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Augmented Teichmüller spaces and Orbifolds

Vladimir Hinich and Arkady Vaintrob

Abstract. We study complex-analytic properties of the augmented Tei-
chmüller spaces Tg,n obtained by adding to the classical Teichmüller
spaces Tg,n points corresponding to Riemann surfaces with nodal sin-

gularities. Unlike Tg,n, the space Tg,n is not a complex manifold (it
is not even locally compact). We prove however that the quotient of
the augmented Teichmüller space by any finite index subgroup of the
Teichmüller modular group has a canonical structure of a complex orbi-
fold. Using this structure we construct natural maps from T to stacks of
admissible coverings of stable Riemann surfaces. This result is impor-
tant for understanding the cup-product in stringy orbifold cohomology.
We also establish some new technical results from the general theory of
orbifolds which may be of independent interest.
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1. Introduction

1.1. Augmented Teichmüller spaces

The Teichmüller space Tg,n is the space of pairs ((X, x1, . . . , xn), φ), where
(X, x1, . . . , xn) is a compact complex curve (Riemann surface) of genus g
with n distinct marked points (which we also call punctures) and

φ : (S, p1, . . . , pn)→ (X, x1, . . . , xn)

is a marking — an isotopy class of orientation preserving diffeomorphisms
with a fixed compact oriented surface S with n marked points p1, . . . , pn ∈ S.
Lipman Bers in [7] introduced the augmented Teichmüller space Tg,n by
adding to Tg,n points corresponding to Riemann surfaces with nodes. (A
marking of a nodal Riemann surfaceX is an isotopy class of maps φ : S → X ,
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such that the preimages of nodes are simple closed curves on S, see Defini-
tion 5.1.1.)

Let Γg,n = π0(Diff
+(S, p1, . . . , pn)) be the Teichmüller modular group,

i.e. the group of isotopy classes of orientation preserving diffeomorphisms
(S, p1, . . . , pn). (This group is also known as the mapping class group of the
n-punctured surface of genus g, cf. [29]). We will frequently denote this group

simply by Γ. The modular group Γ naturally acts on Tg,n and the quotient

Γ\Tg,n is homeomorphic to the Deligne-Mumford-Knudsen compactification

Mg,n of the moduli space of Riemann surfaces of genus g with n punctures.
One of Bers’ goals was an attempt to introduce a natural complex structure
on Mg,n and to prove its projectivity. The existence of a normal complex

structure on the quotient Γ\Tg,n was announced by Bers [7, 8, 9], but, to the
best of our knowledge, no detailed proof of this result had been published.

Unlike the usual Teichmüller space, the space Tg,n is not a manifold (it
is not even locally compact). Still, the augmented Teichmüller spaces play an
important role in Teichmüller theory (see [3]). In particular they appear in
the study of the Weil-Petersson metric on Tg,n (see [38, 47, 12, 13]). One of
the goals of this paper is to understand and study the augmented Teichmül-
ler space from the complex analytic point of view. Our main results suggest
that the space Tg,n can be viewed as a certain universal space of coverings
of stable Riemann surfaces of genus g ramified in at most n points and from
this point of view it should be thought of as a projective system of complex
orbifolds.

1.2. Results

Our main result is the following theorem (a combined statement of 6.1.1, 7.2.1
and 7.2.4).

Theorem. Let G be a finite index subgroup of the Teichmüller modular group
Γg,n, where (g, n) is in the stable range (i.e. 2g − 2 + n > 0).

(i) The quotient G\Tg,n has a structure of a complex orbifold such that

G\Tg,n is its open suborbifold. In particular, G\Tg,n is a compact nor-
mal complex space.

(ii) For every finite index subgroup G′ ⊂ G there exists a canonical mor-

phism G′\T → G\T of the corresponding orbifolds.
(iii) There exists a finite index subgroup G′ ⊂ G such that the orbifold

G′\Tg,n is a manifold (i.e. each point has a trivial stabilizer).

We will denote the quotient G\Tg,n with this orbifold structure by

[G\Tg,n]. For G = Γg,n the resulting orbifold [Γg,n\Tg,n] coincides with the

Deligne-Mumford moduli stack1 Mg,n of stable curves of genus g with n
punctures. In Section 7.3 we prove that the natural gluing operations on the
collection of stacks Mg,n of stable marked curves can be extended to give

canonical operations on the collection of orbifolds [G\T].
1We use the fraktur font to distinguish stacks and orbifolds (such as Mg,n and Admg,n,d)

from underlying coarse spaces denoted by the mathcal font (resp. Mg,n and Admg,n,d).
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As we prove in Section 8.3, the first statement of this theorem also holds

for certain finite extensions G̃ → G ⊂ Γg,n of finite index subgroups of Γg,n
acting on Tg,n via the homomorphism γ : G̃→ Γg,n. This leads to our second
main result—a discovery of a connection between the augmented Teichmüller

space Tg,n and the moduli space2 Admg,n,d of admissible coverings π : X̃ → X
of degree d, where X is a stable complex curve of genus g with n punctures
(see e.g. [4, Sect. 4]).

Let S be a compact oriented surface of genus g with n punctures and

let ρ : S̃ → S be a finite covering unramified outside the punctures. For
any stable complex curve X of genus g with n punctures and a marking

φ : S → X the map ρ induces an admissible covering X̃ → X . Thus, on the
level of points, ρ gives a map

vρ : Tg,n → Admg,n,d . (1)

In Section 8 we show that this map can be elevated to a continuous map
from Tg,n to the complex orbifold Admg,n,d. To do this we first construct

a morphism of complex orbifolds [G̃\Tg,n] → Admg,n,d, where G̃ is a finite
extension of a finite index subgroup of Γg,n. Then we compose this morphism

with the canonical map Tg,n → [G̃\Tg,n]. (Note that, since [G̃\Tg,n] is not a
quotient orbifold, the existence of this map is non-obvious. It is constructed
in Section 7.2 using parts (ii) and (iii) of the above theorem.)

An important application of this result is a proof given in Section 8.7
of associativity of stringy orbifold cohomology (see below in 1.5).

Since the projection
[
G\Tg,n

]
→Mg,n is a finite morphism, the complex

orbifold
[
G\Tg,n

]
is projective. It is equipped with a tautological family of

stable curves π : X→ [G\Tg,n]. Points of X can be viewed as stable G-marked
curves, where by a G-marking we understand a G-orbit in the set of all
markings on a curve. The orbifold

[
G\Tg,n

]
allows to introduce, a posteriori,

a notion of a family of complex G-marked stable curves. By definition, this is
a family of curves induced from the tautological family π : X→

[
G\Tg,n

]
via

a map S → [G\Tg,n]. For families of smooth curves, this notion coincides with
the one given by Grothendieck in [21]. It would be nice to have an a priori
notion of such a family (defined over Z or at least overQ) which would identify[
G\Tg,n

]
with the (analytification of the) corresponding moduli stack.

Stable G-marked curves can be thought of as curves with generalized
level structures. Indeed, for certain choices of the group G this notion gives

Prym level structures considered by Looijenga in [36]. Let S̃ → S be the
universal Prym cover of a compact oriented surface S of genus g, i.e. a Ga-
lois covering whose Galois group H is the quotient of π1(S) by the normal
subgroup generated by the squares of all elements of π1(S).

3 Let G = Γg,[k2]

be the subgroup of elements of Γg,0 whose lifts to S̃ act on H1(S̃,Z/k) as

2In fact, this is a Deligne-Mumford stack over Z[ 1
d!
].

3Of course H is isomorphic to H1(S,Z/2)
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elements of H . The quotientMg,[k2]
= G\Tg is the moduli space of smooth

curves of genus g with a level-k Prym structure. In [36] Looijenga studied
the normalizationMg,[k2]

of the moduli spaceMg in the field of meromorphic

functions onMg,[k2]
. The main result of [36] is that, when k is even and k ≥ 6,

the spaceMg,[k2]
is smooth.

We use Looijenga’s result in our proof of part (iii) of the main theorem.
To do this we need to refine it in two ways. First, we generalize Looijenga’s
theorem to Riemann surfaces with punctures and the corresponding sub-
group G = Γg,n,[k2]

of the modular group Γg,n. Second, we show that when k

is even and k ≥ 6 the orbifold [G\Tg,n] is a complex manifold and, therefore,

coincides with the Looijenga’s space Mg,n,[k2]
. This provides a modular de-

scription of the spaceMg,n,[k2]
. We will use this fact in Section 7.2 to construct

canonical maps πG : Tg,n → [G\Tg,n].

The most natural way to introduce an orbifold structure on a topological
space is to describe it as the moduli space of some geometric objects. In
the lack of a modular description,4 we had to look for alternative ways. We
construct an orbifold structure on G\Tg,n using our formalism of orbifold
charts developed in Section 3.

The traditional approach of Satake [44] works only for effective orbifolds
and is insufficient for our purposes. We generalize Satake’s description of
orbifolds in terms of charts and atlases to include non-effective orbifolds. We
show that the resulting notion is equivalent by its expressive power to the
“modern” approaches to orbifolds based on the language of stacks and étale
groupoids.

In particular, our construction in Section 3.2 which associates a stack to
an orbifold atlas is analogous to the well-known realization (due to Satake)
of an effective C∞-orbifold as a quotient of a manifold by a compact Lie
group. Our result, however, holds also for non-effective and complex orbifolds.
Even in the effective C∞-case our construction is functorial and does not
use partitions of unity. It is defined by a universal property which is very
convenient when dealing with morphisms from an orbifold.

Our proof of the main theorem uses yet another technical result which
may be of independent interest. This is Theorem 4.1.1 on analytification of
some algebraic moduli stacks. Namely, we prove that the analytifications of
the stacks Mg,n and Admg,n,d represent the corresponding moduli functors
in the complex analytic category.

4V. Braungardt in his thesis [11] (see also [24]) introduced a concept of a locally complex

ringed space and proved that T can be equipped with such structure which is universal
in a certain sense. However, the quotient stacks G\T produced this way are non-separated

and therefore are very different from our complex orbifolds [G\T]. We thank the referee
for bringing these references to our attention.
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1.3. The case g = 1, n = 1

We will illustrate the main theorem on the simplest interesting case of the
one-punctured torus, i.e. when g = 1 and n = 1.

The moduli spaceM1,1 of one-dimensional complex tori with one mar-
ked point can be viewed as the space of lattices in R2 up to similarity. Marking
of a torus corresponds to a choice of a basis of the lattice. Therefore the Teich-
müller space T1,1 is the set of similarity classes of pairs of non-collinear vectors
in R2 which can be identified with the upper half-plane. The boundary of the
compactified moduli space M1,1 consists of the single point corresponding
to the degenerate elliptic curve C (a pinched torus). Therefore, markings of
C correspond to isotopy classes of simple closed paths on the standard torus
S. So the boundary of T1,1 can be identified with P1(Q) = Q ∪ {∞} (viewed
as the set of pairs of relatively prime integers (p, q) up to a common factor

±1). The base of the topology of T1,1 near a boundary point is given by the
collection of open disks tangent to the real line at this point (plus the point
itself).

The Teichmüller modular group Γ1,1 is isomorphic to SL2(Z) and the

quotient Γ1,1\T1,1 is the orbifoldM1,1 whose underlying space is the Riemann

sphere P1(C). The quotient of T1,1 by a finite index subgroup of SL2(Z) is
a finite ramified covering of P1(C) and, therefore, has a canonical structure
of a compact Riemann surface. We will show that analogous results hold for
arbitrary g and n.

1.4. Detailed description of the paper

A significant part of the paper deals with general questions of orbifold theory.
In algebraic geometry, the language of stacks is the most adequate for

moduli problems. We find it useful for studying orbifolds in other settings as
well.

In Section 2 we present two different approaches to defining a 2-category
of orbifolds: one based on stacks, the other on groupoids. Whereas the 2-
category structure on stacks is standard, the 2-category structure on grou-
poids is not the one that first comes to mind.

We define an orbifold as a stack of geometric origin, which means that
it is equivalent to the stack associated to a separated étale groupoid.5

We prove that the functor associating a stack to a groupoid gives an
equivalence between 2-categories of separated étale groupoids and orbifolds.

Since Sp may not have arbitrary fiber products, we cannot define rep-
resentable morphisms for general Sp-stacks and so it is impossible to define
Sp-orbifolds simply by modifying the standard definition of algebraic stacks
(see [35]). Instead we define an Sp-orbifold as an Sp-stack equivalent to the
stack associated to an Sp-groupoid. In the case when Sp is the category of
schemes this approach gives separated Deligne-Mumford stacks.

5We cannot simply mimic the standard definition of an algebraic stack (see [35]), since the
categories of smooth or complex manifolds do not have arbitrary fiber products which are
needed to define representable morphisms.
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Our treatment of these questions is similar but not identical to the
works of Metzler [39], Noohi [42] and Behrend-Xu [6]. The most significant
difference between these papers and our approach is that we work in the
category of smooth manifolds where general fiber products do not exist. For
this reason, we develop the theory so that only fiber products along étale
morphisms are used.

In this section we also introduce gerbes over orbifolds which will be used
later in Section 8.

In Section 3 we present a more traditional approach to orbifolds. It is
based on the notion of (generalized) orbifold charts. For effective orbifolds this
approach goes back to the original definition of Satake [44]. We generalize
Satake atlases to include non-effective orbifolds. The main result here is a
construction of an orbifold from an atlas of generalized orbifold charts.

This gives us a flexibility to use any of the three languages (of orbifold
charts, groupoids or stacks) depending on the circumstances. In particular,

the orbifold structure on the quotient G\Tg,n will be given using a generalized
orbifold atlas.

Throughout the paper we work with the moduli stacks of stable complex
curves and admissible coverings in the complex-analytic category. Therefore
we need to know that the analytification of the algebraic Deligne-Mumford
stacks M and Adm represent the corresponding functors (of families of nodal
Riemann surfaces and of families of admissible coverings) in the analytic
category. This is proved in Section 4.

To construct an orbifold atlas for the quotient G\Tg,n, we start with an
orbifold atlas for

M =Mg,n = Γg,n\Tg,n
and then construct corresponding charts upstairs on G\Tg,n. The existence of
an orbifold atlas forM follows from the smoothness of the moduli stack M,
but to be able to lift the charts to G\Tg,n we need an atlas onM whose charts
satisfy some very special properties. We call such charts quasiconformal and
prove that there exists a quasiconformal atlas M in Section 5.

To construct such an atlas we use a version of the Earle-Marden [37]
local holomorphic coordinates on the Teichmüller space Tg,n. Let us recall
the definition of these coordinates. Start with a maximally degenerate stable
Riemann surface X0 in Mg,n. This surface is a union of 2g + n − 2 triply
punctured spheres glued together along 3g + n − 3 pairs of punctures. For
each of 3g + n − 3 nodes qi ∈ X0 choose a pair of “coordinate” functions
zi, wi that identify a neighborhood of qi with a neighborhood of the node of
the curve Vi = {(zi, wi)|ziwi = 0} ∈ C2. By replacing Vi with

Vi,ti = {(zi, wi) ∈ C2|ziwi = ti}
we obtain a 3g + n− 3-parameter holomorphic family Xt of nodal Riemann
surfaces. This gives a holomorphic map φ from a unit polydisk in C3g+3−n to
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M. At every point where φ is étale, it defines an orbifold chart of M. However
φ may not be étale everywhere (see [25] for a counterexample). To circumvent
this problem and guarantee existence of étale charts at every point ofM we
make a very special choice of local coordinates around punctures of X0 (see
Section 5.3.4).

The existence of a quasiconformal atlas on M reflects two approaches to
constructing this space: one based on Teichmüller spaces and another based
on the theory of Deligne-Mumford stacks. This indicates that the appearance
of quasiconformal charts here may be not coincidental.

In Section 6 we prove our main result—that the quotient of the aug-
mented Teichmüller space Tg,n by a finite index subgroup G of the modular
group has a natural structure of a complex orbifold. We do this by construct-
ing an orbifold atlas on G\T using the existence of a quasiconformal atlas on
M proved in Section 5.

In Section 7 we establish some properties of the orbifold structure on
G\T. A special example of G-marked curves give curves with level-ℓ struc-
tures. These curves correspond to the subgroup

G = Γ(ℓ) = Ker(Γ - Aut(H1(S,Z/ℓ))).

Since the orbifold structure on [G\T] is given by an ad hoc construction
and not by a universal property, the existence of the quotient map

πG : T → [G\T]
is not guaranteed and requires special attention. This is done in Section 7.2.

First, for each finite index subgroup G′ ⊂ G we define a natural map
of orbifolds [G′\T] → [G\T]. Then, using a generalization of Looijenga’s
analysis [36] we prove that for any finite index subgroup G of Γ there exists a

finite index subgroup G′ ⊂ G such that [G′\T] is a complex manifold. Then,
the quotient map πG can be defined as the composition

T
πG′
- [G′\T] - [G\T].

In Section 7.3 we show that the natural gluing operations

Tg,n × Tg′,n′
- Tg+g′,n+n′ and Tg,n+2

- Tg+1,n

descend to the maps of complex orbifolds when we pass to quotients by finite
index subgroups.

As we explained above, given a covering ρ : S̃ → S of degree d (where
S is, as before, a compact oriented surface of genus g with n punctures), one

can naturally assign to each marked stable curve (X,φ) ∈ Tg,n an admissible

covering X̃ → X of degree d.
In Section 8 we elevate the map (1) to a morphism

vρ : Tg,n → Admg,n,d

of topological stacks (where Tg,n has trivial stabilizers) by composing a com-

plex orbifold morphism [G\T] → Adm with the quotient map T → [G\T].
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Here G is a symmetry group of the finite covering ρ : S̃ → S. It is not a
subgroup of the modular group Γ, it acts on T via a natural homomorphism
γ : G → Γ whose kernel and the index of the image in Γ are finite. Thus
we need to deal with quotients of T which are slightly more general that the
quotients modulo a finite index subgroup of Γ. The quotient [G\T] is a gerbe

over [Im(γ)\T].
We also prove compatibility of the maps vρ with the gluing operations

constructed in Section 7.3.

Even though the maps vρ are morphisms of topological stacks, we can

view them as holomorphic maps by replacing T with the projective system
of complex orbifolds [G\T].

Finally, in Section 8.7 we show how our results about the spaces G\T
can be used in the study of stringy orbifold cohomology. This was the original
motivation for the work presented in this paper and we explain it in a greater
detail below.

1.5. Motivation and application: orbifold cup-product

This paper is an offshoot of our project to study generalized multiplicative
orbifold cohomology theories [27]. The Chen-Ruan definition of the cup-
product in (stringy) orbifold cohomology (see [15] and [19]) uses cohomologi-
cal correction classes whose construction involves certain equivariant vector
bundles on the spaces of admissible coverings Admg,n,d. The space Admg,n,d

has an open stratum corresponding to non-singular curves and its boundary
consists of products of spaces Admg′,n′,d for g

′ ≤ g and n′ ≤ n. The associativ-
ity and commutativity of the orbifold cup-product are derived in [15] and [19]
from the fact that the fibers of these bundles on Admg,n,d at certain bound-
ary points are isomorphic. This would be immediate if the spaces Adm were
connected. However, this is far from being true. For example, components of
the open stratum of Admg,n,d correspond to conjugacy classes of actions of
the fundamental group of the curve on a d-element set. An attempt to resolve
this difficulty brought us to considering augmented Teichmüller spaces.6

Let S be a compact oriented surface of genus g with n punctures and

let ρ : S̃ → S be a finite covering unramified outside of the punctures. For
a stable Riemann surface X of genus g with n punctures and a marking
φ : S → X we obtain an admissible covering of X induced from ρ. This
leads to the map (1) of topological orbifolds. Since the augmented Teich-

müller space Tg,n is contractible, its image in Admg,n,d is connected. The

boundary of Tg,n consists of strata which are products of Tg′,n′ for smaller
values of g′ and n′ and the maps vρ respect the decompositions of boundary

strata of T and Adm. Therefore this construction allows to move verification
of associativity and commutativity of the orbifold cup-product away from a
highly disconnected space Admg,n,d to the contractible space Tg,n.

6The issue of non-connectivity of the spaces of admissible coverings is also addressed in [30],
see Lemma 2.30. Unfortunately, we were unable to understand the proof of this lemma.
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This is the idea of our approach to the stringy cup-product problem.
To implement it, we have to be able to speak about continuous maps from
the space Tg,n to Admg,n,d. However, this task is non-trivial, since the former
is a nasty topological space, whereas the latter is the space of C-points of a
nice Deligne-Mumford stack. The common ground is found in the 2-category
of complex orbifolds and is developed in this paper.

Applications of this construction to generalized stringy orbifold coho-
mology theories will be described in our forthcoming paper [27].

1.6. Acknowledgments

Parts of this paper were written during our stay at IHES and MPIM. We
are grateful to these institutions for hospitality and for the excellent working
environment. We are grateful to O. Gabber for pointing out the book [22].

2. Generalities on orbifolds

In this section we present our preferred way of working with orbifolds. The
language of algebraic stacks has long been the tool of choice for dealing with
orbifolds in the context of algebraic geometry. We find it the most appropriate
in other categories as well.

In order to obtain different species of the notion of an orbifold (C∞,
complex, algebraic), we have to choose an appropriate basic category Sp of
manifolds or spaces and work with stacks over Sp (see Section 2.1). The
resulting notion of a Sp-stack is too general to be geometrically meaningful
in the same way as the corresponding notion of stack in algebraic geometry
is too general. In order to distinguish geometrically meaningful stacks, we
restrict our attention to étale groupoids which have already been used for
the description of orbifolds.

Since Sp may not have arbitrary fiber products, we cannot define rep-
resentable morphisms for general Sp-stacks and so it is impossible to define
Sp-orbifolds simply by modifying the standard definition of algebraic stacks
(see [35]). Instead we define an Sp-orbifold as an Sp-stack equivalent to the
stack associated to an Sp-groupoid. In the case when Sp is the category of
schemes this approach gives separated Deligne-Mumford stacks.

Both stacks and étale groupoids form a 2-category. Whereas the 2-
category structure on stacks is standard, the 2-category structure on groupo-
ids is not the one that first comes to mind. We define an orbifold as a stack
of geometric origin, which means that it is equivalent to the stack associated
to a separated étale groupoid. We prove further that the functor associating
a stack to a groupoid gives an equivalence between 2-categories of separated
étale groupoids and orbifolds.

Our treatment is similar but not equivalent to the recent expositions of
Metzler [39], Noohi [42] and Behrend-Xu [6]. The most significant difference
between these works and our approach is that our basic category of spaces
is the category of smooth manifolds in which general fiber products do not
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exist. For this reason, we develop the theory which uses only fiber products
along étale morphisms.

Having in mind the above-mentioned 2-equivalence, our approach to
orbifolds via stacks is not so different from the widely accepted approach
based on groupoids. We prefer, however, the approach via stacks for various
reasons.

In Section 8 we use a related notion of a gerbe which is slightly non-
standard. It is presented, along with other miscellanea, in 2.6. Sheaves and
vector bundles on orbifolds are defined in 2.7.

2.1. Basic categories of “spaces”

In what follows Sp will denote one of the following categories of “spaces.”

(i) The category of Hausdorff topological spaces.
(ii) The category of separated locally ringed topological spaces.
(iii) The category of C∞-manifolds.
(iv) The category of complex manifolds.
(v) The category of separated complex spaces.
(vi) The category of smooth separated schemes over a field.
(vii) The category of separated schemes over a base scheme.

In each of these categories there exists a notion of an étale morphism. It
is a local isomorphism for categories (i)-(v) and an étale morphism of schemes
for cases (vi)-(vii).

We consider the category Sp endowed with the topology defined by open
covers for Sp of type (i)-(v) and by étale morphisms for cases (vi)-(vii). We
could equally consider the étale topology in all cases.

Note that in all our categories of spaces there exist fiber productsX×ZY
when one of the structure maps X → Z, Y → Z is étale. Also, the notion of
a proper map makes sense for all these categories.

2.2. Groupoids in categories of spaces

2.2.1. Groupoids. A groupoid (in category Set) is a small category whose
morphisms are invertible. Thus, a groupoid G• = (G0, G1) can be specified
by giving a set G0 of its objects, a set G1 of its arrows, and operations:

ι : G0 → G1 (identity), s, t : G1 → G0 (source and target)

and the composition

c : G1 ×G0
G1 → G1

satisfying well-known axioms.
Groupoids form a 2-category which we denote Grp. One-morphisms in

Grp are functors between groupoids; 2-morphisms are natural transforma-
tions between the corresponding functors. The 2-category Grp is strict: the
composition of functors is strictly associative.

It is sometimes convenient to view groupoids as (very special) simplicial
sets. To a groupoid G• = (G0, G1) we assign a simplicial set (G0, G1, G2, . . .)
whose n-simplices are n-tuples of composable arrows in G1. In this description
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the source and the target maps s, t : G1 → G0 become the face maps d1 and
d0; the composition of arrows c becomes the face map

d1 : G2 := G1 ×G0
G1 → G1.

2.2.2. Definition. Let Sp be one of the categories of spaces from Section 2.1.
A groupoid in7 Sp is a pair G• = (G1, G2) of objects of Sp, together

with the structure maps ι, s, t, c as in 2.2.1, such that for any M ∈ Sp the
functor Hom(M, ) sends this collection to a groupoid.

(We assume above that the fiber product G2 = G1×G0
G1 exists in Sp.)

2.2.3. Definition. Let G• be a groupoid in Sp.

(i) G• is called separated if the diagonal (s, t) : G1 → G0 ×G0 is proper.
(ii) G• is called étale if the maps s, t : G1 → G0 are étale.
(iii) G• is called a Sp-groupoid if it is étale and separated.

2.2.4. Remark. Separated groupoids are sometimes called proper groupoids.
We follow Grothendieck’s terminology (separatedness = properness of the
diagonal).

2.2.5. Example. Let G be a (discrete) group acting on X ∈ Sp. The transfor-
mation groupoid (G\X)• is defined by

(G\X)0 = X, (G\X)1 = G×X,
where the source map s is the projection G×X → G and the target t is the
action map t : G × X → X . If G is finite then (G\X)• is an Sp-groupoid.
If Sp is one of the non-algebraic categories 2.1.(i)-(v), then (G\X)• is an
Sp-groupoid also when the action of G on X is discontinuous.

2.3. Groupoids over categories of spaces. Stacks

By definition, a groupoid G• in Sp represents a functor from Sp to Grp

M 7→ (Hom(M,G0),Hom(M,G1)).

Since groupoids form a 2-category and not just a category, the notion of
a functor to Grp is too rigid: the most natural constructions produce only
pseudofunctors (see 2.3.2) to Grp. This is why we need a relaxed version of
the notion of an Sp-groupoid.

The definitions 2.3.1 and 2.3.4 below are special cases of Grothendieck’s
notions of a fibered category and of a stack, see [45, Ch. 4]. The case when
Sp is the category of schemes is described in [35].

2.3.1. Definition. (see [35, Sec. 2]) A groupoid over8 Sp is a category X en-
dowed with a functor π : X→ Sp such that

(i) For any α : U → V in Sp and x ∈ X with π(x) = V there exists a : y → x
such that π(a) = α.

7In [35] the term éspace en groupöıdes is used instead.
8Catégorie fibrée en groupöıdes sur Sp in the original terminology of [35].
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(ii) For any pair of morphisms a : y → x, b : z → x in X any map γ :
π(y) → π(z) satisfying π(a) = π(b)γ there exists a unique c : y → z
such that a = bc and π(c) = γ.

Groupoids over Sp form a 2-category denoted Grp/Sp. A 1-morphism
from π : X→ Sp to π′ : X′ → Sp is a functor f : X→ X′ strictly commuting
with π, π′. A 2-morphism θ : f → g between f, g : X → X′ is a natural
transformation that sends x ∈ X to a morphism θ(x) : f(x) → g(x) over
idπ(x) in X′.

2.3.2. Pseudofunctors. Cleavage. Let π : X→ Sp be a groupoid over Sp. The
fibers

XU := π−1(U), for U ∈ Sp,

are groupoids. For each α : U → V and for each x ∈ XV choose a lifting
a : α∗(x) → x of α. This choice can be uniquely extended to a functor
α∗ : XV → XU . Also, for each pair of composable arrows in Sp, one has a
uniquely defined isomorphism θα,β : α∗β∗ → (βα)∗ These isomorphisms θ
satisfy a standard compatibility condition shown on diagram (3).

The above collection (XU , α
∗, θα,β) defines a pseudofunctor Spop → Grp;

it would be a genuine functor if θα,β were the identity for all α and β.
Vice versa, given a collection of groupoids XU for each U ∈ Sp, together

with functors

α∗ : XV - XU

for each morphism α : U → V and equivalences

θα,β : α∗β∗ → (βα)∗ (2)

for each pair of composable arrows α, β of Sp, such that the diagram

α∗β∗γ∗
θα,β ·γ

∗

- (βα)∗γ∗

α∗(γβ)∗

α∗·θβ,γ

?
θα,γβ

- (γβα)∗

θβα,γ

?

(3)

is commutative for each triple of composable arrows, one can “glue” a grou-
poid π : X→ Sp by the formulas

Ob X =
∐

Ob XU ; π(x) = U ⇔ x ∈ XU ;

HomX(x, y) =
∐

α:U→V

HomXU
(x, α∗(y)).

2.3.3. Definition. A choice of functors a∗ : XV → XU for each a : U → V
in Sp and of compatible equivalences (2) is called a cleavage of a groupoid
π : X → Sp (in SGA1: un clivage). Thus every groupoid over Sp admits
a cleavage, and cleaved groupoids over Sp are the same as pseudofunctors
Spop → Grp.
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Any groupoid G• in Sp represents a functor Sp → Grp. This, together
with the trivial cleavage θα,β = id, defines a groupoid over Sp. Thus, the
notion of groupoid over Sp generalizes that of groupoid in Sp.

Groupoids over Sp play the role of “presheaves of groupoids” on Sp.
Stacks can be viewed as “sheaf of groupoids”.

2.3.4. Definition. (see [35], Sect. 2–3) A stack (of groupoids) X over Sp is a
groupoid over Sp satisfying the following two conditions.

(i) For any two objects x, y ∈ XU the assignment

α : V - U 7→ Hom(α∗(x), α∗(y))

is a sheaf on Sp/U := {V → U |V ∈ Sp}.
(ii) For any covering αi : Vi → U in Sp the groupoid XU is equivalent to

the groupoid X({Vi}) of “local data” whose objects are collections
(
xi ∈ XVi

, θij : xi|Vij
- xj |Vij

)
, where Vij := Vi ×U Vj ,

with compatible θij and whose morphisms are isomorphisms of these
collections.

Stacks over Sp form a 2-category Stacks/Sp which is a strictly full 2-
subcategory of Grp/Sp.

Let M ∈ Sp. The functor on Sp represented by M is a stack. It is called
the stack represented by M . An 1-morphism M → X is given by an object
of XM .

2.3.5. Associated stack. For every X ∈ Grp/Sp we can associate an Sp-stack
[X] which is constructed in two steps. First one sheafifies all Hom-sets and
then “glues” new objects from the local data as in Definition 2.3.4 (see the
details in [35, Lemme 3.2]).

The stack associated to an Sp-groupoid M• will be denoted [M•]. If
M• = (G\X)•, we will write [M•] = [G\X ] rather than [(G\X)•].

The following lemma gives an explicit description of the groupoid [M•]U .

2.3.6. Lemma. Let U ∈ Sp.

(i) Objects of [M•]U are morphisms V• →M• of groupoids where α : V → U
is étale surjective in Sp and the groupoid V• in Sp is defined by the
formulas

Vn = V ×U . . .×U V (n+ 1 factors).

(ii) Given two objects, α : V• →M• and α′ : V ′
• →M•, a morphism from α

to α′ is a morphism between two functors from V• ×U V ′
• to M•.

This is a direct application of the construction of the associated stack,
see the proof of Lemma 3.2 in [35]. �

Proposition 2.3.8 below gives a similar explicit description of the grou-
poid Hom([X•], [Y•]), where X• and Y• are Sp-groupoids.
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2.3.7. Definition. A map f : Z• → X• is called an acyclic fibration if the map
f0 : Z0 → X0 is étale surjective and the commutative square

Z1
f1

- X1

Z0 × Z0

(s,t)

?
f0×f0

- X0 ×X0

(s,t)

?

is Cartesian.9

Let f : Z• → X• be an acyclic fibration and let g : X ′
• → X• be a

morphism. Then the “naive” fiber product

Z ′
• = Z• ×nv

X•
X ′

•

defined by

Z ′
i = Zi ×Xi

X ′
i, i = 0, 1,

gives rise to an acyclic fibration f ′ : Z ′
• → X ′

•.

2.3.8. Proposition. The groupoid Hom([X•], [Y•]) has the following explicit
description.

(i) The objects of Hom([X•], [Y•]) are diagrams of Sp-groupoids

X•
�
s

Z•
f
- Y•

where s is an acyclic fibration.

(ii) A morphism from X•
�
s

Z•
f
- Y• to X•

�
s′

Z ′
•

f ′

- Y• in
Hom([X•], [Y•]) is given by a 2-morphism between the two compositions
f ◦ pr1 and f ′ ◦ pr2 from Z• ×nv

X•

Z ′
• to Y•.

Proof. By the universality of the associated stack, we need just to describe
Hom(X•, [Y•]). A map F : X• → [Y•] defines a composition F̂ : X0 → [Y•].
By Lemma 2.3.6 there exists an étale surjective map s0 : Z0 → X0 and a
map f0 : Z0 → Y0 so that the pair (s0, f0) presents F̂ .

Consider the space

Z1 = (Z0 × Z0)×X0×X0
X1. (4)

This determines an acyclic fibration s : Z• → X•. We claim that F cano-
nically determines (and is canonically determined by) a map f : Z• → Y•
extending f0.

The pair (s0, f0) gives for each U ∈ Sp a functor F (U) which acts on
objects by

(x : U → X0) - (U � U ×X0
Z0

- Z0
f0
- Y0). (5)

Let us describe the action of F on the arrows. To each arrow in (X•)U
(that is to each map x : U → X1) F assigns a morphism between two images

9Acyclic fibrations are special cases of weak equivalences of groupoids, as defined in [41].
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of sx, tx : U → X0 given as in (5). The second part of Lemma 2.3.6 says
that this amounts to a map U → Z1 where Z1 is defined by (4).

This proves the first part of the proposition. The second part is straight-
forward. �

2.3.9. Fiber products. Since groupoids over Sp form a 2-category, we will use
the following natural 2-categorical fiber product operation.

Definition. The fiber product of a diagram of 1-morphisms in Grp/Sp

X
f
- Z �

g
Y

is the groupoid in Grp/Sp whose objects over U ∈ Sp are triples (x, y, θ),
where x ∈ X(U), y ∈ Y(U) and θ : f(x)→̃g(y) is an isomorphism; morphisms
are compatible pairs of morphisms in X and Y.

This fiber product has the expected properties.

2.3.10. Lemma. Let F be a fiber product of a diagram X→ Z← Y. Then

(i) If X, Y, Z are Sp-stacks then F is as well an Sp-stack.
(ii) The associated stack [F] is a fiber product of the diagram

[X]→ [Z]← [Y].

Proof. The statement (i) is immediate and (ii) follows from (i). �

2.4. Orbifolds

In this section we define Sp-orbifolds, where Sp is one of the categories of
spaces from Section 2.1.

2.4.1. Definition. A stack X over Sp is called an Sp-orbifold if it is equivalent
to the stack [X•] associated to an (étale separated) Sp-groupoid X•.

The full 2-subcategory of Sp-orbifolds in the 2-category of Sp-stacks will
be denoted by Sp-Orbi (or simply Orbi).

Let Sp be the category of schemes over a fixed base scheme. The stan-
dard definition of Deligne-Mumford stack requires the diagonal to be quasi-
compact (i.e., the preimage under the diagonal map of any quasi-compact
open subset is quasi-compact). The stacks having proper diagonal are called
separated stacks.

Definition of orbifolds as equivalence classes of separated étale groupoids
belongs to Moerdijk. We prefer looking at a groupoid as a specific presentation
of an Sp-orbifold in the sense of the following definition.

2.4.2. Definition. Let X be an Sp-orbifold. An Sp-groupoid X• together with
a map

α : X•
- X

of groupoids over Sp is called a presentation of X if it induces an equivalence
[X•]→ X.

A presentation α : X• → X of an Sp-orbifold X is uniquely determined
by a morphism α0 : X0 → X and by an equivalence α1 : X1 → X0 ×X X0.
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2.5. Representable morphisms

2.5.1. Definition. An Sp-orbifold X is called representable if for every U ∈ Sp

the groupoid X(U) is discrete (i.e. the group of automorphisms of every object
in X(U) is trivial).

If Sp is one of the non-algebraic categories 2.1.(i)-(v), then representable
orbifolds are functors represented by objects of Sp; representable orbifolds for
Sp of type (vi) or (vii) correspond to algebraic spaces.

2.5.2. Definition. Amorphism f : X→ Y of Sp-orbifolds is called representable
if for any morphism a : Y → Y such that Y ∈ Sp and the fiber product
X×Y Y ∈ Sp-Orbi exists, this fiber product is representable.

It is clear that in order to check that a morphism f : X → Y is repre-
sentable, it is sufficient to prove that for some presentation Y• of Y the fiber
product X×Y Y0 is a representable orbifold.

2.5.3. Proposition. Let X be an Sp-orbifold.

(i) The diagonal X→ X× X is representable.
(ii) Let f : X → X be a morphism in Sp-Orbi such that X belongs to Sp.

Then f is representable.

Proof. Choose a presentation X• of X. Then the fiber product

X×X×X (X0 ×X0)

is equivalent to the stack associated to

X• ×X•×X•
(X0 ×X0) = X0 ×X•

X0 = X1.

This proves the first statement.

The second statement follows from the equality

X ×X X0 = X×X×X (X ×X0).

�

2.5.4. Properties of representable morphisms.

Definition. A property (class) P of morphisms in Sp is called local if for each
Cartesian diagram

T - X

Z

f ′

?
g

- Y

f

?

the following hold:

• f ∈ P and g is étale implies that f ′ ∈ P and
• f ′ ∈ P and g is étale surjective implies that f ∈ P .



18 Vladimir Hinich and Arkady Vaintrob

Let P be a local property of morphisms in Sp. We say that a repre-
sentable morphism f : X → Y of Sp-orbifolds satisfies P if its base change
f ′ : X0 → Y0 satisfies P , where Y0 → Y is obtained from a presentation Y• of
Y.

The following classes of morphisms are local: smooth (= submersive),
étale, étale surjective, proper, open embedding, and finite (=proper with
finite fibers).

Locality of étale surjective morphisms is important for the following
description of the 2-category of orbifolds.

2.5.5. Proposition. The 2-category Sp-Orbi is equivalent to the 2-category
whose objects are Sp-groupoids and morphisms are defined as in Proposi-
tion 2.3.8.

Proof. If X• is a presentation of X, the corresponding map X0 → X is étale
surjective since its base change with respect to the morphism X0 → X is
s : X1 → X0 which is étale and admits a section.

Vice versa, assume a : Y → X is étale surjective. Consider X0 = Y , and
X1 = Y ×X Y . The orbifold X1 is representable and, since it is étale over
X0 ∈ Sp, it belongs to Sp.10 Therefore we found a Sp-groupoid X• presenting
X.

Let X0 → X and Y0 → X be étale surjective and let Z0 = X0 ×X Y0.
Let X•, Y• and Z• be the presentations of X constructed as above from the
maps X0 → X, Y0 → X, Z → X. Then the maps Z• → X• and Z• → Y• are
acyclic fibrations in the sense of 2.3. �

Thus, the 2-category Orbi can be defined in terms of of Sp-groupoids.
By using language of stacks we do not gain new “expressive power”. However,
this language has the same advantages in dealing with Sp-orbifolds as it has
in the context of algebraic geometry.

Proposition 2.5.5 implies that the 1-category obtained from Orbi by
identifying isomorphic morphisms, is equivalent to the localization of the
category of Sp-orbifolds by the collection of acyclic fibrations. The latter
category is what Moerdijk [41] calls the category of orbifolds.

2.6. Some examples and constructions

2.6.1. Points and the coarse space. Let Sp be of one of the non-algebraic
categories of spaces 2.1.(i)-(v). For an Sp-orbifold X define |X| as the set of
connected components of the groupoid X(point). If X is represented by an
Sp-groupoid X•, one has a natural surjection X0 → |X|. The set |X| endowed
with the quotient topology is called the coarse space of X. Open subsets
of |X| are in a one-to-one correspondence with (equivalence classes of) open
substacks of X.

10This is true even in the case when Sp is the category of schemes, see [33, 6.17].
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If Sp is of algebraic type (vi) or (vii), the points ofX are defined as classes
of equivalent objects of X(Spec K), where K is a field and the equivalence
allows to extend the field K.

The set of points |X| is endowed with the Zariski topology, whose open
sets are defined by points |U| of open suborbifolds U of X (see details in [35]).

If Sp is the category of complex manifolds the coarse space of an Sp-
orbifold has a natural structure of a complex space. If Sp is the category of
schemes of finite type over a locally Noetherian base, the coarse moduli space
is an algebraic space by a result of Keel-Mori, see [31].

2.6.2. Global quotient. Let X ∈ Sp and let G be a finite group acting on
X . Then the Sp-orbifold [G\X ] associated to the transformation groupoid
(G\X)• (see 2.2.5) is called the global quotient orbifold.

2.6.3. Change of the base category. Let F : Sp1 → Sp2 be a functor between
two categories of spaces from the list 2.1 that preserves étale morphisms,
coverings and proper morphisms, as well as the fiber products. Then the
functor F extends to the corresponding categories of Sp-groupoids. Using
Proposition 2.3.8 and Proposition 2.5.5, we obtain, up to 2-equivalence, a
functor

F : Sp1-Orbi - Sp2-Orbi.

Examples of this construction provide various forgetful functors. A less
obvious example is the functor assigning to a scheme of finite type over C its
analytification, see [45, exposé XII].

One of the goals of this paper is to construct maps from the augmented
Teichmüller space T (which is a topological space) to stacks of admissible
coverings Adm considered either as a Deligne-Mumford stack or as an orbifold
in the category of complex spaces (see 2.6.4). The above construction allows
one to define the desired map as a 1-morphism in the category of topological
orbifolds.

This may seem a weak notion; it is sufficient, however, to be able to pull
back a vector bundle on Adm to T (see 2.7).

2.6.4. Moduli stacks. In this paper a few moduli stacks play an important
role.

According to [16] and [32] the functor assigning to each scheme S the
groupoid of families of stable curves of genus g with n punctures over S,
is represented by a smooth projective Deligne-Mumford stack. We denote it
Mg,n. Its open substack Mg,n represents the groupoid of smooth families.

The stack of admissible coverings Admg,n,d assigns to a scheme S the
groupoid of admissible coverings of degree d of S-families of stable curves of
genus g unramified of n points (see [4, Sect. 4]). This is a proper Deligne-
Mumford stack having a projective coarse moduli space, see [40]. Similarly,
given a finite group H , we denote by Admg,n(H) the stack of admissible
H-coverings.
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These are algebraic orbifolds (i.e. Sp is the category of schemes) in the
sense of our definition. We will prove in Section 4 that the analytifications
of the stacks M, M, Adm represent the corresponding groupoids of analytic
families (of stable curves or of admissible coverings).

2.6.5. Gerbes.

Definition. A morphism f : X→ Y of Sp-orbifolds is called a gerbe if

• f : X→ Y is surjective.
• ∆ : X→ X×Y X is surjective.

The first condition means that for any object y ∈ YU there exists a covering
V → U and an object x ∈ XV such that f(x) is isomorphic to yV . The
second condition means that given a pair of objects x1, x2 in XU and an
isomorphism θ : f(x1)→ f(x2) in YU , there exists a covering V → U and an
isomorphism η : x1V → x2V such that f(η) = θ.

A gerbe f : X → Y is called split if there exists a morphism s : Y → X

such that the composition f ◦ s is equivalent to idY.
A typical example of a split gerbe is given by a finite group trivially

acting on a manifold. Here is a non-split example. Let G̃ → G be a surjec-
tive homomorphism of finite groups. Let G act on a manifold X . Then the
morphism

[G̃\X ] - [G\X ]

is a gerbe which is not necessarily split.
Note that a base change of a gerbe is a gerbe and that for any gerbe

X → Y there exists a covering Y′ → Y such that the base change X′ → Y′

splits. All this immediately follows from the definition.

2.7. Sheaves and vector bundles on orbifolds

A sheaf (or a vector bundle) on an orbifold X is given by a compatible col-
lection of sheaves (vector bundles) on each étale neighborhood f : X → X.
Here is an appropriate definition.

2.7.1. Definition. A sheaf F on an orbifold X is a collection of the following
data:

• Assignment, for each étale morphism f : X → X, of a sheaf Ff on
X ∈ Sp.
• An isomorphism of sheaves

θf,g,φ,α : φ∗(Fg)→ Ff

for each quadruple (f, g, φ, α), where f : X → X and g : Y → X are
étale morphisms, φ : X → Y is a morphism in Sp and α : f → g ◦ φ a
morphism in X(X).

The isomorphisms θ should be compatible with respect to compositions, i.e.
for any morphisms h : Z → X, ψ : Y → Z, β : g → h ◦ ψ we have

θ1 ◦ φ∗(θ2) = θ12,
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where θ1 = θf,g,φ,α, θ2 = θg,h,ψ,β, θ12 = θf,h,ψ◦φ,(βφ)◦α and

βφ : g ◦ φ→ h ◦ ψ ◦ φ
is induced by β.

A vector bundle on orbifolds is defined similarly.
Let X• be a presentation of X. A sheaf (resp., a vector bundle) F on

X gives a sheaf (a vector bundle) F0 on X0 together with an isomorphism
θ : s∗(F0)→ t∗(F0) of sheaves onX1 satisfying the cocycle condition onX2. It
is a standard fact that the above assignment is an equivalence of categories.
In particular, if X = [G\X ], where G is a finite group, and X ∈ Sp, then
sheaves (resp., vector bundles) on X are the same as G-equivariant sheaves
(vector bundles) on X .

2.7.2. Inverse image. Given a morphism of orbifolds f : X → Y one can
choose presentations X• and Y• of X and Y so that f lifts to a map

f• : X• → Y•

of Sp-groupoids. Then a sheaf (resp., a vector bundle) F on Y is given by
a sheaf (a vector bundle) F0 on Y0 together with the descent data (an iso-
morphism θ : s∗(F0) → t∗(F0) satisfying the cocycle condition). The inverse
image f∗

0 (F0) together with the inverse image descent data define a sheaf (a
vector bundle) on X . One can easily check that the result does not depend
on the choice of presentations for X and for Y. This defines the inverse image
functor f∗.

3. Satake orbifolds

In this section the category of spaces Sp is either the category of C∞-
manifolds or of complex manifolds.

Originally orbifolds were defined by Satake [44] using the language of
orbifold charts. This approach works only for effective orbifolds which is not
sufficient for our purposes.

In this section we present a generalization of Satake’s description of
orbifolds in terms of charts and atlases which also works for non-effective
orbifolds and has some other advantages. We will show that this generalized
Satake definition of Sp-orbifolds is equivalent to the one based on the language
of stacks from Section 2.4. Even though the definition in terms of stacks is
more natural, we need to use charts and atlases in Section 6 in order to
construct a complex orbifold structure on quotients of the augmented Teich-
müller space.

In Section 3.1 we define Satake orbifold atlases. Our definition is more
general than the original one given by Satake in [44]. Our atlases, in addition
to orbifolds charts, contain information about admissible maps between the
charts. This allows us to incorporate non-effective orbifolds. We prove that
every Sp-orbifold has such an atlas.
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In Section 3.2, conversely, we show that any Satake orbifold specified
by a collection of (generalized) orbifold charts and admissible morphisms
between them corresponds to an Sp-orbifold. This orbifold is constructed as
2-colimit (in an appropriate sense) of the global quotients defined by the
charts.

Our method has several advantages over the standard construction of
an equivalence class of groupoids from a Satake orbifold (see e.g. [41]). First,
we define the associated Sp-orbifold by a universal property which is very
convenient in applications. Second, our procedure works with non-effective
orbifolds as well as with effective ones. And third, the same construction
works both for C∞ and complex orbifolds.

3.1. Geographical approach: charts and atlases

Recall the following fact.

3.1.1. Lemma. Let X• be an Sp-groupoid. Let x ∈ X0 and

G = Aut(x) = {γ ∈ X1|s(γ) = t(γ) = x}.
For any open neighborhood V of x ∈ X0 there exists an open neighborhood
U ⊂ V of x so that the restriction of X• to U is isomorphic to a quotient
groupoid (G\U)•.

Proof. See proof of Theorem 4.1 in [41]. �

This lemma implies that any Sp-orbifold can be covered by open sub-
orbifolds of the form [G\U ], where G is a finite group.

A pair (U,G) as above is called an orbifold chart of X (see a more formal
definition below). An orbifold chart (U,G) is called effective if the action of
G on U is effective.

In [44] Satake defined an orbifold (V -manifold in his terminology) as a
topological space endowed with an atlas of effective orbifold charts. We will
call such objects effective Satake orbifolds. Satake proved that every effective
Satake orbifold can be presented as a quotient of a manifold by a compact
group acting with finite stabilizers. In [41] Moerdijk and Pronk deduce from
this that an effective Satake orbifold can be presented by a C∞-groupoid.

In Section 3.2 we define general (not necessarily effective) Satake orbi-
folds and construct an orbifold atlas for arbitrary orbifold in the sense of
Section 2. We also present a new construction that associates to a general
Satake orbifold a C∞ (or complex) orbifold.

We begin with formal definitions of orbifold charts and atlases.

3.1.2. Abstract orbifold charts.

Definition. An abstract orbifold chart is a pair (V,H) where V ∈ Sp and H
is a finite group acting on V . A morphism of abstract orbifold charts

f : (V,H) - (V ′, H ′)

is a pair (fV , fH), where fV : V → V ′ is a morphism in Sp and fH : H → H ′

is a group homomorphism, such that
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• the map fV is fH-equivariant and
• the induced map of orbifolds

[H\V ] - [H ′\V ′]

is an open embedding (see Section 2.5.4).

An abstract orbifold chart (V,H) is called effective if H acts effectively
on V .

The category of abstract orbifold charts will be denoted by Charts.

3.1.3. Remarks.

(i) The second condition in the definition of morphism of charts can be
reformulated as follows. After a base change, the map [H\V ]→ [H ′\V ′]
turns into [H\(H ′× V )]→ V ′. The latter map is an open embedding if
and only if
• the kernel of the map fH : H → H ′ acts freely on V and
• the induced map from the quotient space H ′×H V to V ′ is an open
embedding.

(ii) If f is a map of abstract orbifold charts, then the map fV is étale
because it is the composition of an open embedding V → H ′ × V , the
étale morphism

H ′ × V → [H\H ′ × V ]

and the open embedding described in the previous remark.

3.1.4. Definition. Let X be a Hausdorff topological space.
An orbifold chart of X is a collection (V,H, π : V → X) where (V,H) ∈

Charts and π is a continuous map identifying the quotient V/H with an open
subset of X . An orbifold chart (V,H, π) of X is called effective if the abstract
orbifold chart (V,H) is effective.

A morphism
f : (V,H, π)→ (V ′, H ′, π′)

of orbifold charts of X is a morphism (fV , fH) of the abstract orbifold charts
satisfying the compatibility π = π′ ◦ fV .

The category of orbifold charts of X will be denoted Charts/X .

Note that a morphism f : (V,H, π) → (V ′, H ′, π′) of effective orbifold
charts is uniquely determined by its first component fV .

Let (V,H, π) be an orbifold chart. Any element h ∈ H defines the inner
automorphism h of (V,H, π) by the formulas

hV (x) = h(x), hH(g) = hgh−1.

The effective version of these notions is considerably simpler due to the
following property of effective orbifold charts.

3.1.5. Lemma. Let f, g : (V,H, π) → (V ′, H ′, π′) be two injective maps be-
tween connected effective orbifold charts. Then there exists h ∈ H ′ so that
g = h ◦ f .
Proof. See Proposition A.1 in Moerdijk-Pronk [41]. �
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The following example shows this does not hold in general. Let H act
trivially on V and let φ be a non-inner automorphism of H . Then the pair
(idV , φ) is an automorphism of (V,H, idV ) which cannot be obtained from
(idV , idH) by conjugation.

As a special case of Lemma 3.1.5 we deduce that if a chart (V,H, π) is
effective, the semigroup of endomorphisms End(V,H, π) identifies with H .

We start with the (more or less standard) definition of effective orbifold
atlases.

3.1.6. Definition. An effective orbifold atlas of a Hausdorff topological space
X is a collection of effective orbifold charts on X covering X , such that for
any two charts (V ′, H ′, π′) and (V ′′, H ′′, π′′) with x ∈ π′(V ′) ∩ π′′(V ′′) there
exists a chart (V,H, π) in the collection and a pair of injective morphisms
from (V,H, π) to (V ′, H ′, π′) and (V ′′, H ′′, π′′) respectively so that x ∈ π(V ).

The notion of equivalent atlases and of the maximal atlas in the effective
case are defined in a standard way.

3.1.7. Definition. A topological space X with a family of equivalent effective
orbifold atlases is called an effective Satake orbifold.

Below we present a general definition of (not necessarily effective) a
Satake orbifold. To be able to work with non-effective atlases, we will have
to specify the admissible morphisms between the orbifold charts explicitly.

Our general definition reduces to 3.1.7 in the effective case (see Re-
mark 3.1.10 below).

The category of the orbifold charts A will satisfy the following proper-
ties.

3.1.8. Definition. A category A is called a chart category if

• For each a ∈ A all endomorphisms of a in A are invertible.
• For each a, b ∈ A the set HomA(a, b) is a (may be, empty) Aut(b)-torsor.

Note that any arrow f : a → b in a chart category A defines a homo-
morphism

Aut(f) : Aut(a) - Aut(b)

uniquely characterized by the property

f ◦ u = Aut(f)(u) ◦ f for u ∈ Aut(a).

3.1.9. Definition. An orbifold atlas of a Hausdorff topological spaceX consists
of

• A chart category A.
• A functor c : A→ Charts/X which sends a ∈ A to the chart

c(a) = (Vc(a), Hc(a), πc(a)) ∈ Charts/X. (6)

• A collection of isomorphisms ι : Aut(a) → Hc(a) compatible with the
action of both groups on Vc(a) such that φ ∈ Aut(a) induces the inner
automorphism of c(a) given by the element ι(φ) ∈ Hc(a).

The above data are assumed to satisfy the following properties.
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(i) The images of the charts c(a) cover the whole X .
(ii) For any x ∈ X belonging to the images of two charts c(a′) and c(a′′),

there exists a ∈ A with a pair of arrows a → a′, a → a′′, such that x
belongs to the image of c(a).

A morphism of orbifold atlases (A, c)→ (A′, c′) is a fully faithful functor

f : A→ A′

of the corresponding chart categories together with an isomorphism of func-
tors

c
≃
- c′ ◦ f.

Two orbifold atlases are called equivalent if they can be connected by a
sequence of morphisms in the above sense.

We will usually suppress the subscript c in equation (6) and will write
simply

c(a) = (V (a), H(a), π(a)) or even c(a) = (V (a), H(a), π).

3.1.10. Remark. Let X be an effective Satake orbifold defined by a set
A of connected effective orbifold charts. Then by 3.1.5 the subcategory of
Charts/X defined by the set A of orbifold charts and all injective morphisms
between them, is a chart category. Thus, our definition 3.1.9 reduces to the
standard definition 3.1.7 in the effective case.

3.1.11. An orbifold atlas of an orbifold. Proposition. Any Sp-orbifold admits
an orbifold atlas in the sense of Definition 3.1.9.

Proof. For an orbifold X, define an atlas category A as follows (see [26, 6.1]).
The objects of A are triples (V,H, π̂), where (V,H) is an abstract orbifold
chart and π̂ : [H\V ]→ X is an open embedding. A morphism

f : (V,H, π̂)→ (V ′, H ′, π̂′)

is a triple (fV , fH , θ), where (fV , fH) is a morphism of abstract orbifold charts

and θ is an isomorphism between π̂ and π̂′ ◦ f̂ , where
f̂ : [H\V ]→ [H ′\ V ′]

is the map of orbifolds induced by (fV , fH). Let X be the coarse space for
X. Define the functor

c : A→ Charts/X

by assigning to the triple (V,H, π̂) ∈ A the orbifold chart (V,H, π), where
π is the composition of the projection V → H\V with the map H\V → X
induced by π̂. Let us check that c : A → Charts/X is an orbifold atlas for
X. According to Lemma 3.1.1, the conditions (i) and (ii) of Definition 3.1.9
are satisfied.

Now we will show that A is a chart category. Let a = (V,H, π̂) be
an object of A. Since π̂ : [H\V ] → X is an open embedding, the cate-
gory Hom([H\V ],X) is equivalent to the category Hom([H\V ], [H\V ]). Thus,
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End(a) is isomorphic to the group of automorphisms of the identity functor
[H\V ]→ [H\V ] and by Lemma 2.3.6 we have

End(a) = Aut(a) = H.

A similar argument proves that Hom(a, b) is an Aut(b)-torsor. �

3.2. An orbifold from a Satake orbifold atlas

In this section we will show that to each Satake orbifold there corresponds an
orbifold in the sense of Definition 2.4.1. This correspondence is natural in a
sense which we will not try to make precise (because we have not introduced
a 2-category structure on Satake orbifolds).

3.2.1. Theorem. There exists a natural construction which assigns to a Satake
orbifold X an Sp-orbifold [X ], such that an orbifold chart (V,H, π) of X gives
an open embeddings of orbifolds

π̂ : [H\V ] - [X ].

In particular, the coarse space of the orbifold [X ] is homeomorphic to the
underlying space of X.

In a certain sense, this result is a converse to Proposition 3.1.11. When
X is an effective C∞ Satake orbifold, it follows from Theorem 4.1 of [41].

We will use Satake orbifolds in the study of quotients of Teichmüller
spaces in Section 6. The construction of a complex orbifold from an orbifold
atlas of will be used in Section 8 to obtain a map from the augmented Tei-
chmüller space Tg,n to the stack of admissible coverings Admg,n,d.

The proof of Theorem 3.2.1 occupies the rest of this section. The idea
is very simple. If a manifold X is covered by open subsets Uα, α ∈ A, then
under some natural assumptions on A, X can be described as the direct limit
of the collection Uα. In our situation the realization [X ] of a Satake orbifold
X will be defined as a (2-) colimit of its orbifold charts. The most difficult
part of this project consists of proving that the resulting stack is an orbifold.

3.2.2. Direct limit of stacks. Recall the notion of direct limit of Sp-stacks.
Since the stacks form a 2-category, it makes more sense to talk about weak
functors into the (2-) category of stacks. Let I be a category. A functor

F : I - Stacks/Sp

is defined as a fibered category

π : F - Iop × Sp

such that for each i ∈ I the fiber

Fi - Sp

is an Sp-stack.
Following [46, VI.6.3] we define Lim

−→
(F ) as the localization of the total

category F with respect to the morphisms of the type α∗ where α ∈ Mor(I).
The resulting localization is still a category over Sp. As we show below,
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Lim
−→

(F ) is fibered over Sp; we denote the associated Sp-stack by Lim
−→

(F ). The

category Lim
−→

(F ) can be described in terms of pseudofunctors as follows. The

composition

Π = pr2 ◦ π : F → Sp

is a fibered category. Choosing a cleavage, we get a pseudofunctor Sp
op →

Cat. Its composition with the total localization functor Cat → Grp gives a
pseudofunctor Spop → Grp, i.e., a cleaved groupoid over Sp which is denoted
by Lim

−→
(F ).

In general, we have no reason to expect that the direct limit Lim
−→

(F ) is

an orbifold, even if the fibers Fi are all Sp-orbifolds. This happens, however,
in some cases. Let, for example, X ∈ Sp and let a finite group G act on X .
These data define an obvious functor

X̃ : BG→ Stacks/Sp

from the classifying groupoid BG of G to Sp and, therefore, to Sp-stacks.

The direct limit Lim
−→

(X̃) is the functor from Sp to groupoids represented by

the quotient groupoid (G\X)•; the associated stack Lim
−→

(X̃) is [G\X ].

3.2.3. Constructing orbifold from an atlas. Let X be a Hausdorff topological
space and let c : A → Charts/X be an orbifold atlas for X , where A is a
chart category. The composition

V : A
c
- Charts/X

pr1- Sp - Stacks/Sp (7)

assigns to a ∈ A the Sp-stack represented by V (a) ∈ Sp.
We define the realization [X ] as Lim

−→
(V). This is an Sp-stack which

depends on X and on the choice of the atlas c : A→ Charts/X of X .
We will prove later that [X ] is essentially independent of the choice of

the atlas.

Let c : A → Charts/X be an atlas and let I be a finite subset of
Ob(A). Define AI as the full subcategory of A which consists of objects
a ∈ A satisfying the condition

Hom(a, i) 6= ∅ for each i ∈ I.
Define XI as the intersection of the images of the charts corresponding to
the elements of I. For each a ∈ AI the chart c(a) has its image in XI . This
gives a functor

cI : AI → Charts(XI).

3.2.4. Lemma. The pair (AI , cI) is an orbifold atlas of XI .

Proof. The only thing we have to check is that the images of the charts of AI
cover the whole XI . This follows from property 3.1.9 (ii) of orbifold atlases
by induction on the cardinality of I. �
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3.2.5. Definition. A collection of arrows fi : ai → b in A with the same target
b ∈ A is called a covering if the maps V (fi) : V (ai)→ V (b) cover V (b).

3.2.6. Lemma. Let B be a subset of Ob(A) and let a ∈ A. Assume that

Im c(a) ⊂
⋃

b∈B

Im c(b).

Then the collection of maps f : x→ a from elements x which can be mapped
into an element of B is a covering.

Proof. Let v ∈ V (a) and let x = π(v). There exists b ∈ B such that x ∈
Im c(b). Then by property 3.1.9 (ii) of orbifold atlases there exists d ∈ A, a
pair of maps α : d → a and β : d → b, and w ∈ V (d) such that x = π(w).
This implies that the elements v and V (α)(w) belong to the same H(a)-orbit.
This means that by replacing α with its H(a)-conjugate, we can assure that
v = V (α)(w). �

Now, we are ready to prove that the realization does not depend on the
choice of an atlas.

3.2.7. Proposition. Let

B - A
c
- Atlas/X

be a morphism of orbifold atlases of X. Suppose, as above, that

V : A→ Sp→ Stacks/Sp

sends a ∈ A to V (a) and let VB be the restriction of V to B.
Then the map of the realizations

Lim
−→

(VB) - Lim
−→

(V)

is an equivalence.

Proof. We define a subatlas B̄ in A by the formula

B̄ = {a ∈ A|∃b ∈ B : Hom(a, b) 6= ∅}.
Since B̄ contains the image of B in A, the morphism of atlases is the com-
position

B → B̄ → A
c
- Atlas/X.

We will prove that the functors

B → B̄ and B̄ → A

induce an equivalence of the corresponding direct limits.
For each a ∈ B̄ choose an arrow f : a → b with b ∈ B. Given a

compatible collection of maps V (b)→ X for b ∈ B, we will get a collection of
maps V (a)→ X for a ∈ B̄. To prove that it is automatically compatible, we
will check that if g : a→ b′ is another arrow with b′ ∈ B, the compositions

V (a)→ V (b)→ X and V (a)→ V (b′)→ X

are canonically isomorphic.
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We claim that a is covered by the arrows u : x→ a which can be placed
in a commutative diagram (8), where b′′ ∈ B.

x

a

u

?

b′′
-

b

f

?
�

b′
?

g

-

(8)

Lemma 3.2.4, for I = {b, b′}, together with Lemma 3.2.6 applied to the
atlas B̄I and to the subset Ob BI guarantee that a is covered by arrows
u : x→ a, such that x can be mapped to an element b′′ ∈ B which, in turn,
can be sent to b and to b′. Since A is a chart category, the arrows b′′ → b and
b′′ → b′ can be chosen so that the diagram (8) becomes commutative.

The equivalence between the compositions

V (x) - V (b′′) - V (b) - X

and

V (x) - V (b′′) - V (b′) - X

is now immediate. Since the maps u : x → a cover a, this gives the required
equivalence between the compositions

V (a)→ V (b)→ X and V (a)→ V (b′)→ X .

Now let us prove a similar statement for the functor B̄ → A. Any object
a ∈ A can be covered by objects of B̄. Thus, for any stack X a map V (a)→ X

is uniquely defined by a compatible collection of maps αf : V (bf ) → X for
each f : bf → a with bf ∈ B̄. Given a compatible collection of maps V (b)→ X

for b ∈ B̄, the collection of maps V (a)→ X so defined will be automatically
compatible by Lemma 3.2.6. This proves that the functor Lim

−→
VB̄ → Lim

−→
V is

an equivalence. �

3.2.8. Corollary. Assume that a Satake orbifold X admits a global chart, i.e.
a chart (V,H, π) with surjective π : V → X. Then the realization [X ] is
naturally equivalent to [H\V ].

Proof. Let c : A → Charts/X be an orbifold atlas of X and let a ∈ A
define a global chart c(a) = (V,H, π). The embedding BH → A which sends
the unique object of BH to a gives an embedding of orbifold atlases. The
realization Lim

−→
VBH is precisely [H\V ]. �
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3.2.9. The induced atlas. Let c : A → Charts/X be an orbifold atlas of X
and let U be an open subset of X . The induced orbifold atlas of U is the
functor

cU : A→ Charts/U

defined as the composition of c : A→ Charts/X with the restriction functor

Charts/X → Charts/U

which sends a chart (V,H, π) to (π−1(U), H, π|π−1(U)).
By definition, a canonical morphism of the realizations [U ] → [X ] is

defined.
For example, if U is the image in X of a chart c(a) = (V,H, π), then

by 3.2.8 the realization [U ] is equivalent to [H\V ].

Later we will need the following explicit description of fiber products in
Charts/X .

3.2.10. Lemma. Let f1 and f2 be two morphisms of orbifold charts

fi : (Vi, Hi, πi) - (V,H, π), i = 1, 2.

Define the triple (V12, H12, π12) by the formulas

V12 = V1 ×V V2, H12 = H1 ×H H2, π12 = π1 ◦ pr1.
Then the projections

pri : (V12, H12, π12)→ (Vi, Hi, πi), i = 1, 2,

are morphisms of orbifold charts.

Proof. The morphisms fi : Vi → V are étale, therefore, the fiber product V12
exists in Sp and the projections pri : V12 → Vi are étale. Thus we have to
verify that the maps [H12\V12] → [Hi\Vi] are open embeddings. According
to Remark 3.1.3.(i), we need to check two conditions. The first one, that the
kernel of the map pr1 : H12 → H1 acts freely on V12, immediately follows
from the similar property of the map f2. The second is that the map

α : H1 ×H12 V12 → V1

is an open embedding. This map is étale since H12 acts freely on H1 × V12
and pr1 is étale. Thus, it is enough to check that α is injective.

Assume that we have

hi ∈ H1, (xi, yi) ∈ V12 for i = 1, 2

such that h1(x1) = h2(x2). We need to find (u, v) ∈ H12 such that

h1 = h2u and (x2, y2) = (u, v)(x1, y1).

Since we must set u = h−1
2 h1, we need to show that there exists v ∈ H2

satisfying the conditions

f2(v) = f1(h
−1
2 h1) and y2 = vy1. (9)
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Applying f1 to the equality h1(x1) = h2(x2) one obtains

f1(h1)f2(y1) = f1(h1)f1(x1) = f1(h2)f1(x2) = f1(h2)f2(y2).

Since f2 is a morphism of orbifold charts, the above equation implies the
existence of v ∈ H2 which satisfies

f1(h1) = f1(h2)f2(v), y2 = vy1.

This is equivalent to equation (9). �

3.2.11. Intersection of charts. Now we will describe an operation that as-
signs to every pair of objects in the chart category A an orbifold chart. For
manifolds it corresponds to the usual operation of intersection of charts.

Proposition-Definition. Let c : A → Charts/X be an orbifold atlas. There
exists a natural operation that assigns to a pair of objects a1, a2 ∈ A a chart
c(a1 ∩ a2) together with morphisms

pri : c(a1 ∩ a2)→ c(ai), i = 1, 2,

which satisfy the following universal property.
For each pair of morphisms

α1 : b→ a1, α2 : b→ a2

there exists a canonical morphism of charts

c(α1, α2) : c(b)→ c(a1 ∩ a2)
such that

pri ◦ c(α1, α2) = V (αi), i = 1, 2.

We call the chart

c(a1 ∩ a2) = (V (a1 ∩ a2), H(a1 ∩ a2), π(a1 ∩ a2))
the intersection of a1 and a2.

This operation resembles a direct product operation, but it is not a di-
rect product. We call it intersection because of the lack of a more appropriate
term.

Proof. Let ci := c(ai) = (Vi, Hi, πi), i = 1, 2 be two orbifold charts. We will
construct a chart (V12, H12, π12) together with a pair of maps

pri : (V12, H12, π12) - (Vi, Hi, πi)

satisfying the universal property.
Consider an open subset U = π1(V1)∩π2(V2) of X . We can view it as a

Satake orbifold with the induced atlas of orbifold charts, see 3.2.9. The charts
(Ui, Hi, πi), where Ui = π−1

i (U), have the same image U in X . Therefore, by
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Corollary 3.2.8, the maps [H1\U1]→ [U ] and [H2\U2]→ [U ] are equivalences.
Consider the 2-fiber product

V12 = U1 ×[U ] U2,

where the maps Ui → [U ] are defined as the compositions

Ui → [Hi\Ui] - [U ].

Since V12 is a representable Sp-orbifold, we may assume that V12 ∈ Sp.

The group H2 acts freely on V12 with the quotient U1. Similarly, the
group H1 acts freely on V12 with the quotient U2. These actions commute
and define an action of H12 = H1×H2 on V12. Thus we have constructed an
orbifold chart (V12, H12, π12) with π12 being the composition of the projection
to U1 and π1. We claim this is the chart we need.

Let c = (W,H, ρ) be a chart. A map from c to c(a1 ∩ a2) is given by a
pair of maps W → V12 and H → H1 ×H2. It is uniquely defined by a triple
(f1, f2, θ) where

fi : c→ (Ui, Hi, πi)

are morphisms of charts and θ : ψ1 → ψ2 is an isomorphism between the two
compositions

ψi :W - Ui - [Hi\Ui] - [U ], i = 1, 2. (10)

Let αi : b → ai, i = 1, 2, be two arrows in A. We have a pair of
morphisms

c(αi) : c(b) = (W,H, ρ)→ (Vi, Hi, πi).

Since ρ(W ) ⊆ U = π1(V1) ∩ π2(V2), the morphisms c(αi) factor through
(Ui, Hi, πi). By definition of realization, each of the compositions

ψ1 :W - U1
- [H1\U1] - [U ] (11)

and

ψ2 :W - U2
- [H2\U2] - [U ] (12)

is canonically isomorphic to the composition

W - [ρ(W )] - [U ].

Therefore, one has a canonical choice of isomorphism between (11) and (12),
so that a map c(b)→ c(a1 ∩ a2) is defined. �

Now we are ready to prove that the realization [X ] of a Satake orbifold
is an orbifold in the sense of Definition 2.4.1. This will be the last step in the
proof of Theorem 3.2.1.

3.2.12. Theorem. Let X be a Satake orbifold. Then its realization [X ] is an
orbifold.
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Proof. Let c : A → Charts/X be an orbifold atlas of X , V : A → Sp

be the obvious functor assigning V (a) to a ∈ A. We wish to present the
stack Lim

−→
(V) by an Sp-groupoid. The problem here is in the fact that the

definition of Lim
−→

(V) includes localization of the total category which may

destroy representability.
Fortunately, the intersection operation 3.2.11 allows one to present the

localization in a very explicit way.
As it was done in 3.2.2, we will interpret the functor

V : A - Sp, a 7→ V (a)

as a category X fibered over Aop × Sp. The fibers Xa,M at (a,M) ∈ Aop × Sp

are discrete; one has Xa,M = Hom(M,V (a)) for connected M ∈ Sp.
The category X considered as a fibered category over Sp comes from a

category in Sp (which we denote by the same letter) defined as follows

• The objects of X is
∐

a∈A

V (a).

• The morphisms of X is
∐

α∈Mor(A)

V (s(α))

• The map s : Mor(X)→ Ob(X) restricted to the α-component is idV (s(α)).
• The map t : Mor(X)→ Ob(X) restricted to the α-component is V (α).

Here, as before, sα and tα denote the source and the target of an arrow α.
Now we will present an étale groupoid Y in Sp such that the correspon-

ding fibered category over Sp is obtained from X by the full localization of
the fibers. Thus Y will represent Lim

−→
(V).

Define the groupoid Y as follows.

• Ob(Y) = Ob(X).

• Mor(Y) =
∐

a1,a2∈A

V (a1 ∩ a2) (we are using here the notation of 3.2.11).

• The maps s, t : Mor(Y)→ Ob(Y) are just the projections pr1, pr2 from
V (a1 ∩ a2) to V (a1) and to V (a2).

The structure maps s, t are étale. The composition in Y is given by the
canonical projections

c(a1 ∩ a2)×c(a2) c(a2 ∩ a3) - c(a1 ∩ a3), a1, a2, a3 ∈ A
defined as follows.

Consider the chart

c = (V,H, π) = c(a1 ∩ a2)×c(a2) c(a2 ∩ a3).
A map from c to c(a1∩a3) is uniquely determined by maps c→ c(ai), i = 1, 2,
and an isomorphism between the two maps from V to [π1(V1)∩ π3(V3)]. The
maps c→ c(ai), i = 1, 2, are defined by

pr1 : c(a1 ∩ a2)→ c(a1) and pr2 : c(a2 ∩ a3)→ c(a3).

To get an isomorphism of the two maps from V we notice that all the
realizations involved, [πi(Vi)] and their double and triple intersections, are
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global quotient orbifolds by 3.2.8 and their inclusions are open embeddings of
orbifolds. Since π(V ) belongs to the triple intersection π1(V1)∩π2(V2)∩π3(V3),
the isomorphisms between the two maps from V to [π1(V1) ∩ π2(V2)] and
between the two maps from V to [π2(V2) ∩ π3(V3)] induced by the maps
c → c(a1 ∩ a2) and c → c(a2 ∩ a3) can be realized as isomorphisms between
two pairs of maps from V to [π1(V1) ∩ π2(V2) ∩ π3(V3)]. Their composition,
composed with the open embedding of [π1(V1)∩π2(V2)∩π3(V3)] into [π1(V1)∩
π3(V3)], yields the required datum.

The canonical map ι : X → Y of Sp-categories is defined as follows. It
is identical on the objects. For any morphism α : a → b in A a canonical
map ια : c(a)→ c(a∩ b) corresponds to the pair (ida, α). This induces a map
Vια : V (a)→ V (a ∩ b) which assembles into the map ι : Mor(X)→ Mor(Y).

We claim that for connected M ∈ Sp the groupoid Y(M) is the (full)
localization of the category X(M).

One has

ObX(M) = ObY(M) =
∐

a∈A

Hom(M,V (a)) = {(a, f)|a ∈ A, f :M → V (a)}.

Furthermore,

MorX(M) =
∐

α∈Mor(A)

Hom(M,V (sα)) = {(α, f)|α ∈Mor(A), f :M → V (sα)},

where

s(α, f) = (sα, f), and t(α, f) = (tα, V (α) ◦ f :M → V (sα)→ V (tα)).

Similarly,

MorY(M) =
∐

a,b∈A

Hom(M,V (a ∩ b)) = {(a, b, f)|a, b ∈ A, f :M → V (a∩ b)},

where

s(a, b, f) = (a, V (pr1) ◦ f), and t(a, b, f) = (b, V (pr2) ◦ f). (13)

In the formula (13) the maps pr1 : c(a ∩ b) → c(a) and pr2 : c(a ∩ b)→ c(b)
are the standard projections.

The functor ι : X(M)→ Y(M) assigns to an arrow (α, f) in X(M) the
arrow (sα, tα, V (id, α) ◦ f) where c(id, α) : c(a) → c(a ∩ b) is defined by
the maps

id : a→ a, and α : a→ b

in A. A direct calculation shows that

(a, b, f) ◦ ι(pr1, f) = ι(pr2, f) (14)

where, as above, pr1 : c(a ∩ b)→ c(a), pr2 : c(a ∩ b)→ c(b) are the standard
projections.

Let G be a groupoid and let F : X(M) → G be a functor. We claim
there exists a unique F̄ : Y(M)→ G such that F = F̄ ◦ ι. On objects F̄ must
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coincide with F , since Ob(X(M)) = Ob(Y(M)). From (14) it follows how F̄
should act on morphisms:

F̄ (a, b, f) = F (pr2, f) ◦ F (pr1, f)−1. (15)

Thus F̄ is unique. To prove its existence, we have to check that F̄ defined
by (15) commutes with compositions. This is a straightforward calculation.

This completes the proof of Theorem 3.2.12. �

Now we can finish the proof of Theorem 3.2.1. Since [X ] is represented
by the groupoid Y, with

Ob(Y) =
∐

a∈A

V (a),

for every a ∈ A we have an open suborbifold Ua represented by the Sp-
groupoid G•(a) = (G0(a), G1(a)) with

G0(a) = V (a) and G1(a) = V (a ∩ a).

Since the set of arrows G1 can be identified with

V (a)×[Ha\Va] V (a) = H(a)× V (a),

we see that the open suborbifold can be identified with the global quotient
[H(a)\V (a)]. �

Note the following important corollaries of this theorem.

3.2.13. Corollary. Let X be a Satake orbifold and let [X ] be its realization. Let
Y be an arbitrary orbifold. Then a map f : [X ]→ Y of orbifolds is determined
by the following data:

• For each a ∈ A a map

fa : [H(a)\V (a)]→ Y

(where, as usual, (V (a), H(a), π(a)) = c(a) is the chart corresponding
to a).
• For each morphism α : a→ b in A a 2-morphism

θα : fa → fb ◦ [c(α)]

where for a morphism φ of orbifold charts we denote by [φ] the cor-
responding map of quotient orbifolds.

These data are required to satisfy obvious compatibility condition for θα.

3.2.14. Proposition. The categories of sheaves (or categories of vector bun-
dles) on a Satake orbifold X and its realization [X ] are canonically equivalent.

Proof. This result follows from our construction of the realization of a Satake
orbifold. �



36 Vladimir Hinich and Arkady Vaintrob

4. Algebraic moduli versus analytic moduli

4.1. Two ways of passing from algebraic to analytic families

The two ways of looking at orbifolds discussed in Sections 2 and 3—as
groupoid-valued functors on a certain category of spaces (manifolds) and as
geometric objects represented by groupoids in the category of spaces—suggest
two possible ways of passing from one category of manifolds to another. We
are particularly interested in the passage from the category of schemes (of
finite type over C) to the category of analytic spaces.

The first way of passing from schemes to complex spaces is to replace
a functor on the category of schemes with a functor on complex spaces. For
example, the functor of families of stable curves over schemes becomes the
functor of families of stable Riemann surfaces.11

The second way is the change of the base category mentioned in 2.6.3.
That is for a Deligne-Mumford stack X represented by a groupoid X• we can
apply the analytification functor which produces a groupoidXan

• representing
an orbifold in the analytic category.

Of course, since the first procedure is not even formally defined, we
cannot expect that these two processes always give the same result.

However, as we show in this section, for the moduli spaces of stable
punctured curves and of admissible coverings the two procedures are equi-
valent.

Let Mg,n be the stack of stable complex curves of genus g with n punc-
tures and let Admg,n,d (resp. Admg,n(H)) be the stack of admissible coverings
of degree d (resp. of admissible H-coverings).

These stacks are proper Deligne-Mumford stacks and, therefore, Sp-
orbifolds where Sp is the category of schemes.

In this section we prove the following result.

4.1.1. Theorem. The analytification of the stack Mg,n (resp., of Admg,n,d,
resp., of Admg,n(H)) represents the functor of analytic families of stable
curves of genus g with n punctures (resp., of admissible coverings of degree
d of curves of genus g unramified outside of n points, resp., of H-admissible
coverings).

Here is a plan of the proof. First, following M.Hakim [22], we define
algebraic families whose base is an arbitrary locally ringed topological space.
The analytifications of the algebraic moduli stacks automatically represent
the corresponding algebraic families with bases in the category of complex-
analytic spaces. The rest follows from the fact proved in Section 4.3 that any
complex-analytic family of stable complex curves is necessarily projective
(and therefore algebraic). This is a generalization of the well-known fact that
every compact complex manifold of dimension one is projective. Thus our
proof does not work for families of algebraic varieties of dimension higher
than one.

11This procedure is not defined for an arbitrary Deligne-Mumford stack.
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4.2. Analytic families of algebraic curves

When we speak about families of varieties parametrized by an analytic space,
we usually mean an analytic family of the corresponding complex analytic
spaces. Sometimes it is important to have both “analytic” and “algebraic”
directions. This can be done using the notion of a family of schemes paramet-
rized by a ringed topological space introduced by M.Hakim [22] (in a much
greater generality).

We present below a definition of a family of objects of a stack X para-
metrized by a locally ringed topological space. For the stack X = Mg,n

this gives the notion of an analytic family of algebraic curves. Similarly, for
X = Admg,n,d we get the notion of an analytic family of algebraic admissible
coverings.

4.2.1. Definition. Let (X,O) be a locally ringed site and let X be a stack of
groupoids on the category of affine schemes. Let Pre-X(X,O) be the fibered
category over X whose fiber over U ∈ X is the groupoid

Pre−X(X,O)U = X(O(U)).

Denote by X(X,O) the groupoid of global sections of the stack associated to
the fibered category Pre-X(X,O). Objects of X(X,O) are called families of
objects of X parametrized by (X,OX).

For X = Sch this gives to the notion of a scheme over (X,O) (see [22]);
for X = Mg,n we get the notion of an analytic family of stable algebraic
curves, and X = Admg,n,d we obtain the notion of an analytic family of
algebraic admissible coverings.

Thus, by definition, a scheme over (X,O) is given by a collection of the
following data.

• An open covering {Ui} of X ;
• A collection of schemes Yi over Spec O(Ui);
• A compatible collection of isomorphisms of the pullbacks of Yi and of
Yj to Spec O(Uij).

A similar description can be given for X = Mg,n or Admg,n,d.

4.2.2. Proposition. Let X be an algebraic Deligne-Mumford stack of finite type
over C. Then the functor (X,O) 7→ X(X,O) from the category of analytic
spaces to the category of groupoids is representable by the analytification of
X.

Proof. The analytification Xan is defined as follows. Let X be presented by a
groupoid X• where Xi, i = 0, 1 are schemes of finite type over C. Then Xan

is defined as the stack associated to the groupoid Xan
• .

The statement of the proposition follows immediately from the following
facts.

• A map HomLR((X,O), SpecA) → HomCOM(A,Γ(X,O)) is a bijection.
Here the left-hand side Hom is taken in the category of locally ringed
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spaces and the right-hand side Hom in the category of commutative
rings.
• A map X → M from an analytic space X to a scheme of locally finite
type over C in the category of locally ringed spaces lifts canonically to
a map X →Man of analytic spaces.

�

Thus, according to Proposition 4.2.2, the complex-analytic stack M
an

g,n

represents (algebraic) families of stable curves of genus g with n punctures
parametrized by complex-analytic spaces. A similar claim is true for Adman

g,n,d

and Admg,n(H)an .

4.3. Analytic families of analytic curves

Here we prove that any analytic family of stable curves (or of stable ad-
missible coverings or of stable admissible H-coverings) is algebraic, i.e. it
can be obtained as the analytification of an algebraic family. Together with
Proposition 4.2.2 this will give Theorem 4.1.1.

4.3.1. Theorem. Any analytic family (π : X → S, σ1, . . . , σn) of stable punc-
tured curves is projective. In particular, it is an analytification of an algebraic
family over S.

Proof. Let ωπ be the relative dualizing sheaf of π. In the analytic category it
was defined in [43] as π!(OS) where the functor

π! = DX ◦ π∗ ◦DS

is obtained from the inverse image functor by dualization. The morphism π
is a locally complete intersection morphism, therefore it follows (see e.g. [23])
that ωπ is an invertible sheaf. It satisfies the base change formula12 ωπT

=
g∗(ωπ) for a Cartesian diagram

XT
g

- X

T

πT

?
f

- S

π

?

. (16)

Let Di = σi(S) be the divisor in X that corresponds to the ith marked point.
We claim that the invertible sheaf

L =

(
ωπ ⊗ OX(−

n∑

i=1

Di)

)⊗3

12A detailed proof of the base change formula for Cohen-Macaulay morphisms of locally
Noetherian schemes is given in in [14, Theorem 3.6.1] It is based on a local description of
ωπ in terms of Ext functors and on the base change for Ext functors. For local complete
intersections it is given by the compatibility lemma [14, Lemma 2.6.2] whose proof remains
valid in the analytic setting as well.
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gives rise to a finite morphism

j : X → P((π∗(L))
∗).

Indeed, since the restriction of L to every fiber Xs, s ∈ S, is very ample, the
map j is well-defined and its restriction to Xs is a closed embedding. Since π
is proper, j is also proper and thus is finite. This implies that π is projective.

Let Xalg be the scheme over S whose analytification is isomorphic to
X . According to the “relative GAGA” (see Theorem VIII.3.5 in [22]) the
categories of coherent sheaves on X and on Xalg are equivalent.

This implies that the sections σi : S → X are algebraic and also that
any analytic automorphism of X comes from an automorphism of Xalg . This
completes the proof. �

Now we can easily obtain a similar result for families of stable admissible
coverings.

4.3.2. Theorem. Any analytic family of stable admissible coverings

(C → X → S, σ1, . . . , σn)

is projective. The same is true for families of admissible H-coverings.

Proof. The family (X → S, σ1, . . . , σn) is analytification of an algebraic fam-
ily

(Xalg - S, σ1, . . . , σn)

by Theorem 4.3.1. Since the covering C of X is given by a coherent sheaf of
algebras, the result follows by the “relative GAGA” [22, Theorem VIII.3.5].

Finally, to deal with the case of H-coverings, we notice that the balan-
cedness condition in the definition of admissible H-covering (see Section 4.3.1
of [4]) only involves geometric points. Therefore this condition is the same
for analytic and algebraic version. �

5. Teichmüller spaces and quasiconformal charts of M

In the beginning of this section we introduce the Teichmüller spaces Tg,n and

Tg,n and present some facts about them which will be needed later. Then

we construct on M = [Γg,n\Tg,n] an orbifold atlas whose charts satisfy some
very special properties. We call such charts quasiconformal. Our construction
uses a version of the Earle-Marden [37] local holomorphic coordinates on the
Teichmüller space Tg,n. In Section 6 we will use this quasiconformal atlas to
construct an orbifold atlas on quotient of the augmented Teichmüller space
T by finite-index subgroups of the modular group Γ.
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5.1. Teichmüller spaces Tg,n and Tg,n

Here we recall definitions and standard facts about the Teichmüller spaces
Tg,n and Tg,n.

Let us fix a compact oriented surface S of genus g with n boundary
components L1, . . . , Ln and smooth parametrizations

λi : S
1 → Li

compatible with the orientation of S. Here and below, we assume that the
surface S is of hyperbolic type, i.e. 2g + n− 2 > 0.

5.1.1. Definition. Let (X, p1, . . . , pn) be a stable complex curve X of arith-
metic genus g with n punctures pi ∈ X . A marking of the punctured curve
(X, p1, . . . , pn) is a continuous map

φ : S → X

satisfying the following properties

(i) The preimage φ−1(pi) of the ith puncture pi ∈ X is the ith boundary
component Li ⊂ S.

(ii) The preimage φ−1(q) of every node q ∈ X is a simple closed curve in S.
(iii) The map φ induces a homeomorphism

φ−1(Xreg)→ Xreg,

where
Xreg = X −Xsing − {p1, . . . , pn},

is the complement of the sets of nodes and punctures of X .

Two markings φ, φ′ : S → X are called isotopic if φ′ = φ ◦ f , where f is
a diffeomorphism of S, such that

fLi
= IdLi

, i = 1, . . . , n, (17)

and f is isotopic to the identity in the class of diffeomorphisms satisfying (17).

5.1.2. Definition. A punctured stable curve X with an isotopy class of mark-
ings [φ] is called a marked curve.

The set Tg,n of isomorphism classes of marked curves of genus g with n
punctures is called the augmented Teichmüller space.

Remark. Sometimes, when we wish to stress the functorial dependence of the
augmented Teichmüller space on S, we will use the notation T(S) instead of
Tg,n. Of course, T(S) depends, up to non-canonical isomorphism, only on the
genus of S and on the number of its boundary components.

The points (X, [φ]) of Tg,n, where X is a non-singular complex curve,
form the usual Teichmüller space Tg,n.

In order to introduce a topology on Tg,n we need the following notion.

5.1.3. Definition. Let (X, x1, . . . , xn, φ) and (Y, y1, . . . , yn, ψ) be two marked
stable curves. A continuous map f : X → Y is called a contraction if it
satisfies the following conditions.
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(i) f(xi) = yi for i = 1, . . . , n.
(ii) f induces a homeomorphism f−1(Yreg)→ Yreg.
(iii) For every node y ∈ Y its preimage f−1(y) is either a node of X or a

simple closed loop.
(iv) The marking ψ of Y is isotopic to f ◦ φ.

For unmarked punctured curves (X, x1, . . . , xn) and (Y, y1, . . . , yn) a
contraction is defined as any continuous map f : X → Y satisfying conditions
(i)—(iii).

The following sets form a basis of the topology of the augmented Tei-
chmüller space. Choose a marked curve

(Y, y1, . . . , yn, [ψ]) ∈ Tg,n,

a number ε > 0 and an open subset N of Y containing all the nodes of Y .
The neighborhood UN,ε ⊂ Tg,n is defined as the set of all

(X, x1, . . . , xn, [φ]) ∈ Tg,n

for which there exists a contraction f : X → Y such that the restriction of f
to f−1(Y − N̄) is (1 + ε)-quasiconformal.

5.1.4. Modular group action. Let

Γg,n = π0(Diff
+(S/∂S))

be the Teichmüller modular group, i.e. the group of isotopy classes of orien-
tation preserving diffeomorphisms of S identical on the boundary ∂S. (This
group is also known as the mapping class group of the n-punctured surface
of genus g, cf. [29]). We will usually denote this group by Γ(S) or simply by

Γ. The modular group Γ naturally acts on Tg,n and on Tg,n as follows:

[γ](X, [φ]) := (X, [φ ◦ γ−1]), (18)

where [γ] ∈ Γ is a mapping class represented by a diffeomorphism γ and
φ : S → X is a marking of X .

This action allows the following description of markings of a nodal curve
X0 in terms of markings of nearby smooth curves. Let X be a smooth curve
and let X0 be a nodal curve.

Assume there is a contraction of X to X0 that contracts several disjoint
simple closed curves C1, . . . , Cr on X .

5.1.5. Proposition. There is a natural bijection between the set of isotopy
classes of markings of the nodal curve X0 and the set of G-orbits in the set
of isotopy classes of markings of X, where G is a subgroup of Γ generated by
the Dehn twists around the curves C1, . . . , Cr.

�

We will use the following classical results about the Teichmüller spaces
Tg,n and Tg,n and the action of the modular group on them (for details see
[3] and references there).



42 Vladimir Hinich and Arkady Vaintrob

5.1.6. Theorem. (i) The space Tg,n has a structure of a complex manifold of
complex dimension 3g+n−3 diffeomorphic to an open ball in R6g+2n−6.

(ii) The quotient Γ\Tg,n is isomorphic, as a complex space, toMg,n.

(iii) The quotient space Γ\Tg,n is homeomorphic toMg,n.

Here and below Mg,n (resp., Mg,n) denotes the complex space asso-
ciated to the moduli stack of compact Riemann surfaces of genus g with n
marked points (resp., its Deligne-Mumford compactification).

5.2. Complex structure of Tg,n

We present below a modular description of the complex space Tg,n (see [21,
17, 18]).

5.2.1. Definition. Let B be a complex space. A family of smooth curves of
genus g with n punctures over the base B is a flat proper morphism of
complex spaces π : C → B with n sections σi : B → C, such that fibers of π
are complex curves of genus g and the images of the sections σi, i = 1, . . . , n,
are pairwise disjoint.

To each b ∈ B we assign a set

Pb = π0(Diff
+(S,Cb)),

where Cb = π−1(b). Since π is topologically a locally trivial fibration, these
sets assemble into a covering

p : P - B

with fibers Pb.

5.2.2. Definition. A marking of a family of smooth curves π : C → B is a
section of the associated covering

p : P (π) - B.

If G ⊂ Γ is a subgroup of the modular group, a section of the covering

pG : G\P (π) - B

is called a G-marking of the family π.

The following result proved in [17, 18] generalizes the theorem of Gro-
thendieck on modular description of the Teichmüller space Tg = Tg,0.

5.2.3. Theorem. For 2g + n > 2, the functor

B 7→ F (B),

where F (B) is the set of isomorphism classes of marked curves of genus g with
n punctures over B, is representable by a complex manifold. The representing
object is isomorphic to the Teichmüller space Tg,n.
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5.3. Quasiconformal atlas for M

In this section we prove the existence of an atlas onM with especially nice
orbifold charts. These charts, which we call quasiconformal, satisfy a collec-
tion of properties described in 5.3.1. Our approach is based on the plumbing
construction of Earle and Marden [37]. This construction produces a family
of stable curves over a polydisk starting with a maximally degenerate curve
X0 and a collection of local coordinates near the nodes of X0. This family of
curves is not everywhere locally universal, i.e. it does not necessarily give an
orbifold chart for the moduli spaceM (see a counterexample in [25]).

However, as we show in this section, open subsets of those coordinate
polydisks which do form an orbifold chart cover the whole moduli space and
therefore give an orbifold atlas with required properties.

To prove that the charts obtained from the plumbing construction cover
the whole moduli space, we proceed as follows. First, for each stable curve X
we describe very special plumbing data (X0, zi), where X0 is a maximally
degenerate stable curve of genus g with n punctures (all such curves have
m = 3g + n − 3 nodes) and z1, . . . , z2m are local parameters near the nodes
of X0.

This data gives rise to a family of curves

π : X - U (19)

whose base U is an neighborhood of the origin in C3g+n−3. This family, which
we construct in 5.3.4, contains X and has the property that the geodesics (in
the hyperbolic metric) which cut X into a union of “pairs of pants” in local
coordinates zi have equations |zi| = si.

The family (19) is induced from the universal family over the moduli
stack M via a map U →M which gives rise to an orbifold chart

β̂ : [A\U ]→M.

To prove étalness of β̂ we first show in 5.3.5 that, whenX is non-singular,
the restriction of the family (22) to a certain subspace of U of real dimension
m is the Fenchel-Nielsen family (see Section 5.3.6). This gives étalness in the
non-singular case and in 5.3.7 we deduce from it the general case.

5.3.1. Quasiconformal charts on M. We start with a definition of quasicon-
formal charts.

Let U be an open subset of Cm with an action of a finite group A. Let

β̂ : [A\U ]→M

be an open embedding and let

β : U →M
be the corresponding map to the coarse moduli space. Denote by

π : X→ U
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the family of nodal curves on U induced by β and let U0 be the smooth locus
of π:

U0 = U ×
M

M.

The complement U − U0 will be called the singular locus (of π). For t ∈ U
we denote by Xt the fiber π−1(t).

The construction of 3.1.11 providesM, the coarse moduli space of the
smooth complex orbifold M, with an orbifold atlas. Below, in our construc-
tion of an orbifold atlas for G\Tg,n, we will need charts satisfying some nice
properties. We call such charts quasiconformal.

Definition. An orbifold chart (U,A, β) of the complex orbifold M is called
quasiconformal if it satisfies the following conditions (QC1)–(QC6).

(QC1) The manifold U is analytically equivalent to a contractible neighborhood
of 0 in Cm, so that the singular locus U−U0 corresponds to the union of
(some) coordinate hyperplanes. In particular, if U 6= U0, the intersection
of the components of the singular locus is stable under the A-action. We
assume that there exists a point z ∈ U fixed by A. If U 6= U0, we assume
that z lies in the intersection of the components of the singular locus.

(QC2) For every t ∈ U there exists an open neighborhood U t of t in U and a
quasiconformal contraction — a continuous map

ct : Xt → Xt,

where Xt is the restriction of X to U t, such that for every fiber Xs, s ∈
U t, the restriction

cts = ct|Xs
: Xs

- Xt

is a contraction (see Definition 5.1.3). In addition, the map ct is quasi-
conformal in the following sense.

Let φt : S → Xt be a marking; choose a neighborhood N of the
nodes of Xt and ε > 0. Then there exists a small neighborhood U δ of
t in U t such that for any s ∈ U δ and for any marking φs : S → Xs for
which φt is isotopic cts ◦ φs, the contraction cts : Xs → Xt is (1 + ε)-
quasiconformal outside the preimage of N .

(QC3) For every t ∈ U there exist neighborhoods Oi ∋ xi of the nodes xi, i =
1, . . . , r, of the curve Xt such that
(a) The maps

ct : Xt - Xt and π
t : Xt - U t

define an analytic isomorphism

(ct)−1(Xt −
⋃

Oi) - U t × (Xt −
⋃

Oi). (20)

(b) For every i = 1, . . . , r, the map

(ct)−1(Oi) - U t (21)
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is analytically isomorphic to the standard projection

Pi → Dm

from

Pi = {(u, v, t1, . . . , tm) ∈ D2 ×Dm|uv = ti}
to the standard polydisk Dm ⊂ Cm.

(QC4) For any s ∈ U t, u ∈ Us ∩ U t ∩ U0 there exists a homeomorphism

θ : Xu → Xu

isotopic to the identity, such that

ctu ◦ θ = cts ◦ csu
(QC5) One has U = Uz.
(QC6) For a node x of Xz let Dx be the space

Dx = {t ∈ U |(czt )−1(x) is a point }.
Then Dx is a component of the singular locus and every component of
the singular locus is obtained in this way.

Remarks.
1. Note that if the condition (QC2) is valid for some marking φt of Xt,

then it is valid for all markings of Xt. Also, since M = [Γ\T], the condition
(QC2) is empty for t ∈ U0.

2. Existence of continuous contractions ct in (QC2) is not a very re-
strictive condition. What makes it non-trivial is the requirement that ct is
quasiconformal.

3. The property (QC3) means that the family of curves over U is con-
stant outside neighborhoods of the nodes and is equivalent to the family given
by the plumbing construction (see 5.3.3) in the neighborhoods of the nodes.

4. The property (QC6) identifies the set of components of the singular
locus with the set of nodes of Xz. A marking φ : S → Xz of Xz allows to
identify the fundamental group of U0 with the subgroup of the modular group
Γ generated by the Dehn twists around φ−1(x), where x runs through the
nodes of Xz.

5. Below we will construct a collection of quasiconformal charts for M
using a plumbing construction and will prove that they give an orbifold atlas
of M. This means that, in a certain sense, all sufficiently small orbifold charts
of M are quasiconformal.

The notion of a quasiconformal chart serves a bridge between the Tei-
chmüller and the stack-theoretic approach to the description of the moduli
space of stable curves.

5.3.2. Theorem. The moduli stack M of stable curves admits an orbifold atlas
of quasiconformal charts.

Proof of this theorem occupies the rest of this subsection (5.3.3—5.3.8).
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5.3.3. Plumbing construction. Fix a maximally degenerate stable curve X0

of genus g with n punctures, i.e. X0 has a maximal possible number of nodes

m = 3g + n− 3.

Let x1, . . . , xm ∈ X0 be the nodes of X0. For each node xi ∈ X0 fix an open
neighborhood xi ∈ Vi ⊂ X0, such that these sets Vi are pairwise disjoint, do
not contain punctures and each Vi is a union of two subsets

Vi = Ui ∪ Ui+m, i = 1, . . . ,m,

meeting at the point xi and homeomorphic to the open unit disk D ⊂ C.
Finally, let

zk : D → X0, k = 1, . . . , 2m,

be holomorphic maps such that zk gives a homeomorphism between D and
zk(D) = Uk and

zi(0) = zi+m(0) = xi, i = 1, . . . ,m.

Using the choices of the curve X0 and of 2m local coordinate functions zi, we
will construct a family X of stable punctured curves over the polydisk Dm as
follows.

Take an open subset Y ⊂ X0 ×Dm given by

Y = X0 ×Dm −
m⋃

i=1

Wi,

where

Wi = {(x, t1, . . . , tm) ∈ X0 ×Dm | x = zi(z) or x = zi+m(z) for |z| ≤ |ti|}
and

Pi = {(u, v, t1, . . . , tm) ∈ D2 ×Dm | uv = ti} .
We glue the manifolds Y and Pi using the equivalence relation generated by
the following conditions.

• The point of Y with coordinates (zi(z), t1, . . . , tm) is equivalent to the
point of Pi with coordinates (z, ti/z, t1, . . . , tm)
• The point of Y with coordinates (zi+m(z), t1, . . . , tm) is equivalent to
the point of Pi with coordinates (ti/z, z, t1, . . . , tm).

One easily sees that the quotient of Y⊔P1 ⊔ . . .⊔Pm by the equivalence
relation described above is Hausdorff; it is, therefore, a complex manifold
which we denote by X. It is fibered over Dm; its fiber Xt over t = (t1, . . . , tm)
is obtained from the original nodal curve X0 by “holomorphic plumbing”
which replaces a neighborhood of the node xi, for which ti 6= 0, locally
parametrized by a neighborhood of the node of the curve uv = 0, with a
piece of the smooth curve uv = ti.

The fiber Xt of the above family is smooth if and only if all the coordi-
nates of t are nonzero.

Introduce the following notation

D0 = D − {0}, B0 = (D0)
m and B = Dm
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and let
π : X - B (22)

be the family of curves constructed above. The restriction of π to B0 gives
the family

π0 : X0 → B0

of smooth curves.
According to the results of Section 4, the stack M represents complex

families of nodal curves with punctures. Thus, the family (22) defines a map

β̂ : B →M.

As was shown in [25], the map β̂ is not necessarily étale. We will show
however, that for any stable punctured curve X there exists a choice of a
maximally degenerated curve X0, together with a choice of local coordinates

near the nodes so that, for some point t ∈ B, the map β̂ is étale at t and β(t)
is presented by X .

For the point and the plumbing data chosen as above, consider the

group A = Aut(β̂(t)). According to Lemma 3.1.1, there exists a contractible

neighborhood U such that (U,A, β̂) gives an open embedding [A\U ] → M.
We also assume that U does not intersect coordinate hyperplanes which do
not contain t. The singular locus of (U,A, β) is the union of coordinate hy-
perplanes containing t. The collection of quasiconformal contractions is given
by the standard contraction of the family

{(z, w, t) ∈ C3| |z| ≤ 1, |w| ≤ 1, |t| ≤ 1, zw = t}
over the closed disk |t| ≤ 1 to the fiber at t = 0.

5.3.4. Construction of the family. Let (X, x1, . . . , xn) be a punctured curve
with r nodes.

We endow the complement

Xreg = X − {nodes and punctures}
with the canonical complete hyperbolic metric. Choose a maximal collection
of simple disjoint geodesics

Ci, i = 1, . . . ,m− r
on X such that their complement

Xreg −
⋃

i

Ci

is a disjoint union of pairs of pants Pj , j = 1, . . . , 2g − 2 + n.
Note that each geodesic Ci has a natural (angular) parametrization.

To each boundary component of each pair of pants Pj we glue a punctured
disk, so that the angular parametrizations on the common circle coincide.
As a result, we get an embedding of each pair of pants Pj into a triply
punctured sphere Sj ; each punctured disk glued to a pair of pants Pj defines
an open embedding z : D0 → Sj which is almost the local coordinate near
the puncture we need.
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Here is the reason we will have to make a small adjustment to the
embeddings z : D0 → Sj . If w : D0 → Sk is the other local coordinate
corresponding to the same geodesic Ci, the gluing formula is zw = 1, whereas
we were supposed to get zw = t with |t| < 1.

The lemma below claims that each open embedding zi : D0 → Sj can
be extended to an open embedding Zi : D

′
0 → Sj of a greater punctured disk.

Then we can substitute zi with Zi(1+ε) so that the geodesic Ci will be given
by the equation |z| = 1

1+ε and the images of the unit disks will still have no
intersection.

Lemma. Let X be a bordered Riemann surface and C be its boundary compo-
nent endowed with the intrinsic metric. Glue a unit disk D to X so that the
common boundary component acquires the same angular coordinate from X

and from D. Let X̂ be the resulting Riemann surface. Then the map D → X̂

extends to an open embedding D′ → X̂ of a strictly greater disk D′ ⊇ D
having the same center.

Proof. The claim is clear if X is a half-annulus A = {z| 1 ≤ |z| < c}. Then
X̂ identifies with the disk {z| |z| < c} strictly containing the unit disk.

Now, if X is arbitrary, let

Xd = X ∪C X̄,
be the double of X with respect to C, where X̄ is the antiholomorphic copy
of X . Then the Nielsen extension of X̄ at C embeds into Xd and has form
A ∪ X̄ where A is a half-annulus having C as the boundary and embedded
into X . This gives the required extension. �

The r nodes of the original curve X identify some pairs of punctures
of
∐
j Sj . This gives a maximally degenerated curve X0 having r “original”

nodes and m− r new nodes, endowed with local coordinates

z1, . . . , zm−r, w1, . . . , wm−r

near the m − r new nodes. We can choose the 2r coordinates near r “ori-
ginal” nodes in an arbitrary way. The curve X is obtained from X0 by the
plumbing construction with parameters t = (t1, . . . , tm) where the geodesic
Ci in the corresponding pair of local coordinates is given by the equations
|z| = √ti, |w| =

√
ti, and ti = 0 for i > m− r.

5.3.5. The case of a smooth curve. Assume that X has no nodes. We assume
X = Xt for some t ∈ B0. The family π0 : X0 → B0 of Riemann surfaces
defines a map Tβ : TtB0 → Tβ(t)M of complex vector spaces. We want to
prove that this map is an isomorphism if π is the family constructed in 5.3.4.

The tangent space Tβ(t)M identifies with the cohomology H1(Xt, T )
where T is the sheaf of vector fields vanishing at the punctures. The image of
a vector v ∈ Tt(B) = Cm is described by an explicit Čech 1-cocycle. Thus the
problem reduces to proving that some Čech 1-cocycles are not coboundaries.
This is, however, difficult to calculate explicitly, and this is not true for a
general choice of local coordinates—see a counterexample in [25].
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5.3.6. The Fenchel-Nielsen family. Recall the construction of the Fenchel-
Nielsen coordinates on the Teichmüller space. As above, we have chosen a
maximal collection of free loops on the basic surface S. For each (X,φ) ∈
Tg,n a collection of geodesics is therefore defined. Their lengths give a (real-
analytic) map

L : Tg,n - Rm+ (23)

(Fenchel-Nielsen length coordinates). Fix l = (l1, . . . , lm) ∈ Rm+ . The preim-

age L−1(l) is a Rm-torsor with the action of the i-th component of R given by
cutting of a Riemann surface along the i-th geodesic, twisting the boundary
components one with respect to the other, and gluing them back.

The map L has a section which allows one to define what is classi-
cally known as Fenchel-Nielsen coordinates. This coordinate system consists
of m length coordinates (23) and m angular Fenchel-Nielsen coordinates
θ1, . . . , θm, chosen so that the shift by 2π along each coordinate corresponds
to the Dehn twist. In what follows we will use modified angular coordinates
τi =

li
2πiθi.

For a fixed value l ∈ Rm+ the Riemann surfaces from L−1(l) can be
organized in a family with the base Rm — this family is sometimes called the
Fenchel-Nielsen deformation.

Kodaira-Spencer theory [34] provides for any X ∈ L−1(l) an R-linear
map Rm → H1(X,T ), T being the sheaf of vector fields vanishing at the
punctures of X .13

We denote the images of the coordinate vectors by ∂
∂τi
∈ H1(X,T ).

Lemma. The vectors ∂
∂τi
, i = 1, . . . ,m, form a basis of H1(X,T ) over C.

Proof. This follows from the Wolpert’s formula [28, 8.3]

ωWP =
m∑

i=1

dτi ∧ dli

for the Weil-Petersson form on the Teichmüller space. Since ωWP is nonde-
generate, dτi, and therefore ∂

∂τi
are linearly independent. �

Now we can explain what is special about our choice of local coordinates.
The pullback of the family π0 : X0 → B0 along the map

u : Rm - B0

defined by the formula u(x1, . . . , xm) = (t1e
2πix1 , . . . , tme

2πixm), is the Fen-
chel-Nielsen family.

Consider the diagram of maps of tangent spaces (“chain rule”)

Rm
Tu
- Cm

Tβ
- Tβ(t)M = H1(X,T ).

The composition Tβ ◦Tu sends the standard basis {ei} of Rm into a C-basis
{ ∂
∂τi
} of Tβ(t)M. Since the map Tu also sends the basis of Rm into a basis of

Cm, the map Tβ is an isomorphism.

13Fortunately, Kodaira and Spencer developed their theory for C∞ families of complex
manifolds!
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This proves that in the case of X smooth the special chart we have
defined in 5.3.4 is étale at t ∈ B0 for which X = Xt.

The case of nodal curves is considered below.

5.3.7. Proof of the étalness for nodal curves. Let X be a nodal punctured
curve and let π : X → B be the family of curves built by the plumbing con-
struction with the special choice of the local coordinates as in 5.3.4. Assume
that X = Xt for t ∈ B̄. We have to check that the map of the tangent spaces

T (β) : TtB - Tβ(t)M

is an isomorphism. Since the dimensions of the vector spaces coincide, it is
sufficient to prove the injectivity. Let t = (t1, . . . , tm) and let

v = (v1, . . . , vm) ∈ TtB

belong to the kernel of T (β). The target of T (β) is the collection of de-
formations of Xt over C[ε]/(ε2). Triviality of such a deformation means in
particular that all nodes of Xt are preserved under the deformation; in other
words, one has

ti = 0 =⇒ vi = 0.

Assume for simplicity that t1 = . . . = tk = 0 = τ1 = . . . = τk and
ti 6= 0 for i > k. The normalization Xnor

t of Xt is a smooth curve with n+2k
punctures (all preimages of the nodes become punctures). Let X ′

0 be obtained
from X0 by ungluing the first k nodes and turning them into 2k punctures.14

Let B′ = Dn−k and let

π′ : X′ → B′

be the family of curves obtained from X ′
0 by the plumbing construction

with the same special choice of the local coordinates near the punctures
as specified in 5.3.4. Then Xnor

t appears in this family as the fiber of π′ at
t′ = (tk+1, . . . , tn) ∈ B′. Therefore, the tangent vector

v′ = (vk+1, . . . , vn) ∈ Tt′B′

belongs to the kernel of the map

T (β′) : T ′
tB

′ → Tβ′(t′)M,

where β′ : B′ →Mg,n+2k is the map inducing the family π′.

Since we have already proved the étalness for the smooth curve Xnor,
it follows that it also holds for X .

14To unglue a single node q we choose a neighborhood U ∋ q which does not contain other
nodes, normalize U and paste the result back. We assign labels n+ 1, n+ 2, . . . , n+ 2k to
the new 2k punctures in an arbitrary way.
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5.3.8. The charts form an atlas. First of all, organize the charts (U,A, β)
constructed above into a category as is explained in 3.1.11. This gives a

category Q whose objects are triples (U,A, β̂), where β̂ : [A\U ] → M is an
open embedding and whose morphisms consist of morphisms of such charts,
together with a 2-isomorphism between their maps to M.

Note that, according to our choice, each chart (U,A) satisfies the fol-
lowing property: A has a fixed point in U . This implies, in particular, that
all maps of charts defined by arrows of Q, are injective.

Let us show that the the category Q together with the obvious functor

c : Q→ Charts/M,

defines an orbifold atlas. The only thing to check is the condition (ii) in the
definition of orbifold atlas 3.1.9. Let

[Ai\Ui]→M, i = 1, 2,

be two orbifold charts having a common point x ∈ M in the image. We can
assume that Ui is small enough so that xi is the only preimage of x in it. In
this case the groups A1 and A2 can be identified with A = Aut(x). We will
use this identification. Consider

W = [A\U1]×M
U2.

The induced map W → U2 is an open embedding, equivariant with respect
to the action of A. This defines an abstract orbifold chart (W,A) together
with open embeddings [A\W ] → [A\U1] and [A\W ] → [A\U2]. Since W is
an open subset of U2, the chart (W,A) belongs to our collection.

The atlas of quasiconformal charts for M is constructed.

6. Augmented Teichmüller spaces from the complex-analytic
point of view

In this section we study complex-analytic properties of Bers’ augmented Tei-
chmüller spaces Tg,n. The space Tg,n is obtained by adding to the classical
Teichmüller space Tg,n points corresponding to Riemann surfaces with nodal

singularities. Unlike Tg,n, the space Tg,n is not a complex manifold (it is not
even locally compact). However, as we show in this section, the quotient of

Tg,n by any finite index subgroup G of the Teichmüller modular group Γg,n
is a normal complex space. More precisely, we prove (see Theorem 6.1.1) that

G\Tg,n has a canonical structure of a complex orbifold.

6.1. Complex structure on G\Tg,n: markings

Let 2g+n > 2 and G be a finite index subgroup of the corresponding modular
group Γ. Two markings φ, φ′ of a nodal curve X are called G-equivalent if
there exists g ∈ G such that φ′ is isotopic to g(φ). Points of the quotient

space G\Tg,n are pairs (X,φ), where X is a stable curve of genus g with n
punctures and φ is a G-equivalence class of markings (a G-marking).

We are going to construct an orbifold atlas for the quotient G\Tg,n.



52 Vladimir Hinich and Arkady Vaintrob

Shortly, the idea is the following. We start with a quasiconformal orbi-
fold atlas Q atlas for the moduli stack M of stable curves (see Section 5.3).

Then, for each chart (U,A, β) ∈ Q, endowed with an additional datum

(a marking of the singular fiber) we construct a chart (V,H, α) for G\Tg,n
making the diagram

V
α

- G\Tg,n

U
?

- [A\U ]
β̂

- M - M
?

commutative. Here β̂ is the embedding of stacks determined by β.

Finally some work is needed to get everything arranged into an orbifold
atlas and to prove various compatibilities.

In this subsection we present the construction of a chart (V,H, α) of

G\Tg,n based on a choice of (U,A, β) ∈ Q and on a choice of a marking of
the special fiber of the family defined by U . We show that these charts can
be arranged into an orbifold atlas A→ Charts(G\T).

As a result of the construction of the atlas, we get a natural complex
orbifold structure on the quotient G\Tg,n. We denote the obtained orbifold

by [G\Tg,n]. It is connected to other spaces and orbifolds as shown in the
diagram (24) below. These connections are described in the following theorem
whose proof occupies Sections 6.1–7.2.

6.1.1. Theorem. Let G be a finite index subgroup of the Teichmüller modular
group Γ = Γg,n. Then the quotient space G\T is the coarse space of a naturally

defined complex orbifold [G\T] so that the quotient orbifold [G\T] becomes its
open substack.

The quotient map T → G\T factors through a map

πG : T → [G\T];

the composition [G\T]→ G\T factors through [G\T]→ G\T and the composi-
tion [G\T]→M factors through a canonically defined morphism [G\T]→M

(see the dashed arrows in the diagram (24) below).

In particular, the quotient G\T has a natural structure of a normal
complex space extending that on G\T.
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T - T

[G\T]
?

- [G\T]
�

πG

G\T
?

- G\T
?

-

M

?

- M

?

- M
?

(24)

6.1.2. Space of markings of fibers. Let (U,A, β) be a quasiconformal chart
in Q. In what follows we adopt the notations of 5.3.1 where the notion of
quasiconformal chart is discussed.

A collection of contractions cts : Xs → Xt allows one to transfer mark-
ings from Xs to Xt. We will show in 6.1.4 below that, even though we do not
fix the contractions but only require their existence, the transfer of markings
in a quasiconformal chart is defined uniquely.

Fix a quasiconformal contraction

ct : Xt → Xt (25)

and a marking
φ : S → Xt.

We say that a marking φs of Xs, s ∈ U t, is consistent with the given marking
φ : S → Xt via c

t if the marking cts ◦ φs of Xt is equivalent to φ.

Fix t and φ : S → Xt as above. For s ∈ U t0 = U0 ∩ U t denote by Ps the
set of all markings of Xs and by Qs the subset of markings in Ps consistent
with φ. The sets Ps and Qs combine into coverings of U t0,

p : P - U t0 and q : Q - U t0,

so that Ps = p−1(s), Qs = q−1(s).
The coverings p and q are torsors over U t0 respectively for the groups Γ

and Γ0, the free abelian subgroup of Γ generated by the Dehn twists around
the curves φ−1(xi), where xi, i = 1, . . . , r are the nodes of Xt.

The covering q is a universal covering of U t0 and p can be recovered from
it as follows:

P = Γ×Γ0 Q. (26)
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The roles of the coverings p and q is explained by the following.

Lemma. Let π′ : X′ → Y be the family of curves induced from π : X→ U t0 via
a map Y → U t0. Then markings of π′ correspond to sections of the covering
P ′ → Y induced from p. The sections of the covering Q′ → Y induced from
q correspond to the markings of π′ consistent with φ.

�

One has a sequence of canonical maps Q→ P
α
- T.

Note that Q is a connected component of P ; its choice depends on the
choice of the marking φ. If γ ∈ Γ then the marking φ′ = φ ◦ γ corresponds
to the component Q′ = γ(Q) of P . This gives the following geometric way of
marking a curve Xt.

6.1.3. Corollary. For a fixed quasiconformal contraction (25) ct : Xt → Xt,
there is a natural one-to-one correspondence between markings of Xt and
components of P .

�

We claim that this correspondence is independent of the choice of a
quasiconformal contraction. To justify this we will present an independent
characterization of a marking defined by the choice of a component in P . We
proceed as follows.

The point t ∈ U t admits a basis of neighborhoods U δ, such that (U δ, At),
where At = StabA(t)), is a subchart of (U,A) satisfying the conditions
(QC1)–(QC6) in 3.1.9.

Let P δ andQδ be the spaces defined as above with U δ instead of U . Since
U t0 and U δ0 = U t0 ∩U δ have the same fundamental groups, each component of

P contains precisely one component of P δ. Denote by Qδ the closure of Qδ

in the augmented Teichmüller space T.

6.1.4. Proposition. In the above notation, φ is the only marking of Xt for

which (Xt, φ) belongs to the intersection
⋂
δ Q

δ.

The proposition immediately implies that the notion of consistency of
markings, defined in 6.1.2 with the help of contraction, is in fact independent
of the choice of contraction.

Proof of the proposition. First of all, (Xt, φ) ∈ Qδ for each δ since any neigh-
borhood of (Xt, φ) contains Q

δ for U δ small enough.

Assume (Xt, φ
′) ∈ ⋂δ Qδ. If (Xt, φ) and (Xt, φ

′) represent different

points of T, they have disjoint neighborhoods. On the other hand, by (QC2)
there exist U δ such that Qδ belongs to both of them.

Thus, choosing a component Q of P , we reconstruct the transfer of
markings from Xs to Xt for each s ∈ U t0. The property (QC4) implies that
the transfer is uniquely defined also for any s ∈ U t. �

From now on we will keep the notation of 6.1.2 for t = z. Thus, we have
U t = U, U t0 = U0, and p : P → U0, q : Q→ U0.

Note the following consequence of the above discussion.
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6.1.5. Corollary. There is a one-to-one correspondence between the markings
of Xz and the connected components of P .

The following description of the covering space P is very useful.

6.1.6. Lemma. We have the isomorphism

P = U0 ×M T,

where the fiber product is taken in the 2-category of complex orbifolds.

Proof. Let f be the map P → U0 ×M T given by the commutative diagram

P
αp

- T

U0

p

?
β

- M

?

Since p : P → U0 and U0 ×M T → U0 are coverings and f is a mor-
phism of coverings over U0, to prove that f is an isomorphism, it is sufficient
to compare the action of the fundamental group of U0 on the fibers. After
identification of π1(U0) with Γ0 both fibers can be identified with Γ and the
action of π1(U0) with the left action of Γ0 ⊂ Γ on Γ. �

As a result, the space P acquires an action of the group A commuting
with the action of Γ.

6.2. Complex structure on G\Tg,n: charts
Let G be a finite index subgroup of the modular group Γ.

Fix a quasiconformal orbifold chart (U,A, β) of M. Fix a marking

φ : S → Xz

(recall that this is equivalent to fixing a connected component Q of P ). We
will assign to the pair (chart, marking) an orbifold chart (V,H, α) of the

quotient G\T.
The marking φ determines the spacesQ ⊂ P , the isomorphism π1(U0) ≃

Γ0 and the presentation P = Γ×Γ0 Q.
The moduli stack M contains as an open substack the stack M of non-

singular curves. The triple (U0, A, β|U0
) is, of course, a chart for M.

6.2.1. A big commutative diagram. As a first step in the construction of
our orbifold chart, we have to describe the spaces and the arrows of the
diagram (29) below.

The quotient G\P can be described by the bijection i

G\P = G\(Γ×Γ0 Q) �
i ∐

γ∈G\Γ/Γ0

(γ−1Gγ ∩ Γ0)\Q , (27)
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where γ runs through a set of representatives of double cosets G\Γ/Γ0 and
i = {iγ} is the collection of maps

iγ : (γ−1Gγ ∩ Γ0)\Q - G\(Γ×Γ0 Q), [x] 7→ [γx].

Recall that Γ0 is the free abelian group generated by the Dehn twists
Di, i = 1, . . . , r, around the curves φ−1(xi) of S, where x1, . . . , xr are the
nodes of Xz. Let

ki = min{k|Dk
i ∈ G}, for i = 1, . . . , r.

Denote by Γ′
0 the subgroup of G ∩ Γ0 generated by Dk1

1 , . . . , D
kr
r . Let Y =

Γ′
0\Q. The natural map

Y = Γ′
0\Q→ U0 = Γ0\Q

is a covering with the Galois group Γ0/Γ
′
0 = Z/Zk1 × . . .× Z/Zkr .

We define Z = (G∩Γ0)\Q. This is the component of G\P corresponding
to γ = 1. The natural projection Y → Z gives a map

u : Y → G\P

commuting with the projections of Y and of G\P to U0.

The projection G\P → U0 is a finite map. Now let V be the normal-
ization of U in the field of meromorphic functions of Y . The variety V is a
smooth; it looks locally like a polydisk ramified over the components of the
singular locus with the ramification degree k1, . . . , kr. We denote by κ both
the projection V → U and its restriction to the smooth part Y → U0. Let

π′ : X′ - V (28)

be the family of curves induced from the family π : X→ U via κ.

The manifold V is the “space component” of the orbifold chart we are
building.

Let

α : G\P → [G\T]

be the map induced by αp : P → T. Now we will extend the composition

Y
u
- G\P α

- [G\T]

to get the dashed map α : V → G\T in the following big commutative
diagram (do not pay attention to the other dashed arrows for the time being).
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P
αp

- T - T

Y
u
- G\P

?
α
- [G\T]

?

- [G\T]
�

πG

V
α

-
�

G\T
?

-
-

U0

κ

?
=

- U0

?
β̂

- M

?

U

κ

?
β̂

-
�

M

?

-

-

M
?

(29)
Here M = Mg,n is the complex orbifold associated to the smooth algebraic
stack of moduli of stable curves of genus g with n punctures. According to
Theorem 4.1.1, M represents complex-analytic families of stable curves of
genus g with n punctures. The family of curves π : X → U defines therefore

a map β̂ : U →M. The map from M to M is the obvious open embedding.
The complex space M = Mg,n is the coarse moduli space for M and the

horizontal map M → M is obvious. The map from [G\T] to G\T is the
composition of the projection [G\T] → G\T to the “näıve quotient” space

and of the embedding G\T → G\T. Finally, the projection T →M forgetting

the marking is continuous and factors through the quotient G\T.
The family of curves π′ : X′ → V restricted to Y , admits a canonical

G-marking induced via u from the canonical G-marking on the family based
on G\P .

Choose a point x ∈ V and let t = κ(x) ∈ U . Since G has finite index

in Γ and since the quotient G\T is Hausdorff, there exist a neighborhood N
of the nodes of Xt and a positive ε such that the standard neighborhoods
UN,ε(Xt, φ) have no intersection for different G-markings φ.

Choose a neighborhood U t and a contraction ct : Xt → Xt. There exists
a neighborhood U δ of t in U t such that cts is (1 + ε)-quasiconformal outside
N for all s ∈ U δ. Define O as the component of κ−1(U δ) containing x.

For y ∈ O ∩ Y let α(y) = (Xs, ψ) where we denote s = κ(y). The G-
marking cts ◦ψ of Xt does not depend on y. This G-marking defines the image
of x ∈ V in G\T and thus gives the required dashed map

α : V - G\Tg,n (30)
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which is automatically continuous. In Proposition 6.2.2 below we will prove
that α is open.

To get an orbifold chart (V,H, α) we have to specify the group H .
Recall that Y = κ−1(U0) and the image of the map u : Y → G\P is

a component Z of G\P . By Lemma 6.1.6 the groups A and Γ act on P and
the actions commute. Thus, A acts on the quotient G\P as well. Let

AZ = {a ∈ A : a(Z) = Z} (31)

be the stabilizer of the component Z.
We define H as the group of pairs (ã, a), where α̃ : Y → Y and a : Z →

Z are automorphisms with a ∈ AZ such that the diagram

Y - Z

Y

ã

?

- Z

a

?

is commutative.
Another description of the groups AZ and H is given in 6.2.5.
The action of H on Y extends to V , since V is the normalization of U

in the field of meromorphic functions on Y , see [20, 7.3]. Now we will prove

that (V,H, α) is an orbifold chart for G\T.
6.2.2. Proposition. The map

α : V - G\T
is open.

Proof. We will prove that the image α(V ) is open in G\T. Since we can
replace the chart (U,A, β) with a smaller quasiconformal chart, this will prove
that α carries any open set to an open set.

Let x ∈ V and let α(x) be presented by a marked curve (X,φ). We have
to prove that there is a pair (N, ε > 0) where N is a neighborhood of the
nodes of X , so that the standard neighborhood UN,ε(X,φ) of (X,φ) in G\T
lies in α(V ).

Let t = κ(x). By (QC2) there exists an open neighborhood U t of t in
U and a contraction ct : Xt → Xt. The map β : U → M is open; thus,
a pair (N, ε) can be chosen so that UN,ε(X,φ) lies in π−1(β(U t)), where

π : G\T →M = Γ\T is the standard projection.
Since G has finite index in Γ, we can also assume that the neighborhoods

UN,ε(X,φ) and UN,ε(X,φ
′) have no intersection if φ and φ′ define different

G-markings.
We claim that α(V ) contains the neighborhood UN,ε(X,φ).
In fact, let (X ′, φ′) ∈ UN,ε(X,φ). By construction, there exists s ∈ U t

with β(s) represented by X ′. Let U δ be a small neighborhood of s contained
in Us ∩ U t and consider U δ0 = U δ ∩ U0. Choose a point u ∈ U δ0 , lift it to
a point y ∈ Y and consider α(y) = (X ′′, φ′′). The contraction of φ′′ to X
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gives φ, therefore, the contraction of φ′′ to X ′ gives φ′ up to an element of
the group Γ0. This means that we can find another lift y1 of u to Y with
α(y1) = (X ′′, φ′′1 ) such that the contraction of φ′′1 to X ′ will be φ′.

Let Y δ be the component of κ−1(U δ0 ) containing y1. Then the intersec-

tion Ȳ δ ∩ κ−1(s) consists of one point z such that α(z) = (X ′, φ′). �

6.2.3. Lemma. The homomorphism H → AZ is surjective with the kernel

K = AutZ(Y ).

Proof. We have to verify that any automorphism a : Z → Z from AZ lifts to
an automorphism of Y . We have the following picture. Three spaces, U0, Z
and Y have a common universal covering Q. The fundamental group of U0 is
Γ0, and the coverings Y and Z correspond to the subgroups Γ′

0 and G ∩ Γ0

of Γ0.
Let a ∈ AZ ⊂ A. Since A is abelian, its action on U0 induces an action

on Γ0. The action of A on U0 comes from an action on U , therefore its action
on Γ0 must be a signed permutation of the Dehn twists D1, . . . , Dr which
generate Γ0.

If an element a ∈ A belongs to AZ then G∩Γ0 is an a-invariant subgroup
of Γ0. This implies that Γ′

0 is also a-invariant due to the specific form of the
action of A on Γ0.

Note that the kernel K of the epimorphism H → AZ identifies with
(G ∩ Γ0)/Γ

′
0. �

6.2.4. Theorem. Let x1, x2 ∈ V , then α(x1) = α(x2) if and only if x2 ∈ Hx1.
Proof. Let (Xi, φi), i = 1, 2, be the marked curves representing the points

α(xi) ∈ G\T.
The equality α(x1) = α(x2) gives an isomorphism of G-marked curves,

that is a commutative diagram

S
φ1

- X1

S

g

?
φ2

- X2

θ

?

(32)

for some g ∈ G.
We will show that for any two open sets U1 ∋ x1 and U2 ∋ x2 in V the

intersection U2 ∩ (H · U1) is nonempty. Since H is a finite group, this will
imply that x2 ∈ Hx1.

From now on we fix xi and Ui, i = 1, 2 as above.
Since the map α : V → G\T is open by Proposition 6.2.2, we may

assume that α(U1) = α(U2). Choose a point x′1 ∈ U1 which corresponds
to a smooth curve (X ′

1, φ
′
1). Since the images of Ui under α coincide, there
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exists x′2 ∈ U2 having the same image. The corresponding G-marked curve
(X ′

2, φ
′
2) is, obviously, smooth as well. Moreover, there exist g′ ∈ G and an

isomorphism θ′ : X ′
1 → X ′

2 such that the diagram

S
φ′

1 - X ′
1

S

g′

?
φ′

2 - X ′
2

θ′

?

(33)

is commutative.

The images of x′1 and x′2 in Z have the same image in G\T. Therefore,
x′2 = ax′1 for some a ∈ AZ . By Lemma 6.2.3 we can lift the element a to
h ∈ H acting on Y . Therefore x′2 and h(x′1) have the same image in Z. This
implies that there exists an element h′ in the kernel K of the epimorphism
H → AZ such that x′2 = h′hx′1. This concludes the proof of the theorem. �

6.2.5. Second description of the groups AZ and H . Here we will present
yet another interpretation of the groups AZ and H which appear in the
description of the orbifold charts (V,H, α). This description will be needed

in Section 8 where we use a slightly more general quotient of T than the one
described here.

Let AQ be the group of pairs (ã, a), where a ∈ A and ã : Q→ Q satisfies
the condition q ◦ ã = a ◦ q, where q : Q→ U0.

The natural map [AQ\Q] → [A\U0] is an equivalence. Thus, the map
Q→ T induces a map of the quotients [AQ\Q]→ [Γ\T]. By Lemma 2.3.6 this
gives rise to a homomorphism ι : AQ → Γ. This homomorphism is uniquely
determined by the requirement of commutativity of the diagram

Q
αQ

- T

Q

a

?
αQ

- T

ι(a)

?

Consider AQ,G = AQ×ΓG. We claim that the image of the composition

AQ,G → AQ → A

is precisely AZ , so that we have got a morphism of short exact sequences

1 - Γ0 ∩G - AQ,G - AZ - 1

1 - Γ0

?

- AQ
?

- A
?

- 1

. (34)
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In fact, since AQ,G acts on Q, the quotient A′
Z = AQ,G/(Γ0 ∩ G) acts on

Z = (Γ0∩G)\Q and is a subgroup of A. ThusA′
Z ⊆ AZ . Since the composition

[A′
Z\Z]→ [AZ\Z]→ [G\T]

is an open embedding, one should necessarily have A′
Z = AZ .

As it was explained in the proof of 6.2.3, the group Γ′
0 is normal in

AQ,G. Passing to the quotient by Γ′
0 in the upper line of (34), one gets the

short exact sequence

1 - (Γ0 ∩G)/Γ′
0

- AQ,G/Γ
′
0

- AZ - 1

which identifies with the sequence

1 - K - H - AZ - 1 (35)

defined by Lemma 6.2.3.

Recall that Y = Γ′
0\Q. Thus, one has an open embedding

[H\Y ] = [AQ,G\Q] = [AZ\Z] - [G\T]. (36)

6.3. Orbifold atlas for G\T
We now have a sufficient supply of orbifold charts for constructing an orbifold
atlas forG\T. In order to arrange the constructed orbifold charts into an atlas,

we have to present a chart category A and a functor c : A→ Charts/(G\T)
satisfying the properties of 3.1.9.

The chart (V,H, α) constructed above depends on the following choices.

1) A chart (U,A, β) in Q. The singular locus U −U0, where U0 = M×
M
U ,

is a normal crossing divisor. The group A acts on U with a fixed point
z (belonging to the intersection of the components)

2) A marking φ of the curve Xz (or, what is equivalent, a choice of a
component of P ).

The chart category A will be constructed simultaneously with a functor
p : A → Q, so that if c(p(a)) is the chart (U,A, β) of M, c(a) is the chart
(V,H, α) constructed in 6.1.

Recall some notation from Section 6.2. The chart V contains a dense
open H-equivariant subset Y = Γ′

0\Q giving an open embedding

α̂ : [H\Y ] - [G\T]. (37)

We define A as the category whose objects are open embeddings (37),
where Y andH are obtained from an orbifold chart (V,H, α) described above.
A morphism in A from (Y1, H1, α̂1) to (Y2, H2, α̂2) is defined as a morphism
of abstract orbifold charts

(fY , fH) : (Y1, H1) - (Y2, H2)

together with a 2-morphism

θY : α̂2 ◦ fY ≃ α̂1.
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Note that any object (Y,H, α̂) of A gives rise to a 2-commutative dia-
gram

Y
α
- [G\T]

U
?

β
- M

?

(38)

so that the assignment (Y,H, α̂) 7→ (U,A, β̂) defines a functor A → Q. In
fact, Y = Γ′

0\Q and the morphism α̂ : [H\Y ] → [G\T] can be realized by a
pair of morphisms (q : Q → T, AQ,G → G). The pair (q : Q → T, AQ → Γ)

is compatible it on one side and with β̂ : [A\U ]→M on the other side.
Furthermore, any map

η : (Y1, H1, α̂1) - (Y2, H2, α̂2)

in A lifts to a map η : Q1 → Q2 which by Proposition 2.3.8 defines a unique
diagram

Q1
q1

- T

Q2

η

?
q2

- T

g

?

(39)

where g ∈ G. This diagram induces a morphism of orbifold charts

η̄ : (U01, A1, β̂1) - (U02, A2, β̂2)

compatible with η.

Note that since U0i is the smooth locus of Ui, any map (U1, A1, β̂1) →
(U2, A2, β̂2) in Q carries U01 to U02, so that f̄ extends uniquely to a morphism

(U1, A1, β̂1)→ (U2, A2, β̂2).
Let us prove that the above morphisms in A give an orbifold atlas

for G\T. First of all, the category A is a chart category since it is a full
subcategory of the chart category defined by the orbifold [G\T] via 3.1.11.

Let us show that an arrow of A defined as above, gives a morphism
of the corresponding orbifold charts. First, ηY : Y1 → Y2 uniquely defines a
map ηV : V1 → V2 since Vi can be identified as the normalization of Ui in
the field of meromorphic functions on Yi. The map of abstract orbifold charts
(V1, H1) → (V2, H2) is automatically defined since A is a chart category. To

check that we have a map of orbifold charts over G\T, we have to check that
the map ηV : V1 → V2 is compatible with the projections αi : Vi → G\T.
This is enough to check on the dense subset Y1 of V1 where compatibility
follows from the definition.

The required collection of isomorphisms ι : Aut(a) → H(a), a ∈ A,
comes from the construction of A as a full subcategory of the chart category
for [G\T].
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Let us check that the images of the charts (V,H, α) cover the whole space

G\T. Let (X,ψ), where X is a curve and ψ is a G-marking of X , represent

a point of G\T. Choose a quasiconformal chart (U,A, β) of M containing
x ∈ U with β(x) = X . A choice of representative for the G-marking ψ defines

a marking φ : S → Xz and therefore a chart (V,H, α) for G\T. If y ∈ V is a
lifting of x, its image α(y) is a pair (X,ψ′). The G-markings ψ and ψ′ define
the same G-marking φ on Xz. Therefore, they differ by an element γ ∈ Γ0.
Since Γ0 acts on V ,15 the point γ(y) has the required image in G\T.

The last thing to be checked is the condition (ii) of definition 3.1.9.

Let x ∈ G\T belong to the images of the orbifold charts (Vi, Hi, αi), i =
1, 2. Then the image y of x inM is covered by (Ui, Ai, βi), i = 1, 2. If yi ∈ Ui
are preimages of y ∈ M, we can assume as in 5.3.8 that there exists an
isomorphism of charts η : (U1, A1, β1)→ (U2, A2, β2) sending y1 to y2.

Let (X1, φ1) and (X2, φ2) represent the curves at the points y1 and y2
of U1 and U2. Since both marked curves represent the same point x ∈ G\T,
there exist an isomorphism θ : X1 → X2 and an element g ∈ G making the
diagram (32) commutative.

The isomorphism η : U1 → U2 commutes with the maps β̂i : Ui → M.
Therefore, η induces an isomorphism

η : U01
- U02 (40)

The isomorphism (40) induces an isomorphism of the corresponding funda-
mental groups so that the Dehn twists defined by the nodes of X1 map (up
to sign) to the Dehn twists defined by the corresponding nodes of X2. In
particular, this implies that the numbers k1, . . . , kr defining the coverings Y1
and Y2, coincide.

Also, an isomorphism η : Q1 → Q2 of the covering spaces of U0i is
induced so that the diagram

Q1
- T

Q2

η

?

- T

g

?

is commutative. This defines an isomorphism of the factors

Y1 = Γ′
0\Q1

- Γ′
0\Q2 = Y2.

This induces an isomorphism of Vi since Vi is the normalization of Ui
in the field of meromorphic functions of Yi.

15via Γ0/Γ′

0
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7. Properties of orbifolds G\T
In this section we establish some properties of the orbifold structure on G\T
introduced in the previous section. We start with showing that for the sub-
group

Γ(ℓ) = Ker(Γ - Aut(H1(S,Z/ℓ))).

the orbifold [Γ(ℓ)\T] corresponds to the moduli stack of curves with level-ℓ
structures. Besides of providing an interesting example, this fact will be used
in 7.2.4 to construct the canonical map

πG : T → [G\T]
for an arbitrary finite-index subgroup G ⊂ Γ.

We also construct here gluing operations on the orbifolds [G\T] which
are induced by gluing operations for bordered surfaces.

7.1. Example: level-ℓ curves

Let ℓ > 2 be a natural number. Define

Γ(ℓ) = Ker(Γ - Aut(H1(S,Z/ℓ))).

Γ(ℓ)-marking on a smooth curve X is the same as a level-ℓ structure on X .
Let (X,φ : S → X) represent a Γ(ℓ)-marked nodal Riemann surface.

Choose a quasiconformal neighborhood (U,A, β) of X ∈ M and construct a

corresponding chart (V,H, α) for [Γ(ℓ)\T] as in 6.2.1. We assume that α(s) =
(X,φ) for some s ∈ V .

Recall that the group H is an extension

1 - K - H - AZ - 1,

where AZ is the subgroup of the automorphism group A of X ∈M stabilizing
the component Z.

7.1.1. Proposition. For G = Γ(ℓ) one has AZ = 1.

Proof. Let h ∈ H . We will check that the image a ∈ AZ of h induces a trivial
action on the homology H1(X,Z/ℓ). This will imply that a = 1 since the
automorphism group A of X acts faithfully on H1(X,Z/ℓ). Since the map
H → AZ is surjective, this will imply our claim.

Recall that Y = κ−1(U0) ⊂ V . Choose x ∈ Y, y = h(x) and let
(Xx, φx), (Xy, φy) be the corresponding G-marked Riemann surfaces. The
map α from diagram (29) induces an open embedding

[H\Y ] - [G\T].
This gives rise to the following commutative diagram

H1(Xx,Z/ℓ) �
H1(φx)

H1(S,Z/ℓ)

H1(Xy,Z/ℓ)

a

?

�
H1(φy)

H1(S,Z/ℓ)

wwwwwwwww
(41)
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On the other hand, the family of curves with the base V defines a
morphism V → U → M. The element h ∈ H induces an automorphism
a ∈ A of the family. This implies the commutativity of the diagram

H1(X,Z/ℓ) �
vx

H1(Xx,Z/ℓ)

H1(X,Z/ℓ)

a

?

�
vy

H1(Xy,Z/ℓ)

a

?

, (42)

where the horizontal arrows are the vanishing cycles maps.

We will show later that

vx ·H1(φx) = vy ·H1(φy) : H1(S,Z/ℓ) - H1(X,Z/ℓ). (43)

Then comparing the diagrams (41) and (42) we see that

a : H1(X,Z/ℓ)→ H1(X,Z/ℓ)

is the identity, which yields the claim.

Let us now explain (43).

Let π : X→ V be the family of curves described in (28) (where the no-
tation X′ was used instead of X). One has X = π−1(s), Xx = π−1(x), Xy =
π−1(y). Let js, jx, jy be the respective embeddings of X, Xx, Xy into X.
The space X contracts to X , so js is a homotopy equivalence. Consider the
diagram

H1(S,Z/ℓ)
H1(φy)

- H1(Xy,Z/ℓ)

H1(Xx,Z/ℓ)

H1(φx)

?
H1(jx)

- H1(X,Z/ℓ)

H1(jy)

?

�
H1(js)

∼
H1(X,Z/ℓ)

. (44)

The vanishing cycle homomorphism is the composition j−1
s jx; therefore, the

compatibility (43) is equivalent to the commutativity of the diagram (44).

Finally, commutativity of (44) can be shown as follows. The restriction
of the family π : X→ V to Y is locally trivial; thus, the assignment

x ∈ Y 7→ H1(Xx,Z/ℓ)

is a local system on Y . The maps

H1(S,Z/ℓ)
H1(φx)

- H1(Xx,Z/ℓ)
H1(jx)

- H1(X,Z/ℓ)

give rise to a map of constant local systems H1(S,Z/ℓ)→ H1(X,Z/ℓ) which
therefore does not depend on x ∈ Y .

�
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7.2. Functoriality with respect to G

In this section we will prove that the orbifold structure on spaces G\T is
natural with respect to a subgroup G of the modular group Γ. Then we will
use this fact to produce in 7.2.4 the map πG : T → [G\T] from the big
commutative diagram (29).

7.2.1. A canonical map [G1\T] → [G2\T]. Let G1 ⊂ G2 be two finite index
subgroups of Γ. Then a canonical map

[G1\T] - [G2\T] (45)

can be constructed as follows. Starting from an orbifold chart (U,A, β) ∈ Q of
M, we get as in 6.2.1 the charts (Vi, Hi, αi), i = 1, 2, and a compatible pair of
maps V1 → V2, H1 → H2. Thus, a map of charts (V1, H1, α1)→ (V2, H2, α2)
is canonically defined, giving finally a map of orbifolds (45).

The group homomorphism H1 → H2 appears in the commutative dia-
gram whose construction is obvious.

1 - K1
- H1

- AZ1
- 1

1 - K2

?

- H2

?

- AZ2

?

- 1

The map AZ1
→ AZ2

is injective. This implies that if, for instance,
G2 = Γ(l), l ≥ 3, then AZ1

= 1.
Note that the map (45) is seldom étale.
The following result generalizes [36, Proposition 3].

7.2.2. Proposition. For each positive integer k there exists a finite index sub-
group Γ(k) of the modular group Γ satisfying the following property. For each
collection D1, . . . , Dm of independent Dehn twists the intersection of Γ(k) with

the group generated by D1, . . . , Dm is generated by some powers Dk1
1 , . . . , D

km
m

where all ki are divisible by k.

Proof. The case n = 0 follows from Looijenga’s result [36, Proposition 3] Here

is the definition of Γ(k) for n = 0. Let S̃ → S be a universal Prym cover,

i.e. a Galois cover with Gal(S̃/S) = H1(S,Z/2) considered as the quotient of
π1(S) by the normal subgroup generated by the squares of the elements.

Without loss of generality we can assume that k is even and k ≥ 6.

The group Γ(k) is then the group of γ ∈ Γ whose (arbitrary) lift γ̃ : S̃ → S̃

acts on H1(S̃,Z/k) as an element of Gal(S̃/S). By [36, Proposition 3] the
group Γ(k) satisfies the requirements of the proposition: its intersection with

a group generated by D1, . . . , Dm is the group generated by Dk1
1 , . . . , D

km
m

where ki = k if Di disconnects S, and ki = 2k otherwise.
The general case will be reduced to the case n = 0.
Let S be a compact oriented surface of genus g with n boundary com-

ponents. We define a new surface T as the result of gluing S to −S along
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the boundary in an obvious way. Thus T has no boundary and it is of genus
2g + n − 1. Any diffeomorphism φ of S preserving the boundary defines a
diffeomorphism ∆(φ) of T acting as φ on both S and −S. This construction
preserves isotopy, and, therefore, induces a homomorphism of the modular
groups

∆ : ΓS - ΓT (46)

of S and of T respectively. Lemma 7.2.3 below claims that ∆ is injective.
Then we define the subgroup Γ(k),S of ΓS as ∆−1(Γ(k),T ).

If D1, . . . , Dm are independent Dehn twists in ΓS , one has 2m indepen-
dent Dehn twists D±

i , i = 1, . . . ,m in T defined by the corresponding circles

in S and in −S. By [36, Proposition 3] an element
∏
(D+

i )
k+i
∏
(D−

i )
k−i be-

longs to Γ(k),T if and only if k±i are divisible by k or by 2k, depending on i.16

Since ∆(
∏
Dki
i ) =

∏
(D+

i )
ki
∏
(D−

i )
ki , we get the required property. �

Now we will prove injectivity of ∆.

7.2.3. Lemma. The map ∆ : ΓS → ΓT defined in (46) is injective.

Proof. Denote π = π1(S), Π = π1(T ). We choose as the base point for both
S and T a boundary point of S. The embedding S → T admits an obvious
section which identifies −S with S. Thus, the embedding i : π → Π of
fundamental groups induced by the embedding S → T splits by a projection
ρ : Π→ π.

The modular groups ΓS and ΓT act by outer automorphisms on the
corresponding fundamental groups π and Π; the canonical maps

αS : ΓS → Out(π), and αT : ΓT → Out(Π)

are well-known to be injective.
Define a map (this is not a group homomorphism!)

∇ : Aut(Π)→ Aut(π)

by the formula ∇(φ) = ρ ◦ φ ◦ i. One has for φ ∈ Aut(Π), g ∈ Π,

∇(ad(g) ◦ φ) = ρ ◦ ad(g) ◦ φ ◦ i = ad(ρ(g)) ◦ ∇(φ).
Thus ∇ induces a map ∇ : Out(Π)→ Out(π). We claim that the diagram

ΓS
∆

- ΓT

Out(π)
?

�
∇

Out(Π)
?

is commutative. In fact, if γ : S → S defines an element of ΓS then αS(γ)
sends a loop u ∈ π to γ(u).17 On the other hand, ∇ ◦ αT (∆(φ) sends u ∈ π
to ρ(∆(φ)(u)) = φ(u). Thus ∆ is injective since αS is injective. �

16More precisely, this is k if D+
i disconnects T , and 2k if it does not.

17αS can be actually defined as a homomorphism to Aut(π) since we chose the base point
preserved by any γ.
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7.2.4. Construction of the map πG : T → [G\T]. Now we will use the reason-
ing of [10, Corollary 2.10] to prove that for any finite index subgroup G ⊂ Γ

there exists a smaller finite index subgroup H ⊂ G ⊂ Γ such that [H\T] is
a manifold. This will allow to construct the canonical map πG : T → [G\T]
from the big commutative diagram (29).

Let G be any finite index subgroup of the modular group Γ. The inter-
section G′ = G ∩ Γ(l) has also finite index. Let

G′′ =
⋂

g∈Γ

gG′g−1.

This is a normal subgroup of Γ contained in G and having a finite index. Since
there are only finitely many Dehn twists in Γ up to conjugation, there exists
k such that for each Dehn twist D one has Dk ∈ G′′. Finally, consider the
subgroup G′′′ = G′′ ∩ Γ(k). We claim that the quotient [G′′′\T] is a complex
manifold.

Look at a chart (V,H, α) constructed as in in 6.2.1 for the quotient
G′′′\T. Recall that the group H appears as the extension of AZ with the
quotient K = (G′′′ ∩ Γ0)/Γ

′
0, see the notation of 6.2.1–6.2.3. The group AZ

is trivial since G′′′ ⊆ Γ(l), see 7.2.1. Let us show the group K is trivial. Let
γ =

∏r
i=1D

di
i ∈ G′′′ ∩ Γ00. Then γ ∈ Γ(k) since G

′′′ ⊆ Γ(k). Therefore, di are

all divisible by k and Ddi
i ∈ Γ(k). By the choice of k Ddi

i ∈ G′′ as well, so
they belong to Γ′

0.

Thus, we see that H = 1. Therefore, [G′′′\T] is a complex manifold.

Assume now that H1, H2 are two finite index subgroups of G ⊂ Γ such
that [Hi\T] are manifolds for i = 1, 2. Then the intersection H1∩H2 contains

as well a finite index subgroupH3 such that [H3\T] is a manifold. This proves

that the compositions T → [Hi\T]→ [G\T] coincide.
We can now define the map πG : T → [G\T] as the composition

T - [H\T] - [G\T],
where H is any finite index subgroup of G such that the quotient [H\T] is a
manifold.

7.3. Gluing operations

For Riemann surfaces with parametrized boundary components, as well for
stable curves with punctures, there exist natural gluing operations which
correspond to compositions in a modular operad. Given two surfaces (resp.,
stable curves) Si, i = 1, 2 of genus gi with ni parametrized boundary com-
ponents (resp., with ni punctures), one can glue them along ath component
(resp., puncture) of S1 and bth component (resp., puncture) of S2 to get a
surface (resp., a stable curve) of genus g1 + g2 with n1 + n2 − 2 boundary
components (resp., punctures). Similarly we can glue two boundary compo-
nents (resp., punctures) of S1 and produce a surface (resp., a stable curve)
of genus g1 + 1 and n1 − 2 boundary components (resp., punctures).
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These gluing operations on surfaces and on stable curves are compatible
in the sense that for two marked stable curves φ1 : S1 → X1 and φ2 : S2 → X2

one can define a new marked curve φ : S → X , where S is obtained by gluing
S1 and S2 and X is obtained by gluing X1 and X2.

All this is almost obvious. Note, however, that gluing stable curves is
canonical in the best possible way — it defines the maps of the corresponding
moduli stacks (as described in a more detail in 7.3.3 below). To be justify our
suggestion to interpret augmented Teichmüller spaces as projective limits of
complex orbifolds [G\T] we have to show that the gluing operations for the
augmented Teichmüller spaces descend to well-defined operations on complex
orbifolds [G\T]. This is done in the current subsection.

Below we describe gluing operations for different types of objects: first
for surfaces with boundary in 7.3.1, then for augmented Teichmüller spaces—
on the level of points—in 7.3.2. After that in 7.3.3 we recall the gluing oper-
ations for the stacks of stable curves, and in the last two subsections, 7.3.4
and 7.3.5, we describe the gluing operations on the level of complex orbifolds
— quotients of the augmented Teichmüller spaces. Note that the description
in 7.3.1 and 7.3.3 contain nothing new and the construction in 7.3.2 is fairly
obvious.

7.3.1. Gluing bordered surfaces. In what follows we denote by Sg,n the grou-
poid whose objects are oriented surfaces of genus g with n labeled boundary
components together with a parametrization of each component. The mor-
phisms are diffeomorphisms preserving the parametrization of the boundary
components, up to isotopy.18 In particular, for S ∈ Sg,n the modular group
of S is just Γ(S) := AutSg,n

(S).

The following gluing operations are defined.

• Gluing two bordered surfaces: given S1 ∈ Sg1,n1
and S2 ∈ Sg2,n2

, a
choice of a pair of boundary components in S1 and in S2 defines

S1 ◦ S2 ∈ Sg1+g2,n1+n2−2.

• Gluing two boundary components: given S ∈ Sg,n, a choice of a pair of
boundary components defines a new surface S̄ ∈ Sg+1,n−2.

The gluing operations are functorial; in particular, for S = S1 ◦ S2 one has
natural group homomorphisms Γi → Γ with Γi = Γ(Si), Γ = Γ(S).

The operations described above satisfy standard axioms saying that the
collection

g, n 7→ Sg,n

gives a modular operad in the 2-category of groupoids.

18A version of this groupoid with non-numbered boundary components is called extended

Teichmüller groupoid in [5].
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7.3.2. Gluing augmented Teichmüller spaces. It is convenient to consider the
augmented Teichmüller spaces as a collection of functors

Sg,n - Top

to topological spaces. The action of the modular groups on T(S) is built in in
this approach. The gluing operations described above extend to the following
maps connecting different T(S):

T(S1)× T(S2) - T(S1 ◦ S2). (47)

T(S) - T(S̄). (48)

The result of gluing (Xi, φi : Si → Xi) gives the pair

(X,φ : S1 ◦ S2 → X),

where X = X1 ∨X2 is obtained by gluing Xi along the corresponding punc-
tures, with φ = φ1 ∨ φ2 defined by φ1 and φ2 in an obvious way.

The second operation is defined similarly.

7.3.3. Gluing stable curves. The famous modular operad

(g, n) 7→Mg,n

of moduli of stable curves is a close relative of the above.19 In order to define
the gluing operations

Mg1,n1
×Mg2,n2

- Mg1+g2,n1+n2−2,

one has to be able to glue two families of punctured stable curves

Xi → V, i = 1, 2,

of types (gi, ni) along a chosen pair of punctures

s1 : V → X1, s2 : V → X2.

This is much easier than one could have imagined: the result is given by the
colimit of the diagram

X1
� V - X2

defined by the choice of the punctures. The existence of such (very special)
colimit is easily verified.

The second type gluing operation

Mg,n
- Mg+1,n−2

is defined similarly. Let X→ V be a family of punctured stable curves of type
(g, n) and let s1,2 : V → X be a pair of punctures. Then the corresponding
family X̄→ V of type (g + 1, n− 2) is defined by the coequalizer of the pair
(s1, s2).

19Since Mg,n = [Γ(S)\T(S)] for S ∈ Sg,n



Augmented Teichmüller spaces and Orbifolds 71

7.3.4. Gluing quotients of Tg,n. Disconnected case. The gluing operations on
augmented Teichmüller spaces described in 7.3.2 are just continuous maps of
topological spaces. In this section we will show that they can be lifted to the
level of orbifold maps for corresponding quotient orbifolds [G\T].

Let us consider first the operation that corresponds to gluing two dif-
ferent surfaces.

Proposition. Consider two surfaces Si ∈ Sgi,ni
, i = 1, 2. Set as above

S = S1 ◦ S2, Ti = T(Si), Γi = Γ(Si), Γ = Γ(S).

Let G ⊂ Γ be a finite index subgroup. Set Gi = Γi ×Γ G, i = 1, 2. Then
there exists a natural map of complex orbifolds

[G1\T1]× [G2\T2] - [G\T] (49)

which is compatible with the gluing operation (47) of topological spaces.

Proof. Choose an arbitrary pair of marked Riemann surfaces

((X1, φ1), (X2, φ2)) ∈ T1 × T2.

By 5.3, there exists a quasiconformal orbifold chart (U,A, β) for Mg,n, where
(g, n) = (g1 + g2, n1 + n2 − 2), with Xz = X1 ∨X2, A = Aut(Xz) and a pair
of quasiconformal charts (Ui, Ai, βi), i = 1, 2, for Mgi,ni

, with Xi = Xzi ,
Ai = Aut(Xi), such that U1 × U2 belongs to the preimage of U under the
gluing map (47). This induces maps

fU : U1 × U2
- U, and fA : A1 ×A2

- A.

Since by (2.6.1) open substacks of a stack correspond to open subsets of its
coarse space, we obtain the following 2-commutative diagram of stacks

[A1\U1]× [A2\U2]
(fU ,fA)

- [A\U ]

Mg1,n1
×Mg2,n2

?

- Mg,n

?

(50)

where the vertical arrows are embeddings of open substacks.
Recall that each node of X1 ∨ X2 defines a component of the singular

locus U−U0 of U ; in particular, the node x obtained by gluing the punctures
of X1 and X2, defines a component Dx. The image of fU lies in Dx and,
moreover, fU is an open embedding of U1 × U2 to Dx.

Let x1, . . . , xr be the nodes of X1, and xr+1, . . . , xr+s be the nodes of
X2. Then the nodes of X1 ∨X2 are

x1, . . . , xr, xr+1, . . . , xr+s, x.

The corresponding circles in S1 ◦ S2 consist of the circles in S1 of the form
Ci = φ−1

1 (xi), i = 1, . . . , r, the circles in S2 of the form Ci = φ−1
2 (xi), i =

r + 1, . . . , r + s, and the common boundary component of S1 and S2.
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Let Di be the Dehn twists around Ci, i = 1, . . . , r, in Γ1, and around
Ci, i = r + 1, . . . , r + s, in Γ2, let D̄i be their images in Γ. Let

ki =

{
min{d|(Di)

d ∈ G1} for i = 1, . . . , r,
min{d|(Di)

d ∈ G2} for i = r + 1, . . . , r + s.

By the choice of Gi the same values ki define the ramification indices of
V over U around the corresponding components of the singular locus. This
implies that the fiber product (U1×U2)×U V is isomorphic to V1×V2. Choose
a morphism fV : V1 × V2 → V so that the diagram

V1 × V2
fV

- V

U1 × U2

?
fU

- U
?

is Cartesian. Let us show that fV in the diagram above can be chosen to be
compatible with the maps

α : V - G\T, αi : Vi - Gi\Ti (i = 1, 2),

together with the operations

T1 × T2
- T

defined in 7.3.2. Let vi, i = 1, 2, be the (only) preimages of zi ∈ Ui in Vi.
Any choice of fV sends the pair (v1, v2) ∈ V1 × V2 to the only preimage
v ∈ V of z ∈ U . Both α(fV (v1, v2)) and the result of gluing αi(vi) give the

element (X1 ∨X2, φ1 ∨ φ2) ∈ G\T. If now (y1, y2) ∈ Y1 × Y2 ⊂ V1 × V2 with
αi(yi) = (X ′

i, φ
′
i), the image α(fV (y1, y2)) has form (X ′

1 ∨X ′
2, φ

′) where the
G-markings φ′ and φ′1 ∨ φ′2 are both consistent with φ1 ∨φ2, that is differ by
an element γ ∈ Γ01×Γ02, where, as in 6.1.2, Γ01 and Γ02 are generated by the
Dehn twistsD1, . . . , Dr and Dr+1, . . . , Dr+1. The element γ is unique modulo
the intersection (Γ01 × Γ02) ∩ (G1 ×G2). The dependence of γ on the choice
of the point (y1, y2) is continuous; therefore, γ is constant. Replacing now fV
to its composition with γ, we get a new fV with the required property.

This allows one to lift the maps fU and fA to maps

fV : V1 × V2 - V, fH : H1 ×H2
- H

connecting the orbifold charts of [Gi\Ti] and [G\T] and giving rise to a 2-
commutative diagram

[H1\V1]× [H2\V2] - [H\V ]

[G1\T1]× [G2\T2]

?

- [G\T]
?

. (51)
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The collections (V1×V2, H1×H2, α1×α2) form an orbifold atlas for the

product [G1\T2]× [G2\T2]. The diagram (51) gives, in particular, a collection
of maps

[H1\V1]× [H2\V2] - [G\T].
Any morphism of charts

(V1 × V2, H1 ×H2, α1 × α2) - (V ′
1 × V ′

2 , H
′
1 ×H ′

2, α
′
1 × α′

2)

can be uniquely completed to a 2-commutative diagram

[H1\V1]× [H2\V2]
f̂V
- [H\V ]

[H ′
1\V ′

1 ]× [H ′
2\V ′

2 ]
?

f̂V ′
- [H ′\V ′]

?

. (52)

This gives the required map (49). �

7.3.5. Gluing quotients of Tg,n. Connected case. Now we will describe glu-
ing operation of the second type which corresponds to gluing two boundary
components of the same surface.

Proposition. Let S ∈ Sg,n and let S̄ ∈ Sg+1,n−2 be obtained from S by gluing
two chosen boundary components. Let Γ = Γ(S), Γ̄ = Γ(S̄). One has a group
homomorphism Γ → Γ̄. Choose a finite index subgroup Ḡ of Γ̄ and let G =
Γ×Γ̄ Ḡ. Then there exists a natural map of complex orbifolds

[G\T(S)] - [Ḡ\T(S̄)] (53)

compatible with the continuous map (48) of topological spaces.

Proof. Let (X,φ) ∈ T(S) and let (X̄, φ̄) be the corresponding point in T(S̄).
By 5.3, there exists a quasiconformal orbifold chart (Ū , Ā, β̄) for Mg+1,n−2

with the exceptional curve Xz̄ = X̄ , Ā = Aut(X̄) and a quasiconformal
chart (U,A, β) for Mg,n, with the exceptional curve Xz = X , A = Aut(X),
such that U is contained in the preimage of Ū under the gluing map (48).
This induces a pair of maps

fU : U - Ū , fA : A - Ā,

and gives the following 2-commutative diagram of stacks

[A\U ]
(fU ,fA)

- [Ā\Ū ]

Mg,n

?

- Mg+1,n−2

?

(54)

where the vertical arrows are open embeddings of stacks which are defined
by (2.6.1).
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Similarly to 7.3.4, the maps fU , fA can be lifted to maps fV : V → V̄
and fH : H → H̄ defining the maps of orbifolds

V - [H\V ] - [H̄\V̄ ] - [Ḡ\TS̄ ].
Here (V,H, α) is a chart of [G\T(S)] and (V̄ , H̄, ᾱ) is the corresponding

chart of [Ḡ\T(S̄)]. A morphism

(V,H, α) - (V ′, H ′, α′)

between the charts defines a canonical 2-morphism connecting V → [Ḡ\TS̄ ]
with V ′ → [Ḡ\TS̄ ]. This defines (53). �

8. Augmented Teichmüller spaces and admissible coverings

Let S be a compact oriented surface S of genus g with n boundary compo-

nents. Fix an unramified covering ρ : S̃ → S of degree d. To each marked sta-
ble curve (X,φ) ∈ T(S) a very natural construction (described below in 8.1)

assigns an admissible covering φ∗(ρ) : X̃ → X . The goal of this section is to
show that this leads to a continuous map

vρ : T(S)→ Admg,n,d.

The morphism vρ : T(S)→ Admg,n,d is defined as the composition

T(S)
π
G̃- [G̃\T] vG̃ρ

- Admg,n,d

where G̃ is a group defined in 8.3 below and vG̃ρ is a morphism of complex

orbifolds. Thus, using our interpretation of T as a projective system of com-
plex orbifolds, vρ may be viewed as a projective system of morphisms of
complex orbifolds.

The group G̃ consists of pairs (γ̃, γ) where γ ∈ Γ and γ̃ is a lifting of

γ to S̃. It is not a subgroup of Γ since such lifting is not unique. Instead,

one has a group homomorphism G̃ → Γ whose kernel is finite and whose
image G has finite index in Γ. Thus, our standard definition of the quotients
[G\T] and of the canonical maps πG given in 6.3, 7.2.4 does not meet our

needs; the quotient [G̃\T] and the canonical map πG̃ are defined in 8.4. The

resulting orbifold is a gerbe over the quotient [G\T] which is of the type we

studied in Section 6. The orbifold charts for [G̃\T] have form (V, H̃, α) where

(V,H, α) ∈ A is a chart for [G\T] and H̃ is a group endowed with a surjective
map to H .

The definition of the morphism vG̃ρ : [G̃\T]→ Admg,n,d amounts to the
construction of a compatible collection of admissible coverings for the families

of curves corresponding to each orbifold chart of [G̃\T].
There is an equivariant version of the construction: if ρ : S̃ → S is

an H-covering where H is a finite group, a continuous map vρ,H : T(S) →
Admg,n(H) is defined. This is done in 8.5.
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The morphisms vρ and vρ,H have some important factorization prop-
erties with respect to gluing bordered surfaces, see 8.6. The factorization
properties of the maps vρ and vρ,H follow from the comparison of the cor-

responding admissible coverings for the orbifold charts of [G̃\T].
The maps vρ : T(S) → Admg,n,d are of ultimate importance in the

construction of correction classes for the definition of stringy cohomology,
see [27] and Section 8.7.

8.1. Pointwise construction

Fix a bordered surface S of genus g with n boundary components and a finite

covering ρ : S̃ → S.
Let (X,φ : S → X) be a point of T(S). Using the marking φ : S → X

one can push the covering ρ : S̃ → S forward (see 8.1.1) to get an admissible

covering φ∗(ρ) : X̃ → X .

In the case ρ : S̃ → S is an H-covering where H is a finite group, the

map φ∗(ρ) : X̃ → X acquires an action of H which is automatically balanced
as we show in Lemma 8.1.2 below.

Thus, the map φ∗(ρ) : X̃ → X becomes an admissible H-covering in
the sense of Definition 4.3.1 of [4].

8.1.1. Pushforward of ρ. Here is the construction of φ∗(ρ). Outside the nodes
and the punctures of X the covering φ∗(ρ) is the pullback of ρ via φ−1 with

the complex structure on X̃ induced from X . By passing to the normalization
we get a ramified covering β of the normalization Xnor of X . Let p1 and p2
be two points of Xnor that correspond to a node p of X . The fibers of β at p1
and p2 are canonically identified with the orbits of monodromy of ρ around

the loop φ−1(p). Thus we obtain an admissible covering φ∗(ρ) : X̃ → X .
Assume now that ρ is an H-covering where H is a finite group. The

group H in this case acts upon the map φ∗(ρ) : X̃ → X .

8.1.2. Lemma. The action of H on φ∗(ρ) : X̃ → X is balanced.

Proof. Let y ∈ X̃ be a node over x ∈ X and let h ∈ Hy stabilize y. Let

D̃+∨D̃− be a small neighborhood of y consisting of a pair of unit disks glued
at y and let D+ ∨ D− be the corresponding neighborhood of x ∈ X . An

element h ∈ Hy acts on D̃+ and on D̃− by multiplication by primitive n-th
roots of unity, ζ±. Balancedness condition means that ζ+ζ− = 1. One can
read out the values of ζ± from the action of h on the nearby fiber of φ∗(ρ) at

x± ∈ D±. Let C = φ−1(x) and C̃ be the component of ρ−1(C) corresponding
to y. The annulus φ−1(D+ ∨ D−) in S admits an involution identifying the
fibers at x+ and x−; the corresponding involution identifying D+ and D− is
antiholomorphic. Therefore, ζ+ and ζ− are complex conjugate. �

8.2. Modular group and some other automorphism groups

The classical Dehn-Nielsen-Baer theorem states that the modular group Γ(S)
embeds into the outer automorphism group Out(π1(S)). The latter group has
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an especially nice interpretation in terms of the fundamental groupoid Π(S).
In this subsection we present a groupoid interpretation for the modular group
Γ and for some of its relatives.

8.2.1. Fundamental groupoid and the modular group. Recall that for a topo-
logical space X its fundamental groupoid Π(X) has the points of X as the
objects, and the homotopy classes of paths connecting the points as the ar-
rows. We will be especially interested in Π = Π(S) where S is a fixed oriented
surface with boundary.

For (any) groupoid Π let Seq(Π) denote the groupoid of self-equivalences
of Π and let Aut(Π) denote the corresponding group of isomorphism classes
of objects of Seq(Π).

For a connected groupoid Π the group Aut(Π) is nothing but Out(π)
where π is the automorphism group of an object of Π. Thus, for Π = Π(S)
the natural homomorphism from the modular group Γ to Aut(Π) is injective.

8.2.2. Variations. More generally, for a pair of groupoids Π1, Π2 we denote
by Eq(Π1,Π2) the groupoid of equivalences f : Π1 → Π2, so that Eq(Π,Π) =
Seq(Π). We write Iso(Π1,Π2) for the set of isomorphism classes of objects of
Eq.

For a pair of functors j1,2 : Π1,2 → Π a groupoid Eq(j1, j2) has as
objects pairs of equivalences,

f : Π1
- Π2, g : Π - Π,

together with an isomorphism θ : g ◦ j1 ≃ j2 ◦ f . Similarly to the above,
Iso(j1, j2) is the set of isomorphism classes of objects of Eq(j1, j2). As a
special case we get a groupoid Seq(j) and a group Aut(j).

8.2.3. Variations with coverings. Let X be a topological space with the fun-

damental groupoid Π. A covering ρ : X̃ → X can be described by a functor
Σ : Π → Set given by Σ(x) = ρ−1(x). This is a “basepoint-free” version of
the usual description of a covering by the action of the fundamental group of
X on a fiber.

We can define now more groupoids similarly to 8.2.2. Thus given

Σi : Πi → Set, i = 1, 2,

one defines Eq((Π1; Σ1), (Π2; Σ2)) as the groupoid whose objects are pairs
(f, φ) where f : Π1 → Π2 is an equivalence and φ : Σ1 → f∗(Σ2) is an
isomorphism. Similarly, for a pair of functors j1,2 : Π1,2 → Π and Σ : Π→ Set

one defines Eq(j1, j2; Σ) to be the groupoid whose objects are quadruples
(f, g, θ, φ) where

f : Π1
- Π2, g : Π - Π, θ : g ◦ j1 ≃ j2 ◦ f, φ : Σ ≃ g∗Σ.

Isomorphism classes of objects of Eq(j1, j2; Σ) are denoted by Iso(j1, j2; Σ).
The notations

Eq((Π1; Σ1), (Π2; Σ2)), Iso((Π1; Σ1), (Π2; Σ2)), Seq(Π;Σ), Aut(Π;Σ)

are self-evident.
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The above defined groups and sets are connected by a bunch of forgetful
maps which are all seen in the following commutative diagram corresponding
to a pair j1,2 : Π1,2 → Π and to a functor Σ : Π→ Set

Iso((Π1; j
∗
1Σ), (Π2; j

∗
2Σ)) � Iso(j1, j2; Σ) - Aut(Π;Σ)

Iso(Π1,Π2)
?

� Iso(j1, j2)
?

- Aut(Π)
?

. (55)

Note that the right-hand side square of the diagram is Cartesian.

8.3. Choice of the group

In this subsection we present the group G̃ which will appear in the decom-
position

T(S)
π
G̃- [G̃\T] vρ

- Admg,n,d.

The group G̃ will be chosen as a certain subgroup of Γ̃ which is defined

as the group of pairs (γ̃, γ) where γ ∈ Γ and γ̃ is a lifting of γ to S̃.

In the notation of 8.2.3 Γ̃ is just the fiber product Γ×Aut(Π) Aut(Π;Σ)
where Π is the fundamental groupoid of S and Σ is defined by ρ.

Let C be a circle in S. We denote by ρC the pullback

ρC : C ×S S̃ → C,

and by ρkC the pullback of ρC with respect to the k-sheeted covering C → C.
The covering ρC is determined up to isomorphism, by a monodromy operator
acting on a d-element set; the covering ρkC corresponds to the k-th power of
this operator.

8.3.1. Proposition. There exists a subgroup G̃ of Γ̃ satisfying the following
properties.

• The kernel of the map G̃→ Γ̃→ Γ is finite.

• The image G of the map G̃→ Γ̃→ Γ has finite index.
• For any circle C in S with the Dehn twist D ∈ Γ, if for some k Dk ∈ G,
then ρkC is trivial.

Proof. The kernel of the map Γ̃→ Γ identifies with Aut(S̃/S); it is, therefore,

finite. Thus, the first property of G̃ is automatically fulfilled for any subgroup

G̃ of Γ̃. Let us show that the image Γ̄ of the map Γ̃ → Γ has finite index in
Γ.

The covering ρ : S̃ → S is uniquely defined by the action of the funda-
mental group π1(S, s) at a point s ∈ S on the finite set Σ = ρ−1(s). Since
π1(S, s) is finitely generated, there are finite number of isomorphism classes
of such coverings. An element g ∈ Γ belongs to Γ̄ if and only if the inverse

image g∗(S̃) is isomorphic to S̃. Thus, Γ acts on a finite set (the set of iso-
morphism classes of coverings of degree d) and Γ̄ is the stabilizer of one of
its elements.



78 Vladimir Hinich and Arkady Vaintrob

We will now prove that there is a finite index subgroup G̃ of Γ̃ satisfying
the third property. Then the second property will be automatically fulfilled

for G̃.
The group Γ has a finite number of orbits on the set of (free homotopy

classes of) non-trivial circles in S. Since Γ̄ has finite index in Γ, it has as well
a finite number of orbits. This implies that there exists an integer K such
that for each non-trivial circle C one has ρKC = id. By Proposition 7.2.2 one
can choose a finite index subgroup G in Γ̄ such that for each non-trivial circle
C in S the corresponding Dehn twist D ∈ Γ satisfies the condition

Dk ∈ G =⇒ k is divisible by K.

We can now define G̃ = G×Γ Γ̃. Clearly, the map G̃→ G is surjective.
�

8.4. The quotient [G̃\T].
In this subsection we construct an orbifold atlas for the quotient of T modulo

the group G̃. The orbifold so defined is endowed with a canonical projection

πG̃ : T → [G̃\T].
Recall that our construction of the quotient [G\T] described in Section 6

is valid only for finite index subgroups of Γ. We lack a general construction

of the quotient modulo a group G̃ acting on T via f : G̃ → Γ such that
Ker(f) and [Γ : Im(f)] are finite. Our construction is specifically tailored for

the groups G̃ described in 8.3.

The orbifold atlas for the quotient [G̃\T] is a slight modification of the

atlas for [G\T] where G is the image of G̃ in Γ. For each orbifold chart

(V,H, α) ∈ A we construct a group epimorphism H̃ → H which will give rise

to a chart (V, H̃, α) for the quotient modulo G̃. Here is how to get H̃ .

8.4.1. Construction of the chart (V, H̃, α). Recall 6.2.5 that the group H of
symmetries of an orbifold chart (V,H, α) appears as the quotient

H = AQ,G/Γ
′
0 (56)

where AQ,G = AQ×ΓG and Γ′
0 = 〈Dk1

1 , . . . , D
kr
r 〉 is generated by appropriate

powers of the Dehn twists Di around the circles Ci = φ−1(xi) which are the
preimages in S of the nodes of Xz. Define

AQ,G̃ = AQ ×Γ G̃. (57)

One has a natural projectionAQ,G̃ → AQ,G. We claim that the subgroup

Γ′
0 of AQ,G canonically lifts to AQ,G̃.

Let C̃ij be the components of ρ−1(Ci) and let dij denote the degree of

C̃ij over Ci. By the choice of G̃, ki is divisible by all dij . Therefore, D
ki
i can

be lifted to
∏
j D

ki
dij

ij , where Dij denotes the Dehn twist around C̃ij .

The image of Γ′
0 in AQ,G̃ will be denoted Γ̃′

0.
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Define now H̃ = AQ,G̃/Γ̃
′
0.

The formula (56) immediately gives a canonical surjection H̃ → H with

the kernel isomorphic to Ker(Γ̃→ Γ) = Aut(S̃/S).

The group H̃ acting on V via H , we have got a (highly non-effective)

orbifold chart (V, H̃, α) of G\T = G̃\T.
Recall that V contains an open dense H-equivariant subset Y = Γ′

0\Q.

The group H̃ acts on Y via H .

Lemma. The map α : Y → G\T defines an orbifold chart (Y, H̃, α) for the

quotient [G̃\T].

Proof. We have to check that the map α : [H̃\Y ]→ [G̃\T] is an open embed-

ding. Making the base change with respect to the map T → [G̃\T], we get
the map

f : [AQ,G̃\G̃×Q] - T, (58)

where the group AQ,G̃ acts on the product G̃×Q by a(g, q) = (ga−1, aq). 20

We have to check that (58) is an open embedding. Since the map [H\Y ] →
[G\T] (see (36) ) is an open embedding, the base change with respect to
T → [G\T] gives an open embedding

[AQ,G\G×Q] - T

which is equivalent to the map f in (58). �

We will show now how to organize the charts (H̃, V, α) into an atlas.

8.4.2. Construction of an atlas for [G̃\T]. The atlas category Ã for [G̃\T] is
defined very similarly to the definition of A, see 6.3.

The category Ã is a full subcategory of the chart category corresponding

to the orbifold [G̃\T] via 3.1.11. Its objects are the triples (Y, H̃, α̂) coming

from the charts (V, H̃, α).21

Note that, similarly to 6.3, every object in Ã defines canonically a com-
mutative diagram

Y ========= Y - U

[G̃\T]

α

?

- [G\T]
?

- M

β

?

, (59)

giving rise to the functors Ã→ A→ Q.

The functor c : Ã→ Charts/(G̃\T) assigns a chart (V, H̃, α) to a triple

(Y, H̃, α̂).

20Here we identify an element a ∈ A
Q,G̃

with its image in G̃.
21So these are basically the same objects as in A
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The required collection of isomorphisms ι : Aut(a) → H̃(a), a ∈ Ã,

comes from the construction of Ã as a full subcategory of the chart category

for [G̃\T].
Verification of the axioms of Definition 3.1.9 is immediate.

Thus, we proved the following result.

Proposition. The category Ã defined above, together with the charts (V, H̃, α),

gives an orbifold atlas for the quotient G̃\T. The realization of the atlas de-

noted as [G̃\T] contains the quotient [G̃\T] as an open dense suborbifold.

�

8.4.3. The canonical projection πG̃ : T → [G̃\T]. In Section 6 the canonical

projection πG : T → [G\T] was constructed in the case G is a finite index
subgroup of Γ. The idea was to find a smaller group H in G so that the
quotient [H\T] is a complex manifold, and to present the quotient map as
the composition

T - [H\T] - [G\T].
This approach will not work for the quotient modulo G̃ since the action of G̃
on T is not effective. To construct the canonical projection

πG̃ : T → [G̃\T] (60)

we will use the already constructed map πG : T → [G\T].
The canonical map [G̃\T] → [G\T] is a gerbe. Its base change with

respect to the map πG : T → [G\T] gives a gerbe T̃ → T. Since T is

contractible, the gerbe T̃ → T is trivial, i.e. is isomorphic to the gerbe

Aut(S̃/S)× T
-
- T.

Fortunately, we can point out to a canonical trivialization of this gerbe.
In fact, the base change of this gerbe with respect to the embedding T → T

gives a gerbe T̃ → T which is canonically trivialized by the fact that

T̃ = T ×[G\T] [G̃\T].

This trivialization defines a unique trivialization of the gerbe T̃ → T. In

particular, we have a canonical splitting s : T → T̃ (“zero section”).

Now we can define the map πG̃ as the composition

T
s
- T̃ - [G̃\T].

8.5. Construction of the map vρ : T → Admg,n,d

The canonical map [G̃\T] → [G\T] gives rise to a family of marked nodal

curves over [G̃\T]. In order to obtain a morphism of orbifolds

vG̃ρ : [G̃\T] - Admg,n,d, (61)
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we will construct below an admissible covering of this family corresponding to

ρ : S̃ → S. Then, composing vG̃ρ with the canonical projection πG̃ constructed
in 8.4.3, we will finally produce the desired map

vρ : T - Admg,n,d.

8.5.1. Admissible covering of XV → V . Let (V, H̃, α) ∈ Ã be the orbifold

chart for [G̃\T] corresponding to a chart (U,A, β) ∈ Q and to a marking φ of
the fiber Xz of the universal family π : X→ U at z ∈ U .

We intend to construct an admissible covering of the induced family

πV : XV → V corresponding to ρ : S̃ → S.
Choose a contraction c : X → Xz (the result will not depend on the

choice). This induces a contraction c : XV → Xz.
Let x1, . . . , xr be the nodes of Xz. Choose small neighborhoods Oi of xi

in Xz as in (QC3). The manifold XV is covered by the following open subsets.

1. Y = c−1(Xz − {x1, . . . , xr}).
2. Pi = c−1(Oi).

The sets Pi are disjoint; one has

Y ∩ Pi = c−1(Oi − {xi}).
A fiber of Pi at x looks as follows: if x does not belong to the i-th com-

ponent of the singular locus, it is a small annulus around the circle c−1
x (xi).

Otherwise it is a standard neighborhood of the node zw = 0.
An admissible covering of XV is uniquely described by admissible cov-

erings on Y and on Pi together with isomorphisms on the intersections Y∩Pi.
Y is a family of (non-compact) Riemann surfaces on V . Admissible co-

vering of Y is the same as a unramified covering; it is defined uniquely up to
unique isomorphism by a unramified covering of Xz − {x1, . . . , xr}.

In particular, the marking φ : S → Xz uniquely defines a unramified
covering on Y.

We denote CY → Y→ V the resulting admissible covering.
The intersection of each Pi with Y is (homotopically) a union of two

annuli. The induced unramified coverings on these annuli are determined by

the restriction of ρ : S̃ → S to the circle Ci = φ−1(xi) ⊂ S. The latter is a

degree-d covering C̃i =
∐
j C̃ij → Ci, see 8.4.1.

Note that the constructed covering CY → Y is endowed with a canonical

isomorphism of the restriction CY|Y∩Pi
→ Y∩ Pi with the one defined by C̃i.

Proposition. The covering CY → Y → V extends uniquely up to unique iso-
morphism to an admissible covering CV → XV → V .

Proof. We have to construct admissible coverings Ci of Pi → V endowed with
isomorphisms of the restrictions Ci|Y∩Pi

→ Y∩Pi with the coverings defined

by C̃i. This will allow to canonically glue the coverings into an admissible
covering of XV → V .

Recall that by the choice of G (see 8.3) ki are divisible by the degrees

dij of the components C̃ij of C̃i over Ci.
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We are now looking for an admissible covering Ci of Pi → V inducing

C̃i on both components of the intersection Y ∩ Pi.
Let V0i = V − Dxi

be the collection of points which do not belong to
the i-th component of the singular locus, see condition (QC6) of the quasi-
conformal charts.

Let P0
i be the preimage of V0i in Pi. Since P0

i is smooth, the restriction
of an admissible covering to P0

i is unramified; it is therefore determined by
the action of the fundamental group of P0

i on a typical fiber of ρ.

The fundamental group of P0
i is the free abelian group generated by two

loops:

(Lp1) around the annulus in any fiber of π : P0
i → V0i, and

(Lp2) around the singular locus of V0i.

The first loop is homotopic to each one of the components of Y ∩ Pi.
The second loop is contractible in Y.

Thus, the covering CY of Y uniquely extends to a non-ramified covering
C0
i of the open part P0

i of Pi so that its restriction to (Lp1) canonically

identifies with C̃i, whereas the restriction to (Lp2) is trivial.
Now we have to show that the covering C0

i of P
0
i uniquely extends to an

admissible covering Ci of the family Pi → V .
Let us start with the uniqueness. The admissible covering Ci of Pi, if

it exists, is normal22 and finite over Pi. It can therefore be described as the
normalization of Pi in the field of meromorphic functions on C0

i . This gives
the uniqueness.

To prove the existence, note that the projection π : Pi → V is analyti-
cally isomorphic by (QC3)(b) to the standard projection of the space

Pi = {(u, v, t1, . . . , tm) ∈ D2 ×Dm|uv = tkii }
to Dm. Here D is the standard polydisk and ki is defined by the condition
ki = min{k|Dk

i ∈ G} where Di is the Dehn twist around Ci.

The generators of the fundamental group are now presented by the loops

(Lp1) θ 7→ (u exp(2πiθ), v exp(−2πiθ), t1, . . . , tm).
(Lp2) θ 7→ (u, v, t1, . . . , ti exp(2πiθ), . . . , tm).

We have to present an admissible covering Ci of Pi which induces C̃i on (Lp1)
and a trivial covering on (Lp2).

The covering C̃i of the circle Ci is uniquely determined by the degrees
dij of each component. We know that dij divides ki for each j. Thus, it is
sufficient to present for each divisor d of ki an admissible covering of Pi → Dm

of degree d, such that the monodromy around (Lp1) acts transitively on the
generic fiber of the covering, whereas the monodromy around (Lp2) acts
trivially on it.

22k[x, y, t]/(xy − tr) is normal by Serre’s criterion R1 + S2
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Consider

P̃i = {(ũ, ṽ, t1, . . . , tm) ∈ D2 × V |ũṽ = t
ki
d

i },
and define the map P̃i → Pi by u = ũd, v = ṽd. This gives the required
admissible covering.

As we have already mentioned, the admissible coverings CY → Y → V
and Ci → Pi → V glue uniquely to get an admissible covering of the family
XV → V . �

The resulting admissible covering will be denoted as

CV - XV - V.

8.5.2. Theorem. The admissible coverings CV → XV → V constructed above

canonically glue into an admissible covering of the universal curve X of [G̃\T].

Proof. To get an admissible covering over the whole quotient [G̃\T], we have
to construct a canonical isomorphism

CV1
- u∗CV2

for each morphism u : a1 → a2 in Ã, where c(ai) = (Vi, H̃i, αi).

Let ai = (Yi, H̃i, α̂i). A morphism u : a1 → a2 is given by a triple

uY : Y1 - Y2, uH : H̃1
- H̃2, θ : α̂1

- α̂2 ◦ û,
where û : [H̃1\Y1]→ [H̃2\Y2] is induced by (uY , uH).

The admissible coverings CVi
, i = 1, 2, are uniquely determined by their

restrictions CYi
, i = 1, 2, to Yi. Thus, it is enough to present a canonical

isomorphism
CY1

- u∗Y (CY2
) (62)

of coverings of Y1. Since uY is always injective, we can consider separately
two cases: u is an embedding and u is an isomorphism. The case when u is
an embedding is obvious. Let us assume now that u is an isomorphism.

Lift a map uY to a map uQ : Q1 → Q2 of the universal coverings. The
obvious equivalences

[AQi,G̃
\Qi] - [H̃i\Yi]

of the orbifolds allow one to translate a morphism u into a pair of commuta-
tive diagrams

Q1
- T AQ1,G̃

- G̃

and

Q2

uQ

?

- T

g

?

AQ2,G̃

ad(uQ)

?

- G̃

ad(g̃)

?

(63)

for some g ∈ G and a lifting g̃ of g in G̃.

The element g̃ ∈ G̃ defines an isomorphism (62) as follows. We assume
that zi ∈ Vi satisfy the condition uV (z1) = z2. Let Π1 (resp., Π2) be the
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fundamental groupoid of S−∪C1
i (resp., S−∪C2

i ), where C
1
i = φ−1

1 (xi) and
similarly for C2

i , and let ji : Πi → Π, i = 1, 2, be the obvious embeddings.
The element g ∈ G appearing in the left-hand side of (63) represents an

element of Iso(j1, j2) (see 8.2.2); its lifting g̃ gives an element of Iso(j1, j2; Σ)
as in the diagram (55). This defines an isomorphism between (Π1; j

∗
1Σ) and

(Π2; j
∗
2Σ) which is precisely the isomorphism CY1

→ u∗Y (CY2
) we need.

Another choice of lifting uQ : Q1 → Q2 of uY leads to different g and g̃.
The difference is, however, not very serious. If u′Q is another lifting, one has

u′Q = uQ ◦ γ where γ ∈ Γ′
0 = 〈Dk1

1 , . . . , D
kr
r 〉. Thus the lifting u′Q gives rise

to the pair g′ ∈ G, g̃′ ∈ G̃ where

g′ = gγ, g̃′ = g̃γ̃

and γ̃ is the canonical lifting of γ.
Since γ̃ is a product of Dehn twists along the components C′

ij of ρ
−1(Ci),

the induced element of Iso((Π1; j
∗
1Σ), (Π2; j

∗
2Σ)) is the same.

The continuous map

vρ : T - Admg,n,d

is constructed. �

8.5.3. The map vρ on the level of points. To make sure we constructed exactly
what was announced at the beginning of Section 8, let us describe the image
vρ(X,φ) for arbitrary (X,φ) ∈ T.

We can assume that (X,φ) belongs to the image α(V ) of an orbifold

chart (V,H, α) of G\T.
The admissible covering CV of V was constructed by gluing admissible

coverings CY and Ci of Y and of Pi respectively, see 8.5.1. Let X = Xv for
v ∈ V . The intersection Y∩X isX−c−1

v {x1, . . . , xr} where cv : X = Xv → Xz

is the restriction of the contraction to Xv. An admissible covering of X is
uniquely determined by its restriction to X ∩ Y; Since the G-markings of X
and of Xz are compatible, the restriction of the admissible covering on X ∩Y
induced from CV is the same as the one described in 8.1. Therefore, vρ(X,φ)
is presented by the admissible covering of X described in 8.1.

8.5.4. Admissible H-coverings. If ρ : S̃ → S is an H-covering, the resulting

admissible coverings CV of (V, H̃, α) acquire an H-action. Since the balan-
cedness condition is verified at each point by 8.5.3 and 8.1.2, the admissible

covering of [G̃\T] becomes an admissible H-covering. Thus, a map

vρ,H : T - Admg,n(H) (64)

is defined.

8.6. Compatibilities

The augmented Teichmüller spaces Tg,n as well as the stacks of admissible
coverings Admg,n,d have various gluing operations giving rise to (a sort of)
modular operads, see 7.3.
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In this subsection we will describe the compatibility of these structures
with the map vρ.

We also describe functoriality of vρ,H with respect to the change of H .
The proofs of the properties 8.6.1–8.6.3 are given in 8.6.4–8.6.5. Basi-

cally, the properties follow directly from the construction of an admissible

covering of [G̃\TS ] described in 8.5.2.

8.6.1. Functoriality for vρ,H . We will now describe functoriality for the maps

vρ,H . Let ρ : S̃ → S be an H-covering and let f : H → H ′ be a finite

group homomorphism. This defines an H ′-covering ρ′ : S̃′ → S obtained by

induction along H → H ′. If f is injective, S̃′ consists of [H ′ : H ] copies of S̃.

If f is surjective, S̃′ is the quotient of S̃ by the group Ker(f).
One has

Proposition. A group homomorphism f : H → H ′ induces a map of the
stacks

f∗ : Admg,n(H) - Admg,n(H
′).

Moreover, the following diagram

T(S)
=

- T(S)

Admg,n(H)

vρ,H

?
f∗
- Admg,n(H

′)

vρ′,H′

?

is 2-commutative.

8.6.2. Factorization (gluing two bordered surfaces). Let S1 ∈ Sg1,n1
, S2 ∈

Sg2,n2
be two bordered surfaces. Choose a boundary component in each one

of Si and let S = S1 ◦ S2 ∈ Sg,n where g = g1 + g2, n = n1 + n2 − 2.
Fix a finite covering ρ : C → S and let ρi : Ci → Si be the induced

covering of Si, i = 1, 2.
Let Υd denote the (discrete) groupoid of finite multisets of weight d: its

objects are pairs (X,w) where X is a finite set and w : X → Z>0 satisfies∑
w(x) = d.

Let π : C → X be an admissible covering of degree d. Then any x ∈ X
defines an object of Σd: this is the set-theoretic preimage π−1(x) with the
weight function defined by the multiplicities of the points of π−1(x). The
covering C is non-ramified at x if and only if all points of π−1(x) have weight

one. An admissible covering C
π
- X → V of degree d and a choice of a

puncture s : V → X defines a map V → Υd which assigns to v ∈ V the fiber
of the map Cv → Xv at π(v). This map is locally constant. Thus, the map

Fs : Admg,n,d - Υd

of orbifolds is defined. In particular, a choice of boundary components of
Si, i = 1, 2, defines a pair of maps Admgi,ni,d → Υd, i = 1, 2.
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Proposition. (1) Gluing of Si defines a canonical operation

Admg1,n1,d ×Υd
Admg2,n2,d

ι
- Admg,n,d. (65)

(2) The product of maps vρ1 and vρ2

vρ1 × vρ2 : T(S1)× T(S2) - Admg1,n1,d × Admg2,n2,d

is canonically factored through the map

Admg1,,n1,d ×Υd
Admg2,n2,d

- Admg1,n1,d × Admg2,n2,d.

(3) The following diagram

T(S1)× T(S2)
ι
- T(S)

Admg1,n1,d ×Υd
Admg2,n2,d

v1,2

?
ι
- Admg,n,d

vρ

?

(66)

is 2-commutative. Here v1,2 is defined by vρ1 × vρ2 via (2).

8.6.3. Factorization (gluing two boundary components). Let S ∈ Sg,n be a
bordered surface. Gluing a pair of boundary components in S we get a surface
S̄ ∈ Sg+1,n−2 together with a canonical map S → S̄. Fix a finite covering
ρ : C → S̄ and let ρS : CS → S be the induced covering of S.

The choice of two boundary components in S defines a map

Admg,n,d → Υd ×Υd

as in 8.6.2.

Proposition. (1) Gluing of two boundary components of S defines a cano-
nical operation

Admg,d,n ×Υd×Υd
Υd - Admg+1,n−2,d. (67)

(2) The map

vρS : T(S) - Admg,n,d

is canonically factored through the projection onto the first factor

Admg,d,n ×Υd×Υd
Υd - Admg,d,n.

(3) The following diagram

T(S)
ι

- T(S̄)

Admg,n,d ×Υd×Υd
Υd

v′ρS

?
ι
- Admg+1,n−2,d

vρ

?

(68)

is 2-commutative. Here v′ρS is defined by vρS via (2).
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8.6.4. Operations for Adm. The induction operation

f∗ : Admg,n(H)→ Admg,n(H
′)

can be constructed separately for the case f : H → H ′ is injective or surjec-
tive.

If f is injective and if C → X → V is an admissible H-covering, its
image under f∗ is given by C′ → X→ V where C′ is disjoint union of [H ′ : H ]
copies of C.

If f is surjective, C′ is the quotient of C by the action of Ker(f).
To define the gluing operation (65), we have to construct, given two

families Ci → Xi → V , i = 1, 2, of admissible coverings, together with a
choice of punctures si : V → Xi and an isomorphism θ : Fs1 → Fs2 in Υd, a
glued up family C → X → V . We have already described (see 7.3.3) how to
get X as the colimit of the diagram X1

� V → X2. Similarly, the choice
of punctures s1, s2 and of θ define a one-to-one correspondence between the
punctures of C1 over s1 and the punctures of C2 over s2. The coproduct of
C1 and C2 under an appropriate number of copies of V gives the admissible
covering C.

The gluing operation (67) is defined similarly.

8.6.5. Proof of 8.6.1–8.6.3. Proposition 8.6.1 results from the following obvi-
ous observation. Let CV → XV → V (resp., C′

V → XV → V ) be an admissible

covering constructed as in 8.5.1 for ρ : S̃ → S (resp., for ρ′ : S̃′ → S). Then
C′ = f∗(C).

To prove 8.6.2, let G be the finite index subgroup of Γ(S) chosen as
in 8.3 for the covering ρ : C → S = S1 ◦ S2; the groups Γ(Si) embed into
Γ(S); define Gi = Γi ×Γ G.

The gluing operation

[G1\T1]× [G2\T2] - [G\T]
defined in 7.3.4 extends trivially to its gerbe-version

[G̃1\T1]× [G̃2\T2] - [G̃\T],
where the groups G̃i, G̃ are defined as in 8.3.

The property (3) of 8.6.2 results from 2-commutativity of the following
diagram of complex orbifolds.

[G̃1\T1]× [G̃2\T2]
ι
- [G̃\T]

Admg1,n1,d ×Υd
Admg2,n2,d

v1,2

?
ι
- Admg,n,d

vρ

?

(69)

The latter results from the following observation. Let (Vi, H̃i, αi), i =

1, 2, and (V, H̃, α) be the charts for the quotients [G̃1\T1], [G̃2\T2] and [G̃\T]
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respectively, so that a map

fV : V1 × V2 - V

realizes the gluing operation (69) as in 7.3.4. The spaces V1, V2 and V are
bases of families of admissible coverings Ci → Xi → Vi and C → X → V
constructed as in 8.5.1. Then the inverse image f∗

V (C) identifies with the
admissible covering based on V1 × V2 obtained by gluing of

C1 × V2 - X1 × V2 - V1 × V2
and

V1 × C2
- V1 × X2

- V1 × V2
as described in 8.6.4.

The observation follows from the fact that an admissible covering of
the family (X1 × V2) ∨ (V1 × X2) is uniquely defined by its restriction to the
smooth locus of the exceptional curve X1 ∨X2 — see 8.5.1.

The proof of 8.6.3 goes along the same lines.

8.7. Associativity of the stringy orbifold cup-product

As an application of the results proved earlier in this section, we will show
how they can be used in the study of orbifold cohomology.

Based on work of string theorists, Chen and Ruan in [15] (see also [19])
introduced a new invariant of almost complex orbifolds called the stringy
orbifold cohomology ring. Multiplication in this ring is defined in a very non-
trivial way and the proof of its associativity given in [15] and [19] involves
various moduli spaces of stable Riemann surfaces with punctures.

In the forthcoming work [27] we will show that augmented Teichmüller
spaces and their properties established in this paper provide a very natural
tool for dealing with various orbifold cohomology theories.

Here we will only illustrate this by showing how to fix some problems
in the proofs of associativity of the stringy orbifold cup-product given in [15]
and in [19] (we elaborate on this in Remark 8.7.2 below).

Let X = [Y/G] be an almost complex global quotient orbifold, i.e. Y is
an almost complex manifold and G a finite group which acts on Y by diffeo-
morphisms preserving the almost complex structure. Proof of associativity of
stringy orbifold cohomology cup-product reduces to the following statement.

Let g1, g2, g3, g4 be a quadruple of elements in G with g1g2g3g4 = 1. Let

H = 〈g1, g2, g3, g4〉 ⊂ G

be the subgroup in G generated by these elements. Define two representations
VL and VR of the group H as follows. Let (C, p1, p2, p3, p4) ∈ M0,4 be a nodal
Riemann surface obtained by gluing two Riemann spheres C1 and C2 at a
point p with punctures p1, p2 on the component C1 and p3, p4 on C2. Let

π : C̃ → C
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be the Galois covering of C with the Galois group H unramified outside of
the punctures {p1, p2, p3, p4} ⊂ C, such that the monodromy around pi is
given by the action of gi ∈ H . Let

VL = H1(C̃,OC̃)

be the representation of H given by the action of H on C̃.

Note that this covering depends on a choice of a marking of C, i.e. of
an identification of the fundamental group π1(C − {p1, p2, p3, p4}) with the
free group

F3 = 〈x1, x2, x3, x4|
∏

xi = 1〉.
Another representation of H denoted VR is constructed by relabeling

the marked points. Now we put the points p1 and p3 on C1 and the points
p2 and p4 on C2.

The proof of associativity of stringy orbifold cup-product in [19] reduces
to the following statement.

8.7.1. Lemma. The representations VL and VR of the group H are isomorphic.

Proof. Let S be a surface obtained by removing four open disks (holes) from
S2. The fundamental group of S can be identified with

F3 = 〈x1, x2, x3, x4|
∏

xi = 1〉,

where xi corresponds to the path going around the boundary of the ith hole.
This gives an epimorphism F3 → H and with it a canonical H-covering

ρ : S̃ → S.

Due to the result of Section 8.5.4 there exists a map (64)

vρ,H : T(S) - Admg,n(H)

for certain g and n.

The tautological family of curves

C̃
π
- C

σ
- Admg,n(H)

gives an H-equivariant vector bundle V on Admg,n(H) defined by

V = R1(σπ)∗(OC̃)

which induces via vρ,H an H-equivariant vector bundle

W = v∗ρ,H(V)

on T(S).

Representations VL and VR of H constructed above appear as fibers of
W at two different boundary points of T(S) (they correspond to curves C
and C̄ with specific choices of marking). The desired isomorphism between

VL and VR now follows from connectedness of T(S). �
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8.7.2. Remark. The proof of this lemma given in [19] uses the moduli stack

Mg,n instead of the augmented Teichmüller space T.
This does not allow to take into account the dependence of the con-

struction of relevant coverings on the choice of markings (which is equivalent
to an identification of the fundamental group of the punctured surface with
the free group). An attempt to resolve the issue by replacing Mg,n with the
stack Adm hits the problem of high non-connectivity of Adm.
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