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IDEALS IN NON-ASSOCIATIVE UNIVERSAL ENVELOPING ALGEBRAS OF LIE

TRIPLE SYSTEMS

J.MOSTOVOY AND J.M. PÉREZ-IZQUIERDO

Abstract. The notion of a non-associative universal enveloping algebra for a Lie triple system arises when
Lie triple systems are considered as Bol algebras (more generally, Sabinin algebras). In this paper a new
construction for these universal enveloping algebras is given, and their properties are studied.

It is shown that universal enveloping algebras of Lie triple systems have surprisingly few ideals. It is
conjectured, and the conjecture is verified on several examples, that the only proper ideal of the universal
enveloping algebra of a simple Lie triple system is the augmentation ideal.

1. Introduction.

Given a smooth manifold M and a point e ∈ M , a local multiplication on M at e is a smooth map
U×U →M where U is some neighbourhood of e and the point e is a two-sided unit, that is, xe = ex = x for
all x ∈ U . If x is sufficiently close to e, both left and right multiplications by x are one-to-one. Therefore,
there always exists a neighbourhood V ⊂ U where the operations of left and right division are defined by the
identities a\(ab) = b and (ab)/b = a respectively. Two local multiplications at the same point e of a manifold
M are considered to be equivalent if they coincide when restricted to some neighbourhood of (e, e) in M×M .
Equivalence classes of local multiplications are called infinitesimal loops. (Sometimes infinitesimal loops are
also called local loops.)

The importance of infinitesimal loops lies in the fact that they are closely related to affine connections
on manifolds. Namely, any affine connection on M defined in some neighbourhood of e determines a local
multiplication at e. Conversely, each (not necessarily associative) local multiplication at e defines an affine
connection on some neighbourhood of e; this gives a one-to-one correspondence between germs of affine
connections and infinitesimal loops. The details can be found, for example, in [9].

Local non-associative multiplications on manifolds can rarely be extended to global multiplications and,
thus, cannot be studied directly by algebraic means. Nevertheless, any local multiplication gives rise to an
algebraic structure on the tangent space at the unit element, consisting of an infinite number of multilinear
operations. Such algebraic structures are known as Sabinin algebras; for associative multiplications they
specialise to Lie algebras. Given a Sabinin algebra that satisfies certain convergence conditions, one can
uniquely reconstruct the corresponding analytic infinitesimal loop. Therefore, Sabinin algebras may be
considered as the principal algebraic tool in studying local multiplications and local affine connections.

The general theory of Sabinin algebras has so far only been developed over fields of characteristic 0. From
now on we shall assume that this is the case: unless stated otherwise, all vector spaces, algebras etc will be
assumed to be defined over a field F of characteristic zero.

Many general properties of Sabinin algebras are similar to those of Lie algebras. In particular, any
Sabinin algebra V can be realised as the space of primitive elements of some ”non-associative Hopf algebra”
U(V ), called the universal enveloping algebra of V . The operations in V are naturally recovered from the
product in U(V ). Just as in the Lie algebra case, the universal enveloping algebras of Sabinin algebras have
Poincaré–Birkhoff–Witt bases. If a Sabinin algebra V happens to be a Lie algebra, U(V ) is precisely the
usual universal enveloping algebra of the Lie algebra V .
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The definition of a Sabinin algebra involves an infinite number of multilinear operations that satisfy rather
complicated identities; we refer to [7], [10] or [11] for the precise form of these. However, additional conditions
imposed on a local multiplication may greatly simplify the structure of the corresponding Sabinin algebra.
For example, the associativity condition implies that only one of all the multilinear operations is non-zero;
the identities of a Sabinin algebra specialise to the identities defining a Lie algebra, that is, antisymmetry
and the Jacobi identity. If a local multiplication satisfies the Moufang law

(1) a(b(ac)) = ((ab)a)c and ((ca)b)a = c(a(ba)),

the corresponding Sabinin algebra is a Malcev algebra. A vector space with a bilinear skew-symmetric
operation (bracket) is called a Malcev algebra if the bracket satisfies

[J(a, b, c), a] = J(a, b, [a, c])

where J(a, b, c) = [[a, b], c] + [[b, c], a] + [[c, a], b] denotes the jacobian of a, b and c.
Imposing the left Bol identity

a(b(ac)) = (a(ba))c,

on the local multiplication, we obtain the structure of a left Bol algebra on the tangent space to the unit.
A left Bol algebra is a vector space with one bilinear and one trilinear operation, denoted by [ , ] and [ , , ]
respectively. The ternary bracket must satisfy the following relations:

[a, a, b] = 0

[a, b, c] + [b, c, a] + [c, a, b] = 0

[x, y, [a, b, c]] = [[x, y, a], b, c] + [a, [x, y, b], c] + [a, b, [x, y, c]].

The binary bracket is required to be skew-symmetric and should satisfy

[a, b, [x, y]] = [[a, b, x], y] + [x, [a, b, y]] + [x, y, [a, b]] + [[a, b], [x, y]].

Bol algebras generalise Malcev algebras. Indeed, in any Malcev algebra a ternary bracket can be defined
by

[a, b, c] = [[a, b], c] − 1

3
J(a, b, c).

With this additional operation a Malcev algebra becomes a Bol algebra.
Another important subclass of Bol algebras are Lie triple systems; these are the Bol algebras whose binary

bracket is identically equal to zero. Lie triple systems arise as tangent spaces to smooth local Bruck loops
(also known as K-loops). These loops, in addition to the left Bol identity, satisfy the identity

(ab)−1 = a−1b−1.

where x−1 is shorthand for e/x; see [4]. Lie triple systems play a prominent role in the theory of symmetric
spaces since a symmetric space can be given the structure of a local Bruck loop at any point.

Identities satisfied in an infinitesimal loop can be translated into identities satisfied in the universal
enveloping algebra of the corresponding Sabinin algebra. In particular, the universal enveloping algebra
U(M) of a Malcev algebra M is a non-associative bialgebra that satisfies the linearisations

∑
a(1)(y(a(2)z)) =

∑
((a(1)y)a(2))z

and ∑
((ya(1))z)a(2) =

∑
y(a(1)(za(2)))

of (1). Here we use Sweedler’s notation [12] for the comultiplication: ∆(a) =
∑
a(1)⊗a(2). Since M coincides

with the subspace of all primitive elements of U(M) we have ∆(a) = a ⊗ 1 + 1 ⊗ a for any a ∈ M , and,
hence, a(yz) + y(az) = (ay)z + (ya)z and (ya)z + (yz)a = y(az) + y(za), or, equivalently

(2) (a, y, z) = −(y, a, z) = (y, z, a).

Therefore, M lies in the generalised alternative nucleus Nalt(U(M)) of U(M). (The subset Nalt(A) of an
algebra A consists of all a ∈ A that satisfy (2) for any y, z ∈ A). The product on M is recovered as
[a, b] = ab− ba in U(M).
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The universal enveloping algebra U(V ) of a Bol algebra V satisfies the identity

(3)
∑

a(1)(y(a(2)z)) =
∑

(a(1)(ya(2)))z.

Since V coincides with the primitive elements of U(V ), for any a ∈ V and y, z ∈ U(V ) we have that

(4) (a, y, z) = −(y, a, z).

This is equivalent to saying that V is contained in the left generalised alternative nucleus LNalt(U(V )) of
the algebra U(V ). The binary and the ternary products on V are recovered by

[a, b] = ab− ba and [a, b, c] = a(bc) − b(ac) − c(ab) + c(ba)

in U(V ). It is known [6] that for any algebra A

LNalt(A) = {a ∈ A | (a, x, y) = −(x, a, y) ∀x, y ∈ A}
is a Lie triple system with [a, b, c] = a(bc) − b(ac) − c(ab) + c(ba).

Universal enveloping algebras for Malcev, Bol and general Sabinin algebras have been introduced only
recently; their properties are still waiting to be explored. It might be tempting to assume that the theory
of universal enveloping algebras for Lie algebras can be extended rather painlessly to the case of general
Sabinin algebras, especially since many aspects of the theory are known to generalise well. However, it turns
out that some very basic properties, such as the abundance of ideals in the universal enveloping algebras
of Lie algebras, fail to hold in the general non-associative case. In particular, we shall see that while the
properties of Malcev and Bol algebras, discussed above, may look similar, this similarity does not extend
too far.

The motivation for this paper is the following version of Ado’s Theorem for Malcev algebras that appeared
in [8]:

Theorem 1. For any finite–dimensional Malcev algebra M over a field of characteristic 6= 2, 3 there exists
a unital finite–dimensional algebra A and a monomorphism of Malcev algebras ι : M → Nalt(A).

One is prompted to ask whether a similar statement holds for other classes of Bol algebras, in particular,
for Lie triple systems. Given a finite dimensional Lie triple system V , one could ask whether it is contained
as a subsystem of LNalt(A), with ab = ba for all a, b ∈ V , for some finite dimensional unital algebra A.
It is easy to see that this happens if and only if there exists an ideal of finite codimension in U(V ) which
intersects V trivially. Our answer shows that for Lie triple systems the situation is very different from the
case of Lie or Malcev algebras:

Theorem 2. Let A be a finite dimensional unital algebra over a field F of characteristic 0 and V — a Lie
triple system contained as a subsystem in LNalt(A) such that ab = ba for all a, b ∈ V . Assume that A is
generated by V as a unital algebra. Then V is nilpotent and A decomposes (as a vector space) into a direct
sum of a nilpotent ideal and a central subalgebra without nonzero nilpotent elements.

Note that we do not claim that embeddings mentioned in Theorem 2 do exist for all nilpotent Lie triple
systems.

Examples suggest that the ideals in the universal enveloping algebras of Lie triple systems are even scarcer
than it is implied by Theorem 2.

Conjecture 3. The only proper ideal of the universal enveloping algebra of a simple Lie triple system is its
augmentation ideal.

We shall verify the above conjecture in several cases by direct calculations in Poincaré–Birkhoff–Witt
bases.

For each Lie triple system V there exists a canonically defined Lie algebra LS(V ), called the Lie envelope
of V of which V is a subsystem. The Poincaré–Birkhoff–Witt Theorem allows to identify the algebra U(V )
with a subspace of U(LS(V )). Motivated by analogy with Bruck loops, we shall show how the multiplication
on U(LS(V )) can be modified to become compatible with the non-associative multiplication on U(V ).
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The paper is organised as follows. The next section is auxiliary; it is a loose collection of various properties
of Bol algebras and Lie triple systems. Section 3 contains the proof of Theorem 2. The construction of the
universal enveloping algebra of a Lie triple system via its Lie envelope is given in Section 4. Finally, in
Section 5 we present some evidence for Conjecture 3.

We have made no attempt to make this paper self-contained. We refer to [8] for the properties of the
universal enveloping algebras of Malcev algebras, to [6] — for Bol algebras and to [6] — for general Sabinin
algebras. The paper of Lister [5] is the general reference for Lie triple systems; the questions of nilpotency
are treated in [1] .

About the notation: we shall often write ”L.t.s.” for ”Lie triple system”. As usual, the true meaning of
”non-associative” is ”not necessarily associative”; however ”non-nilpotent” stands for ”not nilpotent”. The
notations Lx and Rx are used to denote the multiplication by x on the left and on the right respectively; the
sum La +Ra is denoted by Ta. The product a(a(· · · (aa)) will be written simply as an. The left, middle and
right associative nuclei of an algebra A are denoted by Nl(A), Nm(A) and Nr(A) respectively, while Z(A) is
the notation for the center of A. (Recall that the left associative nucleus of A is the set of all a ∈ A such
that (a, y, z) = 0 for arbitrary y, z ∈ A; the right and the middle associative nuclei are defined similarly.)
By alg〈X〉 (or alg1〈X〉) we denote the subalgebra (unital subalgebra, respectively) generated by the subset
X ⊂ A.

2. Some properties of the enveloping algebras for Bol algebras and Lie triple systems.

Lemma 4. Let (V, [ , , ], [ , ]) be a Bol algebra. For a, b ∈ V such that [a, b] = 0, the map [La, Lb] is a
derivation of U(V ).

Recall that a ternary derivation of an algebra A is a triple (d1, d2, d3) of linear maps such that

d1(xy) = d2(x)y + xd3(y)

for all x, y ∈ A. The set Tder(A) of all ternary derivations of A is a Lie algebra with the obvious bracket. It
is clear that if d1(1) = d2(1) = d3(1) = 0 then d1 = d2 = d3 is a derivation of A.

Proof of Lemma 4. Notice that the identity (4) can be written as (La, Ta,−La) ∈ Tder(U(V )) and, as a
consequence,

([La, Lb], [Ta, Tb], [La, Lb]) ∈ Tder(U(V )).

Evaluating both commutators at 1, we observe that [La, Lb](1) = [a, b] = 0 = [Ta, Tb](1), so [La, Lb] = [Ta, Tb]
is a derivation of U(V ). �

Lemma 5. Let (V, [ , , ], [ , ]) be a Bol algebra. For a, b ∈ V such that [a, b] = 0 and any x ∈ U(V )

[La, Lb](x) = −2(a, b, x).

Proof. The identity (4) with y = b gives LaLb +LbLa = Lab+ba = 2Lab. Therefore, [La, Lb](x) = LaLb(x)−
(2Lab − LaLb)(x) = −2(a, b, x). �

Lemma 6. Let (V, [ , , ], [ , ]) be a Bol algebra. For any a ∈ V

LanLam = Lan+m .

Proof. See Proposition 38 in [7]. �

For any Sabinin algebra V , the universal enveloping algebra is an H-bialgebra. That is, U(V ) is a non-
associative unital bialgebra equipped with two bilinear maps, \ : U(V ) × U(V ) → U(V ) and / : U(V ) ×
U(V ) → U(V ) such that

∑
x(1)\(x(2)y) = ǫ(x)y =

∑
x(1)(x(2)\y) and

∑
(yx(1))/x(2) = ǫ(x)y =

∑
(y/x(1))x(2).

The behaviour of these maps with respect to the comultiplication ∆ and the counit ǫ is expressed by

∆(x\y) =
∑

x(1)\y(1) ⊗ x(2)\y(2), ∆(y/x) =
∑

y(1)/x(1) ⊗ y(2)/x(2)
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and

ǫ(x\y) = ǫ(x)ǫ(y), ǫ(y/x) = ǫ(x)ǫ(y).

Fix an ordered basis {ai}i∈Λ of V , with Λ being the index set. The algebra U(V ) then has the Poincaré–
Birkhoff–Witt basis

{ai1(ai2(· · · (ain−1ain
) · · · )) | i1 ≤ · · · ≤ in and n ∈ N}.

The algebra U(V ) is filtered by U(V ) = ∪n∈NU(V )n with

U(V )n = span〈a1(a2(· · · (am−1am)) | a1, . . . , am ∈ V, m ≤ n〉.
The degree of an element of U(V ) with respect to this filtration is defined in the obvious way. The corre-
sponding graded algebra GrU(V ) is isomorphic to Sym(V ), the symmetric algebra on V .

Let (V, [ , , ]) be a Lie triple system, and U(V ) — its universal enveloping algebra. The automorphism
a 7→ −a of V extends to an automorphism S : U(V ) → U(V ).

Lemma 7. Let (V, [ , , ]) be a L.t.s. and U(V ) — its universal enveloping algebra. Then for any a ∈ V we
have that [a, U(V )n] ⊆ U(V )n−1.

Proof. Let x = a1(a2(· · · (an−1an) . . . )) ∈ U(V )n with a1, . . . , an ∈ V . Since GrU(V ) is isomorphic to
Sym(V ), [a, x] belongs to U(V )n. On the other hand, S([a, x]) = [−a, (−1)nx] = (−1)n−1[a, x]. Therefore,
[a, x] ∈ U(V )n−1. �

The automorphism S notably simplifies the left division \ on U(V ).

Proposition 8. Let (V, [ , , ]) be a L.t.s. For all x, y ∈ U(V )

x\y = S(x)y and S(x) = x\1 = 1/x.

Proof. Let us prove that
∑
S(x(1))x(2) = ǫ(x)1. To this end we observe that this is a linear relation, so we

only have to verify it on a set of elements spanning the vector space U(V ), for instance, {1} ∪ {an | a ∈ V }
with an = a(· · · (aa)). We have

∑
S(an

(1))a
n

(2) =
∑n

k=0

(
n
k

)
S(ak)an−k =

∑n

k=0

(
n
k

)
(−1)kan = 0 = ǫ(an), as

desired.
From (3) and

∑
S(x(1))x(2) = ǫ(x)1 we obtain

∑
x(1)(S(x(2))(x(3)y)) =

∑
(x(1)(S(x(2))x(3)))y =

∑
(x(1)ǫ(x(2)))y = xy.

By the definition of \ we have
∑

S(x(1))(x(2)y) =
∑

x(1)\(x(2)(S(x(3))(x(4)y))) =
∑

x(1)\(x(2)y) = ǫ(x)y

so

S(x)y =
∑

S(x(1))(x(2)(x(3)\y)) =
∑

ǫ(x(1)) · x(2)\y = x\y.
With y = 1 we get S(x) = x\1, and from

∑
S(x(1))x(2) = ǫ(x)1 we also get S(x) =

∑
(S(x(1))x(2))/x(3) =∑

ǫ(x(1))1/x(2) = 1/x. �

Proposition 8 ensures that U(V ) satisfies the linearisation of the equations defining a Bruck loop. There-
fore, the linearisation of any identity satisfied by Bruck loops will hold in U(V ). Consider, for instance, the
so-called precession map δa,b : c 7→ (ab)\(a(bc)). For a Bruck loop this map is known to be an automorphism
[4]. Linearising this result we obtain

Corollary 9. Let (V, [ , , ]) be a L.t.s. The map δx,y : U(V ) → U(V ) given by

δx,y(z) =
∑

(x(1)y(1))\(x(2)(y(2)z))

satisfies

δx,y(wz) =
∑

δx(1),y(1)
(w)δx(2) ,y(2)

(z).
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The maps δx,y reflect the lack of associativity in U(V ). They satisfy

(5)
∑

(x(1)y(1))δx(2),y(2)
(z) = x(yz).

Clearly, ∆(δx,y(z)) =
∑
δx(1),y(1)

(z(1)) ⊗ δx(2),y(2)
(z(2)). Thus,

(6) δx,y(V ) ⊆ V

and in general

δx,y(U(V )n) ⊆ U(V )n.

The maps δx,a and δa,x are derivations of U(V ) for any a ∈ V . In fact, δa,b(x) = −(a, b, x) and δa,b(c) =
1
2 [a, b, c] for any a, b, c ∈ V and x ∈ U(V ).

The following statement is a direct analogue of the corresponding result for Bruck loops [4].

Proposition 10. Let (V, [ , , ]) be a L.t.s. Then the left and the middle associative nuclei of U(V ) coincide:

Nl(U(V )) = Nm(U(V )).

Proof. The identity (3) implies

(7)
∑

x(1)

(
(S(x(2))y)(x(3)z)

)
=

∑(
x(1)((S(x(2))y)x(3))

)
z.

If y is in Nm(U(V )), the left-hand side of (7) is equal to
∑

x(1)

(
S(x(2))(y(x(3)z))

)
= y(xz).

On the other hand, the right-hand side of (7) can be re-written as
∑(

x(1)(S(x(2))(yx(3)))
)
z = (yx)z

and, hence, y(xz) = (yx)z for all x, z ∈ U(V ). Therefore, Nm(U(V )) ⊆ Nl(U(V )).
Similarly, notice that (3) also implies

∑
x(1)

(
(yS(x(2)))(x(3)z)

)
=

∑(
x(1)((yS(x(2)))x(3))

)
z.

For y ∈ Nl(U(V )) one concludes that x(yz) = (xy)z for all x, z ∈ U(V ) and, hence, that Nl(U(V )) ⊆
Nm(U(V )). �

Lemma 11. Let (V, [ , , ]) be a L.t.s. and A — a quotient of U(V ). If a ∈ V satisfies [La, Lb] = 0 for all
b ∈ V , then a ∈ Z(A).

Proof. For any x ∈ A we have Lx ∈ alg1〈Lb | b ∈ V 〉. This can be established by induction on the degree of
x with respect to the PBW filtration that A inherits from U(V ), using the fact that Lby+yb = LbLy + LyLb

for any y ∈ A and b ∈ V .
Since [La, Lb] = 0 for all b ∈ B we have that [La, Lx] = 0 for any x ∈ A, so a(xy) = x(ay) for any x, y ∈ A.

Setting y = 1 we get that ax = xa for any x ∈ A. Therefore, (xy)a = a(xy) = x(ay) = x(ya) and a ∈ Nr(A).
This can also be expressed by saying that the triple (Ra, 0, Ra) belongs to Tder(A).

The identity (4) implies that (La, Ta,−La) is also in Tder(A). Since Ra = La, it follows that (2La, 2La, 0) ∈
Tder(A) and thus a ∈ Nl(A). Similarly, (0, 2Ra,−2La) ∈ Tder(A) implies that a ∈ Nm(A) and, therefore,
a ∈ Z(A). �

3. Nonexistence of ideals of finite codimension

In this section (V, [ , , ]) will be a Lie triple system and U(V ) — the non-associative universal enveloping
algebra of V . For any a, b, c ∈ V we have

[La, Lb](c) = a(bc) − b(ac) = [a, b, c] and [a, b] = 0

in U(V ). The map [La, Lb] is a derivation of U(V ) and Lax+xa = LaLx + LxLa for any a ∈ V, x ∈ U(V ) by
(4).
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Let A be a finite-dimensional unital algebra and LNalt(A) — its left generalized alternative nucleus. We
are interested in the existence of monomorphisms of L.t.s.

(8) ι : V → LNalt(A)

such that ι(a)ι(b) = ι(b)ι(a) for any a, b ∈ V . By the universal property of U(V ) such a map induces a
homomorphism ϕ : U(V ) → A. The kernel of ϕ is an ideal of finite codimension whose intersection with V
is trivial.

Let S2 be the two-dimensional simple L.t.s. generated by e, f with

(9) [e, f, e] = 2e and [e, f, f ] = −2f.

Lemma 12. With e, f as above,

[en, f ] = n(n− 1)en−1.

holds in U(S2).

Proof. Observe that fen = f(een−1) = e(fen−1) − [Le, Lf ](en−1) = e(fen−1) − 2(n − 1)en−1. Repeating
with fen−1 we obtain

fen = enf − 2((n− 1) + (n− 2) + · · · + 1)en−1

= enf − n(n− 1)en−1,

�

Any semisimple L.t.s. contains a copy of S2, see [5]. (This may be compared to the fact that any
semisimple Lie algebra contains a copy of sl2.)

Proposition 13. If (V, [ , , ]) is a semisimple L.t.s., then the only proper ideal of U(V ) that has finite
codimension is the augmentation ideal ker ǫ.

Proof. Given a proper ideal I of U(V ) whose codimension is finite, the set V0 = I ∩ V is an ideal of the
L.t.s. V . Therefore, there exists another ideal V1 with V = V0 ⊕V1 (see [5]). Both V0 and V1 are semisimple
L.t.s., so either V1 = 0, or there exists a subsystem span〈e, f〉 ⊆ V1 with multiplication as in (9). In the first
case we have that ker ǫ, the ideal generated by V , is contained inside I and, hence, since the codimension of
ker ǫ is 1, they are equal.

Assume now that we are in the second case. Since any finite–codimensional proper ideal I of U(V ) contains
an element of the form p(e) = α01 + α1e + · · · + αn−1e

n−1 + en with n > 1, then, by Lemma 12, it also
contains [[p(e), f ], f ], . . . ], f ] = n!(n− 1)!e. Therefore, e ∈ I which, by definition of V1, is not possible. �

Proposition 13 shows that embeddings of the type (8) do not exist for semisimple L.t.s. Since any L.t.s.
decomposes (as a vector space) as the direct sum of a semisimple subsystem and a solvable ideal (see [5]),
it is clear that such embedding might only exist for solvable L.t.s. We shall prove that, in fact, V must be
nilpotent.

Let us denote the map c 7→ [a, b, c] by Da,b. The vector space LS(V ) = span〈Da,b | a, b ∈ V 〉 ⊕ V is a Lie
algebra (see [3]) with the bracket

(10) [a, b] = Da,b and [Da,b, c] = [a, b, c].

This Lie algebra is called sometimes the Lie envelope of V . It is Z2–graded with even part L+
S (V ) =

span〈Da,b| a, b ∈ V 〉 and odd part L−
S (V ) = V .

Given any unital algebra A generated, as a unital algebra, by a subsystem V of LNalt(A) with [a, b] = 0
for any a, b ∈ V , we shall often consider the Lie algebra L(V ) generated by {La | a ∈ V }. Usually, no explicit
mention of A will be needed. Since [La, Lb] is a derivation of A (see the proof of Lemma 4) and A is generated
by V , it follows that L(V ) = span〈[La, Lb] | a, b ∈ V 〉 ⊕ span〈La | a ∈ V 〉. The algebra L(V ) is isomorphic to
LS(V ) by a 7→ La and Da,b 7→ [La, Lb].
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It is a simple exercise to check that over algebraically closed fields of characteristic zero, the only solvable
non-nilpotent two-dimensional L.t.s. is R2 = Fa⊕ Fb with

(11) [a, b, a] = −b and [a, b, b] = 0.

Lemma 14. Let V be a solvable non-nilpotent L.t.s. Then there exists a homomorphic image of V which
contains a subsystem isomorphic to R2.

Proof. For V a solvable L.t.s, LS(V ) is a solvable Lie algebra (see [5]). The solvability of LS(V ) implies that
there exists a non-zero v ∈ LS(V ) and a homomorphism of Lie algebras λ : LS(V ) → F such that

(12) [x, v] = λ(x)v

for any x ∈ LS(V ). Observe that L+
S (V ) ⊆ [LS(V ),LS(V )] and hence λ(L+

S (V )) = 0.

Write v as a sum of its even and odd components: v = D + b with D ∈ L+
S (V ) and b ∈ L−

S (V ). The odd

part of the identity (12) with x ∈ L+
S (V ) implies that [V, V, b] = 0. Setting x = a ∈ V in (12) gives

Da,b = λ(a)D

as the even part, and

D(a) = −λ(a)b
as the odd part.

Assume that λ is not identically equal to zero. Then we can choose a ∈ V with λ(a) = 1. For such a
we have that D = Da,b and D(a) = −b so [a, b, a] = −b. Since [V, V, b] = 0, the subspace span〈a, b〉 is a
subsystem of V isomorphic to R2.

Now, if λ happens to be identically equal to zero, it follows that D = 0 and b 6= 0 (since v is non-zero),
and that [V, b, V ] = 0. Hence, the one-dimensional subspace span〈b〉 is contained in the centre of V . The
L.t.s. V/ span〈b〉 is solvable non-nilpotent (see [1, 5]) and its dimension is lower than the dimension of V .
The result in this case can be obtained by induction. �

Proposition 15. Given a non-nilpotent L.t.s. V and an ideal I of finite codimension in U(V ), the inter-
section I ∩ V is non-zero.

Proof. Without loss of generality we may assume that V is solvable. By Lemma 14 there exists an ideal
V0 and elements a, b ∈ V such that V0 ⊕ span〈a, b〉 is a subsystem of V with [a, b, a] ≡ −b mod V0 and
[a, b, b] ≡ 0 mod V0.

By (5), in U(V ) we have x(yz) =
∑
x(1)y(1) · δx(2),y(2)

(z). With x = an, y = c ∈ V and z = a we obtain

an(ca) =





an+1c = a · anc

anc · a+
∑

(an)(1)δ(an)(2),c(a)

≡ anc · a+ nan−1δa,c(a) mod U(V )n−1

where the last congruence follows from (6). Hence [anc, a] ≡ −nan−1δa,c(a) ≡ −n
2 a

n−1[a, c, a] mod U(V )n−1.
After n commutations we get

[. . . [[anc, a], a], . . . , a] = (−1)n n!

2n
[a, [a, [. . . , [a, c, a], . . . ], a], a]

where we have replaced the congruence modulo U(V )0 = F by the equality because both sides lie inside
ker ǫ. In the particular case c = b we have [. . . [[anb, a], a], . . . , a] = n!

2n (b+ v0) with v0 ∈ V0.

Any finite-codimensional ideal I contains an element of the form p(a) = α01+α1a+ · · ·+αn−1a
n−1 + an.

It also contains p(a)b and [. . . [p(a)b, a], . . . , a] where the commutator is taken n times. Therefore, I also
contains the nonzero element n!

2n (b + v0). �

We have seen that faithful representations of the type (8) can only exist for nilpotent L.t.s. It turns out
that for nilpotent L.t.s. these representations, if exist, have very specific structure. Name, assuming that in
(8) the algebra A is generated by ι(V ), we shall prove that there exists a nilpotent ideal R such that A/R is a
commutative associative algebra over F with no nontrivial nilpotent elements. First, we need some lemmas.
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Lemma 16. Let A be a finite-dimensional unital algebra, a ∈ LNalt(A) and La = (La)s + (La)n — the
Jordan–Chevalley decomposition of La in End(A). Then there exist as, an ∈ LNalt(A), the semisimple and
nilpotent parts of a, with (La)s = Las

and (La)n = Lan
.

Proof. Recall that given (d, d′, d′′) ∈ Tder(A), its semisimple and nilpotent parts can be calculated com-
ponentwise: (d, d′, d′′)s = (ds, d

′
s, d

′′
s ) and (d, d′, d′′)n = (dn, d

′
n, d

′′
n), where both (ds, d

′
s, d

′′
s ) and (dn, d

′
n, d

′′
n)

are also ternary derivations. Recall also that (d, d′,−d) ∈ Tder(A) if and only if d = La and d′ = Ta with
a ∈ LNalt(A). Now, for any a ∈ LNalt(A) we have that ((La)s, (Ta)s,−(La)s) and ((La)n, (Ta)n,−(La)n) ∈
Tder(A), which implies that (La)s = Las

and (La)n = Lan
for some as, an ∈ LNalt(A). �

Let us complete V inside A by adding the semisimple and nilpotent parts of all its elements; it turns out
that such completion retains some fundamental properties of V :

Lemma 17. Let A be a finite dimensional unital algebra. Given any subsystem V ≤ LNalt(A) such that

i) V generates A as a unital algebra,
ii) [a, b] = 0 for all a, b ∈ V ,
iii) V is nilpotent,

there exists in LNalt(A) a subsystem V̂ containing V and satisfying i), ii) and iii), and such that as, an ∈ V̂

for any a ∈ V̂ . Moreover, as ∈ Z(A) for any a ∈ V̂ and {an | a ∈ V̂ } is an ideal of V̂ .

Proof. Since V generates A and [a, b] = 0 for any a, b ∈ V , the Lie algebra L(V ), generated by {La | a ∈ V }
is isomorphic to LS(V ). By [1] the latter algebra, and hence the former, is nilpotent.

By the properties of the Jordan–Chevalley decomposition (see [2]) (adLa
)s = adLas

and (adLa
)n = adLan

.
The operators adLas

and adLan
can be expressed as polynomials in adLa

with zero constant term. In
particular, adLas

leaves L(V ) stable with a nilpotent action. By the semisimplicity of adLas
this means that

[Las
,L(V )] = 0. Hence as ∈ Z(A) by Lemma 11.

As L(V ) is nilpotent, there exists a basis of A where L(V ) is represented by upper triangular matrices.
Hence, for any a, b ∈ V the operator Las+bs

is semisimple, while Lan+bn
is nilpotent. Moreover, as+bs ∈ Z(A)

implies that [Las+bs
, Lan+bn

] = 0. By the uniqueness of the Jordan–Chevalley decomposition we obtain that
(La+b)s = Las

+ Lbs
and (La+b)n = Lan

+ Lbn
. In particular, (a+ b)s = as + bs and (a+ b)n = an + bn.

Let V̂ = {as+bn | a, b ∈ V }. By the previous, V̂ is a vector subspace of LNalt(A) and, since (as+bn)s = as

and (as + bn)n = bn, V̂ contains the semisimple and nilpotent components of its elements. We also know

that as ∈ Z(A) for any a ∈ V̂ .
Given a, a′, a′′, b, b′, b′′ ∈ V we have that

[as + bn, a
′
s + b′n] = [bn, b

′
n] = [bs + bn, b

′
s + b′n] = [b, b′] = 0,

so V̂ satisfies ii). Moreover,

[as + bn, a
′
s + b′n, a

′′
s + b′′n] = [Las+bn

, La′

s
+b′

n
](a′′s + b′′n)

= [Lbn
, Lb′

n
](a′′s + b′′n)

= [bn, b
′
n, b

′′
n]

= [b, b′, b′′]

implies that V̂ is a subsystem of LNalt(A) and that [V̂ , V̂ , V̂ ] ⊆ [V, V, V ]. In terms of the lower central series

for V̂ and V (see [1]) this says that V̂ 1 ⊆ V 1. Assuming that V̂ n ⊆ V n, we have V̂ n+1 = [V̂ n, V̂ , V̂ ] +

[V̂ , V̂ , V̂ n] ⊆ [V n, V̂ , V̂ ]+ [V̂ , V̂ , V n] ⊆ [V n, V, V ]+ [V, V, V n] ⊆ V n+1. The nilpotency of V̂ follows from this
observation and the nilpotency of V .

Finally, the left multiplication operator by [a, b, c] is obtained as the commutator [[La, Lb], Lc]; in an
adequate basis of A it is represented as a commutator of upper triangular matrices. Therefore, it is nilpotent
and [a, b, c] = [a, b, c]n. Since [V̂ , V̂ , V̂ ] ⊆ [V, V, V ] it follows that [V̂ , V̂ , V̂ ] ⊆ {an | a ∈ V̂ }. In particular, the

latter set is an ideal of V̂ . �

Lemma 18. Let A be a finite-dimensional unital algebra and let V be a subsystem of LNalt(A). Assume
that



10 J.MOSTOVOY AND J.M. PÉREZ-IZQUIERDO

i) a = an for any a ∈ V ,
ii) [a, b] = 0 for all a, b ∈ V .

Then the subalgebra generated by V is nilpotent.

Proof. Assume, as before, that A is generated by V as a unital algebra.
There exists an element of V that lies in the centre of A. Indeed, the nilpotency of V implies that L(V )

consists of nilpotent transformations [1], which, in turn, implies that the centre of L(V ) is non-zero. Given
0 6= D + La ∈ Z(L(V )) with D ∈ L+(V ), for any b ∈ V the equality 0 = [D + La, Lb] = LD(b) + [La, Lb]
implies that D = 0 and [La, Lb] = 0. Therefore 0 6= a ∈ Z(A) by Lemma 11.

We shall use induction on the dimension of V . The case dimV = 0 is obvious. Given V with dim V = n+1,
choose 0 6= a ∈ Z(A) ∩ V as above and consider the ideal aA. The quotient algebra A/aA is generated,
as a unital algebra, by the quotient (V + aA)/aA of V . Thus we can apply the hypothesis of induction to
conclude that alg〈V + aA/aA〉 = alg〈V 〉/aA is nilpotent.

Let us denote the ideal alg〈V 〉 by A0, and the linear span of all products of N elements of A0, regardless
of the order of the parentheses, by AN

0 . From the nilpotency of alg〈V 〉/aA we deduce that there exists N
such that AN

0 ⊆ aA. Moreover, any product involving 2N elements of A0 lies in the ideal aA0, since is of
the form u1u2 where at least one of the factors involves at least N elements and, therefore, lies in AN

0 ⊆ aA,
and the other factor belongs to A0.

Let us fix N such that AN
0 ⊆ aA0 and prove by induction that ANk

0 ⊆ akA0. Since a ∈ V is nilpotent,

this will imply that A0 is nilpotent, as desired. Assume that ANk−1

0 ⊆ ak−1A0. Any product of Nk elements
in A0 can be written as a product of N factors, each belonging to A0, and at least one of them lying in

ANk−1

0 ⊆ ak−1A0. Since ak−1 is in the centre of A, the whole product lies in ak−1AN
0 ⊆ akA0. �

Finally, we are in the position to prove Theorem 2.

Proof of Theorem 2. By Lemma 17 we can assume that V contains the semisimple and nilpotent components
of all its elements. Let Q = alg〈as | a ∈ V 〉 ⊆ Z(A) and let R be the ideal generated by {an | a ∈ V }. Clearly
A = Q+R.

For any nilpotent element x ∈ Q, Lx belongs to alg1〈Las
| a ∈ V 〉. This algebra is abelian and all its

elements are semisimple transformations. But x ∈ Z(A) implies that Lx is nilpotent so Lx = 0 and x must be
zero. Hence Q is a commutative associative finite dimensional algebra without nonzero nilpotent elements.

Since as ∈ Z(A), it follows that A = Q alg1〈an | a ∈ V 〉. We can apply Lemma 18 to the algebra
alg1〈an | a ∈ V 〉 and the subsystem {an | a ∈ V } to conclude that alg〈an | a ∈ V 〉 is nilpotent. The ideal R
decomposes as R = Q alg〈an | a ∈ V 〉, so it is also nilpotent. Its nilpotency implies that Q ∩R = 0. �

4. The universal enveloping algebras of a L.t.s. and its Lie envelope

The following construction is based on the known construction of a Bruck loop starting from a group
whose every element has a square root. Namely, any such group with the product g ∗ h = g

1
2 hg

1
2 becomes

a Bruck loop. Observe that the linearisation of the identity g = r(g)r(g) with r(g) = g
1
2 in an H–bialgebra

reads as x =
∑
r(x(1))r(x(2)) for some map r.

Let L be a Lie algebra over a field F of characteristic 6= 2.

Lemma 19. The linear map q : U(L) → U(L) defined by x 7→
∑
x(1)x(2) is bijective.

Proof. Consider the Poincaré–Birkhoff–Witt filtration U(L) =
⋃

n≥0 Un of U(L). Given a1, . . . , an ∈ L,

q(a1 · · ·an) ≡ 2na1 · · · an mod Un−1.

Since q preserves the filtration, it follows that it is bijective on each Un. �

Let r be the inverse of q. Clearly, for any x ∈ U(L) we have that x =
∑
r(x)(1)r(x)(2). Furthermore, q

being a coalgebra isomorphims implies that r is also a coalgebra isomorphism. Therefore,

x =
∑

r(x(1))r(x(2))
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The product on U(L) can be modified with the help of the map r as follows:

x ∗ y =
∑

r(x(1))yr(x(2)).

With this product U(L) becomes a unital non-associative algebra. In fact, since r is a homomorphism of
coalgebras, U(L) carries the structure of an H–bialgebra.

Lemma 20. For all x, y in U(L)
∑

r(x(1) ∗ (y ∗ x(2))) =
∑

r(x(1))r(y)r(x(2)).

Proof. Indeed,
∑

x(1) ∗ (y ∗ x(2)) =
∑

r(x(1))r(y(1))x(3)r(y(2))r(x(2))

=
∑

r(x(1))r(y(1))r(x(2))r(x(3))r(y(2))r(x(4))

=
∑ (

r(x(1))r(y)r(x(2))
)
(1)

(
r(x(1))r(y)r(x(2))

)
(2)

which proves the lemma. �

Proposition 21. The algebra (U(L), ∗) satisfies

i)
∑
x(1) ∗ (y ∗ (x(2) ∗ z)) =

∑
(x(1) ∗ (y ∗ x(2))) ∗ z.

ii) a ∗ b = b ∗ a for any a, b ∈ L.
iii) a ∗ (b ∗ c) − b ∗ (a ∗ c) = 1

4 [[a, b], c] for any a, b, c ∈ L.

Proof. We shall only check part i); it follows from Lemma 20 by
∑

x(1) ∗ (y ∗ (x(2) ∗ z)) =
∑

r(x(1))r(y(1))r(x(2))zr(x(3))r(y(2))r(x(4))

=
∑

r(x(1) ∗ (y ∗ x(2)))(1)zr(x(1) ∗ (y ∗ x(2)))(2) =
∑

(x(1) ∗ (y ∗ x(2))) ∗ z.
�

Given a L.t.s. with the product [ , , ] and a scalar µ, the new product [ , , ]′ = µ2[ , , ] also defines a L.t.s.
that is isomorphic to the original L.t.s. under x 7→ µx.

Corollary 22. Let V be a L.t.s. and LS(V ) — the Lie envelope of V . The unital subalgebra of (U(LS(V )), ∗)
generated by V is isomorphic to the universal enveloping algebra of V considered as a Bol algebra with the
trivial binary product.

Proof. Define [a, b, c]′ = 1
4 [a, b, c] and let Q the subalgebra of (U(L), ∗) generated by V . The universal prop-

erty of U(V, [ , , ]′) together with Proposition 21 implies that there exists an epimorphism from U(V, [ , , ]′)
to Q. Since a1 ∗ (· · · ∗ (an−1 ∗ an)) ≡ a1 · · ·an mod Un−1 with a1, . . . , an ∈ V , it follows that Q admits
a PBW–type basis. The epimorphism from U(V, [ , , ]′) to Q maps the PBW basis of U(V, [ , , ]′) to this
basis, so it is an isomorphism. However, as (V, [ , , ]′) and (V, [ , , ]) are isomorphic, their universal enveloping
algebras also are. �

5. Ideals in the enveloping algebras of simple L.t.s.

Lemma 23. Assume that V is a simple L.t.s. satisfying the following condition: all elements of the universal
enveloping algebra U(V ) that commute with V , are of the form c+x where c is a scalar and x is in V . Then
the only proper ideal of U(V ) is the augmentation ideal.

Proof. Suppose the conditions of the lemma are satisfied. Let I ⊂ U(V ) be an ideal, and take some r ∈ I.
There exists an element x ∈ V such that r′ = rx − xr 6= 0. It is clear that r′ ∈ I and deg r′ < deg r, where
the degree is taken with respect to the PBW filtration. Hence, I necessarily contains a nonzero element u
of degree at most 1. If u is a scalar, then I = U(V ). If deg u = 1, the space of all linear combinations of
(possibly iterated) brackets containing u, is an ideal of V and, hence, coincides with V . All these brackets
are in I, therefore, I contains V . �
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If a is an element of V and r ∈ U(V )n, the commutator ar− ra belongs to U(V )n−1. In fact, it is possible
to write an explicit formula for the terms of degree n− 1 in this commutator.

Lemma 24. Let {xk} be a basis for V and r ∈ U(V ) — a monomial in the xk. Then

(13) ar − ra =
1

2

∑

i,j

[a, xi, xj ] ·
∂

∂xi

∂

∂xj

r + lower degree terms.

Here the partial derivative ∂/∂xi of a non-associative monomial is defined by setting ∂/∂xi(uv) =
u∂/∂xi(v) + ∂/∂xi(u)v with ∂/∂xi(xj) = 1 if i = j and 0 otherwise.

Proof. The vector space U(V )n/U(V )n−1 is spanned by classes of elements of the form bn with b ∈ V , so it
is sufficient to verify (13) for p = bn.

Modulo terms of degree n− 2 and smaller we have

abn − bna = a(bbn−1) − bna

= [La, Lb](b
n−1) + b(abn−1) − bna

=
∑

i+j=n−2

bi([La, Lb](b) · bj) + b(abn−1) − bna

= (n− 1)[La, Lb](b) · bn−2 + b(abn−1 − bn−1a)

= (n− 1)[La, Lb](b) · bn−2 + (n− 2)[La, Lb](b) · bn−2 + . . .+ [La, Lb](b) · bn−2

=
n(n− 1)

2
[La, Lb](b) · bn−2.

The last expression coincides with the right-hand side of (13). �

Let x, y, z be a set of generators for the Lie algebra so(3) with [x, y] = z, [y, z] = x and [z, x] = y. We

shall consider so(3) as a simple L.t.s. by setting [a, b, c] = [[a, b], c]. Let S̃2 be the 2-dimensional subsystem

spanned by x and y. Over the complex numbers S̃2 is isomorphic to the L.t.s. S2 mentioned in Section 2;
the isomorphism is given by e = −x+ y

√
−1, f = x+ y

√
−1.

Proposition 25. Both so(3) and S̃2 satisfy Conjecture 3.

Proof. The products of the form zn(xpyq) with n, p, q non-negative integers, form a basis for the universal
enveloping algebra of so(3) considered as a Lie triple system. In our case, (13) reads as

zn(xpyq) · z − z · zn(xpyq)

= −n(p+ q)

2
zn−1(xpyq) +

p(p− 1)

2
zn+1(xp−2yq) +

q(q − 1)

2
zn+1(xpyq−2) + . . .

where the omitted terms are of degree n+ p+ q − 2 and smaller. Similarly,

zn(xpyq) · x− x · zn(xpyq)

=
n(n− 1)

2
zn−2(xp+1yq) − p(n+ q)

2
zn(xp−1yq) +

q(q − 1)

2
zn(xp+1yq−2) + . . .

and

zn(xpyq) · y − y · zn(xpyq)

=
n(n− 1)

2
zn−2(xpyq+1) +

p(p− 1)

2
zn(xp−2yq+1) − q(n+ p)

2
zn(xpyq−1) + . . .

Now, suppose that there exists an element r of the universal enveloping algebra of so(3) considered as a Lie
triple system, of degree N > 1, which commutes with x, y and z. This element has the form

r =
∑

n+p+q=N

αn,p,qz
n(xpyq) + lower degree terms.
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The requirement that rz − zr has no terms of degree N − 1 imposes linear conditions on the coefficients
αn,p,q, similar conditions come from rx− xr and ry − yr. Explicitly, these conditions are as follows:

−(p+ q)(n+ 2)αn+2,p,q + (p+ 1)(p+ 2)αn,p+2,q + (q + 1)(q + 2)αn,p,q+2 = 0,

(n+ 1)(n+ 2)αn+2,p,q − (n+ q)(p+ 2)αn,p+2,q + (q + 1)(q + 2)αn,p,q+2 = 0,

(n+ 1)(n+ 2)αn+2,p,q + (p+ 1)(p+ 2)αn,p+2,q − (n+ p)(q + 2)αn,p,q+2 = 0.

The determinant of the corresponding 3× 3-matrix is equal to 2(n+ 2)(p+ 2)(q + 2)(n+ p+ q + 1)2 and it
follows that all the αn,p,q are zero and, hence, deg r < N , which gives a contradiction.

The argument for S̃2 is entirely similar. �

Let ( , ) be a non-degenerate symmetric bilinear form on a vector space V of dimension greater than 1.
Define a ternary bracket on V by

[a, b, c] = (a, c)b− (b, c)a.

A straightforward verification shows that V with this bracket satisfies all the axioms of a Lie triple system.
If I is an ideal in V , [I, V, V ] ⊆ I, that is, (v, x)u − (v, u)x ∈ I for any x ∈ I and u, v ∈ V . Hence,

(v, x)u ∈ I for any x ∈ I and this means that I is either trivial, or coincides with V . Therefore, V is simple.

Proposition 26. The L.t.s. V satisfies Conjecture 3.

Proof. Fix a basis {xk} for V , n ≥ k ≥ 1, and let r ∈ U(V ) be homogeneous of degree greater than 1. The
condition xkr − rxk = 0 implies, by (13), that

∑

i,j

[xk, xi, xj ]
∂

∂xi

∂

∂xj

r = 0,

that is,
∑

i,j

((xk, xj)xi − (xi, xj)xk)
∂

∂xi

∂

∂xj

r = 0.

Assuming that the basis {xk} is orthonormal, we get

xk

∑

i

∂2

∂x2
i

r =
∑

i

xi

∂

∂xi

∂

∂xk

r = (m− 1)
∂

∂xk

r,

where m = deg r. If ∂
∂xk

r = 0 for some k it follows that
∑

i
∂2

∂x2
i

r = 0 and, hence, that ∂
∂xk

r = 0 for all k. In

this case r is a constant, so we can assume that ∂
∂xk

r 6= 0 for all k and that
∑

i
∂2

∂x2
i

r 6= 0.

Let us write ψ for
∑

i
∂2

∂x2
i

r. We have

(14) (m− 1)
∂

∂xk

r = xkψ

and, hence,

(m− 1)xk

∂

∂xk

r = x2
kψ

and

m(m− 1)r = qψ

with q =
∑n

i=1 x
2
i . It follows that

m(m− 1)
∂

∂xk

r = 2xkψ + q
∂

∂xk

ψ

which implies

(m− 2)xkψ = q
∂

∂xk

ψ.
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If m = 2 this means that r is a scalar multiple of q. If m 6= 2 we have that ψ = qψ0 with ψ0 6= 0, and
m(m− 1)r = q2ψ0. It is readily seen that ψ0 satisfies

(m− 4)xkψ0 = q
∂

∂xk

ψ0.

If m = 4 this implies that r is a scalar multiple of q2; otherwise the above manipulations can be repeated.
Eventually, this process has to stop and in the end we get that m = 2l and that, up to a multiplication by
a scalar, r = ql.

Now, (14) can be re-written as

(2l− 1) · 2xklq
l−1 = xk(2nlql−1 + 4l(l− 1)ql−1).

This gives n = 1 and it follows that xkr − rxk = 0 cannot be satisfied for all k. �
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