Korteweg - de Vries equation. It is notable that an analogous arithmetic assumption n 6= 2m
is made in this paper as well.

Remark 4.4 Let us now comment on what happens if n is divisible by 3. A certain modification
of Proposition 4.1 holds in this case as well. Given a twisted n-gon (vi) with monodromy M , lift
points v0 and v1 arbitrarily as vectors V0, V1 ∈ R3, and then continue lifting consecutive points
so that the determinant condition (4.2) holds. This implies that equation (4.1) holds as well.

One has:
M(Vi) = tiVi+n (4.3)

for non-zero reals ti, and (4.2) implies that titi+1ti+2 = 1 for all i ∈ Z. It follows that the sequence
ti is 3-periodic; let us write t1+3j = α, t2+3j = β, t3j = 1/(αβ). Applying the monodromy linear
map M to (4.1) and using (4.3), we conclude that

an+i =
ti+2

ti
ai, bn+i =

ti+1

ti
bi,

that is,

an+3j = αβ2 a3j , an+3j+1 =
1
α2β

a3j+1, an+3j+2 =
α

β
a3j+2,

bn+3j = α2β b3j , bn+3j+1 =
β

α
b3j+1, bn+3j+2 =

1
αβ2

b3j+2.

(4.4)

We are still free to rescale V0 and V1. This defines an action of the group R∗ × R∗:

V0 7→ uV0, V1 7→ vV1, u 6= 0, v 6= 0.

The action of the group R∗ × R∗ on the coefficients (ai, bi) is as follows:

a3j 7→ u2v a3j , a3j+1 7→
v

u
a3j+1, a3j+2 7→

1
uv2

a3j+2,

b3j 7→
u

v
b3j , b3j+1 7→ uv2 b3j+1, b3j+2 7→

1
u2v

b3j+2.

(4.5)

When n 6= 3m, according to (4.4), this action makes it possible to normalize all ti to 1 which
makes the lift canonical. However, if n = 3m then the R∗ × R∗-action on ti is trivial, and the
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pair (α, β) ∈ R∗ ×R∗ is a projective invariant of the twisted polygon. One concludes that Pn is
the orbit space

[{(a0, . . . , an−1, b0, . . . , bn−1)}/(R∗ × R∗)]× (R∗ × R∗)

with respect to R∗ × R∗-action (4.5). This statement replaces Proposition 4.1 in the case of
n = 3m.

It would be interesting to understand the geometric meaning of the “obstruction” (α, β).
If the obstruction is trivial, that is, if α = β = 1, then there exists a 2-parameter family of
canonical lifts, but if the obstruction is non-trivial then no canonical lift exists.

4.2 Relation between the two coordinate systems

We now have two coordinate systems, (xi, yi) and (ai, bi). Assuming that n is not divisible by
3, let us calculate the relations between the two systems.

Lemma 4.5 One has:
xi =

ai−2

bi−2 bi−1
, yi = − bi−1

ai−2 ai−1
. (4.6)

Proof. Given four vectors a, b, c, d in R3, the intersection line of the planes Span(a, b) and
Span(c, d) is spanned by the vector (a× b)× (c× d). Note that the volume element equipes R3

with the bilinear vector product:
R3 × R3 →

(
R3
)?
.

Using the identity
(a× b)× (b× c) = det(a, b, c) b, (4.7)

and the recurrence (4.1), let us compute lifts of the quadruple of points

(vi−1, vi, (vi−1, vi) ∩ (vi+1, vi+2), (vi−1, vi) ∩ (vi+2, vi+3))

involved in the left corner cross-ratio. One has

Vi−1 = Vi+2 − ai−1 Vi+1 − bi−1 Vi.

Furthermore, it is easy to obtain the lift of the intersection points involved in the left corner
cross-ratio. For instance, (vi−1, vi) ∩ (vi+1, vi+2) is

(Vi−1 × Vi)× (Vi+1 × Vi+2) = ((Vi+2 − ai−1 Vi+1 − bi−1 Vi)× Vi)× (Vi+1 × Vi+2)

= Vi+2 − ai−1 Vi+1.

One finally obtains the following four vectors in R3:

(Vi+2 − ai−1 Vi+1 − bi−1, Vi, Vi, Vi+2 − ai−1 Vi+1, bi Vi+2 − ai−1 Vi − ai−1 bi Vi+1) .
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Similarly, for the points involved in the right corner cross-ratio

(ai Vi+2 + bi, Vi+1 + Vi, Vi+2, bi Vi+1 + Vi, bi Vi+2 − ai−1 Vi − ai−1 bi Vi+1) .

Next, given four coplanar vectors a, b, c, d in R3 such that

c = λ1 a+ λ2 b, d = µ1 a+ µ2 b,

where λ1, λ2, µ1, µ2 are arbitrary constants, the cross-ratio of the lines spanned by these vectors
is given by

[a, b, c, d] =
λ2µ1 − λ1µ2

λ2µ1
.

Applying this formula to the two corner cross-ratios yields the result. 2

Formula (4.6) implies the following relations:

xi yi = − 1
ai−1 bi−2

, xi+1 yi = − 1
ai−2 bi

,
ai
ai−3

=
xi yi−1

xi+1 yi+1
,

bi
bi−3

=
xi−1 yi−1

xi+1 yi
(4.8)

that will be of use later.

Remark 4.6 If n is a multiple of 3 then the coefficients ai and bi are not well defined and they
are not n-periodic anymore; however, according to formulas (4.4) and (4.5), the right hand sides
of formulas (4.6) are still well defined and are n-periodic.

4.3 Two versions of the projective duality

We now wish to express the pentagram map T in the (a, b)-coordinates. We shall see that T is
the composition of two involutions each of which is a kind of projective duality.

The notion of projective duality in RP2 is based on the fact that the dual projective plane(
RP2

)? is the space of one-dimensional subspaces of RP2 which is again equivalent to RP2.
Projective duality applies to smooth curves: it associates to a curve γ(t) ⊂ RP2 the 1-parameter
family of its tangent lines. In the discrete case, there are different ways to define projectively
dual polygons. We choose two simple versions.

Definition 4.7 Given a sequence of points vi ∈ RP2, we define two sequences α(vi) ∈ (RP2)?

and β(vi) ∈ (RP2)? as follows:

1. α(vi) is the line (vi, vi+1),

2. β(vi) is the line (vi−1, vi+1),

see Figure 6.
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Figure 6: Projective dual for smooth curves and polygons

Clearly, α and β commute with the natural PGL(3,R)-action and therefore are well-defined
on the space Pn. The composition of α and β is precisely the pentagram map T .

Lemma 4.8 One has
α2 = τ, β2 = Id, α ◦ β = T. (4.9)

where τ is the cyclic permutation:
τ(vi) = vi+1. (4.10)

Proof. The composition of the maps α and β, with themselves and with each other, associates
to the corresponding lines (viewed as points of (RP2)?) their intersections, see Figure 7. 2

v
v v

i

i+1i-1

!(v )i

vi-2

"(v   )i-1

vi+2

v
v v

i

i+1i-1

vi-2 vi+2

"(v   )i+1

"(v )i

v
v v

i

i+1i-1

vi-2 vi+2

"(v   )i+1

!(v   )i+1

Figure 7: Iteration of the duality maps:
α2(vi) = α(vi) ∩ α(vi+1), β2(vi) = β(vi−1) ∩ β(vi+1) and (α ◦ β)(vi) = β(vi) ∩ β(vi+1).

The map (4.10) defines the natural action of the group Z on Pn. All the geometric and
algebraic structures we consider are invariant with respect to this action.

4.4 Explicit formula for α

It is easy to calculate the explicit formula of the map α in terms of the coordinates (ai, bj). As
usual, we assume n 6= 3m.
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Lemma 4.9 Given a twisted n-gon with monodromy (vi), i ∈ Z represented by a difference
equation (4.1), the n-gon (α(vi)), i ∈ Z is represented by the equation (4.1) with coefficients

α∗(ai) = −bi+1, α∗(bi) = −ai, (4.11)

where, as usual, a∗ stands for the pull-back of the coordinate functions.

Proof. Consider the canonical lift (Vi) to R3. Let Ui = Vi × Vi+1 ∈ (R3)?. This is obviously a
lift of the sequence (α(vi)) to (R3)?. We claim that (Ui) is, in fact, a canonical lift.

Indeed, Ui is a lift of ui since Vi × Vi+1 is orthogonal to Vi and to Vi+1. Next, using the
identity (4.7) one has

det(Ui × Ui+1, Ui+1 × Ui+2, Ui+2 × Ui+3) = [(Ui × Ui+1)× (Ui+1 × Ui+2)] · (Ui+2 × Ui+3)

= Ui+1 · (Ui+2 × Ui+3) = det(Ui+1, Ui+2, Ui+3) = 1.

It follows that the sequence Ui ∈ R3 satisfies the equation

Ui+3 = α∗(ai)Ui+2 + α∗(bi)Ui+1 + Ui

with some α∗(ai) and α∗(bi). Let us show that these coefficients are, indeed, given by (4.11).
For all i, one has

Ui+1 · Vi = 1, Ui · Vi+2 = 1, Ui+3 · Vi+3 = 0.

Using (4.1), the last identity leads to:

α∗(bi)Ui+1 · Vi + ai Ui · Vi+2 = 0.

Hence α∗(bi) = −ai. The first identity in (4.11) follows from formula (4.9). Indeed, one has
α∗(α∗(ai)) = ai+1 and α∗(α∗(bi)) = bi+1, and we are done. 2

4.5 Recurrent formula for β

The explicit formula for the map β is more complicated, and we shall give a recurrent expression.

Lemma 4.10 Given an n-gon (vi), i ∈ Z represented by a difference equation (4.1), the n-gon
(β(vi)), i ∈ Z is represented by the equation (4.1) with coefficients

β∗(ai) = −λi bi−1

λi+2
, β∗(bi) = −λi+3 ai+1

λi+1
. (4.12)

where the coefficients λi are uniquelly defined by

λiλi+1λi+2 = − 1
1 + bi−1ai

(4.13)

for all i.
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Proof. The lift of the map β to R3 takes Vi to Wi = λiVi−1 × Vi+1 where the coefficients λi
are chosen in such a way that det(Wi,Wi+1,Wi+2) = 1 for all i. The sequence Wi ∈ R3 satisfies
the equation

Wi+3 = β∗(ai)Wi+2 + β∗(bi)Wi+1 +Wi.

To find β∗(ai) and β∗(bi), one substitutes Wi = λiVi−1 × Vi+1, and then, using (4.1), expresses
each V as a linear combination of Vi, Vi+1, Vi+2. The above equation is then equivalent to the
following one:

(β∗(ai)λi+2 + bi−1 λi)Vi × Vi+1

+ (ai+1 λi+3 + β∗(bi)λi+1)Vi × Vi+2

+ ((1 + bi ai+1)λi+3 + β∗(ai) ai λi+2 − λi)Vi+1 × Vi+2 = 0.

Since the three terms are linearly independent, one obtains three relations. The first two equa-
tions lead to (4.12) while the last one gives the recurrence

λi+3 = λi
1 + ai bi−1

1 + ai+1 bi
.

On the other hand, one has

λi λi+1 λi+2 det (Vi−1 × Vi+1, Vi × Vi+2, Vi+1 × Vi+3) = 1.

Once again, expressing each V as a linear combination of Vi, Vi+1, Vi+2, yields

λiλi+1λi+2 (1 + aibi−1) = −1

and one obtains (4.13). 2

4.6 Formulas for the pentagram map

We can now describe the pentagram map in terms of (a, b)-coordinates and to deduce formulas
(2.4).

Proposition 4.11 (i) One has:

T ∗(xi) = xi
1− xi−1 yi−1

1− xi+1 yi+1
, T ∗(yi) = yi+1

1− xi+2 yi+2

1− xi yi
.

(ii) Assume that n = 3m+ 1 or n = 3m+ 2; in both cases,

T ∗(ai) = ai+2

m∏
k=1

1 + ai+3k+2 bi+3k+1

1 + ai−3k+2 bi−3k+1
, T ∗(bi) = bi−1

m∏
k=1

1 + ai−3k−2 bi−3k−1

1 + ai+3k−2 bi+3k−1
. (4.14)
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Proof. According to Lemma 4.8, T = α ◦ β. Combining Lemmas 4.9 and 4.10, one obtains
the expression:

T ∗(ai) =
λi+4 ai+2

λi+2
, T ∗(bi) =

λi bi−1

λi+2
,

where λi are as in (4.13). Equation (4.6) then gives

T ∗(xi) =
T ∗(ai−2)

T ∗(bi−2)T ∗(bi−1)
=

λi+2 ai
λi

λi
λi−2 bi−3

λi+1

λi−1 bi−2

=
ai

bi−2 bi−3

1 + bi−3 ai−2

1 + bi−1 ai
=

ai−3

bi−2 bi−3

1 + bi−3 ai−2

1 + bi−1 ai

ai
ai−3

= xi−1

1− 1
xi−1 yi−1

1− 1
xi+1 yi+1

xi yi−1

xi+1 yi+1
= xi

1− xi−1 yi−1

1− xi+1 yi+1
,

and similarly for yi. We thus proved formula (2.4). To prove (4.14), one now uses (4.8). 2

4.7 The Poisson bracket in the (a, b)-coordinates

The explicit formula of the Poisson bracket in the (a, b)-coordinates is more complicated than (2.16).
Recall that n is not a multiple of 3 so that we assume n = 3m+ 1 or n = 3m+ 2. In both cases
the Poisson bracket is given by the same formula.

Proposition 4.12 The Poisson bracket (2.16) can be rewritten as follows.

{ai, aj} =
m∑
k=1

(δi,j+3k − δi,j−3k) ai aj ,

{ai, bj} = 0,

{bi, bj} =
m∑
k=1

(δi,j−3k − δi,j+3k) bi bj .

(4.15)

Proof. One checks using (4.5) that the brackets between the coordinate functions (xi, yj)
coincide with (2.16). 2

Example 4.13 a) For n = 4, the bracket is

{ai, aj} = (δi,j+1 − δi,j−1) ai aj

(and with opposite sign for b), the other terms vanish.
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+

Figure 8: The Poisson bracket for n=5 and n = 7.

b) For n = 5, the non-zero terms are:

{ai, aj} = (δi,j+2 − δi,j−2) ai aj ,

corresponding to the “pentagram” in Figure 8.
c) For n = 7, one has:

{ai, aj} = (δi,j+1 − δi,j−1 − δi,j+3 + δi,j−3) ai aj ,

d) For n = 8, the result is

{ai, aj} = (δi,j+2 − δi,j−2 − δi,j+3 + δi,j−3) ai aj .

5 Monodromy invariants in (a, b)-coordinates

The (a, b)-coordinates are especially well adapted to the computation of the monodromy matrix
and the monodromy invariants. Such a computation provides an alternative deduction of the
invariants (2.11), independent of [21].

5.1 Monodromy matrices

Consider the 3 ×∞ matrix M constructed recurrently as follows: the columns C0, C1, C2, . . .
satisfy the relation

Ci+3 = aiCi+2 + biCi+1 + Ci, (5.1)

and the initial 3×3 matrix (C0, C1, C2) is unit. The matrix M contains the monodromy matrices
of twisted n-gons for all n; namely, the following result holds.

Lemma 5.1 The 3 × 3 minor Mn = (Cn, Cn+1, Cn+2) represents the monodromy matrix of
twisted n-gons considered as a polynomial function in a0, . . . , an−1, b0, . . . , bn−1.
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Proof. The recurrence (5.1) coincides with (4.1), see Section 4.1. It follows that Mn represents
the monodromy of twisted n-gons in the basis C0, C1, C2. 2

Let

Nj =

 0 0 1
1 0 bj
0 1 aj

 .

The recurrence (5.1) implies the following statement.

Lemma 5.2 One has: Mn = N0N1 . . . Nn−1. In particular, detMn = 1.

To illustrate, the beginning of the matrix M is as follows: 1 0 0 1 a1 a1a2 + b2 . . .
0 1 0 b0 b0a1 + 1 b0a1a2 + a2 + b0b2 . . .
0 0 1 a0 a0a1 + b1 a0a1a2 + b1a2 + a0b1 + 1 . . .

 .

The dihedral symmetry σ, that reverses the orientation of a polygon, replaces the monodromy
matrices by their inverses and acts as follows:

σ : ai 7→ −b−i, bi 7→ −a−i;

this follows from rewriting equation (4.1) as

Vi = −biVi+1 − aiVi+2 + Vi+3,

or from Lemma 4.5.1

Consider the rescaling 1-parameter group

ϕτ : ai 7→ eτai, bi 7→ e−τ bi.

It follows from Lemma 4.5 that the action on the corner invariants is as follows:

xi 7→ e3τxi, yi 7→ e−3τyi.

Thus our rescaling is essentially the same as the one in (2.5) with t = e3τ .
The trace of Mn is a polynomial Fn(a0, . . . , an−1, b0, . . . , bn−1). Denote its homogeneous

components in s := eτ by Ij , j = 0, . . . , [n/2]; these are the monodromy invariants. One has
Fn =

∑
Ij . The s-weight of Ij is given by the formula:

w(j) = 3j − k if n = 2k, and w(j) = 3j − k + 1 if n = 2k + 1 (5.2)
1Since all the sums we are dealing with are cyclic, we slightly abuse the notation and ignore a cyclic shift in

the definition of σ in the (a, b)-coordinates.
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(this will follow from Proposition 5.3 in the next section). For example, M4 is the matrix a1 a1a2 + b2 a1a2a3 + a3b2 + a1b3 + 1
a1b0 + 1 a1a2b0 + a2 + b0b2 a1a2a3b0 + a2a3 + a3b0b2 + a1b0b3 + b3 + b0
a0a1 + b1 a0a1a2 + a2b1 + a0b2 + 1 a0a1a2a3 + a2a3b1 + a0a3b2 + a0a1b3 + a0 + a3 + b1b3


and

I0 = b0b2 + b1b3, I1 = a0 + a1 + a2 + a3 + b0a1a2 + b1a2a3 + b2a3a0 + b3a0a1, I2 = a0a1a2a3.

Likewise, for n = 5,

I0 =
∑

(b0 + b0b2a3), I1 =
∑

(a0a1 + b0a1a2a3), I2 = a0a1a2a3a4,

where the sums are cyclic over the indices 0, . . . , 4.
One also has the second set of monodromy invariants J0, . . . , Jk constructed from the inverse

monodromy matrix, that is, applying the dihedral involution σ to I0, . . . , Ik.

5.2 Combinatorics of the monodromy invariants

We now describe the polynomials Ii, Ji and their relation to the monodromy invariants Ek, Ok.
Label the vertices of an oriented regular n-gon by 0, 1, . . . , n − 1. Consider marking of the

vertices by the symbols a, b and ∗ subject to the rule: each marking should be coded by a cyclic
word W in symbols 1, 2, 3 where 1 = a, 2 = ∗ b, 3 = ∗ ∗ ∗. Call such markings admissible. If
p, q, r are the occurrences of 1, 2, 3 in W then p+ 2q + 3r = n; define the weight of W as p− q.
Given a marking as above, take the product of the respective variables ai or bi that occur at
vertex i; if a vertex is marked by ∗ then it contributes 1 to the product. Denote by Tj the sum
of these products over all markings of weight j. Then A := Tk is the product of all ai; let B be
the product of all bi; here k = [n/2].

Proposition 5.3 The monodromy invariants Ij coincide with the polynomials Tj. One has:

Ej =
Ik−j
A

for j = 1, . . . , k, and En = (−1)n
B

A2
.

Jj are described similarly by the rule 1 = b, 2 = a ∗, 3 = ∗ ∗ ∗, and are similarly related to Oj:

Oj = (−1)n+j Jk−j
B

for j = 1, . . . , k, and On =
A

B2
.
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Proof. First, we claim that the trace Fn is invariant under cyclic permutations of the indices
0, 1, ..., n− 1.

Indeed, impose the n-periodicity condition: ai+n = ai, bi+n = bi. Let Vi be as (4.1). The ma-
trix Mn takes (V0, V1, V2) to (Vn, Vn+1, Vn+2). Then the matrix (V1, V2, V3)→ (Vn+1, Vn+2, Vn+3)
is conjugated to Mn and hence has the same trace. This trace is Fn(a1, b1, ..., an, bn), and due
to n-periodicity, this equals Fn(a1, b1, ..., a0, b0). Thus Fn is cyclically invariant.

Now we argue inductively on n. Assume that we know that Ij = Tj for j = n− 2, n− 1, n.
Consider Fn+1. Given an admissible labeling of n − 2, n − 1 or n-gon, one may insert ∗ ∗ ∗, ∗ b
or a between any two consecutive vertices, respectively, and obtain an admissible labeling of
n+ 1-gon. All admissible labeling are thus obtained, possibly, in many different ways.

We claim that Fn+1 contains the cyclic sums corresponding to all admissible labeling. Indeed,
consider an admissible cyclic sum in Fn−2 corresponding to a labeled n−2-gon L. This is a cyclic
sum of monomials in a0, ..., bn−3; these monomials are located in the matrix M on the diagonal of
its minor Mn−2. By recurrence (5.1), the same monomials will appear on the diagonal of Mn+1,
but now they must contribute to a cyclic sum of variables a0, ..., bn. These sums correspond to
the labelings of n+ 1-gon that are obtained from L by inserting ∗ ∗ ∗ between two consecutive
vertices.

Likewise, consider a term in Fn−1, a cyclic sum of monomials in a0, ..., bn−2 corresponding
to a labeled n − 1-gon L. By (5.1), these monomials are to be multiplied by bn−2, bn−1 or bn
(depending on whether they appear in the first, second or third row of M) and moved 2 units
right in the matrix M , after which they contribute to the cyclic sums in Fn+1. As before, the
respective sums correspond to the labelings of n+1-gon obtained from L by inserting ∗ b between
two consecutive vertices. Similarly one deals with a contribution to Fn+1 from Fn: this time,
one inserts symbol a.

Our next claim is that each admissible term appears in Fn+1 exactly once. Suppose not.
Using cyclicity, assume this is a monomial anP (or, similarly, bnP ). Where could a monomial
anP come from? Only from the the bottom position of the column Cn+2 (once again, according
to recurrence (5.1)). But then the monomial P appears at least twice in this position, hence in
Fn, which contradicts our induction assumption. This completes the proof that Ij = Tj .

Now let us prove that Ej = Ik−j/A. Consider Ej as a function of x, y and switch to the
(a, b)-coordinates using Lemma 4.5:

x1 =
a−1

b−1b0
, y1 = − b0

a−1a0

and its cyclic permutations. Then

y0x1y1 =
1

a−2a−1a0

and the cyclic permutations. An admissible monomial in Ej then contributes the factor−bi/(ai−1ai)
for each singleton yi+1 and 1/(ai−2ai−1ai) for each triple yixi+1yi+1.

35



Admissibility implies that no index appears twice. Clear denominators by multiplying by A,
the product of all a’s. Then, for each singleton yi+1, we get the factor −bi and empty space ∗
at the previous position i − 1, because there was ai−1 in the denominator and, for each triple
yixi+1yi+1, we get empty spaces ∗ ∗ ∗ at positions i− 2, i− 1, i. All other, “free”, positions are
filled with a’s. In other words, the rule 1 = a, 2 = ∗ b, 3 = ∗ ∗ ∗ applies. The signs are correct as
well, and the result follows.

Finally, En is the product of all yi+1, that is, of the terms −bi/(ai−1ai). This product equals
(−1)nB/A2. 2

Remark 5.4 Unlike the invariants Ok, Ek, there are no signs involved: all the terms in poly-
nomials Ii are positive.

Similarly to Remark 4.6, the next lemma shows that one can use Proposition 5.3 even if n
is a multiple of 3. In particular, this will be useful in Theorem 4 in the next section.

Lemma 5.5 If n is a multiple of 3 then the polynomials Ij , Jj of variables a0, . . . , bn−1 are
invariant under the action of the group R∗ × R∗ given in (4.5).

Proof. Recall that, by Lemma 5.2, Mn = N0N1 . . . Nn−1 where

Nj =

 0 0 1
1 0 bj
0 1 aj

 .

The action of R∗×R∗ on the matrices Nj depends on j mod 3 and is given by the next formulas: 0 0 1
1 0 b0
0 1 a0

 7→
 0 0 1

1 0 u
v b0

0 1 u2v a0

 =

 1 0 0
0 u

v 0
0 0 u2v

 0 0 1
1 0 b0
0 1 a0

 v
u 0 0
0 1

u2v
0

0 0 1

 ,

 0 0 1
1 0 b1
0 1 a1

 7→
 0 0 1

1 0 uv2 b1
0 1 v

u a1

 =

 1 0 0
0 uv2 0
0 0 v

u

 0 0 1
1 0 b1
0 1 a1

 1
uv2

0 0
0 u

v 0
0 0 1

 ,

 0 0 1
1 0 b2
0 1 a2

 7→
 0 0 1

1 0 1
u2v

b2
0 1 1

uv2
a2

 =

 1 0 0
0 1

u2v
0

0 0 1
uv2

 0 0 1
1 0 b2
0 1 a2

 u2v 0 0
0 uv2 0
0 0 1

 .

Note that v
u 0 0
0 1

u2v
0

0 0 1

 1 0 0
0 uv2 0
0 0 v

u

 =
v

u
E,

 1
uv2

0 0
0 u

v 0
0 0 1

 1 0 0
0 1

u2v
0

0 0 1
uv2

 =
1
uv2

E,
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and  u2v 0 0
0 uv2 0
0 0 1

 1 0 0
0 u

v 0
0 0 u2v

 = u2v E,

where E is the unit matrix. Therefore the R∗ × R∗-action on Mn is as follows:

Mn 7→
1
u2v

 1 0 0
0 u

v 0
0 0 u2v

N0N1 . . . Nn−1

 u2v 0 0
0 uv2 0
0 0 1

 ∼Mn,

where ∼ means “is conjugated to”. It follows that the trace of Mn, as a polynomial in
a0, . . . , bn−1, is R∗ × R∗-invariant, and so are all its homogeneous components. 2

5.3 Closed polygons

A closed n-gon (as opposed to merely twisted one) is characterized by the condition that Mn =
Id. This implies that

∑
Ij = 3 (and, of course,

∑
Jj = 3 as well). There are other linear relations

on the monodromy invariants which we discovered in computer experiments. All combined, we
found five identities.

Theorem 4 For a closed n-gon, one has:

k∑
j=0

Ij =
k∑
j=0

Jj = 3,
k∑
j=0

w(j)Ij =
k∑
j=0

w(j)Jj = 0,
k∑
j=0

w(j)2(Ij − Jj) = 0,

where k = [n/2] and w(j) are the weights (5.2).

Proof. The monodromy M ∈ SL(3,R) is a matrix-valued polynomial function of ai, bi, and
M(τ) = M ◦ ϕτ where ϕτ is the scaling action

ai 7→ eτai, bi 7→ e−τ bi.

The characterization of Cn is M(0) = Id.
Let eλ1 , eλ2 , eλ3 be the eigenvalues of M(τ) considered as functions of ai, bi, τ . Then λi = 0

for τ = 0 and each i = 1, 2, 3, and
λ1 + λ2 + λ3 = 0 (5.3)

identically. The eigenvalues of M−1 are similar with negative λs as exponents. The definition
of I(a, b) and J(a, b) implies:

eλ1 + eλ2 + eλ3 =
∑

eτw(j)Ij , e
−λ1 + e−λ2 + e−λ3 =

∑
e−τw(j)Jj , (5.4)
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where w(j) are the weights. Setting τ = 0 in (5.4) we obtain the obvious relations
∑
Ij =∑

Jj = 3. Differentiating (5.4) with respect to τ and setting τ = 0, we get

3∑
i=1

λ′i(0) =
∑

w(j)Ij =
∑

w(j)Jj .

By (5.3), the left hand side is zero, and we obtain two other relations stated in the theorem.
Differentiate (5.4) twice and set τ = 0:

3∑
i=1

λ′′i (0) + λ′i(0)2 =
∑

w(j)2Ij ,
3∑
i=1

−λ′′i (0) + λ′i(0)2 =
∑

w(j)2Jj .

Subtract and use the fact that
∑3

i=1 λ
′′
i (0) = 0 (as follows from (5.3) by differentiating in τ

twice) to obtain: ∑
w(j)2(Ij − Jj) = 0. (5.5)

This is the fifth relation of the theorem. 2

Example 5.6 In the cases n = 4 and n = 5, it is easy to solve the equation Mn = Id. For
n = 4, the solution is a single point

a0 = a1 = a2 = a3 = 1, b0 = b1 = b2 = b3 = −1,

and then I0 = 2, I1 = 0, I2 = 1. For n = 5, one has a 2-parameter set of solutions with free
parameters x, y:

a0 = x, a1 = y, a2 = − 1 + x

1− xy
, a3 = −(1− xy), a4 = − 1 + y

1− xy
,

and bi = −ai+2. Hence

I0 = J0 = 2− z, I1 = J1 = 1 + 2z, I2 = J2 = −z with z =
xy(1 + x)(1 + y)

1− xy
.

Remark 5.7 Cn has codimension 8 in Pn, and we have the five relations of Theorem 4. We con-
jecture that there are no other relations between the monodromy invariants that hold identically
on Cn.
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6 Continuous limit: the Boussinesq equation

Since the theory of infinite-dimensional integrable systems on functional spaces is much more
developed than the theory of discrete integrable systems, it is important to investigate the
n→∞ “continuous limit” of the pentagram map.

It turns out that the continuous limit of T is the classical Boussinesq equation. This is quite
remarkable since the Boussinesq equation and its discrete analogs are thoroughly studied but,
to the best of our knowledge, their geometrical interpretation remained unknown.

We will also show that the Poisson bracket (2.16) can be viewed as a discrete version of the
well-known first Poisson structure of the Boussinesq equation.

6.1 Non-degenerate curves and differential operators

We understand the continuous limit of a twisted n-gon as a smooth parametrized curve γ : R→
RP2 with monodromy:

γ(x+ 1) = M(γ(x)), (6.1)

for all x ∈ R, where M ∈ PSL(3,R) is fixed. The assumption that every three consequtive
points are in general position corresponds to the assumption that the vectors γ′(x) and γ′′(x)
are linearly independent for all x ∈ R. A curve γ satisfying these conditions is usually called
non-degenerate.

As in the discrete case, we consider classes of projectively equivalent curves. The continuous
analog of the space Pn, is then the space, C, of parametrized non-degenerate curves in RP2 up
to projective transformations. The space C is very well known in classical projective differential
geometry, see, e.g., [17] and references therein.

Proposition 6.1 There exists a one-to-one correspondence between C and the space of linear
differential operators on R:

A =
(
d

dx

)3

+ u(x)
d

dx
+ v(x), (6.2)

where u and v are smooth periodic functions.

This statement is classical, but we give here a sketch of the proof.

Proof. A non-degenerate curve γ(x) in RP2 has a unique lift to R3, that we denote by Γ(x),
satisfying the condition that the determinant of the vectors Γ(x),Γ′(x),Γ′′(x) (the Wronskian)
equals 1 for every x: ∣∣Γ(x) Γ′(x) Γ′′(x)

∣∣ = 1. (6.3)

The vector Γ′′′(x) is a linear combination of Γ(x),Γ′(x),Γ′′(x) and the condition (6.3) is equiv-
alent to the fact that this combination does not depend on Γ′′(x). One then obtains:

Γ′′′(x) + u(x) Γ′(x) + v(x) Γ(x) = 0.
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Two curves in RP2 correspond to the same operator if and only if they are projectively equivalent.
Conversely, every differential operator (6.2) defines a curve in RP2. Indeed, the space of

solutions of the differential equation Af = 0 is 3-dimensional. At any point x ∈ R, one
considers the 2-dimensional subspace of solutions vanishing at x. This defines a curve in the
projectivization of the space dual to the space of solutions. 2

Remark 6.2 It will be convenient to rewrite the above differential operator as a sum of a
skew-symmetric operator and a (zero-order) symmetric operator:

A =
(
d

dx

)3

+
1
2

(
u(x)

d

dx
+

d

dx
u(x)

)
+ w(x) (6.4)

where w(x) = v(x)− u′(x)
2 . The pair of functions (u,w) is understood as the continuous analog

of the coordinates (ai, bi).

6.2 Continuous limit of the pentagram map

We are now defining a continuous analog of the map T . The construction is as follows. Given
a non-degenerate curve γ(x), at each point x we draw a small chord: (γ(x− ε), γ(x+ ε)) and
obtain a new curve, γε(x), as the envelop of these chords, see Figure 9.

!(x) !(x+")

!(x-")
! (x)"

Figure 9: Evolution of a non-degenerate curve

The differential operator (6.4) corresponding to γε(x) contains new functions (uε, wε). We
will show that

uε = u+ ε2ũ+O(ε3), wε = w + ε2w̃ +O(ε3)

and calculate ũ, w̃ explicitly. We then assume that the functions u(x) and w(x) depend on an
additional parameter t (the “time”) and define an evolution equation:

u̇ = ũ, ẇ = w̃

that we undestand as a vector field on the space of functions (and therefore of operators (6.4)).
Here and below u̇ and ẇ are the partial derivatives in t, the partial derivatives in x will be
denoted by ′.
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Theorem 5 The continuous limit of the pentagram map T is the following equation:

u̇ = w′,

ẇ = −uu
′

3
− u′′′

12
,

(6.5)

Proof. The (lifted) curve Γε ⊂ R3, corresponding to γε(x) satisfies the following conditions:

|Γ(x+ ε), Γ(x− ε), Γε(x)| = 0,

|Γε(x), Γ(x+ ε)− Γ(x− ε), Γ′ε(x)| = 0.

We assume that the curve Γε(x) is of the form:

Γε = γ + εA+ ε2B + (ε3),

where A and B are some vector-valued functions. The above conditions easily imply that A is
proportional to Γ, while B satisfies:

|Γ(x), Γ′(x), B′(x)| = 0,
1
2 |Γ(x), Γ′(x), Γ′′(x)|+ |Γ(x), Γ′(x), B(x)| = 0.

It follows that B = 1
2Γ′′ + gΓ, where g is a function. We proved that the curve Γε(x) is of the

form:
Γε =

(
1 + εf + ε2g

)
Γ + ε2

2 Γ′′ + (ε3),

where f and g are some functions.
It remains to find f and g and the corresponding differential operator. To this end one has

to use the normalization condition (6.3).

Lemma 6.3 The condition (6.3) implies f(x) ≡ 0 and g(x) = u(x)
3 .

Proof. A straightforward computation. 2

One has finally the following expression for the lifted curve:

Γε =
(

1 +
ε2

3
u

)
Γ +

ε2

2
Γ′′ + (ε3). (6.6)

We are ready to find the new functions uε, vε such that

Γ′′′ε (x) + uε(x) Γ′ε(x) + vε(x) Γε(x) = 0.
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After a straighforward calculation, using the additional formula

Γ(V ) = −(2u′ + v) Γ′′ − (u′′ + 2v′ − u2) Γ′ − (v′′ − uv) Γ,

one gets directly from (6.6):

uε = u+ ε2
(
v′ − u′′

2

)
, vε = v + ε2

(
v′′

2
− uu′

3
− u′′′

3

)
.

The result follows. 2

Remark 6.4 Equation (6.5) is equivalent to the following differential equation

ü = −
(
u2
)′′

6
− u(IV )

12
,

which is nothing else but the classical Boussinesq equation.

Remark 6.5 It is not hard to compute that the continuous limit of the scaling symmetry is
given by the formula:

u(x) 7→ u(x), w(x) 7→ w(x) + t

where t is a constant.

Remark 6.6 The fact that the continuous limit of the pentagram map is the Boussinesq equa-
tion is discovered in [19] (not much details are provided). The computation in [19] is made in an
affine chart R2 ⊂ RP2. In this lift, different from the canonical one (characterized by constant
Wronskian), one obtains the curve flow

Γ̇ = −1
3

[Γ′,Γ′′′]
[Γ′,Γ′′]

Γ′ +
1
2

Γ′′

where [., .] is the cross-product; this is equivalent to equation (6.6) (we omit a rather tedious
verification of this equivalence).

6.3 The constant Poisson structure

The equation (6.5) is integrable. In particular, it is Hamiltonian with respect to (two) Poisson
structures on the space of functions (u,w). We describe here the simplest Poisson structure
usually called the first Poisson structure of the Boussinesq equation.

Consider the space of functionals of the form

H(u,w) =
∫
S1

h(u, u′, . . . , w, w′, . . .) dx,
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where h is a polynomial. The variational derivatives, δuH and δwH, are the smooth functions
on S1 given by the Euler-Lagrange formula, e.g.,

δuH =
∂h

∂u
−
(
∂h

∂u′

)′
+
(
∂h

∂u′′

)′′
−+ · · ·

and similarly for δwH.

Definition 6.7 The constant Poisson structure on the space of functionals is defined by

{G,H} =
∫
S1

(
δuG (δwH)′ + δwG (δuH)′

)
dx. (6.7)

Note that the “functional coordinates” (u(x), w(x)) play the role of Darboux coordinates.

Another way to define the above Poisson structure is as follows. Given a functional H as
above, the Hamiltonian vector field with Hamiltonian H is given by

u̇ = (δwH)′ ,

ẇ = (δuH)′ .
(6.8)

The following statement is well known, see, e.g., [8].

Proposition 6.8 The function

H =
∫
S1

(
w2

2
− u3

18
− uu′′

24

)
dx

is the Hamiltonian function for the equation (6.5).

Proof. Straighforward from (6.8). 2

This statement has many consequences. For instance, the following functions are the first
integrals of (6.5):

H1 =
∫
S1

u dx, H2 =
∫
S1

w dx, H3 =
∫
S1

uw dx.

Note that the functions H1 and H2 are precisely the Casimir functions of the structure (6.8).
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6.4 Discretization

Let us now test the inverse procedure of discretization. Being more “heuristic”, this procedure
will nevertheless be helpful for understanding the discrete limit of the classical Poisson structure
of the Boussinesq equation.

Given a non-degenerate curve γ(x), fix an arbitrary point vi := γ(x) and, for a small ε, set
vi+1 := γ(x+ ε), etc. We then have:

vi = γ(x), vi+1 = γ(x+ ε) vi+2 = γ(x+ 2 ε) vi+3 = γ(x+ 3 ε).

Lifting γ(x) and (vi) to R3 so that the difference equation (4.1) be satisfied, we are looking for
a and b in

Γ(x+ 3 ε) = a(x, ε) Γ(x+ 2 ε) + b(x, ε) Γ(x+ ε) + Γ(x),

as functions of x depending on ε, where ε is small.

Lemma 6.9 Representing a(x) and b(x) as a series in ε:

a(x, ε) = a0(x) + ε a1(x) + · · · , b(x, ε) = b0(x) + ε b1(x) + · · · ,

one gets for the first four terms:

a0 = 3, b0 = −3,

a1 = 0, b1 = 0,

a2 = −u(x), b2 = u(x),

a3 = −7
4 u
′(x)− 1

2 w(x), b3 = 5
4 u
′(x)− 1

2 w(x).

(6.9)

Proof. Straighforward Taylor expansion of the above expression for Γ(x+ 3 ε). 2

The Poisson structure (2.16) can be viwed as a discrete analog of the structure (6.7) and
this is, in fact, the way we guessed it. Indeed, one has the following two observations.

(1) Formula (6.9) shows that the functions log a and log b are approximated by linear com-
binations of u and w and therefore (4.15), a discrete analog of the bracket (6.7), should be a
constant bracket in the coordinates (log a, log b).

(2) Consider the following functionals (linear in the (a, b)-coordinates):

Ff (a, b) =
∫
S1

f(x) a(x, ε) dx, Gf (a, b) =
∫
S1

f(x) b(x, ε) dx.

Using (6.7) and (6.9), one obtains:

{Ff , Fg} = ε5
∫
S1

fg′ dx+O(ε6), {Ff , Gg} = O(ε6), {Gf , Gg} = −ε5
∫
S1

fg′ dx+O(ε6).
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One immediately derives the following general form of the “discretized” Poisson bracket on
the space Pn:

{ai, aj} = Pi,j aiaj , {ai, bj} = 0, {bi, bj} = −Pi,j bibj ,

where Pi,j are some constants. Furthermore, one assumes: Pi+k,j+k = Pi,j by cyclic invariance.
One then can check that (4.15) is the only Poisson bracket of the above form preserved by the
map T .

7 Discussion

We finish this paper with questions and conjectures.

Second Poisson structure. The Poisson structure (2.16) is a discretization of (6.7) known
as the first Poisson structure of the Boussinesq equation. We believe that there exists another,
second Poisson structure, compatible with the Poisson structure (2.16), that allows to obtain the
monodromy invariants (and thus to prove integrability of T ) via the standard bi-Hamiltonian
procedure.

Note that the Poisson structure usually considered in the discrete case, cf. [9], is a discrete
version of the second Adler-Gelfand-Dickey bracket. We conjecture that one can adapt this
bracket to the case of the pentagram map.

Integrable systems on cluster manifolds. The space Pn is closely related to cluster man-
ifolds, cf. [7]. The Poisson bracket (2.16) is also similar to the canonical Poisson bracket on a
cluster manifold, cf. [10].

Example 5.6 provides a relation of the (a, b)-coordinates to the cluster coordinates. A twisted
pentagon is closed if and only if

a0 =
a3 + 1
a1

, a2 =
a1 + a3 + 1

a1 a3
, a4 =

a1 + 1
a3

,

and bi = −ai+2. Note that ai+5 = ai. This formula coincides with formula of coordinate
exchanges for the cluster manifold of type A2, see [7]. The 2-dimensional submanifold of P5

with M = Id is therefore a cluster manifold; the coordinates (a1, a3), etc. are the cluster
variables.

It would be interesting to compare the coordinate systems on Pn naturally arising from our
projective geometrical approach with the canonical cluster coordinates and check whether the
Poisson bracket constructed in this paper coincides with the canonical cluster Poisson bracket.

We think that analogs of the pentagram map may exist for a larger class of cluster manifolds.
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Polygons inscribed into conics. We observed in computer experiments that if a twisted
polygon is inscribed into a conic then one has: Ek = Ok for all k; the same holds for polygons
circumscribed about conics. As of now, this is an open conjecture. Working on this conjecture,
we discovered, by computer experiments, a variety of new configuration theorems of projective
geometry involving polygons inscribed into conics; these results will be published separately. Let
us also mention that twisted n-gons inscribed into a conic constitute a coisotropic submanifold of
the Poisson manifold Pn. Dynamical consequences of this observations will be studied elsewhere.
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