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THE QUIVER OF PROJECTIVES IN HEREDITARY CATEGORIES WITH

SERRE DUALITY

CARL FREDRIK BERG AND ADAM-CHRISTIAAN VAN ROOSMALEN

Abstract. Let k be an algebraically closed field and A a k-linear hereditary category satisfying
Serre duality with no infinite radicals between the preprojective objects. If A is generated by
the preprojective objects, then we show that A is derived equivalent to repk Q for a so called
strongly locally finite quiver Q. To this end, we introduce light cone distances and round trip
distances on quivers which will be used to investigate sections in stable translation quivers of
the form ZQ.
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1. Introduction

With a quiver Q we may associate a stable translation quiver ZQ as follows: the vertices are
given by (n, x) where n ∈ Z and x ∈ Q. The number of arrows (i, x) → (j, y) is equal to the
number of arrows x → y in Q if i = j, equal to the number of arrows y → x if j = i + 1, and
equal to zero otherwise. On the vertices of ZQ, we may define a translation τ : ZQ → ZQ by
τ(n, x) = (n− 1, x). This is an automorphism of ZQ that makes ZQ a stable translation quiver.

Non-isomorphic quivers Q and Q′ may give rise to isomorphic stable translation quivers ZQ
and ZQ′. We define a section of ZQ as a full subquiver Q′ of ZQ such that the embedding
Q′ → ZQ extends to an isomorphism ZQ′ → ZQ of stable translation quivers. In this paper,
we will investigate for which quivers Q the stable translation quiver ZQ admits a strongly locally
finite section Q′, i.e. every vertex of Q′ has finitely many neighbors and Q′ is without subquivers
of the form · → · → · · · or · · · → · → ·

Before stating our main result, we will need a definition. Let Q be a quiver. For two vertices
x, y ∈ Q we define the round trip distance d(x, y) as the least number of arrows that have to be
traversed in the opposite direction on an unoriented path from x to y and back to x. If Q does
not have oriented cycles, then for all x, y, z ∈ Q

(1) d(x, y) ≥ 0 and d(x, y) = 0⇐⇒ x = y,
1
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Figure 1. A quiver satisfying the equivalent conditions of Theorem 1.1 (left)
and one that does not (right)

(2) d(x, y) = d(y, x),
(3) d(x, z) ≤ d(x, y) + d(y, z)

such that d defines a distance on the vertices of Q (Proposition 3.6 in the text). To the round trip
distance, we may associate round trip distance spheres as follows

S(x, n) = {y ∈ Q | d(x, y) = n}.

We may now formulate our main theorem (Theorem 4.4 in the text).

Theorem 1.1. Let Q be a connected quiver, then the following are equivalent.

• The quiver Q has no oriented cycles, and for a certain x ∈ Q (or equivalently: for all
x ∈ Q) the round trip distance spheres SQ(x, n) are finite, for all n ∈ N.
• There are only finitely many paths in ZQ between two vertices.
• The translation quiver ZQ has a strongly locally finite section.

As an example, we see that the left quiver in Figure 1 satisfies the first condition of the previous
theorem, while in the quiver on the right hand side the round trip distance sphere SQ(x, 1) has
infinitely many vertices.

Our main reason to investigate this problem has been a question by Reiten and Van den
Bergh in [3]. In that article, Reiten and Van den Bergh classified all k-linear noetherian abelian
hereditary Ext-finite categories with Serre duality. One type of such categories, characterized by
being generated by preprojectives, was constructed by formally inverting a right Serre functor in
the category repk Q of finitely presented representations of a certain quiver Q.

Reiten and Van den Bergh suggest another construction of these categories, and a shorter proof
of their classification, based on the answer to the following question. Let A be an hereditary
noetherian category with Serre duality, and let Q be the full subquiver of the Auslander-Reiten
quiver of A spanned by the isomorphism classes of the indecomposable projectives. Does ZQ have
a strongly locally finite section?

Since Reiten and Van den Bergh note ([3, Lemma II.3.1]) that for the quivers Q under con-
sideration there are only finitely many paths between two vertices in ZQ, our Theorem 1.1 gives
a positive answer. Following the ideas of Reiten and Van den Bergh, we obtain an alternative
way of constructing the noetherian categories generated by preprojectives (Ringel already gave an
alternative way of constructing such categories using ray quivers in [4]).

Theorem 1.2. Let A be a noetherian k-linear abelian Ext-finite hereditary category with Serre
duality. Assume A is generated by the preprojective objects, then A is derived equivalent to repQ′

where Q′ is strongly locally finite.

A slightly more general result, not involving the noetherian condition, is given by Theorem 5.3.
Let A be a hereditary category with Serre duality. The following theorem (Corollary 5.5 in

the text) characterizes all quivers which occur as a subquiver of the Auslander-Reiten quiver of



THE QUIVER OF PROJECTIVES IN HEREDITARY CATEGORIES WITH SERRE DUALITY 3

Figure 2. Light cones and light cone distance in ZA∞
∞

A generated by indecomposable projectives (called the quiver of projectives). This complements
a result from [3] where all such quivers that can arise when A is noetherian were characterized as
being star quivers.

Theorem 1.3. Let Q be a quiver. There is an abelian hereditary category with Serre duality
having Q as its quiver of projectives if and only if Q satisfies the equivalent conditions of Theorem
1.1.

The proof of Theorem 1.1 is a constructive one. Let Q be a quiver. In ZQ we define the right
light cone centered on a vertex x ∈ ZQ as the set of all vertices y such that there is an oriented
path from x to y but not to τy. Dually, we define the left light cone centered on x as the set of
all vertices y such that there is an oriented path from y to x, but not to τx.

Let y ∈ ZQ such that τ−ny lies on the right light cone centered on x, then we will say that the
right light cone distance d•(x, y) is n. Note that d•(x, y) may be negative, and is not symmetric.
Fixing an x, the right light cone distance d•(x, y) determines which object we take from the τ -orbit
of y (see for example Figure 2).

In Proposition 4.2 we show that in order for a full subquiver Q′ of ZQ to be a section, it suffices
that Q′ meets every τ -orbit of ZQ at least once, and that for every two vertices x, y ∈ Q′ both
d•(x, y) and d•(y, x) are positive. Graphically, these last conditions mean that y lies “in between”
the left and right light cones centered on x (as is for example the case in Figure 2).

Another useful property of the right light cone distance is that one may see whether a certain
section is strongly locally finite or not (Proposition 4.1).

Thus for the quiver Q, we pick any vertex x ∈ ZQ and consider the left and right light cones
centered on x. In every τ -orbit, we choose a vertex “in the middle” between the left and right
light cone centered on x (as is illustrated in Figure 7). Using properties of d• we may then show
that the constructed subquiver of ZQ is a strongly locally finite section, completing the proof of
Theorem 1.1.

Acknowledgment The authors would like to thank Idun Reiten and Sverre Smalø for many
useful discussions and helpful ideas. We thank Michel Van den Bergh for his comments on an
earlier version of the paper. The second author also gratefully acknowledges the hospitality and
support of the Max-Planck-Institut für Mathematik in Bonn and the Norwegian University of
Science and Technology.
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2. Preliminaries

2.1. Quivers. A quiver Q is a 2-tuple (Q0, Q1) of sets where the elements of Q0 are the vertices,
and Q1 consists of arrows between those vertices. We will often write x ∈ Q for a vertex x, when
we mean x ∈ Q0.

An (oriented) path between two vertices x, y ∈ Q is a sequence x = x0, x1, . . . , xn−1, xn = y
such that there is an arrow xi → xi+1, for all i ∈ {0, 1, . . . n−1}. An (oriented) cycle is a nontrivial
path from a vertex to itself.

We define unoriented paths in an obvious way. While we will often abbreviate “oriented paths”
to “paths”, in order to avoid confusion we will not abbreviate “unoriented paths” to “paths”.

If there is an arrow x → y between two vertices, we say x is a neighbor of y and vice versa.
If every vertex of Q has only finitely many neighbors, we say Q is locally finite. If Q does not
contain a subquiver of the form · → · → · · · or · · · → · → · (called rays and corays, respectively),
we will say Q is path finite.

A connected, locally finite and path finite quiver has been called strongly locally finite in [3].
Hence a quiver Q is strongly locally finite if and only if all indecomposable projectives and injectives
representations have finite length.

2.2. Stable translation quivers. A stable translation quiver is a quiver T = (T0, T1) together
with a bijection τ : T0 −→ T0, such that for all vertices x, y ∈ T0 the number of arrows from y to
x is equal to the number of arrows from τx to y.

With a quiver Q we will associate a stable translation quiver ZQ as the quiver with vertices
ZQ0 = {(n, x) | n ∈ Z, x ∈ Q0} and arrows as follows: the number of arrows (i, x) → (j, y) is
equal to the number of arrows x → y in Q if i = j, to the number of arrows y → x if j = i + 1,
and zero otherwise. The translation is given by τ : (i, x) 7→ (i− 1, x).

It is easy to see that ZQ is locally finite or contains no oriented cycles if and only if Q is locally
finite or contains no oriented cycles, respectively.

A section Q of the stable translation quiver ZQ is a connected full convex subquiver that meets
each τ -orbit of ZQ exactly once. Thus Q′ ⊆ ZQ is a section if and only if the canonical injection
may be lifted to an isomorphism ZQ′ ∼= ZQ of stable translation quivers.

An equivalent formulation is given by [3]: a subquiver Q′ of the stable translation quiver ZQ is
a section if and only if Q′ meets every τ -orbit of ZQ exactly once, and if x ∈ Q′ and x→ z is an
arrow in ZQ then either z ∈ Q′ or τz ∈ Q′, and when z → x is an arrow in ZQ then either z ∈ Q′

or τ−1z ∈ Q′.
A sectional path in a stable translation quiver is an oriented path A0 → A1 → · · · → An such

that Ai 6= τAi+2, for all i ∈ {0, . . . , n− 2}.
We will mostly be interested in stable translation quivers of the form ZQ where there will only

be a finite number of paths between two vertices. The following proposition gives some equivalent
formulations.

Proposition 2.1. Let Q be a connected quiver. The following statements are equivalent.

(1) The quiver Q is locally finite and there are only finitely many sectional paths between any
two vertices of ZQ.

(2) There are only finitely many (possibly non-sectional) paths between any two vertices in
ZQ.

(3) For every vertex x ∈ ZQ there are only finitely many paths from x to τ−nx in ZQ for all
n ∈ N.

(4) There is a vertex x ∈ ZQ such that there are only finitely many paths from x to τ−nx in
ZQ for all n ∈ N.

Proof. (1⇒ 2) Seeking a contradiction to the assumptions in (1), we will assume we may choose
x and y such that there are infinitely many paths from x to y. Without loss of generality,
we may assume x has coordinates (0, vx) and y has coordinates (n, vy), where vx and vy

are vertices in Q and n ≥ 0.
Since there are finitely many sectional paths from x to y, an infinite number of the

paths between x and y must be non-sectional. If x 6= τy then we may turn a non-sectional
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path into a non-trivial path from x to τy by replacing a part Ai−2 → τAi+1 → Ai →
Ai+1 → Ai+2 by Ai−2 → τAi+1 → τAi+2.

Since the paths from x to y have finite length and Q is locally finite, only finitely many
different paths will be turned into the same one by this procedure, thus there are infinitely
many paths from x to τy. Repeating this process shows that we either have infinitely
many paths from x to τn+1y or infinitely many paths from x to τ−x.

The coordinates of τn+1y are (−1, vy), and as such there may be no paths from x =
(0, vx) to τn+1y.

Therefore assume there are infinitely many paths from x to τ−x. Since Q is locally
finite, there may only be a finite number of paths from x to τ−x of length 2.

All paths from x to τ−x not of length 2 are sectional, since otherwise we may turn
them into paths from x to x by replacing a part Ai−2 → τAi+1 → Ai → Ai+1 → Ai+2 by
Ai−2 → τAi+1 → τAi+2, as before. Such a path from x to x is necessarily sectional. By
concatenating this cycle with itself, we obtain an infinite number of sectional paths from
x to x, a contradiction.

Hence we know there are infinitely many sectional paths from x to τ−x, a contradiction
to the assumption in (1).

(2⇒ 1) There is a finite number of paths between x and τ−1x such that Q is locally finite. The
claim about sectional paths is trivial.

(2⇒ 3) Trivial.
(3⇒ 4) Trivial.
(4⇒ 2) Seeking a contradiction, assume there are infinitely many paths from a vertex y to a vertex

z of ZQ. Since Q is connected, there is a path from x to τny for an n ∈ Z. For the same
reason there is a path from τnz to τmx for an m ∈ Z. Composition gives a path from x
to τmx, hence m ∈ −N. Since there are infinitely many paths from y to z, composition
gives infinitely many paths from x to τmx, a contradiction to the assumption in (4).

�

3. Light Cone and Round Trip Distance

In this section, we will introduce some tools that will help us to find and discuss sections in
stable translation quivers of the form ZQ.

3.1. Right light cone distances. Let Q be a quiver. In ZQ we define the (right) light cone
centered on a vertex x ∈ ZQ as the set of all vertices y such that there is a path from x to y but
not to τy. It is clear that the right light cone intersects a τ -orbit in at most one vertex. If Q (and
hence ZQ) is connected, then the right light cone intersects each τ -orbit in exactly one vertex.

Let y ∈ ZQ. If τ−ny lies on the right light cone centered on x, then we will say that the right
light cone distance d•(x, y) is n. If no such n exists, we define d•(x, y) =∞. If Q (and hence ZQ)
is connected then the right light cone distance d•(x, y) is finite for all vertices x, y ∈ ZQ.

The following lemma is obvious.

Lemma 3.1. For all x, y ∈ ZQ, we have d•(x, τny) = d•(x, y) + n.

Note that d•(x, y) may be negative, and that the function d• is not symmetric. The following
lemma shows the right light cone distance satisfies the triangle inequality.

Lemma 3.2. For all vertices x, y, z ∈ ZQ we have

d•(x, z) ≤ d•(x, y) + d•(y, z)

Proof. Assume d•(x, y) = n and d•(y, z) = m, thus there are paths from x to τ−ny and from
τ−ny to τ−n−mz. Composition gives a path from x to τ−n−mz, hence d•(x, z) ≤ n + m. If either
d•(x, y) or d•(y, z) is infinite, then the inequality is trivial. �

There is a natural embedding ǫ : Q →֒ ZQ induced by the map ǫ(x) = (0, x). Let x and y be
vertices of Q, then we define the right light cone distance d•Q(x, y) between x and y as the distance

d•((0, x), (0, y)).
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Figure 3. A stable translation quiver with the (right) light cone centered on x
and the corresponding right light cone distances

An equivalent way to describe d•Q(x, y) intrinsically on Q is as the minimal number of arrows
traversed in the opposite direction over all unoriented paths from x to y.

Proposition 3.3. Let Q be a connected quiver, then d•Q defines a hemimetric on Q, i.e. for all
x, y, z ∈ Q we have

(1) d•Q(x, y) ≥ 0,

(2) d•Q(x, x) = 0,

(3) d•Q(x, z) ≥ d•Q(x, y) + d•Q(y, z).

If furthermore Q does not have oriented cycles, then we may strengthen (2) to

(2’) (d•Q(x, y) = 0 and d•Q(y, x) = 0)⇐⇒ x = y.

Proof. This follows directly from the definition of d•Q and Lemma 3.2. �

Proposition 3.4. If x→ y is an arrow in ZQ for a quiver Q, then d•(x, y) = 0 or d•(x, y) = −1.
Furthermore Q has no oriented cycles if and only d•(x, y) = 0 for all arrows x→ y.

Proof. By the definition of d•(x, y), and since there is a path from x to y, we have d•(x, y) ≤ 0.
From the arrow x→ y we easily obtain an arrow τ2y → τx. A path x→ τny for n ≥ 2 would

produce a path from x to τx by concatenation with a path from τny to τ2y and the arrow from
τ2y to τx. From the definition of ZQ we see such a path does not occur, hence d•(x, y) ≥ −1.
This shows d•(x, y) = 0 or d•(x, y) = −1.

If d•(x, y) = −1, then there is a path from x to τy. The arrow x→ y yields an arrow τy → x
and we obtain a cycle in ZQ. This implies there is a cycle in Q as well.

Finally, assume Q admits a cycle, and let x → y be an arrow occurring in this cycle. This
implies there is also an arrow y → τ−1x. Since there is a path from y to x, we know d•(y, x) ≤ 0,
and hence d•(y, τ−1x) ≤ −1 in ZQ. �

Example 3.5. Let Q = Ã1 with cyclic orientation, and let x, y ∈ ZQ as follows

•

��

OOOOOO

''PPPPPP

•

�� ''OOOOOOOOOOOOO y

��

OOOOOO

''PPPPPP

•

��
· · · · · ·

•

GG 77ooooooooooooo x

GG

nnnnnn

77oooooo

•

HH 77ooooooooooooo •

GG

Then d•(x, y) = −1.

In addition to the right light cone distance one may also define a left light cone and a left light
cone distance d• : ZQ × ZQ → Z ∪ {∞} dually (see Figure 4), but since d•(x, y) = d•(y, x), the
left light cone distance is essentially superfluous.
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Figure 4. A stable translation quiver with the left light cone centered on x and
the corresponding left light cone distances

Figure 5. Light cones and round trip distance in ZA∞
∞

3.2. Round Trip Distances. For two vertices x, y ∈ ZQ, we define the round trip distance
d(x, y) as

d(x, y) = d•(x, y) + d•(y, x).

It is an immediate consequence of the definition that d(x, y) is the least integer n such that there
is a path in ZQ from x to τ−nx that contains exactly one vertex from the τ -orbit of y, namely
τ−d•(x,y)y.

Let x and y be vertices of Q, then we define the round trip distance dQ(x, y) between x and y
as the distance d((0, x), (0, y)) where (0, x) and (0, y) are the vertices in ZQ corresponding to x
and y under the natural embedding Q →֒ ZQ. Hence

dQ(x, y) = d((0, x), (0, y))

= d•((0, x), (0, y)) + d•((0, y), (0, x)) = d•Q(x, y) + d•Q(y, x)
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Figure 6. An example of a stable translation quiver where the left and right
light cone centered on x have been marked. Every vertex is labeled with the
round trip distance from x.

As with d•Q, we may describe dQ(x, y) intrinsically. If x and y are vertices of Q, then dQ(x, y)
is the least number of arrows traversed in the opposite direction on a path from x to itself passing
through y.

The next proposition shows that the round trip distance dQ defines a distance on the ver-
tices of Q when Q is without oriented cycles. If Q has oriented cycles, then d merely defines a
pseudodistance (i.e. satisfies conditions (1) to (4) below).

Proposition 3.6. Let Q be a connected quiver, then for all x, y, z ∈ Q we have

(1) dQ(x, y) ≥ 0
(2) dQ(x, x) = 0
(3) dQ(x, y) = dQ(y, x)
(4) dQ(x, z) ≤ dQ(x, y) + dQ(y, z)

Furthermore, if Q has no oriented cycles then we may strengthen (2) to

(2’) dQ(x, y) = 0⇔ x = y

Proof. The first three properties follow directly from the definition of dQ, while the triangle in-
equality follows from Lemma 3.2. Furthermore, if dQ(x, y) = 0, then x and y lie on the same
oriented cycle in Q. This proves the last assertion. �

3.3. Round Trip Distance Spheres for Quivers. For a vertex x in a quiver Q we define the
round trip distance spheres SQ(x, n) where n ∈ N, as the sets

SQ(x, n) = {y ∈ Q | dQ(x, y) = n}.

Similarly we define the right light cone sphere and the left light cone sphere as

S•
Q(x, n) = {y ∈ Q | d•Q(x, y) = n} and SQ

• (x, n) = {y ∈ Q | d•Q(y, x) = n}

respectively.
We may now extend Proposition 2.1.

Proposition 3.7. Let Q be a connected quiver. The following statements are equivalent.

(1) The quiver Q is locally finite and there are only finitely many sectional paths between any
two vertices of ZQ.

(2) There are only finitely many (possibly non-sectional) paths between any two vertices in
ZQ.
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(3) For every vertex x ∈ ZQ there are only finitely many paths from x to τ−nx in ZQ for all
n ∈ N.

(4) There is a vertex x ∈ ZQ such that there are only finitely many paths from x to τ−nx in
ZQ for all n ∈ N.

(5) The quiver Q is without oriented cycles, and for all x ∈ Q and n ∈ N the round trip
distance sphere SQ(x, n) is finite.

(6) The quiver Q is without oriented cycles, and there is an x ∈ Q such that the round trip
distance sphere SQ(x, n) is finite for all n ∈ N.

Proof. (3⇒ 5) Since an oriented cycle involving x would give infinitely many paths from x to x,
we know Q is without oriented cycles.

Since every vertex y ∈ SQ(x, n) has a τ -shift in ZQ lying on a path from x to τ−nx,
and there are only finitely many such paths, it is clear SQ(x, n) must be finite.

(5⇒ 2) For every y on a path from x to τ−nx, we know d(x, y) ≤ n. Since SQ(x, i) is finite for all
i ≤ n, there may only be finitely many paths from x to τ−nx.

(5⇔ 6) This follows directly from the triangle inequality.
�

4. Existence of Strongly Locally Finite Sections

We will now turn our attention to finding strongly locally finite sections in translation quivers
of the form ZQ. To do this we will use the right light cone distance and the round trip distance
introduced in Section 3.

First, we will give a characterization of strongly locally finite quivers using the right and left
light cone distances.

Proposition 4.1. Let Q be a connected quiver. Then Q is strongly locally finite if and only if

Q has no oriented cycles and for any x ∈ Q all spheres S•
Q(x, n) and SQ

• (x, n) are finite for all
n ∈ N.

Proof. First, assume Q is strongly locally finite. Since Q is then path finite, it is clear that Q does
not have oriented cycles. Seeking a contradiction, we will assume there to be an m ∈ N such that
S•

Q(x, m) is infinite for a certain vertex x ∈ Q. Let m be the smallest such integer; since Q is path
finite, we know m ≥ 1.

For every y ∈ S•
Q(x, m) we fix an unoriented path from x to y with exactly m arrows in the

opposite direction. Following such an unoriented path from x to y, the right light cone distance
will be increasing. Let z be the first vertex encountered on this unoriented path with d•(x, z) = m.

Such a vertex z admits an oriented path to y and is a neighbor of a vertex in S•
Q(x, m−1). Since

this last set is finite and Q is locally finite, it is clear that there are only finitely many vertices z.
Hence one of these vertices admits oriented paths to an infinite number of vertices in S•

Q(x, m).
Since Q is locally finite, we conclude that Q has rays. A contradiction.

Dually, one shows SQ
• (x, n) is finite for all n ∈ N.

For the other implication, assume Q has no oriented cycles and for a certain x ∈ Q all spheres

S•
Q(x, n) and SQ

• (x, n) are finite for all n ∈ N.

Let y ∈ Q be any vertex. For all neighbors z ∈ Q of y, we have either d•Q(y, z) = 0 if there is

an arrow y → z or d•Q(y, z) = 1 if there is an arrow z → y. Using the triangle inequality, we find

d•Q(x, z) ≤ d•Q(x, y) + d•Q(y, z) ≤ d•Q(x, y) + 1.

Since S•
Q(x, n) is finite for all n ∈ N, we see that y may only have a finite number of neighbors,

hence Q is locally finite.
We will now proceed by proving that Q is path finite. Assume Q has a ray a0 → a1 → · · · as

subquiver. For i ≥ 0, the triangle inequality gives

d•Q(x, ai+1) ≤ d•Q(x, ai) + d•Q(ai, ai+1) = d•Q(x, ai)

since d•Q(ai, ai+1) = 0, hence the sequence (d•Q(x, ai))i∈N must stabilize, giving an infinite set

S•
Q(x, m) for an m ≤ d•Q(x, a0). Thus Q may not have a ray as a subquiver.
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Dually, one finds that Q may not have a coray as subquiver. �

The next result gives necessary and sufficient conditions for Q′ to be a section of ZQ using the
right light cone distance.

Proposition 4.2. Let Q′ be a full subquiver of the stable translation quiver ZQ that meets every
τ-orbit exactly once. Then Q′ is a section if and only if d•(x, y) ≥ 0 for all vertices x, y ∈ Q′.

Proof. We will first check that, if d•(x, y) ≥ 0 for all vertices x, y ∈ Q′, then Q′ is a section. We
need to show that for every arrow x → z in ZQ with x ∈ Q′ either z ∈ Q′ or τz ∈ Q′, and for
every arrow z → x in ZQ with x ∈ Q′ either z ∈ Q′ or τ−1z ∈ Q′. We will only show the first
part, the second is similar.

So let x ∈ Q′. Since there is an arrow x → z in ZQ, we know d•(x, z) ≤ 0, thus the object of
the τ -orbit of z belonging to Q′ has to be of the form τnz with n ≥ 0.

An arrow x → z induces an arrow τz → x, hence d•(τz, x) ≤ 0 and thus n ≤ 1. We conclude
that either z or τz belongs to Q′.

Conversely, let Q′ be a section of ZQ and let x, y ∈ Q′. Since the injection Q′ ⊆ ZQ lifts to an
isomorphism ZQ′ → ZQ of translation quivers, Proposition 3.3 yields d•(x, y) = d•Q′ (x, y) ≥ 0. �

Example 4.3. Let x be a vertex of the stable translation quiver ZQ. Using triangle inequality,
one easily verifies that the right light cone S•(x, 0) and the left light cone S•(x, 0) are both sections
of ZQ.

We now come to the main result of this section.

Theorem 4.4. Let Q be a connected quiver. The following statements are equivalent.

(1) The quiver Q is locally finite and there are only finitely many sectional paths between any
two vertices of ZQ.

(2) There are only finitely many (possibly non-sectional) paths between any two vertices in
ZQ.

(3) For every vertex x ∈ ZQ there are only finitely many paths from x to τ−nx in ZQ for all
n ∈ N.

(4) There is a vertex x ∈ ZQ such that there are only finitely many paths from x to τ−nx in
ZQ for all n ∈ N.

(5) The quiver Q is without oriented cycles, and for all x ∈ Q and n ∈ N the round trip
distance sphere SQ(x, n) is finite.

(6) The quiver Q is without oriented cycles, and there is an x ∈ Q such that the round trip
distance sphere SQ(x, n) is finite, for all n ∈ N.

(7) The translation quiver ZQ has a strongly locally finite section.

Proof. The first 6 points are equivalent by Proposition 3.7.

(5⇒ 7) We will construct a section Q′ in ZQ. Start by fixing a vertex x in ZQ. From every

τ -orbit we will choose a vertex y to be in Q′ for which d•(x, y) =
⌊

d(x,y)
2

⌋

, hence also

d•(y, x) =
⌈

d(x,y)
2

⌉

, where ⌊·⌋ and ⌈·⌉ are the usual floor and ceiling functions, respectively.

We will use Proposition 4.2 to show that the full subquiver Q′ picked in this way is a section
of ZQ.

Therefore we need to show that for all vertices y, z ∈ Q′ ⊂ ZQ, we have d•Q′(y, z) ≥ 0.

We will consider two cases. First, assume d(x, z)− d(x, y) ≥ 0. Starting with the triangle
inequality, we have

d•(y, z) ≥ d•(x, z)− d•(x, y)

=

⌊

d(x, z)

2

⌋

−

⌊

d(x, y)

2

⌋

≥ 0
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Next if d(x, z)− d(x, y) ≤ 0, we have

d•(y, z) ≥ d•(y, x)− d•(z, x)

=

⌈

d(x, y)

2

⌉

−

⌈

d(x, z)

2

⌉

≥ 0

Proposition 4.2 then yields that Q′ is a section of ZQ.
To show that Q′ is path finite, we note that |S•

Q′(x, n)| = |SQ(x, 2n)|+ |SQ(x, 2n + 1)|

and |SQ′

• (x, n)| = |SQ(x, 2n − 1)| + |SQ(x, 2n)|, so by assumption the sets S•
Q′(x, n) and

SQ′

• (x, n) are finite. Since Q, and hence also ZQ, is locally finite and has no oriented
cycles, we know that the same is true for Q′. Proposition 4.1 now yields Q′ is path finite.

(7⇒ 5) Let Q′ be a strongly locally finite section of ZQ. We may assume there is a vertex x ∈ ZQ
lying in both Q and Q′. It is then clear that

|SQ(x, n)| = |SQ′(x, n)| =

∣

∣

∣

∣

∣

∣

⋃

i+j=n

(S•
Q′(x, i) ∩ SQ′

• (x, j))

∣

∣

∣

∣

∣

∣

.

By Proposition 4.1, the right hand side is finite, hence also the left hand side is finite.
Since Q′ is path finite, it has no oriented cycles, so Q is also without oriented cycles.

�

Example 4.5. Let Q be the quiver A∞
∞ with linear orientation, thus

Q : · · · → · → · → · → · → · → · → · · ·

It is easy to see that Q satisfies statement (6) in Theorem 4.4. After fixing a vertex x of ZQ, the
construction described in the proof of Theorem 4.4 gives a strongly locally finite quiver Q′ as in
Figure 7, namely Q′ is an A∞

∞-quiver with zig-zag orientation.

Q′ : · · · → · ← · → · ← · → · ← · → · · ·

5. Application to Hereditary Categories with Serre Duality

In this section, we apply Theorem 4.4 to the theory of k-linear abelian Ext-finite hereditary
categories with Serre duality. In this way, we contribute to an ongoing project to better understand
these categories (cf. [2], [3], [5], [6]). Throughout, let k be an algebraically closed field, and A be
a k-linear abelian Ext-finite hereditary category with Serre duality. We start by recalling some
definitions and a short discussion about sectional paths.

5.1. Definitions. Let A be an abelian k-linear category. We say A is hereditary if Ext2(X, Y ) = 0
for all X, Y ∈ A and is Ext-finite if dimk Ext(X, Y ) <∞ for all X, Y ∈ A.

We will say A satisfies Serre duality [1] if there exists an auto-equivalence F : DbA → DbA,
called a Serre functor, such that for all X, Y ∈ DbA there is an isomorphism

HomDbA(X, Y ) ∼= HomDbA(Y, F (A))∗

natural in X and Y , where (−)∗ is the vector space dual.
It has been shown in [3] that A has Serre duality if and only if DbA has Auslander-Reiten

triangles; the Serre functor then coincides with τ [1], where τ is the Auslander-Reiten translation
in DbA. In particular, a hereditary category A has Serre duality if and only if A has Auslander-
Reiten sequences and the Serre functor F : DbA −→ DbA induces an equivalence between the
category of projectives and the category of injectives of A.

The Auslander-Reiten quiver of A and DbA is defined as follows. The set of vertices is indA
or indDbA, respectively, and between two vertices A, B, there are dimk rad(A, B)/ rad2(A, B)
arrows from A to B. If A is an abelian hereditary Ext-finite category with Serre duality, then the
Auslander-Reiten quiver of DbA is a stable translation quiver with τ = F [−1].
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x

Figure 7. A stable translation quiver of the form ZA∞
∞. Here an object x has

been chosen and the associated left and right light cones are given by black arrows.
The vertices of the full subquiver Q′ constructed in the proof of Theorem 4.4 are
indicated by ‘•’.

The full subquiver of the Auslander-Reiten quiver of A spanned by all projective or injective
objects in indA is called the quiver of projectives or injectives of A, respectively. A component of
the Auslander-Reiten quiver ofA containing a projective object is called a preprojective component.

If A satisfies Serre duality, then the Auslander-Reiten component of DbA containing the pro-
jective quiver Q is a stable translation quiver of the form ZQ where the translation τ is given
by the Auslander-Reiten translation. We will refer to this Auslander-Reiten component as the
connecting component.

Finally, we will say a component Q of the Auslander-Reiten sequence of DbA is generalized
standard if rad∞(X, Y ) = 0 for all vertices X, Y of Q. In particular, if there is no oriented path
from X to Y in the Auslander-Reiten quiver, then Hom(X, Y ) = 0.

5.2. Sectional paths. We will say a sequence A0 → A1 → · · · → An−1 → An of irreducible maps
between indecomposable objects in A or DbA is sectional if Ai 6∼= τAi+2 for all i ∈ {0, . . . , n− 2}.
Note that a corresponding path in the Auslander-Reiten quiver is a sectional path.

Proposition 5.1. Let A be an abelian Ext-finite category with Serre duality, then for every
X, Y indDbA there may only be finitely many sectional paths from X to Y .

Proof. Assume there are different sectional paths from X to Y . The arrows A → B in the
Auslander-Reiten quiver of DbA give a basis of rad(A, B)/ rad2(A, B). With such a basis, we
may associate linearly independent morphisms of rad(A, B). Fix such a morphism for every arrow
occurring in an above path from X to Y (if an arrow occurs more than once, we will associate the
same morphism with it).

In this way, every sectional path corresponds to a morphism in Hom(X, Y ). We claim different
sectional paths give rise to linearly independent morphisms.
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Seeking a contradiction, consider the sectional sequences as depicted below

A0
0

f0
1 // A0

1
// · · · // A0

n0

f0
n0+1

��<
<<

<<
<<

<<
<

A1
0

f1
1

// A1
1

// · · · // A1
n1

f1
n1+1

&&MMMMMM

X

f0
0

AA��������� f1
0

99rrrrrr

fm

0
&&LLLLLL

...
...

... Y

Am
0

fm

1

// Am
1

// · · · // Am
nm

fm

nm+1

88qqqqqq

such that there is a linear combination of the corresponding maps
m
∑

i=0

αi

(

©ni+1
k=0 f i

k

)

= 0

where αi ∈ k \ {0}, and where the correct order of composition is understood. Keeping all paths
that end with the morphism f0

n0+1 on the left hand side of the equation and moving the others to
the right hand side, we find (possibly after renumbering the paths)

f0
n0+1 ◦

(

m0
∑

i=0

αi

(

©ni

k=0f
i
k

)

)

= −

m
∑

i=m0+1

αi

(

©ni+1
k=0 f i

k

)

Denote g0 =
∑m0

i=0 αi

(

©ni

k=0f
i
k

)

. Considering the Auslander-Reiten triangle extending the

irreducible maps f i
ni+1 : Ai

ni
→ Y gives following diagram.

X

��

g0

!!C
CC

CC
CC

C

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

A0
n0

f0
n0+1

  @
@@

@@
@@

@

τY

==||||||||

!!C
CC

CC
CC

C Y // τY [1]

E1

>>}}}}}}}}

It follows that g0 : X → A0
n0

factors through the map τY → A0
n0

. Likewise, we may split the
compositions occurring in the definition of g0 in two groups, with the group on the left hand side
containing all the compositions ending in f0

n0
. After possibly renumbering the paths, we get

f0
n0
◦

(

m1
∑

i=0

αi

(

©ni−1
k=0 f i

k

)

)

= g0 −

m1
∑

i=m1+1

αi

(

©ni

k=0f
i
k

)

.

If we write g1 =
∑m1

i=0 αi

(

©ni−1
k=0 f i

k

)

, then we see from the following Auslander-Reiten triangle

X

��

g1

$$H
HHHHHHHH

��.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

A0
n0−1

f0
n0

""E
EE

EE
EE

E

τA0
n0

;;wwwwwwww

##H
HH

HH
HH

HH
A0

n0

// τA0
n0

[1]

E2

;;xxxxxxxxx
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that g1 factors through τA0
n0
→ A0

n0−1.
Since every considered path is different, iterating this procedure shows that the irreducible map

α0f
0
0 : X → A0

0 factors through E → A0
0 as in the Auslander-Reiten triangle

X
α0idX

!!D
DD

DD
DD

D

��+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

X
f0
0

  @
@@

@@
@@

τA0
0

==||||||||

!!B
BB

BB
BB

B
A0

0
// τA0

1[1]

E

>>~~~~~~~

which is clearly a contradiction. �

This implies that every stable component of the form ZQ of the Auslander-Reiten quiver DbA
satisfies the equivalent conditions of Theorem 4.4. In particular, we have the following corollary.

Corollary 5.2. Let A be an abelian Ext-finite k-linear category with Serre duality. If a component
of the Auslander-Reiten quiver of DbA is of the form ZQ, then Q satisfies the equivalent conditions
of Theorem 4.4.

5.3. Representations of strongly locally finite quivers. Let Q be a strongly locally finite
quiver. It is easy to see that this implies that there are only finitely many paths between two
vertices of Q.

Let repk Q be the category of finitely presented k-representations of Q and denote by P and
I the full subcategory of projectives and injectives, respectively. With every vertex x ∈ Q we
may associate an indecomposable projective object Px and an indecomposable injective object Ix.
There is a canonical isomorphism νx,y : Hom(Px, Py) ∼= Hom(Ix, Iy) since both vector spaces have
the paths of from y to x as a basis.

We may consider the Nakayama functor N : P → I where N(Px) = Ix and where the map
Hom(Px, Py) → Hom(N(Px), N(Py)) is given by the above isomorphism νx,y. The Nakayama
functor is an equivalence of categories.

It follows from [3, Lemma II.1.2] that the composition

F : Db repk Q ∼= KbP
N
−→ KbI ∼= Db repk Q

is a right Serre functor. Since F is an equivalence, it is a Serre functor. Hence repk Q satisfies
Serre duality.

5.4. Derived Equivalences. Assume that DbA is generated as a triangulated category by the
connecting component C and furthermore that the connecting component is generalized standard,
thus rad∞(X, Y ) = 0 for all X and Y in ind C. If we denote the quiver of projectives in A by Q,
then the Auslander-Reiten quiver of C will be a stable translation quiver of the form ZQ.

Let X be any vertex in Q and X → MX → τ−1X → X [1] be an Auslander-Reiten triangle.
Since MX has as many direct summands as X has direct successors in ZQ, we see that ZQ and
hence also Q must be locally finite. Furthermore, it follows from Proposition 5.1 that there may
be only finitely many sectional paths between any two vertices in ZQ, thus by Theorem 4.4 we
know ZQ admits a strongly locally finite section Q′.

Since C is generalized standard and Ext(X, Y ) ∼= Hom(Y, τX)∗, Proposition 4.2 yields that
the vertices of Q′ form a partial tilting set, i.e. HomDbA(X, Y [n]) = 0 for all n ∈ Z \ {0} and
all X, Y ∈ Q′. It follows from [6, Theorem 5.1] that there is an exact fully faithful functor
i : Db repk(Q′)◦ −→ DbA mapping PX to X , where (Q′)◦ is the dual quiver of Q′.

Considering the exactness of i, and the connection between the Auslander-Reiten translation
τ and the Serre functor F , we may check that i ◦ F (P ) ∼= F ◦ i(P ) for all P ∈ Q′. Hence the
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essential image of i is closed under the action of the Serre functor of DbA and contains C. Since
C generates DbA, we conclude that i is essentially surjective and thus an equivalence.

We have proven the following theorem.

Theorem 5.3. Let A be a k-linear abelian Ext-finite hereditary category with Serre duality. As-
sume DbA is generated by its connecting component C and that C is generalized standard, then A
is derived equivalent to repk Q′ where Q′ is strongly locally finite.

We now turn our attention to noetherian categories. It has been shown in [3, Theorem II.4.2]
that in this case the category A decomposes as a direct sum R ⊕ Q where R has no nonzero
preprojectives, nor nonzero preinjectives, and where Q is generated by preprojectives. Thus,
whenA is a k-linear connected noetherian abelian Ext-finite hereditary category with Serre duality,
saying that A has at least one non-zero projective object is equivalent to saying that A is generated
by preprojectives. In this case, DbA is generated by the connecting component.

We have following corollary as answer to the question posed in [3].

Corollary 5.4. Let A be a noetherian k-linear abelian Ext-finite hereditary category with Serre
duality. Assume A has a non-zero projective object, then A is derived equivalent to repk Q′ where
Q′ is strongly locally finite.

Proof. It has been shown in [3, Proposition II.2.3] that the quiver of projectives Q of A is locally
finite and does not contain any subquivers of the form · → · → · → · · ·

Since A has a nonzero projective object, it is generated by preprojectives and hence DbA is
generated by the connecting component.

We will show the connecting component C is generalized standard. Let X, Y ∈ ind C be with
coordinates (0, vX) and (n, vY ), respectively, in the Auslander-Reiten quiver ZQ of C. Assume
that rad∞(X, Y ) 6= 0 and that n has been chosen minimal with this property.

Consider the Auslander-Reiten triangle Y → MY → τ−1Y → Y [1]. There is at least one
indecomposable summand of Y1 of MY such that rad∞(X, Y1) 6= 0. Due to the minimality of n,
the coordinates of Y1 in ZQ must be (n, vY1

) where vY1
is a direct successor of vY in Q. Iteration

gives an infinite sequence Y → Y1 → Y2 → · · · in Q, a contradiction.
We may now use Theorem 5.3 to see that A is derived equivalent to repk Q′ where Q′ is strongly

locally finite. �

Our last result characterizes all quivers which can occur as quiver of projectives of an abelian
hereditary category with Serre duality.

Corollary 5.5. Let Q be a quiver. The quiver Q satisfies the equivalent conditions of Theorem
4.4 if and only if there is an abelian hereditary category with Serre duality having Q as its quiver
of projectives.

Proof. One direction follows directly from Corollary 5.2. So let Q be a quiver satisfying the
equivalent conditions of Theorem 4.4 and let Q′ be a strongly locally finite section in ZQ. Consider
the hereditary abelian category A = repk(Q′)◦. The category of projectives of A is then given by
Q′.

We may assume Q is an infinite quiver, and in particular not Dynkin. The required result then
follows from [3, Lemma II.3.4]. �
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