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IRREDUCIBLE 4-MANIFOLDS WITH ABELIAN NON-CYCLIC

FUNDAMENTAL GROUP OF SMALL RANK

RAFAEL TORRES

In this paper we construct several irreducible 4-manifolds, both small and ar-
bitrarily large, with abelian non-cyclic fundamental group. The manufacturing
procedure allows us to fill in numerous points in the geography plane of symplectic
manifolds with π1 = Z⊕Z, Z⊕Zp and Zq ⊕Zp (gcd(p, q) 6= 1). We then study the
botany of these points for π1 = Zp ⊕ Zp.

1. Manufactured Manifolds

The main results in this paper are:

Theorem 1. Let G be either Z ⊕ Z, Z ⊕ Zp or Zq ⊕ Zp. Let n ≥ 1 and m ≥ 1.
For each of the following pairs of integers

(1) (c, χ) = (7n, n),
(2) (c, χ) = (5n, n),
(3) (c, χ) = (4n, n),
(4) (c, χ) = (2n, n),
(5) (c, χ) = ((6 + 8g)n, (1 + g)n (for g ≥ 0),
(6) (c, χ) = (7n + (6 + 8g)m, n + (1 + g)m),
(7) (c, χ) = (7n + 5m, n + m),
(8) (c, χ) = (7n + 4m, n + m),
(9) (c, χ) = (7n + 2m, n + m),

(10) (c, χ) = ((6 + 8g)n + 5m, (1 + g)n + m) (for g ≥ 0),
(11) (c, χ) = ((6 + 8g)n + 4m, (1 + g)n + m) (for g ≥ 0),
(12) (c, χ) = ((6 + 8g)n + 2m, (1 + g)n + m) (for g ≥ 0),
(13) (c, χ) = (5n + 4m, n + m),
(14) (c, χ) = (5n + 2m, n + m),
(15) (c, χ) = (4n + 2m, n + m) and

there exists a symplectic irreducible 4-manifold X with

π1(X) = G and (c2
1(X), χh(X)) = (c, χ).

Proposition 2. Fix π1(X) = Zp ⊕ Zp, where p is a prime number greater than
two. Let (c, χ) be any pair of integers given in Theorem 1 such that n + m ≥ 2.
There exists an infinite family {Xn} of homeomorphic, pairwise non-diffeomorphic
irreducible smooth non-symplectic 4-manifolds realizing the coordinates (c, χ).
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The characteristic numbers are given in terms of χh = 1/4(e+σ) and c2
1 = 2e+3σ,

where e is the Euler characteristic of the manifold X and σ its signature.

The geography problem for abelian fundamental groups of small rank has already
been previously studied with great success. In Gompf’s gorgeous paper [14] where
the symplectic sum operation was introduced, infinitely many minimal symplectic
4-manifolds with b+

2 > 1 were constructed. Gompf also constructed a new family
of symplectic spin 4-manifolds with any prescribed fundamental group. In [4], [5]
and [6], more and smaller symplectic manifolds were constructed.

Other construction techniques have also been implemented. For the group
π1 = Z⊕Zp, examples with big Euler characteristic where constructed using genus
2 Lefschetz fibrations in [16] and [18]. Results studying the symplectic geography
for prescribed fundamental groups appeared in [6] and [4]. Concerning the botany,
J. Park in [17] constructed infinitely many smooth structures on big 4-manifolds
with finitely generated fundamental group.

The addition of Luttinger surgery (cf. [15], [3]) into the manufacturing proce-
dure has provided clean constructions to study rather effectively the geography of
simply connected 4-manifolds (cf. [4], [1], [2]). On the botany part, the technique
of doing of using a nullhomologous torus as a dial in order to change the smooth
structure developed in [9] and [8] has proven succesful to study the botany. In this
paper, we apply these efforts to manifolds with the three given fundamental groups.

Our results provide manifolds with both 12χ−c small and arbitrarily large. Most
of the points filled in by Theorem 1 were not yet considered elsewhere. For exam-
ple, the point (7, 1) corresponds to the smallest manifold built up to now. A blunt
overlap occurs for the points (6 + 8g, 1 + g), (5, 1) and (4, 1), which have been filled
in already by constructions given in [4] and [5]; we are using their constructions
to build larger manifolds, thus filling in considerably many more points. The exis-
tence of at least two smooth structures on complex surfaces with finite non-cyclic
fundamental groups was first studied in [11]. Proposition 2 takes advantage of the
recent techniques and offers a myriad of new exotic irreducible 4-manifolds with
finite abelian, yet non-cyclic fundamental group hosting infinitely many smooth
structures; it includes the smallest manifold with such π1 known to posses this
quality.

The assumption gcd(p, q) 6= 1 serves the sole purpose of emphasizing that the
results in this paper are disjoint from the cyclic case studied in [20]. We feel the
results presented here deserve their own space and they should not be buried in a
long paper for several reasons. Amongst them is the employment of the homeo-
morphism criteria for finite groups of odd order (cf. [11]) given in Section 6.3.

The blueprint of the paper is as follows. The geography is addressed first; Section
2 starts by describing the ingredients we will use to build the manifolds of Theorem
1. The manufacturing procedure starts later on in this section. The results that
allow us to conclude irreducibility are presented in Section 3. The fourth section
takes care of the fundamental group calculations. The fifth section gathers up our
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efforts into the proof of Theorem 1. The last part of the paper goes into the botany,
where Section 6 takes on the existence of the exotic smooth structures claimed in
Proposition 2.

2. Raw Materials

The following definition was introduced in [1].

Definition 3. An ordered triple (X, T1, T2) consisting of a symplectic 4-manifold
X and two disjointly embedded Lagrangian tori T1 and T2 is called a telescoping
triple if

(1) The tori T1 and T2 span a 2-dimensional subspace of H2(X ; R).
(2) π1(X) ∼= Z2 and the inclusion induces an isomorphism π1(X− (T1∪T2)) →

π1(X). In particular, the meridians of the tori are trivial in π1(X − (T1 ∪
T2)).

(3) The image of the homomorphism induced by the corresponding inclusion
π1(T1) → π1(X) is a summand Z ⊂ π1(X).

(4) The homomorphism induced by inclusion π1(T2) → π1(X) is an isomor-
phism.

The telescoping triple is called minimal if X itself is minimal. Notice the im-
portance of the order of the tori. The meridians µT1

, µT2
in π1(X − (T1 ∪ T2))

are trivial and the relevant fundamental groups are abelian. The push off of an
oriented loop γ ⊂ Ti into X − (T1 ∪ T2) with respect to any (Lagrangian) framing
of the normal bundle of Ti represents a well defined element of π1(X − (T1 ∪ T2))
which is independent of the choices of framing and base-point.

The first condition assures us that the Lagrangian tori T1 and T2 are linearly
independent in H2(X ; R). This allows for the symplectic form on X to be slightly
perturbed so that one of the Ti remains Lagrangian while the other becomes sym-
plectic. The symplectic form can also be perturbed in such way that both tori
become symplectic. If we were to consider a symplectic surface F in X disjoint
from T1 and T2, the perturbed symplectic form can be chosen so that F remains
symplectic.

Removing a surface from a 4-manifold usually introduces new generators into the
fundamental group of the resulting manifold. The second condition indicates that
the meridians are nullhomotopic in the complement and, thus, the fundamental
group of the manifold and the fundamental group of the complement of the tori in
the manifold coincide.

Out of two telescoping triples, one is able to produce another telescoping triple
as follows. If both X and X ′ are symplectic manifolds, then the symplectic sum
along the symplectic tori X#T2,T ′

1
X ′ has a symplectic structure ([14]). If both X

and X ′ are minimal, then the resulting telescoping triple is minimal too (by Usher’s
theorem cf. [21]).

Proposition 4. (cf. [1]). Let (X, T1, T2) and (X ′, T ′

1, T
′

2) be two telescoping triples.
Then for an appropriate gluing map the triple
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(X#T2,T ′

1
X ′, T1, T

′

2)

is again a telescoping triple.
The Euler characteristic and the signature of X#T2,T ′

1
X ′ are given by e(X)+e(X ′)

and σ(X) + σ(X ′).

We refer the reader to theorems 20 and 13 and to proposition 12 in [4] for the
proof and for more details. The building blocks we will used are gathered together
in the following theorem.

Theorem 5. • There exists a minimal telescoping triple (A, T1, T2) with e(A) =
5, σ(A) = −1.

• For each g ≥ 0, there exists a minimal telescoping triple (Bg, T1, T2) satis-
fying e(Bg) = 6 + 4g, σ(Bg) = −2.

• There exists a minimal telescoping triple (C, T1, T2) with e(C) = 7, σ(C) =
−3.

• There exists a minimal telescoping triple (D, T1, T2) with e(D) = 8, σ(D) =
−4.

• There exists a minimal telescoping triple (F, T1, T2) with e(F ) = 10, σ(F ) =
−6.

The manifolds Bg, D and F were already built in [1]. They are taken out of the
constructions given in [4] by the following mechanism. The main goal of [4] is to
construct simply connected 4-manifolds by applying Luttinger surgery to symplec-
tic sums. If one is careful about the fundamental fundamental group calculations,
the procedure can be interrumpted by NOT performing two surgeries, and thus
obtain a symplectic manifold with π1 = Z⊕Z. Furthermore, the skipped surgeries
have to be chosen carefully so that the unused Lagrangian tori comply with the
requirements and the pieces can then be aligned into a telescoping triple.

To finish the proof of Theorem 5, we construct (A, T1, T2) and (C, T1, T2) by
applying this mechanism to the constructions in [2]. This is done in the following
two lemmas, where we follow the notation of [2].

Lemma 6. There exists a telescoping triple (A, T1, T2) with e(C) = 5 and σ(C) =
−1.

Proof. This telescoping triple is obtained out of the construction of an exotic ir-

reducible symplectic CP2#2CP
2

given in [2]. The two surgeries to be skipped are
(a′

2×c′, c′, +1/p) and (b′1×c′′, b′1,−1) (the notation is explained in [9]). Rename the
corresponding tori T1 and T2. This procedure manufactures a minimal symplectic
manifold A. Notice that the tori are linearly independent in H2(A; R). We need to
check that such manifold has indeed π1 = Z2 and that it contains the required tori.

Let us begin with the fundamental group calculations. By combining the rela-
tions coming from the surgeries (a′

1 × c′, a′

1,−1) and (a′′

2 × d′, d′, +1) that where
performed on the Σ2 ×T 2 block (see [2] for details) we have α1 = a1 = [b−1

1 , d−1] =

[b−1
1 , [b2, c

−1]−1] = [b−1
1 , [c−1, b2]] = 1. The last commutator is trivial since b1
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commutes with both c1 and b2. Substituting this in the relations coming from

the surgeries applied to the building block T 4#CP
2
, we obtain α3 = a2 = 1 and

α4 = b2 = 1. By looking at the relations from the other building block we see
d = 1. Note that the meridians of the surfaces along which the gluing is performed
are trivial. Thus only two commuting generators survive in the group presentation.

We check that the meridian of the first torus is µT1
= [d−1, b−1

2 ] = 1 and its
Lagrangian push-offs are mT1

= c and lT1
= a2 = 1. For the torus T2 one sees

µT2
= [a−1

1 , d] = 1 and its Lagrangian push-offs are mT2
= c and lT2

= b1. So,
π1(A − (T1 ∪ T2)) is generated by the commuting elements b1 and c. By a Mayer-
Vietoris sequence we see H1(A−(T1∪T2)) = Z2. Thus π1(A−(T1∪T2) = Zb1⊕Zc.
We conclude (A, T1, T2) is a telescoping triple.

�

Lemma 7. There exists a telescoping triple (C, T1, T2) with e(C) = 7 and σ(C) =
−3.

Proof. We follow the construction of an exotic irreducible symplectic CP2#4CP
2

given in [2]. The surgeries (α′

2 × α′′

3 , α′

2,−1) in the T 4#2CP
2

block and (α′′

2 ×

α′

4, α
′

4,−1) in the T 4#CP
2

block will NOT be performed. Call these tori T2 and
T1 respectively and the resulting manifold C. Notice that they are linearly inde-
pendent in H2(C; R).

We apply (α′

1 × α′

3, α
′

1,−1) on the T 4#2CP
2
. This introduces the relation

α1 = [α−1
2 , α−1

4 ]. Using the commutator [α2, α4] = 1, one sees α1 = 1. The

relation α3 = [α−1
1 , α−1

4 ] obtained by applying a Luttinger surgery on the T 4#CP
2

building block implies α3 = 1. The surfaces of genus 2 along which the symplectic
sum is performed have trivial meridians.

The meridian of T1 is µT1
= [a−1

1 , α4] = 1 and its Lagrangian push-offs are
mT1

= α2 and lT1
= α3 = 1. The meridian of T2 is given by µT2

= [α1, α
−1
3 ] = 1 and

its Lagrangian push-offs are mT2
= α4 and lT2

= α2. We have that π1(C−(T1∪T2))
is generated by the commuting elements α2 and α4. The Mayer-Vietoris sequence
computes H1(C − (T1 ∪ T2)) = Z2, thus π1(C − (T1 ∪ T2)) = Zα2 ⊕ Zα4. Thus,
(C, T1, T2) is a telescoping triple. �

Remark 1. One is able to realize the point (c2
1, χh) = (3, 1) for the fundamen-

tal groups π1 = Z2 and π1 = Z during the manufacturing process of an exotic

irreducible symplectic CP2#6CP
2
. Consider the symplectic sum of T 4#CP

2
and

T 2 × S2#4CP
2

along a genus 2 surface given in [2]. The resulting minimal sym-
plectic 4-manifold has a fundamental group with the following presentation

< α1, α2, α3|[α1, α2] = 1, [α2, α3] = 1, α−1
1 = α2

3 >∼= Z ⊕ Z.

If we apply the surgery (α′′

2×α′

4, α
′

4,−1), the relation α4 = [α1, α
−1
3 ] is introduced

to the fundamental group presentation and we obtain a manifold with fundamental
group

π1 =< α1, α3|α
−1
1 = α2

3 >∼= Z.
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If we apply the surgery (α′

2 × α′

3, α
′

3,−1), the relation α3 = [α−1
1 , α−1

4 ] is intro-
duced to the fundamental group presentation and we obtain a manifold with funda-
mental group π1 =< α2 >= Z.

One can go on and build more telescoping triples out of these five by using
Proposition 4. We proceed to do so now. Let us start by setting some useful
notation. Let (X, T1, T2) be a telescoping triple. We will denote by Xn := #n(X)
the manifold obtained by building the symplectic sum (cf. [14]) of n copies of X
along the proper tori.

Proposition 8. For each n ≥ 1 and m ≥ 1, the following minimal telescoping
triples with the given Characteristic numbers exist:

(1) (An, T1, T2) satisfying e(An) = 5n and σ(An) = −n.
(2) (Cn, T1, T2) satisfying e(Cn) = 7n and σ(Cn) = −3n.
(3) (Dn, T1, T2) satisfying e(Dn) = 8n and σ(Dn) = −4n.
(4) (Fn, T1, T2) satisfying e(Fn) = 10n and σ(Fn) = −6n.
(5) (#n(Bg), T1, T2) satisfying e(#n(Bg)) = (6 + 4g)n and σ(#n(Bg)) = −2n.
(6) (An#m(Bg), T1, T2) satisfying e(An#m(Bg)) = 5n+(6+4g)m and σ(An#m(Bg)) =

−n − 2m.
(7) (An#Cm, T1, T2) satisfying e(An#Cm) = 5n+7m and σ(An#Cm) = −n−

3m.
(8) (An#Dm, T1, T2) satisfying e(An#Dm) = 5n+8m and σ(An#Dm) = −n−

4m.
(9) (An#Fm, T1, T2) satisfying e(An#Fm) = 5n+10m and σ(An#Fm) = −n−

6m.
(10) (#n(Bg)#Cm, T1, T2) satisfying e(#n(Bg)#Cm) = (6 + 4g)n + 7m and

σ(#n(Bg)#Cm) = −2n− 3m.
(11) (#n(Bg)#Dm, T1, T2) satisfying e(#n(Bg)#Dm) = (6 + 4g)n + 8m and

σ(n(Bg)#Dm) = −2n− 4m.
(12) (#n(Bg)#Fm, T1, T2) satisfying e(#n(Bg)#Fm) = (6 + 4g)n + 10m and

σ(n(Bg)#Fm) = −2n− 6m.
(13) (Cn#Dm, T1, T2) satisfying e(Cn#Dm) = 7n + 8m and σ(Cn#Dm) =

−3n − 4m.
(14) (Cn#Fm, T1, T2) satisfying e(Cn#Fm) = 7n + 10m and σ(Cn#Fm) =

−3n − 6m.
(15) (Dn#Fm, T1, T2) satisfying e(Dn#Fm) = 8n + 10m and σ(Dn#Fm) =

−4n − 6m.

The claim about minimality is proven in the next section.

3. Minimality and Irreducibility

The following result allows us to conclude the irreducibility of the manufactured
minimal 4-manifolds.

Theorem 9. (Hamilton and Kotschick, [12]). Minimal symplectic 4-manifolds with
residually finite fundamental groups are irreducible.
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Finite groups and free groups are well-known examples of residually finite groups.
Since the direct products of residually finite groups are residually finite groups
themselves, the previous result implies that all we need to worry about is produc-
ing minimal manifolds in order to conclude on their irreducibility. This endeavor
follows from Usher’s theorem.

Theorem 10. (Usher, [21]). Let X = Y #Σ≡ΣY ′ be the symplectic sum where the
surfaces have genus greater than zero.

(1) If either Y −Σ or Y ′−Σ′ contains an embedded symplectic sphere of square
-1, then X is not minimal.

(2) If one of the summands, say Y for definiteness, admits the structure of
an S2-bundle over a surface of genus g such that Σ is a section of this
S2-bundle, then X is minimal if and only if Y ′ is minimal.

(3) In all other cases, X is minimal.

This theorem implies that the manifolds of Proposition 8 are minimal.

4. Luttinger Surgery and its Effects on π1

Let T be a Lagrangian torus inside a symplectic 4-manifold M . Luttinger surgery
(cf. [15], [3]) is the surgical procedure of taking out a tubular neighborhood of the
torus nbh(T) in M and gluing it back in, in such way that the resulting manifold
admits a symplectic structure. The symplectic form is unchanged away from a
neighborhood of T . We proceed to give an overview of the process before we get
into the fundamental group calculations.

The Darboux-Weinstein theorem (cf. [7]) implies the existence of a parametriza-
tion of a tubular neighborhood T × D2 → nbh(T ) ⊂ M such that the image
of T × {d} is Lagrangian for all d ∈ D2. Let d ∈ D − {0}. The parametriza-
tion of the tubular neighborhood provides us with a particular type of push-off
Fd : T × {d} ⊂ M − T called the Lagrangian push-off or Lagrangian framing. Let
γ ⊂ T be an embedded curve. Its image Fd(γ) under the Lagrangian push-off is
called the Lagrangian push-off of γ. These curves are used to parametrize the Lut-
tinger surgery.

A meridian of T is a curve isotopic to {t} × ∂D2 ⊂ ∂(nbd(T )) and it is de-
noted by µt. Consider two embedded curves in T which intersect transversally
in one point and consider their Lagrangian push-offs mT and lT . The group
H1(∂(nbd(T )) = H1(T 3) is generated by µT , mt and lT . We take advantage of
the commutativity of π1(T 3) and choose a basepoint t on ∂(nbh(T )), so that we
can refer unambiguously to µT , mT , lT ∈ π1(∂(nbd(T )), t).

Under this notation, a general torus surgery is the process of removing a tubular
neighborhood of T in M and glue it back in such a way that the curve representing
µk

T mp
T lqT bounds a disk for some triple of integers k, p, and q. In order to obtain a

symplectic manifold after the surgery, we need to set k = ±1 (cf. [4]).
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When the base point x of M is chosen off the boundary of the tubular neigh-
borhood of T , the based loops µT , mt and lT are to be joined by the same path in
M −T . By doing so, these curves define elements of π1(M −T, x). The 4-manifold
Y resulting from Luttinger surgery on M has fundamental group

π1(M − T )/N(µT mp
T lqT )

where N(µT mp
T lqT ) denotes the normal subgroup generated by µT mp

T lqT .

We proceed now with the fundamental group calculations needed to prove Theo-
rem 1. To do so, we plug into the previous general picture the information we have
for the telescoping triples. Let (X, T1, T2) be a telescoping triple. The fundamental
group of X has the presentation < t1, t2|[t1, t2] = 1 >. Let us apply +1/p Luttinger
surgery on T1 along lT1

and call Y1 the resulting manifold. Since the meridian µT1

is trivial we have

π1(Y1) = π1(X − T )/N(µT m0
T1

lpT1
) = Z ⊕ Z/N(1 · 1 · lpT1

).

Thus, π1(Y1) =< t1, t2|[t1, t2] = 1, tp2 = 1 >.

Let us apply now +1/q Luttinger surgery on T2 along mT2
and call the resulting

manifold Y2 the resulting manifold. Since the meridian µT2
is trivial we have

π1(Y2) = Z ⊕ Zp/N(1 · mq
T2

· 1).

Thus, π1(Y1) =< t1, t2|[t1, t2] = 1, tq1 = 1 = tp2 >.

The reader might have already noticed the symmetry of these calculations.

Proposition 11. Let (X, T1, T2) be a minimal telescoping triple. Let lT1
be a

Lagrangian push off of a curve on T1 and mT2
the Lagrangian push off of a curve

on T2 so that lT1
and mT2

generate π1(X).

• The minimal symplectic 4-manifold obtained by performing either +1/p
Luttinger surgery on T1 along lT1

or +1/p surgery on T2 along mT2
has

fundamental group isomorphic to Z ⊕ Zp.

• The minimal symplectic 4-manifold obtained by performing +1/p Luttinger
surgery on T1 along lT1

and +1/q surgery on T2 along mT2
has fundamental

group isomorphic to Zq ⊕ Zp.

The proof is ommited. It is based on a repeated use of Lemma 2 in [4] and
Usher’s theorem (cf. [21]). The reader is suggested to look at the proofs of theo-
rems 8, 10 and 13 of [4] for a blueprint to the proof.

5. Proof of Theorem 1

Proof. The possible choices for characteristic numbers in Theorem 1 are in a one-to-
one correspondence with the telescoping triples of Proposition 8. The enumeration
indicates that, in order to produce the manifold in Theorem 1 with one of the
choices for characteristic numbers claimed in item # (k), we start with the tele-
scoping triple of item # (k) in Proposition 8 (k ∈ {1, 2, 3, 4, 5, . . . , 14, 15}). Let
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S := (X, T1, T2) be the chosen minimal telescoping triple. The manifolds of The-
orem 1 are produced by applying Luttinger surgery to S according to the choice
of characteristic numbers. By Proposition 11 we know that out of S one produces
two symplectic manifolds: Y1 with π1 = Z ⊕ Zp and Y2 with π1 = Zq ⊕ Zp. Since
Luttinger surgery does not change the Euler characteristic nor the signature, the
resulting manifolds Y1 and Y2 share the same characteristic numbers as X .

Proposition 11 states that Y1 and Y2 are minimal. By Hamilton-Kotschick result,
both of them are irreducible. The calculation of the characteristic numbers of Y1

and Y2 is straight-forward. Since our chosen S was arbitrary, this finishes the proof.
�

6. Exotic Smooth Structures on 4-Manifolds with Abelian Finite

Non-Cylic π1

The purpose of this section is to put on display the exotic smooth structures for
the manufactured manifolds having π1 = Zp ⊕ Zp, i.e., to prove Proposition 2.

6.1. Smooth Topological Prototype. We proceed to construct the underlying
smooth manifold on which infinitely many exotic smooth structures will be dis-
played. Start with the product of a Lens space and a circle: L(p, 1)×S1. Its Euler
characteristic is zero as well as its signature. Consider the map

L(p, 1) × S1 → L(p, 1) × S1

{pt} × α 7→ {pt} × αp

We perform surgery on L(p, 1) × S1: cut out the loop αp and glue in a disc in
order to kill the corresponding generator

˜L(p, 1) × S1 := L(p, 1) × S1 − (S1 × D3) ∪ S2 × D2.

The resulting manifold has zero signature and Euler characteristic two. By the

Seifert-Van Kampen theorem, one concludes π1( ˜L(p, 1) × S1) = Zp ⊕ Zp.

Since we are aiming at non-spin manifolds, our topological prototypes will have
the shape

b+
2 CP2#b−2 CP

2
# ˜ L(p, 1) × S1

but spin 4-manifolds with π1 = Zp ⊕Zp are also built in such a straight-forward
manner.

6.2. An infinite family {Xn}. We apply now the procedure described in [9] and
[8] to produce infinitely many distinct smooth structures on any of our topological
prototypes. Let X0 be the manifold obtained by applying +1/p Luttinger surgery
on T2 along lT2

to any of the manifolds from the telescoping triples previously
constructed. Since X0 is a minimal symplectic manifold with b+

2 = 2, its Seiberg-
Witten invariant is non-trivial by [19].
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The infinite family {Xn} is obtained by applying a +n/p torus surgery to X0 on
T1 along mT1

. Notice that now k = n acording to our notation of Section 4; only
the case k = 1 = n produces a symplectic manifold. We take a closer look at the
process to see that we comply with the hypothesis of Corollary 2 in [8].

The boundary of the tubular neighborhood of T1 in X0 is a 3-torus whose funda-
mental group is generated by the loops µT1

, mT1
and lT1

. Notice that in π1(X0−T1),
the meridian is trivial µT1

= 1, mT1
= x and lT1

= 1, where x is a generator in
π1(X0) = Zp ⊕ Zx. The manifolds in the family {Xn} can be described as the re-
sult of applying to X0 a n/p surgery on T1 along mT1

, and so µn
T1

mT1
= xp is killed.

Let X be the manifold obtained from X0 − T1 by gluing a thick torus T 2 × D2

in a manner that γ = S1 × {1} × {1} is sent to lT1
, λ = {1} × S1 × {1} is sent to

µT1
, and µX = {(1, 1)}× ∂D2 is sent to m−p

T1
. If n 6= 1, the manifold X will not be

symplectic, but in any case π1(X) = Zp ⊕ Zp. Denote by Λ ⊂ X the core torus of
the surgery.

Notice that given the identifications on the loops during the surgery, λ = µT2
= 1,

thus it is nullhomotopic in X0 − T1 = X − Λ; in particular, λ is nullhomologous.
The torus surgery kills one generator of H1 and two generators of H2; Λ is a null-
homologous torus. One obtains a manifold Xn by applying 1/n surgery on Λ along
λ with π1(Xn) = Zp ⊕ Zp. The manifold X0 can be recovered from X by applying
a 0/1 surgery on Λ along λ.

By Corollary 2 in [8], we produce an infinite family {Xn} of pairwise non-
diffeomorphic 4-manifolds. These manifolds will have the same cohomology ring
as the corresponding topological prototype. Thus we have the following lemma.

Lemma 12. There exists an infinite family {Xn} of pairwise non-diffeomorphic
irreducible non-symplectic 4-manifolds with π1 = Zp ⊕ Zp sharing the same Euler
characteristic, signature and type as a given topological prototype constructed in the
previous subsection.

6.3. Homeomorphism Criteria. Now we need to see that the manifolds pro-
duced share indeed the same underlying topological prototype. Ian Hambleton and
Matthias Kreck proved the needed homeomorphism criteria in [11] (theorem B).
They showed that topological 4-manifolds with odd order fundamental group and
large Euler characteristic are classified up to homeomorphism by explicit invariants.

The precise statement of their result includes a lower bound for the Euler char-
acteristic in terms of an integer number d(π), which depends on the fundamental
group of the manifold. We proceed to explain the notation employed.

Let π1 = π be a finite group and let d(π) be the minimal Z-rank for the abelian
group Ω3Z ⊗Z[π] Z. One minimizes over all representatives of Ω3Z, the kernel of
a projective resolution of length three (cf. [10]) of Z over the group ring Z[π]. In
particular, Ω3Z is a submodule of π2(X). The minimal representative is given by
π2(K), where K is a two-complex with the given π1.
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The result we will use in order to conclude on the homeomorphism type of our
manifolds is the following

Theorem 13. (Hambleton-Kreck, cf [11]). Let M be a closed oriented manifold of

dimension four, and let π1(X) = π be a finite group of odd order. When ω2(X̃) = 0

(resp. ω2(X̃) 6= 0), assume that

b2(X) − |σ(X)| > 2d(π),

(resp. > 2d(π) + 2). Then M is classified up to homeomorphism by the signature,
Euler characteristic, type, Kirby-Siebenmann invariant, and fundamental class in
H4(π, Z)/Out(π).

Notice that since p ≥ 3 is assumed to be a prime number, π1 has odd order and
no 2-torsion. Therefore, the type of the manifold is indicated by the parity of its
intersection form over Z. All of our manufactured manifolds are non-spin; since
they are smooth, the Kirby-Siebenmann invariant vanishes.

For the finite groups π = Zp ⊕ Zp, we claim

d(π) = 1.

We are indebted to Matthias Kreck for explaining us the argument [13]. As-
sume π = π1 is a finite group and let K be a 2-complex with fundamental group
π1. The minimal Euler characteristic of a K is given by d(π)+1. We claim d(π) = 1.

Consider the map from K to the Eilenberg-MacLane space K(π, 1) which in-
duces an isomorphism on π1. Then the induced map on H2(K; Zp) is surjective.
Thus, the Euler characteristic of K is greater or equal than 3 - 2 + 1. This implies
d(π) is greater or equal than 1.

To conclude now d(π) = 1, consider the standard presentation of Zp ⊕ Zp given
by

< x, y|xp = 1, yp = 1, [x, y] = 1 >.

The 2-complex realising this presentation has Euler characteristic 2 = d(π) + 1.
Therefore, d(π) = 1 as claimed.

In order to conclude on the homeomorphism type of our manufactured manifolds,
we only need to know the numerical invariants b+

2 and b−2 which need to satisfy

b2(X) − |σ(X)| > 4.

6.4. Proof of Proposition 2. The proof of Proposition 2 is now clear if one
rewrites it in the following form. Using , n ≥ 2 if m = 0 or does not appear; m ≥ 2
if n = 0

Proposition 14. Assume n + m ≥ 2. The manifolds

b+
2 CP2#b−2 CP

2
# ˜L(p, 1) × S1

with the following coordinates admit infinitely many exotic irreducible smooth
structures, only one of which is symplectic.
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(1) (b+
2 , b−2 ) = (2n − 1, 3n− 1),

(2) (b+
2 , b−2 ) = (2n − 1, 5n− 1),

(3) (b+
2 , b−2 ) = (2n − 1, 6n− 1),

(4) (b+
2 , b−2 ) = (2n − 1, 8n− 1),

(5) (b+
2 , b−2 ) = ((2 + 2g)n − 1, (4 + 2g)n− 1),

(6) (b+
2 , b−2 ) = (2n + (2 + 2g)m − 1, 3n + (4 + 2g)m− 1),

(7) (b+
2 , b−2 ) = (2n + 2m − 1, 3n + 5m − 1),

(8) (b+
2 , b−2 ) = (2n + 2m − 1, 3n + 6m − 1),

(9) (b+
2 , b−2 ) = (2n + 2m − 1, 3n + 8m − 1),

(10) (b+
2 , b−2 ) = ((2 + 2g)n + 2m − 1, (4 + 2g)n + 5m − 1),

(11) (b+
2 , b−2 ) = ((2 + 2g)n + 2m − 1, (4 + 2g)n + 6m − 1),

(12) (b+
2 , b−2 ) = ((2 + 2g)n + 2m − 1, (4 + 2g)n + 8m − 1),

(13) (b+
2 , b−2 ) = (2n + 2m − 1, 5n + 6m − 1),

(14) (b+
2 , b−2 ) = (2n + 2m − 1, 5n + 8m − 1),

(15) (b+
2 , b−2 ) = (2n + 2m − 1, 6n + 8m − 1).

Proof. The infinite families are provided by Lemma 12. Choosing the topological
prototype accordingly to the coordinates, by Theorem 12 and the discussion that
follows we conclude on the homeomorphism type. Notice that the enumeration
of the coordinates presented in Proposition 14 correspond exactly to the ones in
Theorem 1. �
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