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DOUBLE SHUFFLE RELATIONS AND RENORMALIZATION OF MULTIPLE Z ETA
VALUES

LI GUO, SYLVIE PAYCHA, BINGYONG XIE, AND BIN ZHANG

Abstract. In this paper we present some of the recent progresses in multiple zeta values (MZVs).
We review the double shuffle relations for convergent MZVs and summarize generalizations of
the sum formula and the decomposition formula of Euler for MZVs. We then discuss how to
apply methods borrowed from renormalization in quantum field theory and from pseudodifferential
calculus to partially extend the double shuffle relations to divergent MZVs.

1. Introduction

The purpose of this paper is to give a survey of recent developments in multiple zeta values
(MZVs). We emphasize on the double shuffle relations which underlie the algebraic relations
among the convergent MZVs, and on renormalization methods that aim to extend the double
shuffle relations to MZVs outside of the convergent range of the nested sums defining MZVs. We
also provide background on double shuffle relations and renormalization, as well as the closely
related Rota-Baxter algebras and some analytic tools in pseudodifferential calculus in view of
renormalization.

1.1. Double shuffle relations and Euler’s formulas. A multiple zeta value (MZV) is the spe-
cial value of the complex valued function

ζ(s1, · · · , sk) =
∑

n1>···>nk>1

1
ns1

1 · · ·n
sk
k

at positive integerss1, · · · , sk with s1 > 2 to insure the convergence of the nested sum. MZVs are
natural generalizations of the Riemann zeta valuesζ(s) to multiple variables. The two variable
case (double zeta values) was already studied by Euler.

MZVs in the general case were introduced 1990s with motivations from number theory [70],
combinatorics [40] and quantum field theory [11]. Since thenthe subject has turned into an active
area of research that involves many areas of mathematics andmathematical physics [13]. Its
number theoretic significance can be seen from the fact that all MZVs are periods of mixed Tate
motives overZ and the conjecture that all periods of mixed Tate motives arerational combinations
of MZVs [25, 27, 69].

It has been discovered that the analytically defined MZVs satisfy many algebraic relations. Fur-
ther it is conjectured that these algebraic relations all follow from the combination of two algebra
structures: the shuffle relation and the stuffle (harmonic shuffle or quasi-shuffle) relation [46].
This remarkable conjecture not only links the analytic study of MZVs to the algebraic study of
double shuffle relations, but also implies the more well-known conjecture on the algebraic inde-
pendence ofζ(2), ζ(2k+ 1), k > 1, overQ.
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Many results on algebraic relations among MZVs can be regarded as generalizations of Eu-
ler’s sum formula and decomposition formula on double zeta values which preceded the general
developments of multiple zeta values by over two hundred years. We summarize these results
in Section 3. With the non-experts in mind, we first give in Section 2 preliminary concepts and
results on double shuffle relations for MZVs and the related Rota-Baxter algebras.

1.2. Renormalization. Values of the Riemann zeta function at negative integers aredefined by
analytic continuation and possess significant number theory properties (Bernoulli numbers, Kum-
mer congruences,p-adicL-functions,· · · ). Thus it would be interesting to similarly study MZVs
outside of the convergent domain of the corresponding nested sums. However, most of the MZVs
remain undefined even after the analytic continuation. To bring new ideas into the study, we
introduce the method of renormalization from quantum field theory.

Renormalization is a process motivated by physical insightto extract finite values from diver-
gent Feynman integrals in quantum field theory, after addingin a so-called counter-term. Despite
its great success in physics, this process was well-known for its lack of a solid mathematical
foundation until the seminal work of Connes and Kreimer [14,15, 16, 50]. They obtained a Hopf
algebra structure on Feynman graphs and showed that the separation of Feynman integrals into
the renormalized values and the counter-terms comes from their algebraic Birkhoff decomposition
similar to the Birkhoff decomposition of a loop map.

The work of Connes and Kreimer establishes a bridge that allows an exchange of ideas between
physics and mathematics. In one direction, their work provides the renormalization of quantum
field theory with a mathematical foundation which was previously missing, opening the door
to further mathematical understanding of renormalization. For example, the related Riemann-
Hilbert correspondence and motivic Galois groups were studied by Connes and Marcolli [17],
and motivic properties of Feynman graphs and integrals werestudied by Bloch, Esnault and
Kreimer [5]. See [2, 11, 56] for more recent studies on the motivic aspect of Feynman rules and
renormalization.

In the other direction, the mathematical formulation of renormalization provided by the alge-
braic Birkhoff decomposition allows the method of renormalization dealing with divergent Feyn-
man integrals in physics to be applied to divergent problemsin mathematics that could not be dealt
with in the past, such as the divergence in multiple zeta values [36, 37, 73, 55] and Chen symbol
integrals [54, 55]. We survey these studies on renormalization in mathematics in Sections 5 and
6 after reviewing in Section 4 the general framework of algebraic Birkhoff decomposition in the
context of Rota-Baxter algebras. We further present an alternative renormalization method using
Speer’s generalized evaluators [67] and show it leads to thesame renormalized double zeta values
as the algebraic Birkhoff decomposition method.

We hope our paper will expose this active area to a wide range of audience and promote its
further study, to gain a more thorough understanding of the double shuffle relations for convergent
MZVs and to establish a systematical renormalization theory for the divergent MZVs. One topic
that we find of interest is to compare the various renormalization methods presented in this paper
from an abstract point of view in terms of a renormalization group yet to be described in this
context, again motivated by the study in quantum field theory. With implications back to physics
in mind, we note that MZVs offer a relatively handy and tractable field of experiment for such
issues when compared with the very complicated Feynman integral computations.
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2. Double shuffle relations for convergent multiple zeta values

All rings and algebras in this paper are assumed to be unitaryunless otherwise specified. Letk
be a commutative ring whose identity is denoted by 1.

2.1. Rota-Baxter algebras. Let λ ∈ k be fixed. A unitary (resp. nonunitary)Rota–Baxter k-
algebra (RBA) of weight λ is a pair (R,P) in which R is a unitary (resp. nonunitary)k-algebra
andP : R→ R is ak-linear map such that

(1) P(x)P(y) = P(xP(y)) + P(P(x)y) + λP(xy), ∀x, y ∈ R.

In some references such as [55], the notationθ = −λ is used.
We will mainly consider the following Rota-Baxter operators in this paper. See [19, 30, 64] for

other examples.

Example 2.1. (The integration operator)Define the integration operator

(2) I ( f )(x) =
∫ x

0
f (t)dt

on the algebraC[0,∞) of continuous functionsf (x) on [0,∞). Then it follows from the integra-
tion by parts formula thatI is a Rota-Baxter operator of weight 0 [4].

Example 2.2. (The summation operator)Consider the summation operator [75]

P( f )(x) :=
∑

n>1

f (x+ n).

Under certain convergency conditions, such asf (x) = O(x−2) andg(x) = O(x−2), P( f )(x) and
P(g)(x) define absolutely convergent series and we have

P( f )(x)P(g)(x) =
∑

m>1

f (x+m)
∑

n>1

g(x+ n)

=
∑

n>m>1

f (x+m)g(x+ n) +
∑

m>n>1

f (x+m)g(x+ n) +
∑

m>1

f (x+m)g(x+m)(3)

= P( f P(g))(x) + P(gP( f ))(x) + P( f g)(x).

ThusP is a Rota-Baxter operator of weight 1.

Example 2.3. (The partial sum operator)The operatorP defined on sequencesσ : N→ C by:

(4) P(σ)(n) =
n∑

k=0

σ(k)

satisfies the Rota-Baxter relation with weight−1. Similarly, the operatorQ = P− Id which acts
on sequencesσ : N→ C by:

(5) Q(σ)(n) =
n−1∑

k=0

σ(k)
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satisfies the Rota-Baxter relation with weight 1.

Example 2.4. (Laurent series)Let A = k[ε−1, ε]] be the algebra of Laurent series. Define
Π : A→ A by

Π
(∑

n

anε
n) =

∑

n<0

anε
n.

ThenΠ is a Rota-Baxter operator of weight−1.

2.2. Shuffles, quasi-shuffles and mixable shuffles. We briefly recall the construction of shuffle,
stuffle and quasi-shuffle products in the framework of mixable shuffle algebras [32, 33].

Let k be a commutative ring. LetA be a commutativek-algebrathat is not necessarily unitary.
For a givenλ ∈ k, themixable shuffle algebra of weightλ generated byA (with coefficients in
k) is MS(A) = MSk,λ(A) whose underlyingk-module is that of the tensor algebra

(6) T(A) =
⊕

k≥0

A⊗k = k ⊕ A⊕ A⊗2 ⊕ · · ·

equipped with themixable shuffle product ⋄λ of weight λ defined as follows.
For pure tensorsa = a1 ⊗ . . . ⊗ am ∈ A⊗m andb = b1 ⊗ . . . ⊗ bn ∈ A⊗n, a shuffle of a andb is

a tensor list ofai andb j without change the natural orders of theais and theb js. More precisely,
for σ ∈ Σk,ℓ := {τ ∈ Sk+ℓ | τ

−1(1) < · · · < τ−1(k), τ−1(k+ 1) < · · · < τ−1(k+ ℓ)}, the shuffle ofa and
b byσ is

aXσb := cσ(1) ⊗ · · · ⊗ cσ(k+ℓ), whereci =

{
ai, 1 6 i 6 k,
bi−k, k+ 1 6 i 6 k+ ℓ

Theshuffle product of a andb is

aXb :=
∑

σ∈Σk,ℓ

aXσb.

More generally, for a fixedλ ∈ k, a mixable shuffle (of weightλ) of a andb is a shuffle of
a andb in which some (ornone) of the pairsai ⊗ b j are merged intoλ aib j. Then themixable
shuffle product of weightλ is defined by

(7) a⋄λb =
∑

mixable shuffles ofa andb

where the subscriptλ is often suppressed when there is no danger of confusion. Forexample,

a1⋄λ(b1 ⊗ b2) := a1 ⊗ b1 ⊗ b2 + b1 ⊗ a1 ⊗ b2 + b1 ⊗ b2 ⊗ a1︸                                                 ︷︷                                                 ︸
shuffles

+ λ(a1b1) ⊗ b2 + λb1 ⊗ (a1b2)︸                             ︷︷                             ︸
merged shuffles

.

With 1 ∈ k as the unit, this product makesT(A) into a commutativek-algebra that we denote by
MSk,λ(A). See [32] for further details on the mixable shuffle product. Whenλ = 0, we simply
have the shuffle product which is also defined whenA is only ak-module, treated as an algebra
with the zero multiplication.

We have the following relation between mixable shuffle product and free commutative Rota-
Baxter algebras. A Rota-Baxter algebra homomorphismf : (R,P) → (R′,P′) between Rota-
Baxterk-algebras (R,P) and (R′,P′) is ak-algebra homomorphismf : R→ R′ such thatf ◦ P =
P′ ◦ f .
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Theorem 2.5. ([32]) The tensor product algebraX(A) := Xk,λ(A) = A ⊗ MSk,λ(A), with the
linear operator PA : X(A) → X(A) sendinga → 1 ⊗ a, is the free commutative Rota-Baxter
algebra generated by A in the following sense. Let jA : A → X(A) be the canonical inclusion
map. Then for any Rota-Baxterk-algebra(R,P) and anyk-algebra homomorphismϕ : A→ R,
there exists a unique Rota-Baxterk-algebra homomorphism̃ϕ : (X(A),PA) → (R,P) such that
ϕ = ϕ̃ ◦ jA ask-algebra homomorphisms.

The product⋄λ can also be defined by the following recursion [18, 37, 55] which provides the
connection between mixable shuffle algebras and quasi-shuffle algebras of Hoffman [42]. First
we define the multiplication byA⊗0 = k to be the scalar product. In particular,1 is the identity.
For anym, n > 1 anda := a1 ⊗ · · · ⊗ am ∈ A⊗m, b := b1 ⊗ · · · ⊗ bn ∈ A⊗n, definea⋄λb by induction
on the summ+ n > 2. Whenm+ n = 2, we havea = a1 andb = b1. We define

a⋄λb = a1 ⊗ b1 + b1 ⊗ a1 + λa1b1.

Assume thata⋄λb has been defined form+ n > k > 2 and considera andb with m+ n = k + 1.
Thenm+ n > 3 and so at least one ofm andn is greater than 1. We define

a⋄λb =



a1 ⊗ b1 ⊗ · · · ⊗ bn + b1 ⊗
(
a1⋄λ(b2 ⊗ · · · ⊗ bn)

)

+λ(a1b1) ⊗ b2 ⊗ · · · ⊗ bn, whenm= 1, n > 2,
a1 ⊗

(
(a2 ⊗ · · · ⊗ am)⋄λb1

)
+ b1 ⊗ a1 ⊗ · · · ⊗ am

+λ(a1b1) ⊗ a2 ⊗ · · · ⊗ am, whenm> 2, n = 1,
a1 ⊗

(
(a2 ⊗ · · · ⊗ am)⋄λ(b1 ⊗ · · · ⊗ bn)

)
+ b1 ⊗

(
(a1 ⊗ · · · ⊗ am)⋄λ(b2 ⊗ · · · ⊗ bn)

)

+λ(a1b1)
(
(a2 ⊗ · · · ⊗ am)⋄λ(b2 ⊗ · · · ⊗ bn)

)
, whenm, n > 2.

Here the products by⋄λ on the right hand side of the equation are well-defined by the induction
hypothesis.

Let S be a semigroup and letk S =
∑

s∈S k sbe the semigroup nonunitaryk-algebra. A canon-
ical k-basis of (k S)⊗k, k > 0, is the setS⊗k := {s1 ⊗ · · · ⊗ sk | si ∈ S, 1 6 i 6 k}. Let S be a graded
semigroupS =

∐
i>0 Si, SiS j ⊆ Si+ j such that|Si | < ∞, i > 0. Then the mixable shuffle product

⋄1 of weight 1 is identified with thequasi-shuffle product ∗ defined by Hoffman [42, 18, 37].

Notation 2.6. To simplify the notation and to be consistent with the usual notations in the litera-
ture on multiple zeta values, we will identifys1 ⊗ · · · ⊗ sk with the concatenations1 · · · sk unless
there is a danger of confusion. We also denote the weight 1 mixable shuffle product⋄1 by ∗ and
denote the corresponding mixable algebra MSk,1(A) by H∗

A. Similarly, whenA is taken to be a
k-module, we denote the weight zero mixable shuffle algebra MSk,0(A) by H

X

A .

Yet another interpretation of the mixable shuffle or quasi-shuffle product can be given in terms
of order preserving maps that are calledstuffle in the study of MZVs but could be traced back to
Cartier’s work [12] on free commutative Rota-Baxter algebras.

For positive integersk andℓ, denote [k] = {1, · · · , k} and [k + 1, k + ℓ] = {k + 1, · · · , k + ℓ}.
Define

(8) Ik,ℓ =

{
(ϕ, ψ)

∣∣∣∣
ϕ : [k] → [k+ ℓ], ψ : [ℓ] → [k+ ℓ] are order preserving
injective maps and im(ϕ) ⊔ im(ψ) = [k+ ℓ]

}

Let a ∈ A⊗k, b ∈ A⊗ℓ and (ϕ, ψ) ∈ Ik,ℓ. We defineaX(ϕ,ψ)b to be the tensor whosei-th factor is

(9) (aX(ϕ,ψ)b)i =

{
a j if i = ϕ( j)
b j if i = ψ( j) = aϕ−1(i)bψ−1(i), 1 6 i 6 k+ ℓ,
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with the convention thata∅ = b∅ = 1. Then we have

(10) aXb =
∑

(ϕ,ψ)∈Ik,ℓ

aX(ϕ,ψ)b.

More generally, for 06 r 6 min(k, ℓ), define

Ik,ℓ,r =

{
(ϕ, ψ)

∣∣∣∣
ϕ : [k] → [k+ ℓ − r], ψ : [ℓ] → [k+ ℓ − r] are order preserving
injective maps and im(ϕ) ∪ im(ψ) = [k+ ℓ − r]

}

Clearly,Ik,ℓ,0 = Ik,ℓ. Let a ∈ A⊗k, b ∈ A⊗ℓ and (ϕ, ψ) ∈ Ik,ℓ,r . We defineaX(ϕ,ψ)b to be the tensor
whosei-th factor is

(aX(ϕ,ψ)b)i =



a j if i = ϕ( j), i < imψ
b j if i = ψ( j), i < imϕ
a jb j′ if i = ϕ( j), i = ψ( j′)


= aϕ−1(i)bψ−1(i), 1 6 i 6 k + ℓ − r,

with the convention thata∅ = b∅ = 1. Then we have [32, 36]

(11) a ⋄λ b =

min(k,ℓ)∑

r=0

λr
( ∑

(ϕ,ψ)∈Ik,ℓ,r

aX(ϕ,ψ)b
)
.

In particular,

a ∗ b =

min(k,ℓ)∑

r=0

( ∑

(ϕ,ψ)∈Ik,ℓ,r

aX(ϕ,ψ)b
)
=

∑

(ϕ,ψ)∈Īk,ℓ

aX(ϕ,ψ)b

whereĪk,ℓ = ∪
min(k,ℓ)
r=0 Ik,ℓ,r .

Equivalently, let stfl(k, ℓ, r) denote the set of surjective maps from [k + ℓ] to [k + ℓ − r] that
preserve the natural orders of [k] and{k+ 1, · · · , k+ ℓ}. Let

stfl(k, ℓ) =
min(k,ℓ)⋃

r=0

stfl(k, ℓ, r).

Then

(12) (a1 ⊗ · · · ⊗ ak) ∗ (ak+1 ⊗ · · · ⊗ ak+ℓ) =
∑

π∈stfl(k,ℓ)

cπ1 ⊗ · · · ⊗ cπk+ℓ−r , cπi =
∏

j∈π−1(i)

a j.

A connected filtered Hopf algebrais a Hopf algebra (H,∆) with k-submodulesH(n), n > 0
of H such that

H(n) ⊆ H(n+1), ∪n>0H(n) = H, H(p)H(q) ⊆ H(p+q),

∆(H(n)) ⊆
∑

p+q=n H(p) ⊗ H(q), H(0) = k (connectedness).

On the algebra MSk,λ(A) further define

∆(a1 ⊗ · · · ⊗ an) = 1
⊗

(a1 ⊗ · · · ⊗ an) + a1

⊗
(a2 ⊗ · · · ⊗ an)

+ · · · + (a1 ⊗ · · ·an−1)
⊗

an + (a1 ⊗ · · · ⊗ an) ⊗ 1.(13)

Then∆ extends by linearity to a linear map MSk,λ(A) → MSk,λ(A)
⊗

MSk,λ(A).
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Theorem 2.7.([37, 42, 55]) The triple(MSk,λ(A), ⋄λ,∆), together with the unit u: k ֒→ MSk,λ(A)
and the counitε : MSk,λ(A) → k projecting onto the direct summandk ⊆ MSk,λ(A), equips
MSk,λ(A) with the structure of a connected filtered Hopf algebra with the filtrationMS(A)(n) :=∑

i6n A⊗i .

We also have the following easy extension of Hoffman’s isomorphism between the shuffle Hopf
algebra and the quasi-shuffle Hopf algebra (see also [18]). Recall the notationH∗

A = MSk,1(A)
andH

X

A = MSk,0(A).

Theorem 2.8. ([42, 55])Let k be aQ-algebra. There is an isomorphism of Hopf algebras :

(14) exp :H
X

A
∼
−→H

∗
A.

Hoffman’s isomorphism (14) is built explicitly as follows. LetP(n) be the set of compositions
of the integern, i.e. the set of sequencesI = (i1, . . . , ik) of positive integers such thati1+· · ·+ik = n.
For anyu = v1 ⊗ · · · ⊗ vn ∈ T(A) and any compositionI = (i1, . . . , ik) of n we set:

I [u] := (v1 · · · · · vi1) ⊗ (vi1+1 · · · · · vi1+i2) ⊗ · · · ⊗ (vi1+···+ik−1+1 · · · · · vn).

Then the isomorphism exp is defined by

expu =
∑

I=(i1,··· ,ik)∈P(n)

1
i1! · · · ik!

I [u].

Moreover ([42], Lemma 2.4), the inverse log of exp is given by:

logu =
∑

I=(i1,··· ,ik)∈P(n)

(−1)n−k

i1 · · · ik
I [u].

2.3. Double shuffle of MZVs and related conjectures. A multiple zeta value (MZV) is defined
to be

(15) ζ(s1, · · · , sk) :=
∑

n1>···>nk>1

1
ns1

1 · · ·n
sk
k

wheresi > 1 ands1 > 1 are integers. As is well-known, an MZV has an integral representation
due to Kontsevich [51]

(16) ζ(s1, · · · , sk) =
∫ 1

0

∫ t1

0
· · ·

∫ t|~s|−1

0

dt1
f1(t1)

· · ·
dt|~s|

f|~s|(t|~s|)

Here|~s| = s1 + · · · + sk and

f j(t) =

{
1− t j, j = s1, s1 + s2, · · · , s1 + · · · + sk,
t j , otherwise.

The MZVs spanned the followingQ-subspace ofR

MZV := Q{ζ(s1, · · · , sk) | si > 1, s1 > 2} ⊆ R.

Since the summation operator in Eq. (15) and the integral operator in Eq. (2) are both Rota-
Baxter operators (of weight 1 and 0 respectively) by Example2.2 and Example 2.1, it can be
expected that the multiplication of two MZVs follows the multiplication rule in a free Rota-Baxter
algebra and thus in a mixable shuffle algebra. This viewpoint naturally leads to the following
double shuffle relations of MZVs.
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For the sum representation of MZVs in Eq. (15), consider the semigroup

Z := {zs | s ∈ Z>1, zs · zt = zs+t, s, t > 1.}

With the convention in Notation 2.6, we denote the quasi-shuffle algebraH∗ := H∗
QZ which

contains the subalgebra

H
∗
0 := Q ⊕

(⊕

s1>1

Qzs1 · · · zsk

)
.

Then the multiplication rule of MZVs according to their summation representation follows from
the fact that the linear map

(17) ζ∗ : H
∗
0 → MZV , zs1,··· ,sk 7→ ζ(s1, · · · , sk)

is an algebra homomorphism [41, 46].
For the integral representation of MZVs in Eq. (16), consider the setX = {x0, x1}. With the

convention in Notation 2.6, we denote the shuffle algebraHX := HX

QX which contains subalgebras

H
X

0 := Q ⊕ x0H
Xx1 ⊆ H

X

1 := Q ⊕H
Xx1 ⊆ H

X.

Then the multiplication rule of MZVs according to their integral representations follows from the
statement that the linear map

ζX : H
X

0→ MZV , xs1−1
0 x1 · · · x

sk−1
0 x1 7→ ζ(s1, · · · , sk)

is an algebra homomorphism [41, 46].
There is a natural bijection ofQ-vector spaces (butnotalgebras)

η : H
X

1→ H
∗, 1↔ 1, xs1−1

0 x1 · · · x
sk−1
0 x1↔ zs1,··· ,sk.

that restricts to a bijection of vector spacesη : HX

0 → H∗
0. Then the fact that MZVs can be

multiplied in two ways is reflected by the commutative diagram

HX

0
η

//

ζX

##
FF

FF
FF

FF
F

H∗
0

ζ∗
{{xx

xx
xx

xx
x

MZV

Throughη, the shuffle productX onHX

1 andHX

0 transports to a productX∗ onH∗ andH∗
0. That

is, for w1,w2 ∈ H∗
0, define

(18) w1X∗w2 := η(η−1(w1)Xη−1(w2)).

Then thedouble shuffle relation is simply the set

{w1X∗w2 − w1 ∗ w2 | w1,w2 ∈ H
∗
0}

and theextended double shuffle relation [46, 63, 75] is the set

(19) {w1X∗w2 − w1 ∗ w2, z1X∗w2 − z1 ∗ w2 | w1,w2 ∈ H
∗
0}.

Theorem 2.9. ([41, 46, 63]) Let IEDS be the ideal ofH∗
0 generated by the extended double shuffle

relation in Eq. (19). Then IEDS is in the kernel ofζ∗.

It is conjectured thatIEDS is in fact the kernel ofζ∗. A consequence of this conjecture is the
irrationality of ζ(2n+ 1), n > 1.
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3. Generalizations of Euler’s formulas

We begin with stating Euler’s sum and decomposition formulas in Section 3.1. Generalizations
of Euler’s sum formula are presented in Section 3.2 and generalizations of Euler’s decomposition
formula are presented in Section 3.3.

3.1. Euler’s sum and decomposition formulas.Over two hundred years before the general
study of multiple zeta values was started in the 1990s, Goldback and Euler had already considered
the two variable case, the double zeta values [23, 66]

ζ(s1, s2) :=
∑

n1>n2>1

1
ns1

1 ns2
2

.

Among Euler’s major discoveries on double zeta values are hissum formula

n−1∑

i=2

ζ(i, n− i) = ζ(n)

expressing one Riemann zeta values as a sum of double zeta values and thedecomposition for-
mula

(20) ζ(r)ζ(s) =
s−1∑

k=0

(
r+k−1

k

)
ζ(r + k, s− k) +

r−1∑

k=0

(
s+k−1

k

)
ζ(s+ k, r − k), r, s> 2,

expressing the product of two Riemann zeta values as a sum of double zeta values.
A major aspect of the study of MZVs is to find algebraic and linear relations among MZVs,

such as Euler’s formulas. Indeed a large part of this study can be viewed as generalizations of
Euler’s formulas.

3.2. Generalizations of Euler’s sum formula. Soon after MZVs were introduced, Euler’s sum
formula was generalized to MZVs [40, 28, 71] as the well-known sum formula, followed by quite
a few other generalizations that we will next summarize.

3.2.1. Sum formula.The first generalization of Euler’s sum formula is the sum formula conjec-
tured in [40]. Let

(21) I (n, k) = {(s1, · · · , sk) | s1 + · · · + sk = n, si > 1, s1 > 2}.

For~s= (s1, · · · , sk) ∈ I (n, k), define themultiple zeta star value (or non-strict MZV)

(22) ζ⋆(s1, · · · , sk) =
∑

n1>···>nk>1

1
ns1

1 · · ·n
sk
k

.

Note the subtle different between the notationsζ∗ in Eq. (17) andζ⋆ in Eq. (22).

Theorem 3.1. (Sum formula) For positive integers k< n we have

(23)
∑

~s∈I(n,k)

ζ(~s) = ζ(n),
∑

k∈I(n,k)

ζ⋆(~s) =

(
n−1

k−1

)
ζ(n).
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The case ofk = 3 was proved by M. Hoffman and C. Moen [43] and the general case was proved
by Zagier [71] with another proof given by Granville [28]. Later S. Kanemitsu, Y. Tanigawa, M.
Yoshimoto [48] gave a proof for the case ofk = 2 using Mellin transformation.

J.-I. Okuda and K. Ueno [62] gave the following version of thesum formula
n∑

k=r

(
k−1

r−1

) ( ∑

~s∈I(n,k)

ζ(~s)
)
=

(
n−1

r

)
ζ(n)

for n > r > 1 from which they deduced the sum formula Eq. (23).

3.2.2. Ohno’s generalized duality theorem.Another formula conjectured in [40] is theduality
formula . To state the duality formula, we need an involutionτ on the set of finite sequences of
positive integers whose first element is greater than 1. If

~s= (1+ b1, 1, · · · , 1︸   ︷︷   ︸
a1−1

, · · · , 1+ bk, 1, · · · , 1︸   ︷︷   ︸
ak−1

),

then
τ(~s) = (1+ ak, 1, · · · , 1︸   ︷︷   ︸

bk−1

, · · · , 1+ a1, 1, · · · , 1︸   ︷︷   ︸
b1−1

).

Theorem 3.2. (Duality formula)
ζ(~s) = ζ(τ(~s)).

This formula is an immediate consequence of the integral representation in Eq. (16).
Y. Ohno [57] provided a generalization of both the sum formula and the duality formula.

Theorem 3.3. (Generalized Duality Formula [57]) For any index set~s = (s1, · · · , sk) with
s1 > 2, s2 > 1, · · · , sk > 1, and a nonnegative integerℓ, set

Z(s1, · · · , sk; ℓ) =
∑

c1 + · · · + ck = ℓ

ci > 0

ζ(s1 + c1, · · · , sk + ck).

Then
Z(~s; ℓ) = Z(τ(~s); ℓ).

Whenℓ = 0, this is just the duality formula. When~s= (k+ 1) andℓ = n− k− 1, this becomes
the sum formula.

3.2.3. Sum formulas with further conditions on the variables.M. Hoffman and Y. Ohno [44]
gave a cyclic generalization of the sum formula.

Theorem 3.4. (Cyclic sum formula)For any positive integers s1, · · · , sk with some si > 2,
k∑

i=1

ζ(si + 1, si+1, · · · , sk, s1, · · · , si−1) =
∑

{i | si>2}

si−2∑

j=0

ζ(si − j, si+1, · · · , sk, s1, · · · , si−1, j + 1).

Y. Ohno and N. Wakabayashi [59] gave a cyclic sum formula for non-strict MZVs and used it
to prove the sum formula Eq. (23).
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Theorem 3.5. (Cyclic sum formula in the non-strict case) For positive integers k< n and
(s1, · · · , sk) ∈ I (n, k) we have

(24)
k∑

i=1

si−2∑

j=0

ζ⋆(si − j, si+1, · · · , sk, s1, · · · , si−1, j + 1) = nζ(n+ 1),

where the empty sums are zero.

M. Eie, W.-C. Liaw and Y. L. Ong [22] gave a generalization of the sum formula by allowing
a more general form in the arguments in the MZVs.

Theorem 3.6.For all positive integers n, k with n> k, and a nonnegative integer p,
∑

s1 + · · · + sk = n
s1 > 2

ζ(s1, · · · , sk, {1}
p) =

∑

c1 + · · · + cp+1 = n+ p
c1 > n− k+ 1

ζ(c1, · · · , cp+1).

Whenp = 0, this becomes the sum formula.

Y. Ohno and D. Zagier [60] studied another kind of sum with certain restrictive conditions. Let

I (n, k, r) = {(s1, · · · , sk) | si ∈ Z>1, s1 + · · · + sk = n, #{si | si > 2} = r}

and put

G(n, k, r) =
∑

~s∈I(n,k,r)

ζ(~s).

They studied the associated generating function

Φ(x, y, z) =
∑

r>1,k>r,n>k+r

G(n, k, r)xn−k−ryk−rzr−1 ∈ R[x, y, z]

and proved the following

Theorem 3.7.We have

Φ(x, y, z) =
1

xy− z

1− exp


∞∑

n=2

ζ(n)
n

Sn(x, y, z)



 ,

where Sn(x, y, z) are given by the identity

log

(
1−

xy− z
(1− x)(1− y)

)
=

∞∑

n=2

Sn(x, y, z)
n

and the requirement that Sn(x, y, z2) is a homogeneous polynomial of degree n. In particular,
all of the coefficients G(n, k, r) can be expressed as polynomials inζ(2), ζ(3), ... with rational
coefficients.
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3.2.4. Sum formulas for q-MZVs.The concept ofq-multiple zeta values (q-MZVs, or multiple
q-zeta values) was introduced as a “quantumization” of MZVs that recovers MZVs whenq 7→
1 [9, 72].

For positive integerss1, · · · , sk with s1 > 2, define theq-MZV

ζq(s1, · · · , sk) =
∑

n1>···>nk>1

qn1(s1−1)+···+nk(sk−1)

[n1]s1 · · · [nk]sk

and the non-strictq-MZV

ζ⋆q (s1, · · · , sk) =
∑

n1>···>nk>1

qn1(s1−1)+···+nk(sk−1)

[n1]s1 · · · [nk]sk
,

where [n] = 1−qn

1−q .
D. M. Bradley [9] proved theq-analogue of the sum formula forζq.

Theorem 3.8. (q-analogue of the sum formula) For positive integers0 < k < n we have

(25)
∑

si>1,s1>2
s1+···+sk=n

ζq(s1, · · · , sk) = ζq(n).

Y. Ohno and J.-I. Okuda [58] gave the followingq-analogue of the cyclic sum formula (24) and
then used it to prove aq-analogue of the sum formula forζ⋆q .

Theorem 3.9. (q-analogue of the cyclic sum formula) For positive integers0 < k < n and
(s1, · · · , sk) ∈ I (n, k) we have

k∑

i=1

si−2∑

j=0

ζ⋆q (si − j, si+1, · · · , sk, s1, · · · , si−1, j + 1) =
k∑

ℓ=0

(n− ℓ)

(
k

ℓ

)
(1− q)ℓζq(n− ℓ + 1),

where the empty sums are zero.

Theorem 3.10. (q-analogue of the sum formula in the non-strict case) For positive integers
0 < k < n we have

(26)
∑

si>1,s1>2
s1+···+sk=n

ζ⋆q (s1, · · · , sk) =
1

n− 1

(
n−1

k−1

) k−1∑

ℓ=0

(n− 1− ℓ)(1− q)ℓζq(n− ℓ).

3.2.5. Weighted sum formulas.In the other direction to generalize Euler’s sum formula, there is
the weighted version of Euler’s sum formula recently obtained by Ohno and Zudilin [61].

Theorem 3.11.(Weighted Euler’s sum formula [61]) For any integer n> 2, we have

(27)
n−1∑

i=2

2iζ(i, n− i) = (n+ 1)ζ(n).

They applied it to study multiple zeta star values. By the sumformula, Eq. (27) is equivalent
to the following equation

(28)
n−1∑

i=2

(2i − 1)ζ(i, n− i) = nζ(n).
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As a generalization of Eq. (28), two of the authors proved thefollowing

Theorem 3.12.(Weighted sum formula [35]) For positive integers k> 2 and n> k+1, we have

∑

si>1,s1>2
s1+···+sk=n

[
2s1−1 + (2s1−1 − 1)

(( k−1∑

i=2

2Si−s1−(i−1)) + 2Sk−1−s1−(k−2)
)]
ζ(s1, · · · , sk) = nζ(n),

where Si = s1 + · · · + si for i = 1, · · · , k− 1.

3.3. Generalizations of Euler’s decomposition formula.Unlike the numerous generalizations
of Euler’s sum formula, no generalization of Euler’s decomposition formula to MZVs, neither
proved nor conjectured, had been given until [34] even though Euler’s decomposition formula
was recently revisited in connection with modular forms [24] and weighted sum formula [61] on
weighted sum formula of double zeta values, and was generalized to the product of twoq-zeta
values [10, 72].

3.3.1. Euler’s decomposition formula and double shuffle. The first step in generalizing Euler’s
decomposition formula is to place it as a special case in a suitable broader context. In [34], Euler’s
decomposition formula was shown to be a special case of the double shuffle relation. We give a
proof of Euler’s formula in this context before presenting its generalization in the next subsection.

We recall that the extended double shuffle relation is the set

{w1X∗w2 − w1 ∗ w2, z1X∗w2 − z1 ∗ w2 | w1,w2 ∈ H
∗
0}.

Thus the determination of the double shuffle relation amounts to computing the two products∗
andX∗ .

It is straightforward to compute the product∗, either from its recursive definition in Eq. (8)
or its explicit interpretation as mixable shuffles in Eq. (7) and stuffles in Eq. (11) or (12). For
example, to determine the double shuffle relation from multiplying two Riemann zeta valuesζ(r)
andζ(s), r, s> 2, one uses their sum representations and easily gets the quasi-shuffle relation

ζ(r)ζ(s) = ζ(r, s) + ζ(s, r) + ζ(r + s).

On the other hand, computing the productX∗ is more involved as can already be seen from
its definition in Eq. (18). One first needs to use their integral representations to expressζ(r) and
ζ(s) as iterated integrals of dimensionsr ands, respectively. One then uses the shuffle relation to

express the product of these two iterated integrals as a sum of

(
r+s

r

)
iterated integrals of dimension

r+s. Finally, these last iterated integrals are translated back to MZVs and give the shuffle relation
of ζ(r)ζ(s). As an illustrating example, considerζ(100)ζ(200). The quasi-shuffle relation is
simplyζ(100)ζ(200)= ζ(100, 200)+ ζ(200, 100)+ ζ(300), but the shuffle relation is a large sum

of

(
300

100

)
shuffles of length (dimension) 300. As we will show below, an explicit formula for this

is precisely Euler’s decomposition formula (20).

Theorem 3.13.For r, s> 2, we have

zrX∗ zs =

s−1∑

k=0

(
r+k−1

k

)
zr+kzs−k +

r−1∑

k=0

(
s+k−1

k

)
zs+kzr−k.
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Via the algebra homomorphismζ∗ in Eq. (17) this theorem immediately gives Euler’s decom-
position formula. Applying to the above example, we have

ζ(100)ζ(200)=
199∑

k=0

(
100+k−1

k

)
ζ(100+ k, 200− k) +

99∑

k=0

(
200+k−1

k

)
ζ(200+ k, 100− k).

Proof. Following the definition ofX∗ in Eq. (18), we have

zrX∗ zs = η(x
r−1
0 x1Xxs−1

0 x1).

So we just need to prove

xr−1
0 x1Xxs−1

0 x1 =

s−1∑

k=0

(
r+k−1

k

)
xr+k−1

0 x1xs−k−1
0 x1 +

r−1∑

k=0

(
s+k−1

k

)
xs+k−1

0 x1xr−k−1
0 x1

sinceX∗ (xr+k−1
0 x1xs−k−1

0 x1) = zr+kzs−k andX∗ (xs+k−1
0 x1xr−k−1

0 x1) = zs+kzr−k. This has a direct shuffle
proof [8]. But we use the description of order preserving maps of shuffles in order to motivate the
general case.

By Eq. (10), we have

xr−1
0 x1Xxs−1

0 x1 =
∑

(ϕ,ψ)∈I(r,s)

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x0.

Sinceϕ andψ are order preserving, we have the disjoint unionI(r, s) = I(r, s)′ ⊔ I(r, s)′′ where

I(r, s)′ = {(ϕ, ψ) ∈ I(r, s) | ψ(s) = r + s}

and

I(r, s)′′ = {(ϕ, ψ) ∈ I(r, s) | ϕ(r) = r + s}.

Again by the order preserving property, for (ϕ, ψ) ∈ I(r, s)′, we must haveϕ(r) = r + k where
k > 0. Thus for such (ϕ, ψ), we have

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x1 = xr−1+k

0 x1xs−1−k
0 x1

since imϕ⊔ imψ = [r + s]. For fixedk > 0,ϕ(r) = r + k means that there arek elementsi1, · · · , ik
from [s− 1] such thatψ(i j) ∈ [r + k− 1] sinceψ(s) = r + s. Thusk > s− 1 and, sinceψ is order

preserving, we have{i1, · · · , ik} = [k]. Further there are

(
r+k−1

k

)
suchψ’s sinceψ([k]) can take any

k places in [r + k − 1] in increasing order and thenφ([r]) takes the rest places in increase order.
Thus

∑

(ϕ,ψ)∈I(r,s)′

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x1 =

s−1∑

k=0

(
r+k−1

k

)
xr+k−1

0 x1xs−k−1
0 x1.

By a similar argument, we have

∑

(ϕ,ψ)∈I(r,s)′′

xr−1
0 x1X(ϕ,ψ)x

s−1
0 x1 =

r−1∑

k=0

(
s+k−1

k

)
xs+k−1

0 x1xr−k−1
0 x1.

This completes the proof. �
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3.3.2. Generalizations of Euler’s decomposition formula.In a recent work [34], two of the au-
thors generalized Euler’s decomposition formula in two directions, from the product of one vari-
able functions to that of multiple variables and from multiple zeta values to multiple polyloga-
rithms.

A multiple polylogarithm value [7, 25, 26] is defined by

Li s1,··· ,sk(z1, · · · , zk) :=
∑

n1>···>nk>1

zn1
1 · · · z

nk
k

ns1
1 · · ·n

sk
k

where|zi | 6 1, si ∈ Z>1, 1 6 i 6 k, and (s1, z1) , (1, 1). Whenzi = 1, 1 6 i 6 k, we obtain the
multiple zeta valuesζ(s1, · · · , sk). With the notation of [7], we have

Li s1,··· ,sk(z1, · · · , zk) = λ
( s1, · · · , sk

b1, · · · , bk

)
:=

∑

n1>n2···>nk>1

( 1
b1

)n1
(b1

b2

)n2 · · ·
(bk−1

bk

)nk

ns1
1 ns2

2 · · ·n
sk
k

,

where (b1, · · · , bk) = (z−1
1 , (z1z2)−1, · · · , (z1 · · · zk)−1).

To state the result, letk and ℓ be positive integers and letIk,ℓ be as defined in Eq. (8). Let
~r = (r1, · · · , rk) ∈ Zk

>1, ~s = (s1, · · · , sℓ) ∈ Zℓ>1 and~t = (t1, · · · , tk+ℓ) ∈ Zk+ℓ
>1 with |~r | + |~s| = |~t|. Here

|~r | = r1+ · · ·+ rk and similarly for|~s| and|~t|. DenoteRi = r1 + · · ·+ r i for i ∈ [k], Si = s1+ · · ·+ si

for i ∈ [ℓ] andTi = t1 + · · · + ti for i ∈ [k + ℓ]. For (ϕ, ψ) ∈ Ik,ℓ andi ∈ [k+ ℓ], define

h(ϕ,ψ),i = h(ϕ,ψ),(~r,~s),i =

{
r j if i = ϕ( j)
sj if i = ψ( j) = rϕ−1(i)sψ−1(i),

with the convention thatr∅ = s∅ = 1.
With these notations, we define

(29) c
~t,(ϕ,ψ)
~r ,~s

(i) =



(
ti−1

h(ϕ,ψ),i−1

)
if i = 1, if i − 1, i ∈ im(ϕ)
or if i − 1, i ∈ im(ψ),

(
ti−1

Ti−R
|ϕ−1([i]) |−S

|ψ−1([i]) |

)

=


ti−1

i∑
j=1

t j−
i∑

j=1
h(ϕ,ψ), j


otherwise.

For~a ∈ (S1)k and~b ∈ (S1)ℓ, as in Eq. (9), define

(30) ~aX(ϕ,ψ)
~b = (aϕ−1(1)bψ−1(1), · · · , aϕ−1(k+ℓ)bψ−1(k+ℓ)).

Theorem 3.14.([34]) Let k, ℓ be positive integers. Let~r ∈ Zk
>1 and~s ∈ Zℓ

>1. Let~a = (a1, · · · , ak) ∈

(S1)k and~b = (b1, · · · , bℓ) ∈ (S1)ℓ such that
[ r1

a1

]
,

[ 1

1

]
and

[ s1

b1

]
,

[ 1

1

]
. Then

λ
( ~r
~a

)
λ
( ~s
~b

)
=

∑

~t∈Zk+ℓ
>1 ,|

~t|=|~r |+|~s|

∑

(ϕ,ψ)∈Ik,ℓ

( k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i)
)
λ
( ~t
~aX(ϕ,ψ)

~b
)
.

where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (29) and~aX(ϕ,ψ)
~b is given in Eq. (30).
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Corollary 3.15. Let~r ∈ Zk
>1 and~s ∈ Zℓ

>1 with r1, s1 > 2. Then

ζ(~r) ζ(~s) =
∑

~t∈Zk+ℓ
>1 ,|

~t|=|~r |+|~s|

( ∑

(ϕ,ψ)∈Ik,ℓ

k+ℓ∏

i=1

c
~t,(ϕ,ψ)
~r,~s

(i)
)
ζ(~t)

where c
~t,(ϕ,ψ)
~r,~s

(i) is given in Eq. (29).

4. The algebraic framework of Connes and Kreimer on renormalization

The Algebraic Birkhoff Decomposition of Connes and Kreimer is a fundamental resultin their
ground breaking work [15] on Hopf algebra approach to renormalization of perturbative quantum
field theory (pQFT). This decomposition also links the physics theory of renormalization to Rota-
Baxter algebra that has evolved in parallel to the development of QFT renormalization for several
decades.

The introduction of Rota-Baxter algebra by G. Baxter [4] in 1960 was motivated by Spitzer’s
identity [68] that appeared in 1956 and was regarded as a remarkable formula in the fluctuation
theory of probability. Soon Atkinson [3] proved a simple yetuseful factorization theorem in
Rota-Baxter algebras. The identity of Spitzer took its algebraic form through the work of Cartier,
Rota and Smith [12, 65] (1972).

It was during the same period when the renormalization theory of pQFT was developed,
through the the work of Bogoliubov and Parasiuk [6] (1957), Hepp [39](1966) and Zimmer-
mann [74] (1969), later known as the BPHZ prescription.

Recently QFT renormalization and Rota-Baxter algebra are tied together through the algebraic
formulation of Connes and Kreimer for the former and a generalization of classical results on
Rota-Baxter algebras in the latter [20, 21]. More precisely, generalizations of Spitzer’s identity
and Atkinson factorization give the twisted antipode formula and the algebraic Birkhoff decom-
position in the work of Connes and Kreimer.

We recall the algebraic Birkhoff decomposition in Section 4.1, prove the Atkinson factorization
in Section 4.2 and derive the algebraic Birkhoff decomposition from the Atkinson factorization
in Section 4.3.

4.1. Algebraic Birkhoff decomposition. For ak-algebraA and ak-coalgebraC, we define the
convolution of two linear mapsf , g in Hom(C,A) to be the mapf ⋆ g ∈ Hom(C,A) given by the
composition

C
∆
−→ C ⊗C

f⊗g
−−−→ A⊗ A

m
−→ A.

Theorem 4.1. (Algebraic Birkhoff Decomposition)Let H be a connected filtered Hopf algebra
overC. Let (A,Π) be a commutative Rota-Baxter algebra of weight−1 withΠ2 = Π.

(a) For φ ∈ char(H,A), there are unique linear mapsφ− : H → k + Π(A) andφ+ : H →
k + (id − Π)(A) such that

(31) φ = φ⋆(−1)
− ⋆ φ+.
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(b) The elementsφ− andφ+ take the following forms onkerε.

φ−(x) = −Π(φ(x) +
∑

(x)

φ−(x
′)φ(x′′)),(32)

φ+(x) = Π̃(φ(x) +
∑

(x)

φ−(x
′)φ(x′′)),(33)

where we have used the notation∆(x) = 1⊗ x+ x⊗ 1+
∑

(x) x′ ⊗ x′′ with x′, x′′ ∈ kerε.
(c) The linear mapsφ− andφ+ are also algebra homomorphisms.

We callφ+ the renormalization of φ and callφ− thecounter-term. Here is roughly how the
renormalization method can be applied through the Algebraic Birkhoff Decomposition. See the
tutorial article [31] for further details, examples and references.

Theorem 4.1 can applied to renormalization as follows. Suppose there is a set of divergent
formal expressions, such as MZVs with not necessarily positive arguments, that carries a certain
algebraic combinatorial structure and from which we would like to extract finite values. On one
hand, we first apply a suitable regularization (deformation) to each of these formal expressions
so that the formal expression can be viewed as a singular value of the deformation function.
Expanding around the singular point gives a Laurent series in k[ε−1, ε]]. On the other hand,
the algebraic combinatorial structure of the formal expressions, inherited by the deformation
functions, can be abstracted to a free object in a suitable category. This free object parameterizes
the deformation functions and often gives a Hopf algebraH. Thus the parametrization gives a
morphismφ : H → k[ε−1, ε]] in the suitable category. Upon applying the Algebraic Birkhoff
Decomposition, we obtainφ+ : H → k[[ε]] which, composed withε 7→ 0, gives us well-defined
values ink.

4.2. Atkinson factorization. The following is the classical result of Atkinson.

Theorem 4.2. (Atkinson Factorization)Let (R,P) be a Rota–Baxter algebra of weightλ , 0. Let
a ∈ R. Assume that bℓ and br are solutions of the fixed point equations

(34) bℓ = 1+ P(bℓa), br = 1+ (idR− P)(abr).

Then

bℓ(1+ λa)br = 1.

Thus

(35) 1+ λa = b−1
ℓ b−1

r

if bℓ and br are invertible.

We note that the factorization (35) depends on the existenceof invertible solutions of Eq. (34)
that we will address next.

Definition 4.3. A filtered k-algebra is ak-algebra R together with a decreasing filtration Rn, n >
0, of nonunitary subalgebras such that

⋃

n>0

Rn = R, RnRm ⊆ Rn+m.
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It immediately follows thatR0 = R and eachRn is an ideal ofR. A filtered algebra is called
complete if R is a complete metric space with respect to the metric defined by the subsets{Rn}.
Equivalently, a filteredk-algebraR with {Rn} is complete if∩nRn = 0 and if the resulting embed-
ding

R→ R̄ := lim
←−−

R/Rn

of R into the inverse limit is an isomorphism.
A Rota-Baxter algebra (R,P) is calledcomplete if there are submodulesRn ⊆ R, n > 0, such

that (R,Rn) is a complete algebra andP(Rn) ⊆ Rn.

Theorem 4.4. (Existence and uniqueness of the Atkinson factorization)Let (R,P,Rn) be a com-
plete Rota-Baxter algebra. Let a be in R1.

(a) The equations in (34) have unique solutions bℓ and br . Further bℓ and br are invertible.
Hence Atkinson Factorization (35) exists.

(b) If λ has no non-zero divisors in R1 and P2 = −λP (in particular if P2 = −λP on R), then
there are unique cℓ ∈ 1+ P(R) and cr ∈ 1+ (idR − P)(R) such that

1+ λa = cℓcr .

4.3. From Atkinson factorization to algebraic Birkho ff decomposition. We now derive the
Algebraic Birkhoff Decomposition of Connes and Kreimer in Theorem 4.1 from Atkinson Fac-
torization in Theorem 4.4. Adapting the notations in Theorem 4.1, letH be a connected filtered
Hopf algebra and let (A,Q) be a commutative Rota-Baxter algebra of weightλ = −1 with Q2 = Q,
such as the pair (A,Q) in Theorem 4.1 (see also Example 2.4). The increasing filtration onH in-
duces a decreasing filtrationRn = { f ∈ Hom(H,A) | f (Hn−1) = 0}, n > 0 on R := Hom(H,A),
making it a complete algebra. Further define

P : R→ R, P( f )(x) = Q( f (x)), f ∈ Hom(H,A), x ∈ H.

Then it is easily checked thatP is a Rota-Baxter operator of weight−1 andP2 = P. Thus
(R,Rn,P) is a complete Rota-Baxter algebra.

Now letφ : H → A be a character (that is, an algebra homomorphism). Considere−φ : H → A.
Then

(e− φ)(1H) = e(1H) − φ(1H) = 1H − 1H = 0.
Thuse−φ is in R1. Takee−φ to be oura in Theorem 4.4, we see that there are uniquecℓ ∈ P(R1)
andcr ∈ P(R1) such that

φ = cℓcr .

Further, by Theorem 4.2, forbℓ = c−1
ℓ , bℓ = e+ P(bℓ ⋆ (e− φ)). Thus forx ∈ kerε = kere, we

have

bℓ(x) = P(bℓ ⋆ (e− φ))(x)

=
∑

(x)

Q(bℓ(a(1))(e− φ)(a(2)))

= Q
(
bℓ(1H)(e− φ)(x) +

∑

(a)

bℓ(x
′)(e− φ)(x′′) + bℓ(x)(e− φ)(1H)

= −Q
(
φ(x) +

∑

(x)

bℓ(x
′)φ(x′′)

)
.
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In the last equation we have usede(a) = 0, e(a′′) = 0 by definition. Sincebℓ(1H) = 1H, we see
thatbℓ = φ− in Eq. (32).

Further, we have

cr = c−1
ℓ φ = bℓφ = −bℓ(e− φ) + bℓ = −bℓ(e− φ) + e+ P(bℓ(e− φ)) = e− (id − P)(bℓ(e− φ)).

With the same computation as forbℓ above, we see thatcr = φ+ in Eq. (33).

5. Heat-kernel type regularization approach to the renormalization ofMZVs

To extend the double shuffle relations to MZVs with non-positive arguments, we have to make
sense of the divergent sums defining these MZVs. For this purpose, we adapt the renormalization
method from quantum field theory in the algebraic framework of Connes-Kreimer recalled in
the last section. We will give three approaches including the approach in this section using a
heat-kernel type regularization, named after a similar process in physics. Since examples and
motivations of this approach can already be found elsewhere[30, 36, 37], we will be quite sketchy
in this section. More details will be given to the two other approaches in Section 6.

5.1. Renormalization of MZVs. Consider the abelian semigroup

(36) M = {
[ s

r

] ∣∣∣ (s, r) ∈ Z × R>0}

with the multiplication
[ s

r

]
·
[ s′

r ′
]
=

[ s+ s′

r + r ′
]
.

With the notation in Section 2.2, we define the Hopf algebra

HM := MSC,1(CM)

with the quasi-shuffle product∗ and the deconcatenation coproduct∆ in Section 2.2. Forwi =[ si

r i

]
∈ M, i = 1, · · · , k, we use the notations

~w = (w1, . . . ,wk) =
[ s1, . . . , sn

r1, . . . , rk

]
=

[~s
~r

]
, where~s= (s1, . . . , sk),~r = (r1, . . . , rk).

For ~w =
[~s
~r

]
∈ Mk andε ∈ C with Re(ε) < 0, define thedirectional regularized MZV :

(37) Z(
[~s
~r

]
; ε) =

∑

n1>···>nk>0

en1 r1ε · · ·enk rkε

ns1
1 · · ·n

sk
k

It converges for any
[~s
~r

]
and is regarded as the regularization of theformal MZV

(38) ζ(~s) =
∑

n1>···>nk>0

1
ns1

1 · · ·n
sk
k

which converges only whensi > 0 ands1 > 1. It is related to the multiple polylogarithm

Li s1,...,sk(z1, . . . , zk) =
∑

n1>···>nk>0

zn1
1 · · · z

nk
k

ns1
1 · · ·n

sk
k

by a change of variableszi = er iε, 1 6 i 6 k.
This regularization defines an algebra homomorphism [36]:

(39) Z̃ : HM → C[T][[ ε, ε−1],
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In the same way, for

(40) M
− =

{[ s
r

] ∣∣∣ (s, r) ∈ Z≤0 × R>0
}
,

Z̃ restricts to an algebra homomorphism

(41) Z̃ : HM− → R := C[[ε, ε−1].

Since both (C[T][ε−1, ε]] ,Π) and (C[ε−1, ε]] ,Π), with Π defined in Example 2.4, are commu-
tative Rota-Baxter algebras withΠ2 = Π, we have the decomposition

Z̃ = Z̃−1
− ⋆ Z̃+

by the algebraic Birkhoff decomposition in Theorem 4.1 and obtain

Theorem 5.1. ([36, 37]) The mapZ̃+ : HM → C[T][[ ε]] is an algebra homomorphism which
restricts to an algebra homomorphism̃Z+ : HM− → C[[ε]] .

Because of Theorem 5.1, the following definition is valid.

Definition 5.2. For ~s = (s1, . . . , sk) ∈ Zk and~r = (r1, . . . , rk) ∈ Rk
>0, define therenormalized

directional MZV by

(42) ζ
([~s
~r

])
= lim

ε→0
Z̃+

([~s
~r

]
; ε

)
.

Here~r is called thedirection vector.

As a consequence of Theorem 5.1, we have

Corollary 5.3. The renormalized directional MZVs satisfy the quasi-shuffle relation

(43) ζ
([~s
~r

])
ζ
([~s′
~r ′

])
= ζ

([~s
~r

]
∗
[~s′
~r ′

])
.

Here the right hand side is defined in the same way as in Eq. (8).

Definition 5.4. For ~s ∈ Zk
>0 ∪ Z

k
60, define

(44) ζ
(
~s
)
= lim

δ→0+
ζ
([ ~s
|~s| + δ

])
,

where, for~s = (s1, · · · , sk) and δ ∈ R>0, we denote|~s| = (|s1|, · · · , |sk|) and |~s| + δ = (|s1| +

δ, · · · , |sk| + δ). Theseζ(~s) are called therenormalized MZVs of the multiple zeta function
ζ(u1, · · · , uk) at ~s.

Theorem 5.5. [36]

(a) The limit in Eq. (44) exists for any~s= (s1, · · · , sk) ∈ Zk
>0 ∪ Z

k
60.

(b) When si are all positive with s1 > 1, we haveζ
([~s
~r

])
= ζ(~s) independent of~r ∈ Zk

>0. In

particular, we havēζ(~s) = ζ(~s).

(c) When si are all positive, we havēζ(~s) = ζ
([~s
~s

])
. Further, ζ̄(~s) agrees with the regularized

MZV Z∗
~s(T) defined by Ihara-Kaneko-Zagier[46].

(d) When si are all negative, we havēζ(~s) = ζ
([ ~s
−~s

])
= lim

~r→−~s
ζ
([~s
~r

])
. Further, these values are

rational numbers.
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(e) The valuēζ(~s) agrees withζ(~s) whenever the latter is defined by analytic continuation.
Furthermore,

(f) the set{ζ̄(~s)
∣∣∣~s ∈ Zk

>0} satisfies the quasi-shuffle relation;
(g) the set{ζ̄(~s)

∣∣∣~s ∈ Zk
60} satisfies the quasi-shuffle relation.

The following table lists̄ζ(−a,−b) for 0 6 a, b 6 6.

(45)
ζ̄(−a,−b) a = 0 a = 1 a = 2 a = 3 a = 4 a = 5 a = 6

b = 0 3
8

1
12

1
120 − 1

120 − 1
252

1
252

1
240

b = 1 1
24

1
288 − 1

240
83

64512
1

504 − 3925
2239488 − 1

480

b = 2 − 1
120 − 1

240 0 1
504 − 319

437400 − 1
480

2494519
1362493440

b = 3 − 1
240 − 71

35840
1

504
1

28800 − 1
480

114139507
139519328256

1
264

b = 4 1
252

1
504

319
437400 − 1

480 0 1
264 − 41796929201

26873437500000

b = 5 1
504

32659
15676416 − 1

480 − 21991341
25836912640

1
264

1
127008 − 691

65520

b = 6 − 1
240 − 1

480 − 2494519
1362493440

1
264

41796929201
26873437500000 − 691

65520 0

5.2. The differential structure. The shuffle relation for convergent MZVs from their integral
representations does not directly generalize to renormalized MZVs due to the lack of a suitable
integral representation. However a differential variation of the shuffle relation might exist for
renormalized MZVs. One evidence is the following differential version of the algebraic Birkhoff
decomposition [37] for renormalized MZVs and further progress will be discussed in a paper
under preparation. We first recall some concepts.

(a) A differential algebra is a pair (A, d) whereA is an algebra andd is a differential op-
erator, that is, such thatd(xy) = d(x)y + xd(y) for all x, y ∈ A. A differential algebra
homomorphismf : (A1, d1) → (A2, d2) between two differential algebras (A1, d1) and
(A2, d2) is an algebra homomorphismf : A1 → A2 such thatf ◦ d1 = d2 ◦ f .

(b) A differential Hopf algebra is a pair (H, d) whereH is a Hopf algebra andd : H → H is
a differential operator such that

(46) ∆(d(x)) =
∑

(x)

(
d(x(1))

⊗
x(2) + x(1)

⊗
d(x(2))

)
.
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(c) A differential Rota-Baxter algebra is a triple (A,Π, d) where (A,Π) is a Rota-Baxter
algebra andd : R→ R is a differential operator such thatP ◦ d = d ◦ P.

Theorem 5.6. (Differential Algebraic Birkhoff Decomposition)[37] Under the same assump-
tion as in Theorem 4.1, if in addition(H, d) is a differential Hopf algebra,(A,Π, ∂) is a commu-
tative differential Rota-Baxter algebra, andφ : H → A is a differential algebra homomorphism,
then the mapsφ− andφ+ in Theorem 4.1 are also differential algebra homomorphisms.

Theorem 5.7. ([37])

(a) For
[ s

r

]
∈ M, define d(

[ s
r

]
= r

[ s− 1
r

]
. Extend d toHM = ⊕k>0(kM)⊗k by defining, for

a := a1 ⊗ · · · ⊗ ak ∈ (kM)⊗k,

(47) d(a) =
k∑

i=1

ai,1 ⊗ · · · ⊗ ai,k, ai, j =

{
a j, j , i,
d(a j), j = i.

Then(HA, d) is a differential Hopf algebra.
(b) The triple(C[ε−1, ε]] ,Π, d

dε ) is a commutative differential Rota-Baxter algebra.
(c) The mapZ̃ : HM → C[[ε, ε−1] defined in Eq. (41) is a differential algebra homomorphism.
(d) The algebra homomorphism̃Z+ : HM− → C[[ε]] in Theorem 5.1 is a differential algebra

homomorphism.

6. Renormalization of multiple zeta values seen as nested sums of symbols

We present two more approaches to renormalize multiple zetafunctions at non-positive inte-
gers, both of which lead to MZVs which obey stuffle relations. Like the renormalization method
described in the previous section, they both give rise to rational multiple zeta values at non-
positive integers and we check that the two methods yield thesame double multiple zeta values at
non-positive integer arguments. This presentation is based on joint work of one of the authors with
D. Manchon [55] in which multiple zeta functions are viewed as particular instances of nested
sums of symbols and where the algebraic Birkhoff decomposition approach is used to renormal-
ize multiple zeta functions at poles. Here, we furthermore present an alternative renormalization
method based on generalized evaluators used in physics [67].

6.1. A class of symbols.For a complex numberb, a smooth functionf : R − {0} → C is called
positively homogeneous of degreeb if f (t ξ) = tb f (ξ) for all t > 0 andξ ∈ R.

The symbols which were originally defined onRn are now defined onR which is sufficient for
our needs in this paper. We call a smooth functionσ : R → C a symbol if there is a real number
a such that for any non-negative integerγ, there is a positive constantCγ with

|∂γσ(ξ)| ≤ Cγ(1+ |ξ|)
a−γ, ∀ξ ∈ R.

For a complex numbera and a non-negative integerj, let σa− j : R − {0} → C be a smooth and
positively homogeneous function of degreea− j. We writeσ ∼

∑∞
j=0σa− j if, for any non-negative

integerN and non-negative integerγ, there is a positive constantCγ,N such that
∣∣∣∣∣∣∣
∂γ

σ(ξ) −
N∑

j=0

σa− j(ξ)



∣∣∣∣∣∣∣
≤ Cγ,N(1+ |ξ|)Re (a)−N−1−γ, ∀ξ ∈ R − {0},

where Re(a) stands for the real part ofa.
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For any complex numbera and any non-negative integerk, a symbolσ : R → C is called a
log-polyhomogeneous of log-typek and order a if

(48) σ(ξ) =
k∑

l=0

σl(ξ) logl
|ξ|, σl(ξ) ∼

∞∑

j=0

σa− j,l(ξ)

with σa− j,l(ξ) positively homogeneous of degreea− j.
Let Sa,k denote the linear space overC of log-polyhomogeneous symbols onR of log-typek

and ordera. Then we haveSa,k ⊆ Sa,k+1. LetS∗,k denote the linear span overC of all Sa,k for a ∈ C.
ThenS∗,0 corresponds to the algebra of classical symbols onR. We also define

S
∗,∗ :=

∞⋃

k=0

S
∗,k

which is an algebra for the ordinary product of functions filtered by the log-type [52] since
the product of two symbols of log-typesk andk′ respectively is of log-typek + k′. The union⋃

a∈Z
⋃∞

k=0 Sa,k is a subalgebra ofS∗,∗, and
⋃

a∈Z Sa,0 is a subalgebra ofS∗,0.
Let Pα,k be the algebra ofpositively supportedsymbols, i.e. symbols inSα,k with support in

(0,+∞) so that they are non-zero only at positive arguments. We keep mutatis mutandisthe above
notations; in particularP∗,0 is a subalgebra of the filtered algebraP∗,∗.

Forσ ∈ Pα,k we call fp
ξ→∞

σ(ξ) := σ0,0(ξ) thefinite part at zero (so named since it it reminiscent

of Hadamard’s finite parts) of such a symbolσ which corresponds to the constant term in the
expansion.

The following rather elementary statement is our main motivation here for introducing log-
polyhomogeneous symbols.

Proposition 6.1. [54] The operator I defined in (2) on the algebra C[0,∞) by

f 7→

(
ξ 7→ I ( f )(ξ) =

∫ ξ

0
f (t)dt

)

mapsP∗,k−1 to P∗,k for any positive integer k.

By Proposition 6.1, for anyσ in P∗,k, the primitive I (σ)(ξ) has an asymptotic behavior as
ξ → ∞ of the type (48) withk replaced byk+1. The constant term defines the cut-off regularized
integral (see e.g. [52]):

−

∫ ∞

0
σ(t) dt := fp

ξ→∞

∫ ξ

0
σ(t) dt.

6.2. Nested sums of symbols and their pole structures.

6.2.1. Nested sums.Recall that the operatorI on P∗,∗ defined by Eq. (2) satisfies the weight
zero Rota-Baxter relation (1). On the other hand the operator P defined by Eq. (4) satisfies the
Rota-Baxter relation with weightλ = −1 and the operatorQ = P − Id in Eq. (5) satisfies the
Rota-Baxter relation with weightλ = 1.

The Rota-Baxter operatorsP and I relate by means of the Euler-MacLaurin formula which
compares discrete sums with integrals. Forσ ∈ P∗,∗ the Euler-MacLaurin formula (see e.g. [38])
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reads:

P(σ)(N) − I (σ)(N) =
1
2
σ(N) +

2K∑

k=2

Bk

k!
σ(k−1)(N)

+
1

(2K + 1)!

∫ N

0
B2K+1(x)σ(2K+1)(x) dx.(49)

with Bk(x) = Bk (x− [x]). HereBk(x) =
∑k

i=0

(
k
i

)
Bk−i xk are the Bernoulli polynomials of degree

k, theBi being the Bernoulli numbers, defined by the generating series:
t

et − 1
=

∑

i

Bi

i!
ti.

SinceBk(1) = Bk for anyk > 2, settingx = 1 we have

(50) Bk =

k∑

i=0

(
k
i

)
Bk−i =

k∑

i=0

(
k
i

)
Bi, ∀k > 2.

The Euler-MacLaurin formula therefore provides an interpolation of P(σ) by a symbol.

Proposition 6.2. [55] For anyσ ∈ Pa,k, the discrete sum P(σ) can be interpolated by a symbol
P(σ) in Pa+1,k+1 + P0,k+1 (i.e. P(σ)(n) = P(σ)(n) =

∑n
k=0σ(k), ∀n ∈ N) such that

P(σ) − I (σ) ∈ P
a,k.

The operatorQ := P− Id : Pa,k → Pa+1,k+1 + P0,k+1 interpolates Q.

By Proposition 6.2, given a symbolσ in Pa,k, the interpolating symbolP(σ) lies in Pa+1,k+1 +

P0,k+1. It follows that the discrete sumP(σ)(N) = P(σ)(N) has an asymptotic behavior for large
N given by finite linear combinations of expressions of the type (48) withk replaced byk+ 1 and
a by a+ 1 or 0. Picking the finite part, for anyσ ∈ P∗,∗ we define the following cut-off sum:

(51)
∞

−
∑

0

σ := fp
N→∞

P(σ)(N) = fp
N→∞

N∑

k=0

σ(k),

which extends the ordinary discrete sum
∑∞

0 on L1-symbols. Ifσ has non-integer order, we have
∞

−
∑
0
σ = fp

N→∞

∑N+K
k=0 σ(k) for any integerK, so that in particular

∞

−
∑
0
σ = fp

N→∞
Q(σ)(N) since the

operatorsP andQ only differ by an integer in the upper bound of the sum.
With the help of the interpolation map described in Proposition 6.2, we can assign to a tensor

productσ := σ1⊗· · ·⊗σk of (positively supported) classical symbols, two log-polyhomogeneous
symbols defined inductively in the degreek of the tensor product, which interpolate the nested
iterated sum ∑

06nk6nk−16···6n26n1

σ1(n1) · · ·σk(nk) = σ1 P
(
· · ·σk−2 P

(
σk−1 P(σk)

)
...
)
,

∑

06nk<nk−1<···<n2<n1

σ1(n1) · · ·σk(nk) = σ1 Q
(
· · ·σk−2 Q

(
σk−1 P(σk)

)
...
)
.

In the following we will only consider the second class of symbols, including their regularization,
renormalization and application to multiple zeta values. Aparallel approach applies to the first
class of symbols with application to non-strict multiple zeta values in Eq. (22) [61, 75].
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Theorem 6.3. [55] Givenσi ∈ Pαi ,0, i = 1, . . . , k, settingσ := σ1 ⊗ · · · ⊗ σk, the functioñσ
defined by:

(52) σ̃ := σ1 Q
(
· · ·σk−2 Q

(
σk−1 Q(σk)

)
...
)

which interpolates nested sums in the following way:

σ̃(n1) =
∑

06nk<nk−1<···<n2<n1

σ1(n1) · · ·σk(nk), ∀n1 ∈ N,

lies in P∗,k−1 as linear combinations of (positively supported) symbols in Pα1+···+α j+ j−1, j−1, j ∈
{1, . . . , k}.

On the grounds of this result, we define the cut-off nested discrete sum of a tensor product of
(positively supported) classical symbols.

Definition 6.4. Forσ1, . . . , σk ∈ P∗,0 andσ := σ1 ⊗ · · · ⊗ σk we call
Chen

−
∑

<

σ :=
∞

−
∑

0

σ̃ = −
∑

0<nk<···<n1

σ1(n1) · · ·σk(nk)

thecut-off nested sumof f = σ1 ⊗ · · · ⊗ σk.

6.2.2. The pole structure of nested sums of symbols.To build meromorphic extensions, we com-

bine the cut-off sum
∞

−
∑
0

introduced in (51) with holomorphic deformations of the symbol in the

integrand.
A family {a(z)}z∈Ω in a topological vector spaceA which is parameterized by a complex domain

Ω, is holomorphic atz0 ∈ Ω if the corresponding functionf : Ω → A admits a Taylor expansion
in a neighborhoodNz0 of z0

a(z) =
∞∑

k=0

a(k)(z0)
(z− z0)k

k!

which is convergent, uniformly on compact subsets ofNz0 (i.e. locally uniformly), with respect
to the topology onA. The vector spaces of functions we consider here areC(R,C) andC∞(R,C)
equipped with their usual topologies, namely uniform convergence on compact subsets, and uni-
form convergence of all derivatives on compact subsets respectively.

Definition 6.5. Let k be a non-negative integer, and letΩ be a domain inC. A simple holomor-
phic family of log-polyhomogeneous symbolsσ(z) ∈ S∗,k parameterized byΩ is a holomorphic
family σ(z)(ξ) := σ(z, ξ) of smooth functions onR such that:

(a) the orderα : Ω→ C is holomorphic onΩ,
(b) σ(z)(ξ) =

∑k
l=0σl(ξ) logl

|ξ| with

σl(z)(ξ) ∼
∑

j>0

σ(z)α(z)− j,l(ξ).

Hereσ(z)α(z)− j,l positively homogeneous of degreeα(z) − j,
(c) for any positive integerN there is some positive integerKN such that the remainder term

σ(N)(z)(ξ) := σ(z)(ξ) −
k∑

l=0

KN∑

j=0

σ(z)α(z)− j,l(ξ) logl |ξ| = o(|ξ|−N)
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is holomorphic inz ∈ Ω as a function ofξ and verifies for anyǫ > 0 the following
estimates:

∂
β

ξ∂
k
zσ(N)(z)(ξ) = o(|ξ|−N−|β|+ǫ)

locally uniformly in z ∈ Ω for k ∈ N andβ ∈ Nn.
A holomorphic family of log-polyhomogeneous symbolsis a finite linear combination (overC)
of simple holomorphic families.

It follows from the Euler-MacLaurin formula (see e.g. [38, 55]) that for any holomorphic
family σ(z) of symbols inP∗,∗, we have

∞

−
∑

n=0

σ(z)(n) = −
∫ ∞

0
σ(z)(ξ) dξ +C(σ(z))

with z 7→ C(σ(z)) a holomorphic function at zero. Hence,z 7→
∞

−
∑
n=0

σ(z)(n) andz 7→ −
∫ ∞

0
σ(z)(ξ) dξ

have the same pole structure. Results by Kontsevich and Vishik [49] for classical symbols and
their generalization by Lesch [52] to log-polyhomogeneoussymbols, and relative to the pole
structure of cut-off integrals of holomorphic families of symbols, therefore carry out to discrete
cut-off sums of holomorphic (positively supported) log-polyhomogeneous symbols. Let us briefly
recall the notion of holomorphic regularization inspired by [49].

Definition 6.6. A holomorphic regularization procedure onS∗,∗ is a map

R : S
∗,∗ → HolΩ (S∗,∗)

f 7→ {σ(z) = σ f (z)}z∈Ω

whereΩ is an open subset ofC containing 0, and HolΩ (S∗,∗) is the algebra of holomorphic families
in S∗,∗ , such that for anyf ∈ S∗,∗,

(a) σ(0) = f ,
(b) the holomorphic familyσ(z) can be written as a linear combination of simple ones:

σ(z) =
k∑

j=1

σ j(z),

the holomorphic orderα j(z) of which verifies Re(α′j(z)) < 0 for any z ∈ Ω and any
j ∈ {1, . . . , k}.

A holomorphic regularizationR is simple if, for any log-polyhomogeneous symbolσ ∈ Sα,k, the
holomorphic familyR(σ) is simple. Since we only consider simple holomorphic regularizations,
we drop the explicit mention of simplicity.

A similar definition holds with suitable subalgebras ofS∗,∗, e.g. classical symbolsS∗,0 instead
of log-polyhomogeneous. Holomorphic regularization procedures naturally arise in physics:

Example 6.7.Let z 7→ τ(z) ∈ S∗,0 be a holomorphic family of classical symbols such thatτ(0) = 1
andτ(z) has holomorphic orderα(z) with Re(α′(z)) < 0. Then

R : σ 7→ σ(z) := σ τ(z)

yields a holomorphic regularization onS∗,∗ as well as onS∗,0. Choosingτ(z)(ξ) := χ(ξ) +
(
1 −

χ(ξ)
)(

H(z) |ξ|−z) whereH is a scalar valued holomorphic map such thatH(0) = 1, and whereχ
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is a smooth cut-off function which is identically one outside the unit intervaland zero in a small
neighborhood of zero, we get

R(σ)(z)(ξ) = χ(ξ)σ(ξ) +
(
1− χ(ξ)

)(
H(z)σ(ξ) |ξ|−z).

Dimensional regularization commonly used in physics is of this type, whereH is expressed in
terms of Gamma functions which account for a “complexified” volume of the unit sphere. When
H ≡ 1, such a regularizationR is called Riesz regularization.

Proposition 6.8. Given a holomorphic regularizationR : σ 7→ σ(z) on P∗,k, for anyσ ∈

P∗,k, the map z 7→
∞

−
∑
0
σ(z) is meromorphic with poles of order6 k + 1 in the discrete set

α−1 ({−1, 0, 1, 2, · · · }) wheneverσ(z) is a holomorphic family with orderα(z) such thatRe(α′(z)) ,
0 for any z inΩ.

Let Ω ⊂ C be an open neighborhood of 0. Given symbolsσ1, · · · , σk ∈ P∗,0, and a holo-
morphic regularizationR which sendsσi to σi(z) with orderαi(z), z ∈ Ω, we build holomorphic
perturbations in the complex multivariablez := (z1, · · · , zk) ∈ Ωk of the symbols̃σ introduced in
(52):

σ̃(z) := σ1(z1) Q
(
· · ·σk−2(zk−2) Q

(
σk−1(zk−1) Q(σk(zk))

)
...
)
.

By Theorem 6.3, these are linear combinations of log-polyhomogeneous symbols of log-type
j − 1 and orderα1(z1) + · · · + α j(zj) + j − 1, j ∈ {1, . . . , k}. Applying Proposition 6.8 to each of
these symbols provides information on the pole structure ofnested sums of (positively supported)
classical symbols reminiscent of the pole structure of multiple zeta functions [1, 25, 73].

Theorem 6.9. Fix symbolsσ1, · · · , σk ∈ P∗,0 and a holomorphic regularizationR which sends
σi toσi(z) with orderαi(z).

(a) The map

(z1, · · · , zk) 7→
Chen

−
∑

<

σ1(z1) ⊗ · · · ⊗ σk(zk)

is meromorphic with poles on a countable number of hypersurfaces
j∑

i=1

αi(zi) ∈ − j + N0,

of multiplicity j varying in{1, · · · , k}. HereN0 stands for the set of non-negative integers.
(b) Letσ(z) := σ1(z) ⊗ · · · ⊗ σk(z) with z ∈ Ω. Assume that the ordersαi(z) of theσi ’s are

nonconstant affine withα′j(0) = −q for any j in{1, · · · , k} and some positive real number

q. The map z7→
Chen
−
∑
<
σ(z) is meromorphic onΩ with poles z∈ (

∑ j
i=1 αi(0)+ j − N0)/(q j)

of order6 j.
(c) If Re(α1(z1) + · · · + α j(zj)) < − j for any j ∈ {1, . . . , k}, the nested sums converge and boil

down to ordinary nested sums (independently of the perturbation). Settingσ = σ1⊗· · ·⊗σk

we have:
Chen,R

−
∑

<

σ = lim
z→0

Chen

−
∑

<

σ(z) =
Chen∑

<

σ.
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6.3. A twisted holomorphic regularization. We now takeA to be a subalgebra ofP∗,0 equipped
with the ordinary product on functions. Any holomorphic regularizationR onA with parameter
spaceΩ ⊂ C induces one on the tensor algebraT(A):

R̃(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk) := R(σ1)(z1) ⊗ · · · ⊗ R(σk)(zk).

It is compatible with the shuffle product

R̃ ((σ1 ⊗ · · · ⊗ σk) ∐∐ (σk+1 ⊗ · · · ⊗ σk+l)) = R̃ (σ1 ⊗ · · · ⊗ σk) ∐∐ R̃ (σk+1 ⊗ · · · ⊗ σk+l)

for anyσi ∈ A, i ∈ {1, · · · , k+ l}.

Remark 6.10.Note that̃R(σ1 ∐∐σ2)(z1, z2) , R(σ1)(z1) ∐∐R(σ2)(z2) whereas̃R(σ1 ∐∐σ2)(z1, z2) =
(R(σ1) ∐∐R(σ2))(z1, z2).

Let
δk : C→ C⊗k, z 7→ z · 1⊗k,

be the diagonal mapδ : C 7→ T(C) andδ∗ the induced map on tensor products of holomorphic
symbols

δ⋆k : T (HolΩ (A))→ HolΩ (T(A)) , σ 7→ σ ◦ δk.

The regularizatioñR induces a one parameter holomorphic regularization:
(
δ∗ ◦ R̃

)
(σ1 ⊗ · · · ⊗ σk)(z) = R(σ1)(z) ⊗ · · · ⊗ R(σk)(z)

compatible with the shuffle product:
(
δ∗ ◦ R̃

)
((σ1 ⊗ · · · ⊗ σk) ∐∐ (σk+1 ⊗ · · · ⊗ σk+l))

=
(
δ∗ ◦ R̃

)
(σ1 ⊗ · · · ⊗ σk) ∐∐

(
δ∗ ◦ R̃

)
(σk+1 ⊗ · · · ⊗ σk+l) ,(53)

for anyσi ∈ A, i ∈ {1, · · · , k+ l}.
Twisting it by Hoffman’s isomorphism in Theorem 2.8 yields a holomorphic regularization(

δ∗ ◦ R̃
)
∗ (denoted byR∗ in [55]) onT(A):

(
δ∗ ◦ R̃

)
∗ := exp◦

(
δ⋆ ◦ R̃

)
◦ log,

which is compatible with the stuffle product:

(54)
(
δ∗ ◦ R̃

)∗
(σ ∗ τ) =

(
δ∗ ◦ R̃

)∗
(σ) ∗

(
δ∗ ◦ R̃

)∗
(τ), ∀σ, τ ∈ T (A) .

Consequently, the following regularization

(55) R̃
∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk) = exp◦R̃ ◦ log(σ1 ⊗ · · · ⊗ σk) (z1, · · · , zk)

is compatible with stuffle relations after symmetrization in the complex variableszi

(56)
(
R̃
∗(σ ∗ τ)

)
sym
=

(
R̃
∗(σ) ∗ R̃

∗(τ)
)
sym

, ∀σ, τ ∈ T (A) ,

where the subscript sym stands for symmetrization

fsym(z1, · · · , zk) :=
1
k!

∑

τ∈Σk

f (zτ(1), · · · , zτ(k)),

over all the complex variablesz1, · · · , zk+l if σ is a tensor of degreek andτ a tensor of degreel.
Settingz1 = · · · = zk+l = z in (56) yields back (54) so that (56) can be seen as a polarization of
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(54). Given symbolsσ1, · · · , σk in P∗,0, and a holomorphic regularizationR : σ 7→ σ(z), sending
σi toσi(z) with orderαi(z), we are now ready to build a map

(z1, · · · , zk) 7→
Chen

−
∑

<

R̃
∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk),

which, by Theorem 6.9, is meromorphic with poles on a countable number of hypersurfaces

j∑

i=1

αi(zi) ∈ − j + N0,

with multiplicity j varying in{1, · · · , k}. In particular, if the holomorphic regularizationR sends
a symbolσ to a symbolσ(z) with orderα(z) = α(0) − q z for some positive real numberq, the
hypersurfaces of poles are given by

j∑

i=1

zi ∈

∑ j
i=1αi(0)+ j − n

q
, n ∈ N0,

so that hyperplanes of poles containing the origin correspond to
∑ j

i=1 zi = 0 each of which with
multiplicity j varying in{1, · · · , k}.

6.4. Meromorphic nested sums of symbols.Let Mer0(C) denote the germ of meromorphic
functions in a neighborhood of zero in the complex plane and let Hol0(C) be the germ of holo-
morphic functions at zero. We consider the (Grothendieck closure of the) tensor algebra

T (Mer0(C)) = ⊕∞k=0T
k(Mer0(C))

over Mer0(C) and its subalgebraT(Hol0(C)) := ⊕∞k=0T
k(Hol0(C)) where we have setTk(Mer0(C)) :=

⊗̂
kMer0(C), Tk(Hol0(C)) := ⊗̂kHol0(C), and wherê⊗ stands for the Grothendieck closure. They

come equipped with the product:

( f1 ⊗ · · · ⊗ fk)
⊗

( fk+1 ⊗ · · · ⊗ fk+l) = f1 ⊗ · · · ⊗ fk ⊗ fk+1 ⊗ · · · ⊗ fk+l .

We consider the following linear extension ofTk(Mer0(C)) which corresponds to germs at zero of
meromorphic maps in severable variables with linear poles.Let LMer0(C∞) := ⊕∞k=1LMer0(Ck)
where

LMer0(C
k) :=


m∏

i=1

fi ◦ Li

∣∣∣∣ fi ∈ Mer0(C), Li ∈
(
Ck

)∗


or equivalently,

LMer0(C
k) :=

(z1, · · · , zk) 7→
h(z1, · · · , zk)∏

L∈(Ck)∗ (L(z1, · · · , zk))
mL

∣∣∣∣ h ∈ Hol0
(
Ck

)
, mL ∈ N

 .

Settingm= k andLi(z1, · · · , zk) = zi yields a canonical injection

i : Tk(Mer0(C)) → LMer0(C
k)

f1 ⊗ · · · ⊗ fk 7→

(z1, · · · , zk) 7→
k∏

i=1

fi ◦ Li(z1, · · · , zk)

 ,
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and the tensor product onT(Mer0(C)) extends toLMer0(C∞), by
(z1, · · · , zk) 7→

m∏

i=1

fi ◦ Li(z1, · · · , zk)

 •

(z1, · · · , zl) 7→
n∏

j=1

fm+ j ◦ Li+ j(z1, · · · , zl)

(57)

=

(z1, · · · , zk, · · · , zk+l) 7→
m∏

i=1

fi ◦ Li(z1, · · · , zk)
n∏

j=1

fm+ j ◦ Lm+ j(zk+1, · · · , zk+l)



which makes it a graded algebra.
Specializing to linear formsLk := {L ∈

(
Ck

)∗
| ∃ J ⊂ {1, · · · , k}, L(z1, · · · , zk) =

∑
j∈J zj}

gives rise to a subalgebraLM0(C∞) := ⊕∞k=1LM0(Ck) ⊂ LMer0(C∞) defined by:

LM0(C
k) :=

{
(z1, · · · , zk) 7→

h(z1, · · · , zk)∏
L∈Lk

(L(z1, · · · , zk))
mL

∣∣∣∣ h ∈ Hol0
(
Ck

)
, mL ∈ N

}
.

For future use, we consider the mapδ∗ : LM0(Ck)→ Mer0(C) defined by

δ⋆k : LM0(C
k)→ Mer0(C), f 7→ f ◦ δk,

induced by the diagonal mapδ : C 7→ T(C) previously defined.

By definition of the twisted regularizatioñR∗, the expressions
Chen
−
∑
<

R̃∗(σ1⊗ · · · ⊗σk)(z1, · · · , zk)

are linear combinations of expressions of the type
Chen
−
∑
<
τ1(u1) ⊗ · · · ⊗ τl(uk) with symbolsτ j(u j)

built from products of theσi(zi)’s. It therefore follows from Theorem 6.9, that the functions

(z1, · · · , zk) 7→
Chen
−
∑
<

R̃∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk) lie in LM0(Ck). Since the stuffle relations are

satisfied for convergent nested sums, given two tensor products σ = σ1 ⊗ · · · ⊗ σk and τ =
τ1 ⊗ · · · ⊗ τl of symbols inP, settingσi(zi) := R(σi)(zi), for Re(zi) sufficiently large we have:

Chen

−
∑

<

(
R̃
∗ (σ1 ⊗ · · · ⊗ σk) (z1, · · · , zk)

)
∗
(
R̃
∗ (τ1 ⊗ · · · ⊗ τl) (zk+1, · · · , zk+l)

)

=


Chen

−
∑

<

R̃
∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk)




Chen

−
∑

<

R̃
∗(τ1 ⊗ · · · ⊗ τl)(zk+1, · · · , zk+l)

 .

By analytic continuation (see for example [29], in particular the Identity Theorem in Chapter 1,
Section A, or [45]), this holds as an identity of meromorphicfunctions. Since

(
R̃
∗ ((σ1 ⊗ · · · ⊗ σk) ∗ (τ1 ⊗ · · · ⊗ τl)) (z1, · · · , zk+l)

)
sym

=
((

R̃
∗(σ1 ⊗ · · · ⊗ σk) ∗ R̃

∗(τ1 ⊗ · · · ⊗ τ)

)
(zk+1, · · · , zk+l)

)
sym

,

symmetrization in the variableszi yields


Chen

−
∑

<

(
R̃
∗(σ1 ⊗ · · · ⊗ σk) ∗ R̃

∗(τ1 ⊗ · · · ⊗ τl)
)
(z1, · · · , zk+l)


sym

=




Chen

−
∑

<

R̃
∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk)




Chen

−
∑

<

R̃
∗(τ1 ⊗ · · · ⊗ τl)(zk+1, · · · , zk+l)




sym

.
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This can be reformulated as follows.

Theorem 6.11. [55] Let A be a subalgebra ofP∗,0 and letR be a holomorphic regularization
which sends a symbolσ to a symbolσ(z) with orderα(z) = α(0) − q z for some positive real
number q.

(a) The map

ΨR : (T (A) , ∗) → (LM0(C
∞), •)

σ1 ⊗ · · · ⊗ σk 7→

(z1, · · · , zk) 7→
Chen

−
∑

<

R̃
∗(σ1 ⊗ · · · ⊗ σk)(z1, · · · , zk)

 ,

satisfies the following relation:
(
ΨR(σ ∗ τ)

)
sym
=

(
ΨR(σ) •ΨR(τ)

)
sym

,

which holds as an equality of meromorphic functions in several variables. Here, as before
the subscript sym stands for the symmetrization in the complex variables zi.

(b) After composition withδ∗ this in turn gives rise to a map

ψR : (T (A) , ∗) → Mer0(C)

σ1 ⊗ · · · ⊗ σk 7→

z 7→ δ∗ ◦

Chen

−
∑

<

R̃
⋆(σ1 ⊗ · · · ⊗ σk)(z)

 ,(58)

which is an algebra morphism. In other words,ψR satisfies the relation:

ψR(σ ∗ τ) = ψR(σ) · ψR(τ),

which holds as an equality of meromorphic functions in one variable.

6.5. Renormalized nested sums of symbols.We want to extract finite parts from the mero-
morphic functions in Theorem 6.11 while preserving the stuffle relations using a renormalization
procedure. Renormalized evaluators inspired from generalized evaluators used in physics provide
a first renormalization procedure.

6.5.1. Renormalized nested sums via renormalized evaluators.We call regularized evaluator at
zero on the germ Mer0(C) of meromorphic functions around zero, any linear form on Mer0(C)
which extends the evaluation at zero ev0 : h 7→ h(0) on holomorphic germs at zero. The map evreg

0
defined by

evreg
0 := ev0 ◦ (I − Π),

whereΠ : Mer0(C) → Mer0(C) as defined in Example 2.4 corresponds to the projection onto
the pole part of the Laurent expansion at zero, is such a regularized evaluator at zero. When we
need to specify the complex variablez we also write evreg

z=0. Following Speer [67] we introduce
renormalized evaluators which correspond to his generalized evaluators.

Definition 6.12. A renormalized evaluatorΛ on a graded subalgebraB = ⊕∞k=0Bk ofLMer0(C∞) =
⊕∞k=0LMer0(Ck) equipped with the product• introduced in (57), is a character onB which is com-
patible with the filtration induced by the grading and extends the ordinary evaluation at zero on
holomorphic maps. Equivalently,

(a) Compatibility with the filtration: LetBK := ⊕K
k=0Bk andΛK := Λ|

BK . ThenΛK+1|
BK = ΛK.
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(b) It coincides with the evaluation map at zero on holomorphic maps:

Λ|T(Hol0(C)) = ev0.

(c) It fulfills a multiplicativity property:

Λ( f • g) = Λ( f )Λ(g), ∀ f , g ∈ B.

We call the evaluator symmetric if moreover for any f inBk andτ in Σk, we have

Λ( fτ) = Λ( f ), ∀τ ∈ Σk,

where we have set fτ(z1, · · · , zk) := f (zτ(1), · · · , zτ(k)).

Example 6.13.Any regularized evaluator at zeroλ on Mer0(C) uniquely extends to a renormal-
ized evaluator̃λ on the tensor algebra(T (Mer0(C)) ,⊗) defined by

λ̃( f1 ⊗ · · · ⊗ fk) =
k∏

i=1

λ( fi).

Example 6.14.Any regularized evaluatorλ on Mer0(C) extends to renormalized evaluatorsΛ
andΛ′ onLMer0(C∞) defined onLMer0(Ck) by

Λ := λz1 ◦ · · · ◦ λzk, Λ′ := λzk ◦ · · · ◦ λz1

and to a symmetrized evaluator defined onLMer0(Ck) by

Λsym :=
1
k!

∑

τ∈Σk

λzτ(1) ◦ · · · ◦ λzτ(k),

whereλzi stands for the evaluatorλ implemented in the sole variable zi, the others being kept
fixed. Their restrictions to T(Mer0(C)) all coincide withλ̃.

Example 6.15.Takeλ := evreg
0 , and set with the above notations

evren
0 := Λ; evren′

0 := Λ′, evren,sym
0 := Λsym,

then given a holomorphic function h(z1, z2) in a neighborhood of0 and setting f(z1, z2) := h(z1,z2)
z1+z2

,
we have

evren
0 ( f ) = ∂1h(0, 0); evren′

0 ( f ) = ∂2h(0, 0); evren,sym
0 ( f ) =

∂1h(0, 0)+ ∂2h(0, 0)
2

= evreg
0 ◦ δ

∗ ( f ) ,

though in general,
evren,sym

0 , evreg
0 ◦ δ

∗.

Proposition 6.16.LetA be a subalgebra ofP∗,0 and letR be a holomorphic regularization which
sends a symbol f to a symbolσ(z) with orderα(z) = α(0)− q z for some positive real number q.
LetE be asymmetrizedrenormalized evaluator onLM0. The map

ΨR,E : (T (A) , ∗) → C

σ1 ⊗ · · · ⊗ σk 7→ E ◦ ΨR(σ1 ⊗ · · · ⊗ σk)

defines a character. In other words,ΨR,E satisfies the stuffle relation:

ΨR,E(σ ∗ τ) = ΨR,E(σ) · ΨR,E(τ).

Remark 6.17. Here, we use the fact that for a symmetrized evaluatorΛ we haveΛ( f ) = Λ( fsym)
where as before the subscript “sym” stands for the symmetrization in the complex variableszi.
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This proposition gives rise to renormalized nested sums of symbols

Chen,R,E

−
∑

<

σ1 ⊗ · · · ⊗ σk := ΨR,E(σ1 ⊗ · · · ⊗ σk)

which obey stuffle relations:

Chen,R,E

−
∑

<

(σ ∗ τ) =


Chen,R,E

−
∑

<

σ




Chen,R,E

−
∑

<

τ

 .

6.5.2. Renormalized nested sums via algebraic Birkhoff decomposition.On the other hand, the
tensor algebraT(A) can be equipped with the deconcatenation coproduct:

∆ (σ1 ⊗ · · · ⊗ σk) :=
k∑

j=0

(
σ1 ⊗ · · · ⊗ σ j

)⊗(
σ j+1 ⊗ · · · ⊗ σk

)

which then inherits a structure of connected graded commutative Hopf algebra [42]. Using the
convolution product⋆ associated with the product and coproduct onT(A) and since Mer0(C)
embeds into the Rota-Baxter algebraC[ε−1, ε]] we can implement an algebraic Birkhoff decom-
position as in (31) to the mapψR in Eq. (58):

ψR =
(
ψR

−

)⋆(−1)
⋆ ψR

+

associated with the minimal substraction scheme to build characters

ψR

+ (0) : (T (A) , ∗)→ C.

Proposition 6.18. [55] LetA be a subalgebra ofP∗,0 and letR be a holomorphic regularization
which sends a symbolσ to a symbolσ(z) with orderα(z) = α(0) − q z for some positive real
number q. The map

ψR,Birk : (T (A) , ∗) → C

σ1 ⊗ · · · ⊗ σk 7→ ψR

+ (0)(σ1 ⊗ · · · ⊗ σk)

defines a character

ψR,Birk(σ ∗ τ) = ψR,Birk(σ) · ψR,Birk(τ).

The map yields an alternative set of renormalized nested sums of symbols

Chen,R,Birk

−
∑

<

σ1 ⊗ · · · ⊗ σk := ψR,Birk(σ1 ⊗ · · · ⊗ σk)

which obey stuffle relations:

Chen,R,Birk

−
∑

<

(σ ∗ τ) =


Chen,R,Birk

−
∑

<

σ




Chen,R,Birk

−
∑

<

τ

 .

6.6. Renormalized (Hurwitz) multiple zeta values at non-positive integers.
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6.6.1. An algebra of symbols.Since we consider both zeta and Hurwitz zeta functions, let us first
observe that for any non-negative numberv and anyσ in P∗,k, the mapξ 7→ t∗vσ(ξ) := σ(ξ + v)
defines a symbol inP∗,k.

Let Ã be the subalgebra ofP∗,0 generated by the continuous functions with support inside the
interval (0, 1) and the set

{σ ∈ P
∗,0

∣∣∣∃v ∈ [0,+∞),∃s ∈ C, σ(ξ) = (ξ + v)−s whenξ ≥ 1}.

Consider the idealN of Ã of continuous functions with support inside the interval (0, 1). The
quotient algebraA = Ã/N is then generated by elementsσs,v ∈ P∗,0 with σs,v(ξ) = (ξ + v)−s for
|ξ| ≥ 1. For anyv ∈ R+ the subspaceAv of A generated by{σs,v | s ∈ C} is a subalgebra ofA. We
equipAv with the following holomorphic regularization on an open neighborhoodΩ of 0 inC:

R : Av → HolΩ (Av)

σs,v 7→
(
z 7→ (1− χ)σs,v + χ σs+z,v

)

whereχ is any smooth cut-off function which is identically one outside the unit ball and vanishes
in a small neighborhood of 0.

Let W be theC-vector space freely spanned symbols indexed by sequences (u1, . . . , uk) of real
numbers. In other words,W is T(W) whereW = ⊕u∈RRxu where we identifyxu with u for
simplicity and setxu · xv = xu+v, u, v ∈ R. We then define the stuffle product onW as usual in
Eq. (8) or Eq. (11) withλ = 1. The map

σ : W→ T(Av), u = (u1, · · · , uk) 7→ σu;v := σ(u1,...,uk; v) := σu1;v ⊗ · · · ⊗ σuk;v

induces a stuffle product onT(Av):

σu;v ∗ σu′;v := σu∗u′;v.

As before, we twist the regularizatioñR induced byR on T(Av) by the Hoffman isomorphism
(14) to build a twisted holomorphic regularizatioñR∗ in several variables which satisfies

(
R̃
∗(σu;v) ∗ R̃

∗(σu′;v)
)
sym
=

(
R̃
∗(σu∗u′;v)

)
sym

and a twisted holomorphic regularizationδ∗ ◦ R̃∗ in one variable compatible with the stuffle prod-
uct: (

δ∗ ◦ R̃
∗(σu;v)

)
∗
(
δ∗ ◦ R̃

∗(σu′;v)
)
= δ∗ ◦ R̃

∗(σu∗u′;v).

6.6.2. Multiple zeta values renormalized via renormalized evaluators. Let Ω be an open neigh-
borhood of 0 inC and letR : σ 7→ {σ(z)}z∈Ω be the holomorphic regularization procedure onÃ

previously introduced. The multiple Hurwitz zeta functions defined by:

ζ(s1, . . . , sk; v1, . . . , vk) := ΨR(σs1,v1 ⊗ · · · ⊗ σsk,vk)

are meromorphic in all variables with poles1 on a countable family of hyperplaness1 + · · · + sj ∈

] − ∞, j] ∩ Z, j varying from 1 tok. Whenv1 = · · · = vk = v, we set

ζ(s1, . . . , sk; v) := ζ(s1, . . . , sk; v1, . . . , vk)

1Whenk = 2 andv1 = · · · = vl = v a more refined analysis actually shows that for some any negative real number
v, poles actually only arise fors1 = −1 or s1 + s2 ∈ {−2,−1, 0, 2, 4, 6, · · · }.
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in which case they satisfy the following relations:
(
ζE(u ∗ u′; v)

)
sym
=

(
ζE(u; v) ζE(u′; v)

)
sym

.

The renormalized multiple Hurwitz zeta values derived fromasymmetrizedrenormalized eval-
uatorE onLM0(C∞):

ζE(s1, . . . , sk; v1, . . . , vk) := ΨR,E(σs1,v1 ⊗ · · · ⊗ σsk,vk)

denoted byζR,E(s1, . . . , sk; v) whenv1 = · · · = vk = v, satisfy stuffle relations in that case:

ζE(u ∗ u′; v) = ζE(u; v) ζE(u′; v).

Let us compute renormalized values in the casek = 2 using a renormalized evaluator. For any
a ∈ R andm∈ N − {0} we introduce the notation:

[a] j := a(a− 1) · · · (a− j + 1).

We extend this toj = 0 and j = −1 by setting: [a]0 := 1, [a]−1 := 1
a+1. Combining Definition (55)

R̃
∗(σ1 ⊗ σ2)(z1, z2) = σ1(z1) ⊗ σ2(z2) −

1
2

(σ1 • σ2)(z1) +
1
2
σ1(z1) • σ2(z2)

applied to the regularization

R(σi)(z)(x) = (x+ v)−si−z of order αi(z) = −si − zi,

with the Euler-MacLaurin formula (49), and following [55] (see the proof of Theorem 9), we
compute

ζ(s1, s2; v)(z1, z2) = ΨR(σs1,v ⊗ σs2,v)(z1, z2)

=

Chen

−
∑

<

σ1(z1) ⊗ σ2(z2) +
1
2
σ1(z1)σ2(z2) −

1
2

(σ1σ2)(z1)

=

2J2∑

j=0

B j
[−s2 − z2] j−1

j!
(ζ(s1 + s2 + z1 + z2 + j − 1; v) − ζ(s1 + z1; v))

+
1
2
ζ(s1 + s2 + z1 + z2; v) −

1
2
ζ(s1 + s2 + z1; v)

+
[−s2 − z2]2J2+1

(2J2 + 1)!

∞

−
∑

0

(
(n+ v)−s1−z1

∫ n

1
B2Jl+1(y) (y+ v)−s2−z2−2J2−1 dy

)
.

Hence, for non-positive integerss1 = −a1, s2 = −a2 and 2J2 = a1 + a2 + 2 we have:

ζ(−a1,−a2; v)(z1, z2) =
a1+a2+2∑

j=0

B j
[a2 − z2] j−1

j!
(ζ(−a1 − a2 + z1 + z2 + j − 1; v) − ζ(−a1 + z1; v))

+
1
2
ζ(−a1 − a2 + z1 + z2; v) −

1
2
ζ(−a1 − a2 + z1; v)(59)

+
[a2 − z2]a2+2

(a2 + 2)!

∞

−
∑

0

(
(n+ v)a1−z1

∫ n

1
Ba1+a2+3(y) (y+ v)−2 dy

)
.

The last line on the r.h.s. is a holomorphic expression at zero on which all renormalized evaluators
at zero vanish. The second line on the r.h.s is a linear combination of ordinary zeta functions at
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negative integers which are holomorphic at zero. Any evaluatorΛ at zero vanishes on these terms;
indeed, we haveΛ (ζ(−a1 − a2 + z1 + z2; v) − ζ(−a1 − a2 + z1; v)) = ζ(−a1 − a2; v) − ζ(−a1 −

a2; v) = 0. Only when evaluated on the expression on the first line of the r.h.s can various
evaluators differ.

We want to implement the symmetrized evaluator at zero

evren,sym
0 :=

1
2

(
evreg

z2=0 ◦ evreg
z1=0 + evreg

z1=0 ◦ evreg
z2=0

)

introduced in Example 6.15. We first compute

evreg
z1=0

(
evreg

z2=0 (ζ(−a1,−a2; v)(z1, z2))
)

= evreg
z1=0

evreg
z2=0


a1+a2+2∑

j=0

B j
[a2 − z2] j−1

j!
(ζ(−a1 − a2 + z1 + z2 + j − 1; v) − ζ(−a1 + z1; v)





= evreg
z1=0


a2+1∑

j=0

B j
[a2] j−1

j!
(ζ(−a1 − a2 + z1 + j − 1; v) − ζ(−a1 + z1; v))



=
1

a2 + 1

a2+1∑

j=0

B j

(
a2 + 1

j

)
(ζ(−a1 − a2 + j − 1; v) − ζ(−a1; v)) .

Whenv = 0 this yields:

evreg
z1=0

(
evreg

z2=0 (ζ(−a1,−a2)(z1, z2))
)

:= evreg
z1=0

(
evreg

z2=0 (ζ(−a1,−a2)(z1, z2; 0))
)

=
1

a2 + 1

a2+1∑

j=0

B j

(
a2 + 1

j

) (
−

Ba1+a2− j+2

a1 + a2 − j + 2
+

Ba1+1

a1 + 1

)
.(60)

We next compute

evreg
z2=0

(
evreg

z1=0 (ζ(−a1,−a2; v)(z1, z2))
)

= evreg
z2=0

(
evreg

z1=0

(
B0

a2 − z2 + 1
(ζ(−a1 − a2 + z1 + z2 − 1; v) − ζ(−a1 + z1; v))

))

+evreg
z2=0

evreg
z1=0


a1+1∑

j=1

B j
[a2 − z2] j−1

j!
(ζ(−a1 − a2 + z1 + z2 + j − 1; v) − ζ(−a1 + z1; v))





+evreg
z2=0

evreg
z1=0


a1+a2+2∑

j=a1+2

B j
[a2 − z2] j−1

j!
(ζ(−a1 − a2 + z1 + z2 + j − 1; v) − ζ(−a1 + z1; v))





= evreg
z2=0

(
B0

a2 + 1
(ζ(−a1 − a2 + z2 − 1; v) − ζ(−a1; v))

)

+evreg
z2=0


a1+1∑

j=1

B j
[a2 − z2] j−1

j!
(ζ(−a1 − a2 + z2 + j − 1; v) − ζ(−a1; v))



+

a2+1∑

j=1

B j+a1+1 ∂z2

(
[a2 − z2] j+a1

( j + a1 + 1)!

)

|z2=0

Resz2=0 (ζ(−a2 + z2 + j; v))
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=
1

a2 + 1

a2+1∑

j=0

B j

(
a2 + 1

j

)
(ζ(−a1 − a2 + j − 1; v) − ζ(−a1; v))

+(−1)a1+1a1!a2!
Ba1+a2+2

(a1 + a2 + 2)!
,

since the only contribution to the residue comes from the term j = a1 + a2 + 2. Sinceζ(−a) :=
ζ(−a; 0) = −Ba+1

a+1 , this combined with (50) applied tok = a2 + 1 yields

evreg
z2=0

(
evreg

z1=0 (ζ(−a1,−a2)(z1, z2))
)

:= evreg
z2=0

(
evreg

z1=0 (ζ(−a1,−a2; 0)(z1, z2))
)

= −
1

a2 + 1

a2+1∑

j=0

B j

(
a2 + 1

j

)
Ba1+a2− j+2

a1 + a2 − j + 2
+

Ba1+1

a1 + 1

Ba2+1

a2 + 1
(61)

+(−1)a1+1a1!a2!
Ba1+a2+2

(a1 + a2 + 2)!
.

Combining (60) and (61) yields

ζev(−a1,−a2) := evren,sym
0 (ζ(−a1,−a2)(z1, z2))

= −
1

a2 + 1

a2+1∑

j=0

B j

(
a2 + 1

j

)
Ba1+a2− j+2

a1 + a2 − j + 2
(62)

+
Ba1+1

a1 + 1
Ba2+1

a2 + 1
+ (−1)a1+1a1!a2!

Ba1+a2+2

2 (a1 + a2 + 2)!
.

Renormalized multiple zeta values of depth 2 at non-positive arguments obtained this way, are
rational linear combinations of Bernoulli numbers, and hence rational numbers. More generally,
an inductive procedure onk carried out in the same spirit as the proof of Theorem 10 in [55] shows
that the renormalized multiple zeta valuesζE(s1, · · · , sk; v) are rational values at non-positive
integer argumentss1, · · · , sk wheneverv is rational.

6.6.3. Multiple zeta values renormalized via Birkhoff decomposition.The renormalized multiple
Hurwitz zeta values derived from a Birkhoff decomposition:

ζBirk(s1, . . . , sk; v1, . . . , vk) := ΨR,Birk(σs1,v1 ⊗ · · · ⊗ σsk,vk)

denoted byζBirk(s1, . . . , sk; v) whenv1 = · · · = vk = v, satisfy stuffle relations

ζBirk(u ∗ u′; v) = ζBirk(u; v) ζBirk(u′; v).

A striking holomorphy property arises at non-positive integer arguments [55] after implement-
ing the diagonal mapδ.

Proposition 6.19.At non-positive integer arguments si and for a rational parameter v, the map

z 7→ ψR
(
σs1,v ⊗ · · · ⊗ σsk,v

)
(z)

defined in (58) is holomorphic at zero.

Consequently,
ζBirk(s1, . . . , sk; v) = lim

z→0
ψR(σs1,v ⊗ · · · ⊗ σsk,v).
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Let us compute double zeta values at non-positive integer arguments using Birkhoff decomposi-
tion. Settingz1 = z2 = z in (59) leads to

ζ(−a1,−a2; v)(z) =
a2+1∑

j=0

B j
[a2 − z] j−1

j!
(ζ(−a1 − a2 + 2z+ j − 1; v) − ζ(−a1 + z; v))

+
[a2 − z]a2+2

(a2 + 2)!

∞

−
∑

0

(
(n+ v)a1−z

∫ n

1
Ba1+a2+3(y) (y+ v)−2 dy

)
.

Evaluating this expression atz= 0 in a similar manner to the previous computation, yields:

ζBirk(−a1,−a2; v) = lim
z→0


a2+1∑

j=0

B j
[a2 − z] j−1

j!
(ζ(−a1 − a2 + 2z+ j − 1; v) − ζ(−a1 + z; v))



=

a2+1∑

j=0

B j
[a2] j−1

j!
(ζ(−a1 − a2 + j − 1; v) − ζ(−a1; v))

+(−1)a1+1a1!a2!
Ba1+a2+2

2 (a1 + a2 + 2)!
.

Whenv = 0 this yields [55]:

ζBirk(−a1,−a2) := ζBirk(−a1,−a2; 0)

= −
1

a2 + 1

a2+1∑

j=0

B j

(
a2 + 1

j

)
Ba1+a2− j+2

a1 + a2 − j + 2

+
Ba1+1

a1 + 1
Ba2+1

a2 + 1
+ (−1)a1+1a1!a2!

Ba1+a2+2

2 (a1 + a2 + 2)!

which coincides with (62).
Thus, renormalized double zeta values at non-positive integers obtained by two different meth-

ods – using the symmetrized renormalized evaluator evren,sym
0 or a Birkhoff decomposition– coin-

cide.
Formula (62) yields the following table of valuesζ(−a1,−a2) for a1, a2 ∈ {0, . . . , 6} derived in

[55]:
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(63)

ζ(−a,−b) a = 0 a = 1 a = 2 a = 3 a = 4 a = 5 a = 6

b = 0 3
8

1
12

7
720 − 1

120 − 11
2 520

1
252

1
224

b = 1 1
24

1
288 − 1

240 − 19
10 080

1
504

41
20 160 − 1

480

b = 2 − 7
720 − 1

240 0 1
504

113
151 200 − 1

480 − 307
166 320

b = 3 − 1
240

1
840

1
504

1
28 800 − 1

480 − 281
332 640

1
264

b = 4 11
2 520

1
504 − 113

151 200 − 1
480 0 1

264
117 977

75 675 600

b = 5 1
504 − 103

60 480 − 1
480

1
1232

1
264

1
127 008 − 691

65 520

b = 6 − 1
224 − 1

480
307

166 320
1

264 − 117 977
75 675 600 −

691
65 520 0

This table of values differs from the one derived in [36] (see Table (45)) with which ithowever
matches for arguments (a, b) with a+ b odd andb , 0 and for diagonal arguments (−a,−a).
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