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DEGENERATE PRINCIPAL SERIES REPRESENTATIONS AND

THEIR HOLOMORPHIC EXTENSIONS

GENKAI ZHANG

Abstract. Let X = H/L be an irreducible real bounded symmetric domain realized
as a real form in an Hermitian symmetric domain D = G/K. The intersection S of
the Shilov boundary of D with X defines a distinguished subset of the topological
boundary of X and is invariant under H and can also be realized as S = H/P for
certain parabolic subgroup P of H . We study the spherical representations IndH

P
(λ)

of H induced from P . We find formulas for the spherical functions in terms of the
Macdonald 2F1 hypergeometric function. This generalizes the earlier result of Faraut-
Koranyi for Hermitian symmetric spaces D. We consider a class of H-invariant
integral intertwining operators from the representations IndH

P
(λ) on L2(S) to the

holomorphic representations of G on D restricted to H . We construct a new class of
complementary series for the groups H = SO(n, m), SU(n, m) (with n−m > 2) and
Sp(n, m) (with n−m > 1). We realize them as a discrete component in the branching
rule of the analytic continuation of the holomorphic discrete series of G = SU(n, m),
SU(n, m) × SU(n, m) and SU(2n, 2m) respectively.

1. Introduction

Since the work of Kashiwara and Vergne [14] on the tensor product decomposition of
metaplectic representations and of Howe [13] on the dual pair correspondence [12], there

has been intensive study on the branching rule of minimal and singular representations
under various subgroups; see e. g. [18, 20] and references therein. The purpose of the

present paper is to find certain irreducible discrete parts of the branching of scalar
holomorphic representations πν of an Hermitian Lie group G of higher rank under a

symmetric subgroup H , with the Riemannian symmetric domain X = H/L being a

real form of the Hermitian symmetric domain D = G/K. For larger parameter ν it
is equivalent [39] to the regular action of H on L2(X), whose decomposition is well-

known [10] and is a continuous sum of the principal series representations induced
on the minimal Iwasawa parabolic subgroup. However for smaller parameter ν the

decomposition is rather complicated with the continuous parts being integration over
various hyperplanes in the complex dual of the real Cartan subalgebra and with discrete

parts, and the full decomposition is not known; see [26] for some examples. It is
thus worthwhile to find the discrete components which in certain sense are the most

interesting part. A pivot example of such cases is when X is itself a complex bounded

Key words and phrases. Degenerate principal series, complementary series, Lie groups, bounded
symmetric domains, symmetric spaces, analytic continuation of holomorphic discrete series, Poisson
transform, branching rule.
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symmetric domain G/K realized as a diagonal part in the domain X × X̄ = G ×

G/K × K. In this case the branching rule above is the tensor product decomposition
of πν ⊗ πν of the holomorphic representation with its complex conjugate. However for

smaller parameter ν there might have some discrete components. A full decomposition
is done in [40] for ν being the last Wallach point, and in this case there are finitely many

discrete components appearing for the non-tube type domain SU(r, r + b)/S(U(r) ×
U(r + b)), r > 1, b > 2, and they are then some complementary series representations.

We thus get a realization of them in the space Hν ⊗Hν , namely the space of Hilbert-
Schmidt operators on Hν , which can be viewed as a quantization of the complementary

series representation; this is another part of our motivation. In the rank one case the
appearance of the discrete parts in the tensor product πν ⊗ πν for the group SU(n, 1)

has been studied in [37] for n = 1 and for n > 1 in [6]; similar results hold for the
branching of holomorphic representation of SU(n, 1) under SO(n, 1) and Sp(n

2
, 1) [36].

Certain examples of higher rank cases have also been studied earlier in [30] and [26]. In
[27] Neretin and Olshanski discovered that certain complementary series representation

for SO(p, q) appears in the branching of the minimal representation of SU(p, q); see

also [31]. Here we give a systematic study of the appearance of complementary series
in the branching of the holomorphic representation πν for all groups G and H .

We will consider representations of H that are induced from some maximal par-
abolic subgroup P . More precisely we consider the boundary S = H/P defined as

the intersection of the Shilov boundary of D with the topological closure of X, which
we may call the real Shilov boundary of X. The corresponding spherical functions

on X = H/L can be realized as certain Poisson integral, and they have natural an-
alytic continuation to the whole domain D. We find first an expansion formula for

the spherical functions in terms of the L-invariant polynomials on D, which are cer-
tain hypergeometric functions studied earlier by Faraut-Koranyi and Macdonald. For

that purpose we generalize our earlier results [41] about characterizing the L-invariant
polynomials in terms of the Jack symmetric polynomials to non-tube type domains,

and we find their Fock space norm using the result of Dunkl [4]; combining this with
the result of Faraut-Koranyi [7] we find then their Bergman space norm. Even though

the computations are rather technical the end results on the spherical functions are

simple and appealing; see Theorem 5.1.
We study consequently the question of describing those spherical representations

that appear discretely in the branching of the holomorphic representations of G under
H . It turns out this happens only, roughly speaking, when ν is smaller and when

H = SO(n, m), SU(n, m) and Sp(n, m) with n − m sufficiently larger than ν. The
result of this type is heuristically plausible as the the spaces of singular holomorphic

representations are certain Sobolev type space and may contain H-invariant subspaces
holomorphic functions with boundary values (called also trace in classical analysis)

on certain boundary components of X = H/L, and the subspaces may form certain
complementary series representation; conversely complementary series representations

of H might usually be realized on space of functions on boundary components of X
with extra smoother property (see e.g. [15] for some precise statements and related
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conjectures) and they may have holomorphic continuation on D. However the precise

statement is rather subtly. The parameter for the induced representations are outside
the unitary range so that we may call them complementary series; in rank one case

they are precisely the known complementary series. We prove that when ν in the
continuous part of the Wallach set and is small compared with the root multiplicity

b there appear discrete parts in the branching of the holomorphic representation of G
under H .

Our results on realization of the complementary series representation as discrete
components in the holomorphic representations can also be viewed as representation

theoretic study of the holomorphic extension of spherical functions. Roughly we are
mostly concerned with constructing unitary spherical representation of H so that its

holomorphic extension is a discrete component in the unitary holomorphic represen-
tation of the larger group G. For a general Riemannian symmetric space H/L the

holomorphic extension of spherical functions is of considerable interests; see e.g. [23].
Also Kobayashi [17] has recently introduced some geometric concept characterizing the

multiplicity free branching rule.

Acknowledgment. I would like to thank Toshiyuki Kobayashi, Siddhartha Sahi and
Henrik Seppänen for some helpful discussions. I would also like to thank the support

and the hospitality of the Max-Planck institute a and Haussdorff institute in Math-
ematics, Bonn, Germany, during my stay in July 2007 where part of this work was

finished.
For the reader’s convenience we list the main symbols used in the paper.

(1) D = G/K, a bounded symmetric type domain in a complex vector space VC =

V C of rank r′ with root multiplicity (1, a′, 2b′).
(2) X = H/L, an irreducible real bounded symmetric type domain in a real form

V ⊂ V C of rank r with root multiplicity (ι − 1, a, 2b).
(3) S = Le = H/P a distinguished boundary component in the topological bound-

ary of X.
(4) h = l + q, the Cartan decomposition of g, a ⊂ h a maximal abelian subspace of

p, Σ(h, a) the root system.
(5) h(z, w̄) an irreducible polynomial on VC × VC, the Bergman reproducing kernel

is h(z, w̄)−p with p = a′(r′ − 1) + 2 + b′ the genus of domain D.
(6) For a tuple (partition) m = (m1, · · · , mr) with mj ∈ N (non negative integers)

and m1 ≥ · · · ≥ mr ≥ 0 the generalized Pochammer symbol is

(c)
m,β =

r
∏

j=1

(c − β(j − 1))mj
=

r
∏

j=1

mj
∏

k=1

(c − β(j − 1) + k − 1).

2. Preliminaries

2.1. Bounded symmetric domains D and holomorphic representations. We
recall very briefly in this and next subsections some preliminary results on bounded

symmetric domains and fix notation; see e.g. [7, 24] and references therein.
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Let D = G/K be as in the previous section an irreducible bounded symmetric

domain in a d-dimensional complex vector space VC = C
d of rank r′. (The symbol

r will be reserved for the rank of the real bounded symmetric domain X in next

subsection.) Let g = k + p be the Cartan decomposition and gC = p+ + kC + p− be
the Harish-Chandra decomposition of its complexification. Let (1, a′, 2b′) be the root

multiplicities (or Peirce invariants in terms of the Jordan triple) of the real root system
of g, with 1 being that of the longest roots, 2b′ of the shortest roots, and a the middle.

The rank r′ and the multiplicities form a quadruple characterizing D

(2.1) D : (r′, 1, a′, 2b′)

and will be compared with that for the subdomains X below. According to the clas-
sification [9] of bounded symmetric domains the possible value of (r′, a′, 2b′) is

(2.2) (r′, 2, 2b), (r′, 1, 0), (r′, 4, 0), (r′, 4, 2), (2, a′, 0), (2, 6, 8), (3, 8, 0).

The space VC = p+ has a Jordan triple structure so that the subspace p of the Lie
algebra g, when realized as a space of holomorphic vector fields on D, consists of vector

fields of the form

(2.3) ξv = ξv(z) = v − Q(z)v̄, v ∈ VC,

where Q(z) : V̄C 7→ VC is quadratic in z. We denote {xȳz} = D(x, ȳ)z the Jordan

triple product

{xȳz} = D(x, ȳ)z = (Q(x + z) − Q(x) − Q(z))ȳ.

We fix a K-invariant Hermitian inner product (·, ·) on VC so that a minimal tripotent
has norm 1. We let dm(z) be the corresponding Lebesgue measure. The Bergman

reproducing kernel is up to a positive constant of the form h(z, w̄)−p where p is the

genus of D, defined by p = a(r′ − 1) + 2 + b′, and h(z, w̄) is an irreducible polynomial
holomorphic in z and anti-holomorphic in w. In particular the function h(z, w̄) satisfies

the following transformation property under the group G,

(2.4) h(gz, gw) = Jg(z)
1

p h(z, w̄)Jg(w)
1

p , g ∈ G,

where Jg is the Jacobian of the holomorphic mapping g.
We denote by F(VC) the Fock space of entire functions on VC. Let ν > p − 1 =

a(r′ − 1) + 1 + b and consider the probability measure dµν(z) = c′νh(z, z̄)ν−pdm(z)
where c′ν is the normalization constant, and the corresponding weighted Bergman space

Hν = Hν(D) of holomorphic functions f so that

‖f‖2
ν =

∫

D

|f(z)|2dµν(z) < ∞.

It has reproducing kernel h(z, w̄)−ν . The group G acts unitarily on Hν via the following

(2.5) πν(g)f(z) = Jg−1(z)
ν
p f(g−1z),

and it forms a unitary projective representation of G. We let O(D) be the space of all
holomorphic functions on D. The formula (2.5) defines also a representation of G on

the space O(D).
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The representation has an analytic continuation in ν and the whole set of ν so that it

still defines an irreducible unitary representation on a proper subspace of holomorphic
functions is given by the so-called Wallach set

W = {0,
a′

2
, · · · ,

a′

2
(r′ − 1)} ∪ (

a

2
(r′ − 1),∞).

The corresponding Hilbert space for ν ∈ W will also be denoted by Hν and the norm
by ‖ · ‖ν . The discrete points in the set will be also referred as singular Wallach point

(to differ the discrete component in the branching rule).
We summarize some related results (see e.g. [7]) in the following

Theorem 2.1. Let D = G/K be as above. The space P of holomorphic polynomials

on VC decomposes into irreducible subspaces under K, with multiplicity one as:

(2.6) P ∼=
∑

n≥0

P
n
.

Each P
n

is of lowest weight −n = −(n1γ1 + · · · + nr′γr′) with n1 ≥ · · · ≥ nr′ ≥ 0 and

γ1 > · · · > γr the Harish-Chandra strongly orthogonal roots. For each nonzero f ∈ P
n

it holds

‖f‖2
F = (ν)

n, a′

2

‖f‖2
ν ,

where (ν)
n, a′

2

is the generalized Pochammer symbol in Section 1. The reproducing

kernel h(z, w̄)−ν has the following expansion

(2.7) h(z, w̄)−ν =
∑

n

(ν)
n, a′

2

K
n
(z, w̄),

where K
n
(z, w̄) is the reproducing kernel of P

n
in the Fock space. In particular for

ν = a′

2
(j − 1), 1 ≤ j ≤ r′, we have

(2.8) h(z, w̄)−ν =
∑

n;nj=0

(ν)
n
K

n
(z, w̄), Hν =

⊕
∑

n:nj=0

P
n
.

2.2. Real forms X of D. Let V ⊂ VC be a real form of VC, VC = V + iV and let

X = V ∩D be the corresponding real form of D. X is called a real bounded symmetric
domain if the real involution with respect to V preserves the domain D. In this case

V is a real Jordan triple and X is a Riemannian symmetric space, X = H/L, with

induced metric from that of D, realized as a bounded domain in V . Here we take H
the connected component of the subgroup of G preserving X. The most well-studied

case is when H/L is the symmetric cone in the Siegel tube domain G/K, namely Type
A below. To have a some what unified treatment we exclude the rank one case and we

will only consider those irreducible X.
Let h be the Lie algebra of H and h = l + q be the Cartan decomposition. We let a

be a maximal abelian subspace of q. We fix a frame of minimal tripotents {e1, · · · , er}
of V . The corresponding vector fields (see 2.3), ξj = ξej

, j = 1, · · · , r form a maximal

abelian subspace a of q. We will also view a as a subspace of V . We let

(2.9) e := e1 + · · ·+ er ∈ V, ξ := ξe1
+ · · ·+ ξer

∈ a,
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e being a fixed maximal tripotent in V . The root system Σ = Σ(h, a) of (h, a) is of

type A,

Σ = {
βj − βk

2
},

with common multiplicity a or types B, BC or D, which we write as

Σ = {±βj ,
βj ± βk

2
,±

βj

2
}

with respective multiplicities ι−1, a, 2b with the interpretation that the corresponding
multiplicities 2b = 0 for type C, ι − 1 = 0 for type B, and 2b = ι − 1 = 0 for type D.

Here {βj} is a basis for a∗ normalized by

βj(ξk) = 2δj,k, j, k = 1 · · · , r.

(We write the multiplicity as ι − 1 since ι = 1, 2, 4 has the interpretation as the
dimension of the real, complex, quaternionic fields.) We will view type B as a special

case of type BC with the multiplicity ι−1 = 0. We order the roots so that β1 > · · · > βr

(and βr > 0 for types B and BC) and denote

(2.10) ρ =
1

2

∑

γ∈Σ+

mγγ

the half-sum of positive roots.
We get also a quadruple characterizing X in D of (2.1),

(2.11) X : (r, ι − 1, a, 2b) .

We list the corresponding quadruples (r, ι − 1, a, 2b) and classify them according to
the root system; see e. g. [24], [11] and [19].

Type BC ×BC. The complex domain is D× D̄ = (G×G)/(K ×K) where D is an
irreducible bounded symmetric (tube or non-tube type) domain of rank r in Cd, and

and X = H/L = G/K = D viewed as the diagonal part in D×D̄ = (G×G)/(K×K).
(The complex domain D × D̄ is reducible so there is some abuse of definition in §2.2.)

The quadruple (2.11) becomes

(2.12) Type BC × BC : (r, ι − 1, a, 2b) = (r′, 1, a′, 2b′)

where (r′, 1, a′, 2b′) is as in (2.1) in §2.1.

Type A. The list of (G, H) is in [8]. In this case we have r′ = r, a′ = a and b = 0,
namely D is of tube type,

(2.13) Type A: (r, a) = (r, 2), (r, 1), (r, 4), (2, a), (3, 8).

Type BC. (h, l) = (sp(l, r), sp(l) × sp(r)) (l > r) with (g, k) = (su(2l, 2r), su(2l) ×

su(2r)) (l > r). The rank and the root multiplicities are related by

(2.14) Type BC: (r, ι − 1, a, 2b) = (r, 3, 4, 4(l − r)), (r′, a′, 2b′) = (2r, 2, 4(l − r)) ,

where 2r = r′, 2a′ = a.
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Type B. (H, L) = (SO0(l, r), SO(l) × SO(r)) (l > r), (G, K) = (SU(l, r), S(U(l) ×

U(r)) or (H, L) = (SO(2r + 1, C), SO(2r + 1)), (G, K) = (SO∗(2(2r + 1), U(2r + 1)),
and

(2.15) Type B-1 : (r, ι − 1, a, 2b) = (r′, 1, 1, 1− r), (r′, a′, 2b′) = (r′, 2, 2(l − r)) .

or

(2.16) Type B-2: (r, ι − 1, a, 2b) = (r′, 1, 2, 2), (r′, a′, 2b′) = (r′, 4, 4) .

Here r′ = r, a′ = 2a.
Type D. We have (h, l) = (so(r, r), so(r)×so(r)) with (g, k) = (su(r, r), su(r)×u(r)),

or (h, l) = (su∗(8), sp(4)) = (sl(4, H), sp(4)) with (g, k) = (e7(−25), e6 ⊕ so(2)).

(2.17) Type D-1: (r, ι − 1, a, 2b) = (r, 0, 1, 0), (r′, a′, 2b′) = (r, 2, 0) .

or

(2.18) Type D-2: (r, ι − 1, a, 2b) = (3, 0, 4, 0), (r′, a′, 2b′) = (3, 8, 0) .

We have here r′ = r, a′ = 2a.

Remark 2.2. The above list can be deduced from Loos [24], where it is done according
to the classification of Jordan triples. Note that the rank two domain in the real

octonions O2 is not listed here, since it is isomorphic as symmetric space to the tube
domain of 2× 2-quaternionic matrices. The realization of Sp(2, 2)/Sp(2)× Sp(2) as a

real form in E6(−14)/Spin(10) × SO(2) is not listed here either as it is realized inside

SU(4, 4)/S(U(4)×U(4)). The realization of the exceptional rank one domain H/L with
(h, l) = (f4(−20), spin(9)) as real form in G/K with (g, k) = (e6(−20), spin(10)× so(2)) is

also not listed as we have excluded the rank one case.

3. L-invariant polynomials and their Fock-Fischer norms.

3.1. Jack polynomials. Let Ω
m

= Ω
(2/a)
m be the Jack symmetric polynomials with

multiplicity a
2

normalized by

Ω
m

(1r) = 1.

Here we use the abbreviation 1r = (1, · · · , 1). In the standard notation [25] it is

Ω
m

(x1, · · · , xr) =
J

(2/a)
m (x1, · · · , xr)

J
( 2

a
)

m (1r)
.

Following [38] we introduce

(3.1) q := qa/2 := 1 +
a

2
(r − 1).

and

(3.2) π
m

:= π
m, a

2
:=

∏

1≤i<j≤r

mi − mj + a
2
(j − 1)

a
2
(j − 1)

(a
2
(j − i + 1))mi−mj

(a
2
(j − i − 1) + 1)mi−mj

.

(This is denoted by d
m

in [38, §4].)
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3.2. Type BC ×BC. Consider the complex bounded symmetric domain D = H/L =

G/K ⊂ VC = C
d realized as a real form in D × D̄ ⊂ VC × V̄C. The parameter is now

(r, a, b) = (r′, a′, b′). The space P is

(3.3) P = P(VC) ⊗P(VC).

Under K × K it is decomposed as

(3.4) P =
∑

n=m×m
′

P
m

(VC) ⊗ P
m

′(VC).

The following lemma follows immediately from Theorem 2.1. All the Pochammer
product (σ)

m
in here are understood as (σ)

m,a/2.

Lemma 3.1. In the decomposition (3.4), PL
n
6= 0 if and only if n = (m,m), in which

case the polynomial

p(m,m)(x) =
(d/r)

m

d(m)
K

m
(x, x), d(m) = dimP

m
, n = m× m,

is the unique K-invariant polynomial in P
n

normalized by p(m,m)(e) = 1. The restric-
tion of p(m,m)(x) on a = {x =

∑

xjej ; xj ∈ R} ⊂ VC is the Jack symmetric polynomial,

p(m,m)(x) = Ω
m

(x2
1, · · · , x2

r). Its norms in the Fock and Bergman spaces are given by

‖p(m,m)‖
2
F⊗F

=
((d/r)

m
)2

d(m)

and

‖p(m,m)‖
2
Hν⊗Hν

=
1

(ν)2
m

‖p(m,m)‖
2
F⊗F

=
(d/r)2

m

(ν)2
m

d(m)
.

To compare with Proposition 3.6 below we write ‖p(m,m)‖
2
F⊗F

in terms of π
m,a′/2

defined in (3.2). The dimension d(m) is computed in [35, Lemmas 2.5 and 2.6] and is

given by

(3.5) d(m) =
(d/r)

m

(q)
m

π
m

.

Thus

‖p(m,m)‖
2
F⊗F

=
(d/r)

m
(q)

m

π
m

.

3.3. Type A. The following is proved in [7].

Lemma 3.2. In the decomposition (2.6), each component P
m

has a unique L-invariant

polynomial

p
m

(x) =
(d/r)

m

d(m)
K

m
(x, e), d(m) = dimP

m
, n = m,

normalized by p
m

(e) = 1. The restriction of p
m

(x) on a is the Jack symmetric poly-

nomial, p
m

(x) = Ω
m

(x1, · · · , xr). Its norms in the Fock and Bergman spaces are given
by

‖p
m
‖2
F =

(q)
m

π
m

, ‖p
m
‖2
Hν

=
(q)

m

(ν)
m

π
m

.
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3.4. Types B, BC, C, D. In this section we will generalize the result in [41] to the

non-tube case; some of which are quite similar to that of tube domain while others can
be proved by using the results there. We will be rather brief.

The following lemma can be proved by using the classification theory of spherical
pairs [22]; for tube domains (namely types A, B, D) it is also a consequence of the

Cartan - Helgason theorem [10, Chapter V, Theorem 4.1].

Lemma 3.3. In the decomposition (2.6), PL
n
6= 0 if and only if,

(3.6) Type BC n = (m,m) := (m1, m1, m2, m2, . . . , mr, mr) =
r

∑

j=1

mj(γ2j−1 + γ2j),

(3.7) Type B : n = 2m = (2m1, 2m2, . . . , 2mr) =

r
∑

j=1

2mjγj,

Type D : n = 2m + m = (2m1 + m, 2m2 + m, . . . , 2mr + m)

=

r
∑

j=1

(2mj + m)γj, m = 0, 1,
(3.8)

in which case PL
n

is one dimensional. Here m1 ≥ m2 ≥ · · · ≥ mr ≥ 0.

We will find the L-invariant polynomials in P
n

in the previous Lemma in terms of

the Weyl group invariant orthogonal polynomials studied by [4], and compute their
Fock space norm. We will denote the subspace Re1 + · · · + Rer of V also by a.

Associated to the root system Σ(h, a) there are the Dunkl difference-differential
operators [3],

Dj = ∂j +
1

2

∑

α∈Σ+

mα
α(ξj)

α(x)
(1 − rα)

acting on polynomials f(x) on a. (It is a realization on the space of polynomials of the
Hecke-algebra of the tensor product of the symmetric algebra on a and the Weyl group

algebra, with ξj acting as Dj , and w ∈ W acting by change of variables; see [29].)
We recall [41, Proposition 6.2] an isometric version of the Chevalley restriction the-

orem (see e. g. [10, 33] and references therein). We define a norm [4] on P(a)W by

‖p‖2
B = p(D)p∗|x=0

for Type B and

‖p‖2
B = p(

1

2
D)p∗|x=0

for Type BC, where for any polynomial p(x), x = x1e1+· · ·+xrer ∈ a, p(D) is obtained

by replacing the linear polynomial e∗j by Dj and p∗ obtained by taking the complex
conjugate of the coefficients of the monomials in e∗j . (The norm in [4] is defined by

p(D)p∗|x=0 for root systems of type B or type BC. The discrepancy here for type BC
is due to the fact that the vectors ej or the minimal tripotents in V have norm squares

being twice of that of minimal tripotents in VC.)
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Let

Res = Resa : P(VC)L → P(a)W

be the restriction map.

Lemma 3.4. The map Res is an isometric isomorphism between P(VC)L and the space
P(a)W of Weyl group invariant polynomials on a.

It is proved in [4] that the polynomials Ω
m

(x2
1, · · · , x2

r) are then eigenfunctions of

the operators p(D1, · · · , Dr), where p are Weyl group invariant polynomials on a.

Proposition 3.5. For each m = (m1, . . . , mr) there exists a unique polynomial p
n

in
the space PL

n
with n given by m as in Lemma 3.3 such that

(3.9) Res p
n
(x1e1 + · · ·+ xrer) = Ω

m
(x2

1, . . . , x
2
r).

for types B and BC, and

(3.10) Res p
n
(x1e1 + · · ·+ xrer) = (x1 · · ·xr)

m Ω
m

(x2
1, . . . , x

2
r), m = 0, 1,

for type D.

Proof. By Lemma 3.4 we have for each m there exists a unique p in P(VC)L such that
Res p = Ω

m
(x2

1, . . . , x
2
r). We only need to prove that p is the the space P

n
. There is

linear subspace V 0
C

of VC and symmetric tube domain D0 = G0/K0 ⊂ V 0
C

in D = G/K

of same rank r′, and correspondingly there is a real tube domain X0 = H0/L0 of
rank r in the domain X = H/L; this can be proved abstractly or by checking the list

in our classification. We view a also as a Cartan subspace for the symmetric space
X0. The root system of X0 is then of type D or type C. By [41, Propositions 7.6,

8.3] we see that there is a unique L0 invariant polynomials q in P
n
(V 0

C
) such that

Res q = Ω
m

(x2
1, . . . , x

2
r) = Res p. That p belongs P

n
(VC)L follows immediately from

the fact the the isomorphism Res is compatible with the realization of α in V0 or V . �

Next we compute the Fock-Fischer norm using Proposition 3.5 and the result of
Dunkl [4].

Proposition 3.6. With the notation as in Proposition 3.5 we have the following

formulas for the norm squares of the polynomial p
n

in the Fock space and Bergman
spaces.

Type B:

‖p
n
‖2
F =

1

π
m

22|m|(q)
m, a

2
((r − 1)

a

2
+ b +

1

2
)
m, a

2

and

‖p
n
‖2

ν =
1

π
m

(q)
m, a

2
((r − 1)a

2
+ b + 1

2
)
m, a

2

(ν
2
)
m, a

2
(ν+1

2
)
m, a

2

;

Type BC :

‖p
n
‖2
F =

1

π
m

(q)
m, a

2
((r − 1)

a

2
+

ι + 2b

2
)
m, a

2
,
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and

‖p
n
‖2

ν =
1

π
m

(q)
m, a

2
((r − 1)a

2
+ ι+2b

2
)
m, a

2

(ν)
m, a

2
(ν − a′

2
)
m, a

2

;

Type D :

‖p2m‖2
F =

1

π
m

22|m|(q)
m, a

2
((r − 1)

a

2
+ b +

1

2
)
m, a

2
,

‖p2m+1‖
2
F =

1

π
m

2r
r

∏

j=1

(
a

2
(r − 1) +

1

2
−

a

2
(j − 1))22|m|(q)

m, a
2
(
a

2
(r − 1) +

3

2
)
m

,

‖p2m‖2
ν =

1

π
m

(q)
m, a

2
((r − 1)a

2
+ 1

2
)
m, a

2

(ν
2
)
m, a

2
(ν+1

2
)
m, a

2

;

‖p2m+1‖
2
ν =

1

π
m

r
∏

j=1

a
2
(r − 1) + 1

2
− a

2
(j − 1)

ν
2
− a

2
(j − 1)

(q)
m, a

2
((r − 1)a

2
+ 3

2
)
m, a

2

(ν
2

+ 1
2
)
m, a

2
(ν

2
+ 1)

m, a
2

;

Proof. By Lemma 3.4 and Proposition 3.5 we have

‖p
n
‖2
F = ‖Res p

n
‖2

B = ‖Ω
m
‖2

B

for type B, and

‖p
n
‖2
F = 2−|n|‖Ω

m
‖2

B = 2−2|m|‖Ω
m
‖2

B

for type BC, since p
n

is a polynomial of degree |n| = 2|m|. The right hand side is

computed by Dunkl [4, Section 5], where the norm for type BC is defined as for type
B. However to express the resulting formula as stated requires some rather technical

computations, so we will adapt the notations there, his N, k, k1, λ are our r, a
2
, 2b+ι−1

2
,m

etc., and the h below is the shifted hook length product defined in Definition 3.17 there.

(Observe that for root system of type BC the constant k1 in [4, Section 5, (5.1)] is
a sum of two multiplicities.) The Jack polynomial J

m
is expressed in terms of the

polynomial j
m

by [4, Section 3, p.465]

J
m

=
(r a

2
+ 1)

m
h(m, 1)

(r a
2

+ 1)
m

(a
2
)|m|(#Srm)

j
m

with

J
m

(1r) = (r
a

2
)
m

(
a

2
)−|m|.

The norm j
m

is (see p. 480-495, loc. cit.)

‖j
m
‖2

B = 22|m|(r
a

2
+ 1)

m
((r − 1)

a

2
+

ι − 1 + 2b

2
+

1

2
)
m

(#Srm)E(mR)
h(m, a

2
+ 1)

h(m, 1)
.

We find then

‖Ω‖2
B = 22|m| ((r − 1)a

2
+ ι−1+2b

2
+ 1

2
)
m

(r a
2
)
m

h(m, 1)h(m,
a

2
)

The shifted hook length product h is related to the upper and lower hook length
products h∗(m) and h∗(m) (Stanley [32], Macdonald [25]) by

h(m, 1)h(m,
a

2
) = (

a

2
)2|m|(h∗(m)h∗(m))
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and which, by [38, Proposition 4.1], can be further written in terms of the quantity

π
m

defined in (3.2),

h∗(m)h∗(m) = (
2

a
)2|m| (q)m(r a

2
)
m

(π)
m

.

Namely

‖Ω‖2
B = 22|m| (q)m

π
m

((r − 1)
a

2
+

ι − 1 + 2b

2
+

1

2
)
m

,

proving our claim for the Fock space norm.
To find the Bergman space norm of p

n
we use Theorem 2.1. For Type B we have,

a′ = 2a, ι = 1, n = 2m,

‖p
n
‖2

ν =
1

(ν)
n,a′/2

‖p
n
‖2
F

=
1

(ν
2
)
m, a

2
(ν+1

2
)
m, a

2

1

(q)
m

π
m

((r − 1)
a

2
+ b +

1

2
)
m

.

since

(3.11) (ν)
n,a′/2 = 22|m|(

ν

2
)
m,a/2(

ν + 1

2
)
m,a/2,

for any ν.
For Type BC, it holds a = 2a′, and

(3.12) (ν)
n,a′/2 = (ν)

m,a/2(ν − a′/2)
m,a/2,

and we get the last equality. �

4. Principal series representations on maximal boundaries and

intertwining operators into the space Hν. Type BC × BC

The domain X = H/L = G/K is the complex bounded symmetric of rank r with
root multiplicity (1, a, 2b). We shall study spherical representations defined on the

Shilov boundary of D in terms of Macdonald 2F1 hypergeometric functions and their
realization in the holomorphic representation Hν ⊗ Hν . First we recall some general

factors about the hypergeometric series which we will need through the rest of the

paper.

4.1. Hypergeometric series with general parameter 2
a
. In the following sections

we will need the hypergeometric functions defined in terms of the Jack symmetric
polynomials. Let α = (αl, · · · , αk), β = (βl, · · · , βl) be two tuples of real positive

numbers, such that that β1, · · · , βl > a
2
(j − 1) and t = (t1, · · · , tr) ∈ [0, 1)r. We define

kF
(2/a)
l (α; β; t) =

∑

m

(α1)m · · · (αk)m
(β1)m · · · (βl)m

π
m

(q)
m

Ω
m

(t21, · · · , t2r).

Note that in case one of α’s is a
2
(j−1) for some 1 ≤ j ≤ r we have (α1)m · · · (αk)m = 0

and the sum is only over those with mj = 0, namely m = (m1, · · · , mj−1, 0, · · · , 0).

We will suppress the upper index 2/a when no confusion would arise. The series 2F1
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has been well-studied as it is related the spherical functions on symmetric domains

(see below).
The convergence property is similar to that of 2F1, namely we have

Lemma 4.1. Suppose α1, · · · , αl+1 > 0 and β1, · · · , βl > a
2
(j−1). The hypergeometric

series l+1Fl(α; β; t) is bounded on the set [0, 1)r if and only if

l+1
∑

p=1

αp −

l
∑

p=1

βp < −
a

2
(r − 1)

in which case the series F (α; β; 1r) is convergent.

Proof. The sufficiency for l = 1 was proved in [7] for special values of (r, l) (corre-
sponding to a complex bounded symmetric domain) and was generalized by Yan [38]

to general (k, r), in the case α = (α1, α2) and β = β1; the general case is exact the same
(see e.g. [5]). The necessary part is essentially also proved in [38] with approximate

behavior of the function near the certain boundary part of [0, 1)r, and we provide here

the argument. Put ε :=
∑l+1

p=1 αp −
∑l

p=1 βp + a
2
(r − 1). Consider t along the diagonal

(t1, · · · , tr) = (t, · · · , t), we have, by the Stirling formula (see [5], (2.9))

l+1Fl(α; β; t) ≍
∑

m

r
∏

j=1

(1 + mj)
ε−q

∏

1≤i<j≤r

(1 + mi − mj)
at|m|.

Using the evaluation formula for jm (see e.g. formula (2.13) in [5]) we see by elementary
computations [38] that the above series behaves the same as log 1

1−t
for ε = 0 or

(1 − t)ε+ a
2
(r−1) for ε > 0, which is thus unbounded. �

For the 2F1-series the sum F (α; β; 1r) has also been explicitly evaluated; see [28],
[38] and [2].

4.2. Induced representation of H on L2(S) and spherical functions. Fix the
maximal tripotent e ∈ V and let S = K · e. It is well understood that S is the Shilov

boundary of D and S = K/Ke = G/P where Ke and P is the isotropic subgroup of K
and respectively G of e. Consider the root space decomposition of g under the element

ξ ∈ a in (2.9),

(4.1) g = n− + n0 + n+.

Then P = MAN is a parabolic subgroup with Lie algebra n0 + n+ and A is the Lie

group with Lie algebra Rξ and MA is the Levi component with Lie algebra n0.
For λ ∈ C identified with the linear function λξ∗ we let IndG

P (λ) = L2(S) be the

induced representation of G on L2(S) = L2(S, dv), where dv is the normalized K-
invariant measure on S; see [16, Chapter VII, §§1-2]. The group action is given by

(4.2) U(λ, g)f(v) = |Jg−1(v)|
2n−iλ

pr f(g−1v)

where J is as in (2.5) the complex Jacobian at v ∈ S. In particular IndG
P (λ) is unitary

when λ is real.
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It is known that Harish-Chandra e-function with respect to the decomposition G =

KMAN is given by

e(iλ+ρ)(A(kg)) =
h(z, z̄)

σ
2

h(z, v̄)σ
, v = k−1e ∈ S, k ∈ K

where σ is determined by λ and vice versa via

(4.3) σ =
1

2r
(iλ + ρ)(ξ) =

iλ

2r
+

1

2
(1 + b +

a

2
(r − 1)), iλ = 2rσ − ρ(ξ),

and eA(kg) stands for the A = exp(Rξ)-component in the decomposition; see e.g. [21].

(Similar formulas holds, [34], in the Siegel domain realization, for general linear func-
tional λ on a.) The Poisson transform from IndG

P (λ) into the space of eigenfunctions

of G-invariant differential operators is given by

(4.4) Pλf(z) =

∫

S

(

h(z, z̄)

|h(z, v̄)|2

)σ

f(v)dv,

which intertwines the induced representation IndG
P (λ) and the regular action on X.

The corresponding spherical function can be expressed in terms of the hypergeomet-
ric function. We recall the following know result; see e. g. [7, 38, 5].

Lemma 4.2. The spherical function

φλ(z) = Pλ1(z) =

∫

S

h(z, z̄)σ

h(z, v̄)σh(v, z̄)σ
dν(v),

when restricted to the radial directions z = t1e1 + · · · + trer, is given by

φλ(z) = (

r
∏

j=1

(1 − t2j))
σ

2F1(σ, σ; 1 + b +
a

2
(r − 1); t), σ = i

λ

2r
+

1

2
(1 + b +

a

2
(r − 1))

4.3. Discrete components of (Hν ⊗ Hν , G × G) under G for ν > a
2
(r − 1) for

type one domains D. In this section we will prove that the spherical representation

in the previous section can be realized as a discrete component in the tensor product
decomposition of Hν ⊗ Hν for ν in the continuous part of the Wallach set only if D

is Type I domains, and in that case we will find the exact such parameters λ and the
explicit intertwining operator.

We consider the sesqui-holomorphic extension of the Poisson transform. More pre-
cisely, for ν, k ∈ C and f ∈ L2(S) we define Tν,kf(z, w̄) to be the holomorphic function

(4.5) Tν,kf(z, w̄) = h(z, w̄)k

∫

S

(

1

h(z, v̄)h(v, w̄)

)ν+k

f(v)dv, (z, w) ∈ d × D̄.

Its restriction to the diagonal is up to a factor the Poission transform, viz

Tν,kf(z, z̄) = h(z, z̄)−νPλf(z)

with iλ determined by σ = ν + k as in (4.3):

(4.6) iλ = 2r(ν + k) − ρ(ξ).

The intertwining property of Pλ and the transformation formula of h(z, w̄) under G

imply immediately
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Lemma 4.3. Let ν, k ∈ C and λ be as in (4.6). The operator Tν,k : IndG
P (λ) = L2(S) →

O(D×D̄), is a formal G-intertwining operator from the induced representation IndG
P (λ)

to the space O(D × D̄) with the action πν ⊗ πν .

We determine when the image of Tν,k is in the Hilbert space Hν ⊗Hν .

Lemma 4.4. Let ν > a
2
(r − 1), k ≥ 0 be an integer and λ be given in (4.6). The

image of the constant function 1 in IndG
P (λ) is mapped under Tν,k into the Hilbert

space Hν ⊗Hν if and only if

2ν + 4k < 1 + b.

Furthermore the inequality has a possible solution if and only if when D is a type I
non-tube type domain SU(l, r)/S(U(l) × U(r)) with a = 2, b = l − r > 2 and

r − 1 < ν + 2k <
1

2
(1 + l − r).

Proof. We write

Tν,kf(z, w̄) = h(z, w̄)kF (z, w̄), F (z, w̄) :=

∫

S

(

1

h(z, v̄)h(v, w̄)

)ν+k

f(v)dv,

and we shall prove that F (z, w̄) is in the space, and our results then follows since the

function h(z, w̄)k for non negative integer k is a polynomial in z and w̄, the multipli-
cation operator by coordinate functions is a bounded operator on Hν (see [1]). The

function F can be computed by using the expansion (2.7) (see also [7])

F (z, w̄) =
∑

m

(ν + k)2
m

(d/r)
m

K
m

(z, w̄).

Its norm square in Hν ⊗Hν , again by Theorem 2.1, is

‖F‖2
Hν⊗Hν

=
∑

m

(

(ν + k)2
m

(d/r)
m

)2
1

(ν)2
m

d(m)

which by (3.5) and the definition of hypergeometric function, is

4F3(ν + k, ν + k, ν + k, ν + k; ν, ν, d/r; 1r)

By Lemma 4.1, the series is convergent if and only if

4(ν + k) − 2ν −
d

r
< −

a

2
(r − 1).

Simplifying this is 2ν + 4k < 1 + b, proving the first part. Checking over the list (2.2)
of bounded symmetric domains we see that this has a solution only if D is type one

non-tube domain. The condition for ν and k is then r−1 < ν ≤ ν+2k < 1
2
(1+l−r). �

Theorem 4.5. Let D be the type one domain SU(l, r)/S(U(l)×U(r)) with l− r > 2

and

r − 1 < ν <
1

2
(1 + l − r + 2(r − 1).

Let k be a nonnegative positive integer such that

0 ≤ k <
1

4
(1 + l − r − 2ν).
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Then the spherical function φλ, for

iλ = 2r(ν + k) − ρ(ξ),

is positive definite and the corresponding unitary spherical representation of G appears

as a discrete component in the irreducible representation of (Hν ⊗Hν , G × G).

Proof. Consider the linear span of the constant function 1 in L2(S) under the principal

series representation,

Sλ = span{U(g, λ)1; g ∈ G}

It is a pre-Hilbert space with the inner product

(f, g) := (Tν,kf, Tν,kf)Hν⊗Hν

It follows from the previous two Lemmas that this is well-defined and G-invariant. Its

completion is then a spherical unitary representation, which in turn is irreducible since
it is defined by a spherical function, and is realized as a discrete component in the

tensor product via Tν,k. �

4.4. Discrete component of (Hν ⊗Hν , G×G) under G for ν = a
2
(j − 1) being a

singular Wallach point. We consider the tensor product Hν ⊗Hν with ν = a
2
(j−1)

being a singular Wallach point.

The operator Tν,k intertwines the induced representation with the action πν ⊗ πν on
O(D × D̄). However the space Hν ⊗Hν has K-types restriction (2.8). Thus only the

operator Tν = Tν,0,

(4.7) Tνf(z, w) :=

∫

S

1

h(z, v̄)νh(v, w̄)ν
dv,

will be possibly an operator into Hν ⊗Hν . Furthermore by some similar computation

as in Lemma 4.3 (see also the proof below) this will happen possibly only for type I
domains.

Theorem 4.6. Let D be the type one domain SU(l, r)/S(U(l)×U(r)), l− r > 2 and
let ν = j − 1, 2 ≤ j ≤ r, be a singular Wallach point. Suppose l − r > 2j − 3. The

spherical function φλ, for λ given by iλ = 2r(j − 1)− r(1 + l − r + (r − 1)), is positive
definite and the corresponding unitary spherical representation appears as a discrete

component in the irreducible representation of Hν ⊗Hν .

Proof. We prove that the image of the function 1 under Tν is in the Hilbert space
Hν ⊗Hν , and the rest is proved by similar arguments as that of the previous Theorem.

We have,

F (z, w) := (Tν1)(z, w) =
∑

m;mj=0

(ν + k)2
m

(d/r′)
m

K
m

(z, w).

Its norm in
∑

m;mj=0

(ν)2
m

(d/r)2
m

d(m) =
∑

m;mj=0

(ν)2
m

(d/r)
m

π
m

(q)
m
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which by Lemma 4.1 is convergent if

2ν − d/r = 2v − (1 + b + (r − 1)) < −(r − 1)

namely if l − r = b > 2ν − 1 = 2(j − 1) − 1 = 2j − 3. �

5. Principal series representations on maximal boundaries and

spherical functions. Intertwining operators into the space Hν.

Types A, B, BC, D

5.1. Induced representations and spherical functions. For the real domain X

in D we let S = L · e be the orbit of e under L. Then L ⊂ ∂eD ∩ V , where ∂eD is the
Shilov boundary of D. (In certain cases S is a true subset of ∂eD ∩ V .) Then S can

be realized as S = G/P where P is a parabolic subgroup of H with Lie algebra given
by n0 + n+ in the decomposition

(5.1) h = n− + n0 + n+,

under the adjoint action ξ = ξ1 + · · ·+ ξr.
Let λ = λξ∗ on Cξ. We consider the induced representation IndH

P (λ) with of H

realized on L2(S).

Theorem 5.1. The spherical function φλ(z) is given by the integral

φλ(z) =

∫

S

h(z, z̄)
σ
2

h(z, v̄)σ
dv.

Its restriction on z = t1e1 + · · ·+ trer, |t1|, · · · , |tj| < 1, is further given (and uniquely

determined) by

Type A:

φλ(z) =
r

∏

j=1

(1 − tj)
σ
2 1F1(σ; 1 +

a

2
(r − 1); t), σ =

iλ

r
+

a

2
(r − 1);

Type B:

φλ(z) = (

r
∏

j=1

(1 − t2j)
σ
2 2F1(

σ

2
,
σ + 1

2
;
a

2
(r − 1) + b +

1

2
; t2), σ =

iλ

r
+ b +

a

2
(r − 1);

Type BC:

φλ(z) = (

r
∏

j=1

(1−t2j )
σ

2F1(σ, σ−1;
a

2
(r−1)+

ι + 2b

2
; t2), σ =

iλ

2r
+

1

2
(ι−1+b+2a(r−1));

Type D:

φλ(z) = (
r

∏

j=1

(1 − t2j )
σ
2 2F1(

σ

2
,
σ + 1

2
;
a

2
(r − 1) +

1

2
; t2)

+

r
∏

j=1

σ
2
− a

2
(j − 1)

a
2
(r − 1) − a

2
(j − 1) + 1

2

(

r
∏

j=1

tj(1 − t2j )
σ/2) 2F1(

σ

2
+ 1,

σ + 1

2
;
a

2
(r − 1) +

3

2
; t2),
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σ =
iλ

r
+

a

2
(r − 1).

Proof. We claim first that the Harish-Chandra e-function is given by

(5.2) e(iλ+ρ)(A(kg)) =
h(z, z̄)

σ
2

h(z, v̄)σ
.

This formula, in the Siegel domain realization of X, is given in [39] generalizing that
of Upmeier-Unterberger [34] for the complex case. Here it can be simply proved by

using the transformation rule of h(z, w̄) under the group H . We get thus the integral
representation of φλ. We compute the integration using the Faraut-Koranyi expansion

(2.7). We have (as z̄ = z, v̄ = v for z ∈ X, v ∈ S we will drop the bar)

φλ(z) = h(z, z)
σ
2

∫

S

∑

n

(σ)
n, a′

2

K
n
(z, v)dv = h(z, z)

σ
2

∑

n

(σ)
n, a′

2

∫

S

K
n
(z, v)dv,

where the interchanging of the integration and the summation is justified by the uni-

form convergence of the expansion (2.7) on S for fixed z ∈ D. By the K-invariance
of K

n
, K

n
(kz, kv) = K

n
(z, v), and the L-invariance of the measure dv we have

∫

S
K

n
(z, v)dv is a L-invariant polynomial in P

n
. Thus

∫

S

K
n
(z, v)dv = C

n
p
n
(z), z ∈ D

for those n given in Lemma 3.3 in terms of m and for some constant C
n
; otherwise it

is zero. We claim that

C
n

=
1

〈p
n
, p

n
〉F

.

Indeed, the left hand side is an L-invariant element in P
n

thus is a multiple of p
n

determined in Proposition 3.5. To find the constant we compute the norm square of
the left hand in the Fock space. By definition of K

n
we have it is

∫

S

∫

S

K
n
(w, v)dv dw,

which is, by the invariant of Kn under L ⊂ K and that S = L · e,
∫

S

K
n
(w, e)dw = C

n
p
n
(e) = C

n
.

On the other hand, the squared norm of the right hand side is

C2
n〈pn

, p
n
〉F ,

proving our claim. Thus

φλ(z) = h(z, z)
σ
2

∑

n

(σ)
n, a′

2

1

〈p
n
, p

n
〉F

pn(z).

For Type A we have n = m, a = a′ and

1

〈p
n
, p

n
〉F

=
π

m

(q)
m
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by Lemma 3.2. The function φλ(z) is, for z = t1e1 + · · ·+ trer,

φλ(z) =
r

∏

j=1

(1 − t2j )
σ
2

∑

m

(σ)
n, a′

2

π
m

(q)
m

Ω
m

(t) =
r

∏

j=1

(1 − t2j )
σ
2 1F1(σ; q; t)

For Type B, we have n = 2m, a′ = 2a, the polynomial p
n

is the Jack polynomial

Ω
m

by Proposition 3.5, and its norm square 〈p
n
, p

n
〉F is computed in Proposition 3.6.

This gives, for z = t1e1 + · · ·+ trer,

φλ(z)

= h(z, z)
σ
2

∑

n=2m

(σ)
n, a′

2

(

1

π
m

22|m|(q)
m, a

2
((r − 1)

a

2
+ b +

1

2
)
m, a

2

)−1

Ω
m

(t2)

= h(z, z)
σ
2

∑

m

22|m|(
σ

2
)
m, a

2
(
σ + 1

2
)
m, a

2

(

1

π
m

22|m|(q)
m, a

2
((r − 1)

a

2
+ b +

1

2
)
m, a

2

)−1

Ω
m

(t2)

= h(z, z)
σ
2

∑

m

(σ
2
)
m

(σ+1
2

)
m

((r − 1)a
2

+ b + 1
2
)
m

π
m

(q)
m

Ω
m

(t2)

= h(z, z)
σ
2 2F1(

σ

2
,
σ + 1

2
; (r − 1)

a

2
+ b +

1

2
; t2)

where in the second step we have written (σ)
n, a′

2

in terms of (c)
n, a

2
as in (3.11).

The remaining types BC or D are done by the same method. Note that for type BC
we have r′ = 2r and h(z, z) =

∏r
j=1(1 − t2j)

2. �

5.2. Discrete components of (Hν , G) under H for ν > a′

2
(r′−1). In this section we

will find and realize certain discrete components in the branching of the holomorphic

representations Hν of G under H using the Poisson transform studied above. Similar
computations as in Lemma 4.4 show that the operator Tν,k defined in (4.7) below

maps the spherical representation into the holomorphic representation Hν only if X is
of Type B with H = SO(r, l), l > r, or Type BC with H = Sp(r, l), l > r. We will

thus only consider those cases. The corresponding group G is then SU(l, r) (r′ = r)
or SU(2l, 2r) (r′ = 2r).

Theorem 5.2. Let H be the group SO0(l, r) or Sp(l, r). Let l, r satisfy l−r > 2(r−1)
for H = SO0(l, r) and l − r ≥ 2(r − 1) for H = Sp0(l, r). Suppose ν > r′ − 1 is a be a

point in the continuous part of the Wallach set of G, ν < l−r
2

for H = SO0(l, r), and
ν < l − r + 3

2
for H = Sp(l, r). If k ∈ N such that

(5.3) 0 ≤ k <
1

4
(
l − r

2
− ν)

for H = SO0(r, r + b) and

(5.4) 0 ≤ k <
1

8
(3 + 2(l − r) − 2ν)
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for H = Sp(r, r + b), then the spherical function φλ with

(5.5) iλ =

{

r(ν + 2k) − r(l − r + 1
2
(r − 1)), H = SO0(l, r)

2r(ν + 2k) − r(3 + l − r + 8(r − 1)), H = Sp(l, r),

is positive definite and appears as a discrete component in the irreducible representa-
tion of (Hν , G) under H ⊂ G.

Proof. The formula (5.2) for the Harish-Chandra e-function implies that the Poisson

transform on S is given by

Pλf(z) =

∫

S

h(z, z̄)
σ
2

h(z, v̄)σ
f(v)dv, z ∈ X,

which intertwines the induced representation IndH
P (λ) with the regular action X. The

functions h(z, z), h(z, v) are polynomials in z ∈ X and thus have holomorphic extension

to z ∈ D. Furthermore it is easy to see that they have no zeros on D, by, e.g., the
explicit formula of h in terms of the determinant functions [24]. Thus Pf(z) has

a holomorphic extension on D, still denoted by Pλf(z). For non negative integer k
satisfying (5.3) and (5.4) we put σ := ν + 2k with the corresponding λ as in Theorem

5.1; this is explicitly computed in (5.5). We define, for f ∈ L2(S),

Tν,kf(z) : = h(z, z)−
ν
2 Pλf(z)

= h(z, z)k

∫

S

1

h(z, v)σ
f(v)dv, z ∈ D.

(5.6)

The transformation formula (2.4) of h when restricted to X is

h(gz, gz) = Jg(z)
1

p h(z, z̄)Jg(z)
1

p = Jg(z)
2

p h(z, z), g ∈ H, z ∈ X,

for the Jacobian Jg is real-valued for x ∈ X. It’s holomorphic extension h(z, z) satisfies

then

h(gz, gz) = Jg(z)
2

p h(z, z).

Thus Tν,k intertwines the induced representation IndH
P (λ) with (O(D), H, πν). We

prove that Tν,k maps the function 1 into Hν when k satisfies the stated condition. The

rest is proved as in Theorem 4.5. We rewrite

Tν,k1(z) = h(z, z)kF (z), F (z) :=

∫

S

1

h(z, v)σ
f(v)dv, z ∈ D.

and we shall prove that the function F (z) is in Hν , so is Tν1(z) since h(z, z)k is a poly-

nomial of the coordinate functions and each of them defines a bounded multiplication
operator on Hν [1].

The function F (z) apart from the factor of h(z, z)
σ
2 is the holomorphic extension of

the spherical function computed in Theorem 5.1. If H = SO0(l, r) we have,

F (z) =
∑

m

(ν+2k
2

)
m

(ν+2k+1
2

)
m

(a
2
(r − 1) + b + 1

2
)
m

π
m

(q)
m

p
n
(z).
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Its norm square in Hν is, by Proposition 3.5, the hypergeometric function

(5.7) ‖F‖2
Hν

= 4F3(
σ

2
,
σ

2
,
σ + 1

2
,
σ + 1

2
;
ν

2
,
ν + 1

2
,
a

2
(r − 1) + b +

1

2
; 1r).

The series is convergent if

2σ + 1 − (ν + 1 + b +
a

2
(r − 1)) < −

a

2
(r − 1)

equivalently (recalling σ = ν + 2k)

ν + 4k <
l − r

2

according to Lemma 4.1, which is guaranteed by our assumption on l, r and ν. Thus
F is in Hν , so is Tν1.

If H = Sp(l, r), which is of Type BC with n = (m,m), a = 4 = 2a′, the function F
is

F (z) =
∑

n=(m,m)

(σ)
m

(σ − 1)
m

(a
2
(r − 1) + ι+2b

2
)
p
n
(z),

and

(5.8) ‖F‖2
Hν

= 4F3(σ, σ, σ − 1, σ − 1;
a

2
(r − 1) + b +

ι

2
, ν, ν − 1; 1r),

whose convergence is again determined by Lemma 4.1. The condition on the conver-
gence is l−r > ν+4k− 3

2
> a′

2
(r′−1)− 3

2
= (2r−1)− 3

2
, namely l−r ≥ 2r−2 = 2(r−1).

The condition on k ≥ 0 is then obtained accordingly. �

5.3. Discrete components of (Hν , G) under H for ν = a′

2
(j−1) being a singular

Wallach point. Let H = SO0(l, r) or H = Sp(l, r) be as in the previous subsection.

We fix ν = a′

2
(j − 1) = j − 1, 2 ≤ j ≤ r′ be a singular Wallach point, where r′ = r and

respectively r′ = 2r. We consider the operator f 7→ Tνf := Tν,0f defined in (5.6), and

the image F = Tν,01 of the constant function 1. The norm square ‖F‖2
Hν

is again a
series as in (5.7) and (5.8 ). The condition for the convergence for the group SO0(l, r)

is l− r > j−1 while as for the group Sp(l, r) is l− r > j−1− 3
2
, namely l− r ≥ j−2.

Thus we have the following

Theorem 5.3. Let H be group SO0(l, r) or Sp(l, r) and let ν = j−1, 2 ≤ j ≤ r′, be a
singular Wallach point of G. Suppose l − r > (j − 1) for the group H = SO0(r, r + b),

and l−r ≥ j−2 for H = Sp(r, r+b). The spherical function φλ, with λ determined by
(ν, k) := (j − 1, 0) as in (5.5), is positive definite and appears as a discrete component

in the irreducible representation of (Hν , G) under H ⊂ G.

Note that in Theorems 4.5 and 5.3 we have only taken the operator Tν,k with k = 0

when ν is a singular Wallach point. It would be interesting to refine the definition of

Tν,k so that we get also finitely many discrete components; indeed there are finitely
many discrete components in the branching of πν ⊗ πν when ν = 1 is the last Wallach

point [39].
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