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ON THE CLUSTER MULTIPLICATION THEOREM FOR

ACYCLIC CLUSTER ALGEBRAS

FAN XU

Abstract. In [3] and [13], the authors proved the cluster multiplication the-
orems for finite type and affine type. We generalize their results and prove

the cluster multiplication theorem for arbitrary type by using the properties
of 2–Calabi–Yau (Auslander–Reiten formula) and high order associativity.

Introduction

Cluster algebras were introduced by Fomin and Zelevinsky in [9]. By defini-
tion, the cluster algebras are commutative algebras generated by a set of variables
called cluster variables. Let Q be a quiver and we denote by A(Q) the associ-
ated cluster algebra. If Q does not contain oriented cycles, we call Q an acyclic
quiver. The cluster algebras associated to acyclic quivers are called acyclic clus-
ter algebras. Their relations to quiver representations were first revealed in [19].
In [1], the authors found the general framework of the link of cluster algebras and
quiver representations and introduced the cluster categories as the categorification
of acyclic cluster algebras. For an acyclic quiver Q, the associated cluster category
C(Q) is the orbit category of the bounded derived category Db(modkQ) over a field
k by the auto–equivalence F := [1]τ−1 where [1] is the translation functor and τ is
the AR-translation. In general, one can define the cluster category of a hereditary
category with Serre duality ν by taking τ = [−1]ν as shown in [16].

In [2], the authors introduced a certain structure of Hall algebra involving the
cluster category C(Q) by associating the objects in C(Q) to some variables given
by an explicit map X?, called the Caldero-Chapoton map. We denote by XM

the variable (called the generalized cluster variable) associated to an object M in
C(Q). In the case that M is a non-projective kQ-module, the authors gave the the
multiplication of XM and XτM as follows:

(0.1) XτMXM = XB + 1

where B is the middle term of the almost split sequence involving M and τM.
If Q is a simply laced Dynkin quiver, Caldero and Keller [3] extended the above

multiplication (0.1) to the multiplication of any two variables associated to two
indecomposable objects in C(Q) as follows

χc(PExt1(M,N))XMXN =
∑

Y

(χc(PExt1(M,N)Y ) + χc(PExt1(N,M)Y ))XY
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where χc is the Euler-Poincaré characteristic of étale cohomology with proper sup-
port, M,N ∈ C(Q) and Y runs through the isoclasses of C(Q). This is called the
cluster multiplication theorem for finite type.

The above cluster multiplication theorem was generalized to the affine type in [13]
by using Green’s theorem and the existence of Hall polynomials for affine quivers.
A cluster multiplication theorem for indecomposable regular modules over the path
algebra of an affine quiver was proved in [7]. In [20], the author gave the cluster
multiplication theorem in the case when dimkExt1(M,N) = 1 and introduced the
cluster character for an arbitrary 2-Calabi-Yau category with cluster-tilting objects.

The aim of this paper is to generalize the cluster multiplication theorems for
finite and affine types to arbitrary type. Note that there is an alternative proof of
the cluster multiplication theorem for arbitrary type in [31] by applying the pro-
jective version of Green’s theorem under the C∗-action. Compared with [31], the
present proof has the following differences. First, it is more direct and simpler. The
present proof is independent of the projective version of Green’s formula and only
involves the properties of high order associativity (analogous to the associativity
of the multiplication of a derived Hall algebra defined in [29], see Section 3.2 for
details) and 2-Calabi-Yau (Auslander-Reiten formula). Second, it is more accessi-
ble. The present proof uses Euler characteristics of algebraic varieties instead of
quasi Euler characteristics of orbit spaces of algebraic varieties under the actions
of algebraic groups in [31]. Third, it is more promising to apply the approaches
in the present proof to hereditary categories which are not module categories of
hereditary algebras.

The interaction between cluster algebras and representation theory of quiver
naturally makes us ask the question whether there are cluster algebras associated to
the cluster categories of the categories of coherent sheaves over weighted projective
lines or elliptic curves. Also, it is meaningful to ask what is the corresponding
cluster multiplication theorem. The intuitive idea is to extend the method in [31].
However, the proof in [31] heavily depends on Green’s theorem which holds just for
module categories of hereditary algebras. Also, the proof of the projective version
of Green’s formula in [31] is complicated. We need to look for a new approach not
using Green’s theorem.

The high order associativity in the present proof is analogous to the associativity
of the multiplication in derived Hall algebras under combinatorial context. Hence,
it is hopeful that the property of high order associativity holds for categories of
coherent sheaves over weighted projective lines or elliptic curves if we discuss the
property under the suitable geometric context (see Remark 4.2). As for the property
of 2-Calabi-Yau, the situation is the same.

This paper is organized as follows. In Section 1, we recall the general theory
involving the computation of Euler characteristics of algebraic varieties and the
cluster category needed in this paper. In order to use the proposition in Section 1
to compute Euler characteristics, we need construct some morphisms of varieties.
Section 2 is contributed to this aim. In Section 3, we prove an equation called the
high order associativity. The cluster multiplication theorem for arbitrary type is
stated and proved in the last section. As an application of the proof of the main
theorem, we induce the formula (0.1). Finally, we illustrate our theorem through
an example which has been studied in detail in [5] and [33].
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1. preliminaries

Let Q = (Q0, Q1, s, t) be an acyclic quiver, where Q0 and Q1 are the sets of
vertices and arrows, respectively, and s, t : Q1 → Q0 are maps such that any arrow
α starts at s(α) and terminates at t(α). Let CQ be the path algebra of Q over
C. We denote by modCQ the category of finite dimension CQ-modules. A map
d : Q0 → N such that Q0 \ d−1(0) is finite is called a dimension vector for Q.

1.1. Euler characteristics and the pushforward functor. For any dimension
vector d = (di)i∈Q0 , we consider the affine space over C

Ed = Ed(Q) =
⊕

α∈Q1

HomC(Cds(α) ,Cdt(α)).

Any element x = (xα)α∈Q1 in Ed defines a representation M(x) = (Cd, x) where
Cd =

⊕

i∈Q0
Cdi . Naturally we can define the action of the algebraic group

Gd(Q) =
∏

i∈Q0
GL(Cdi) on Ed by g.x = (gt(α)xαg

−1
s(α))α∈Q1 .

Let X be an algebraic variety over C. A constructible function f : X → Q

satisfies that f(X) is a finite subset of Q and f−1(c) is a constructible subset of
X for any c ∈ Q. Write M(X) for the Q-vector space of constructible functions
over X. Now, suppose O is a constructible subset of Ed. The function 1O is called a
characteristic function if 1O(x) = 1, for any x ∈ O and 0 otherwise. It is clear that
1O is the simplest constructible function and any constructible function is a linear
combination of characteristic functions. We say O is Gd-invariant if Gd · O = O.
In this case, 1O is called Gd-invariant.

In the following, the constructible sets and functions will always be assumed
Gd-invariant unless particularly mentioned.

Let χ denote the Euler characteristic in compactly-supported cohomology. Let
X be an algebraic variety and O a constructible subset of X which is the disjoint
union of finitely many locally closed subsets Xi for i = 1, · · · ,m. Define χ(O) =
∑m

i=1 χ(Xi). We note that it is well-defined. We have the following properties of χ.

Proposition 1.1 ([22] and [15]). Let X,Y be algebraic varieties over C. Then

(1) If the algebraic varietyX is the disjoint union of finitely many constructible
sets X1, · · · , Xr, then

χ(X) =

r
∑

i=1

χ(Xi).

(2) If ϕ : X −→ Y is a morphism such that all fibers have the same Euler
characteristic χ, then χ(X) = χ · χ(Y ).

(3) χ(Cn) = 1 and χ(Pn) = n+ 1 for all n ≥ 0.

We recall the pushforward functor from the category of algebraic varieties over
C to the category of Q-vector spaces (see [18] and [15]). Let φ : X → Y be a
morphism of varieties. For f ∈M(X) and y ∈ Y, define

φ∗(f)(y) =
∑

c 6=0

cχ(f−1(c) ∩ φ−1(y)).

Theorem 1.2 ([6],[15]). Let X,Y and Z be algebraic varieties over C, φ : X →
Y and ψ : Y → Z be morphisms of varieties, and f ∈ M(X). Then φ∗(f) is
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constructible, φ∗ : M(X) → M(Y ) is a Q-linear map and (ψφ)∗ = ψ∗φ∗ is a
Q-linear map from M(X) to M(Z).

Given a CQ-moduleM and any dimension vector e ∈ NQ0 , we denote by Gre(M)
the set of submodules M1 ⊂ M such that dimM1 = e. It is a closed subvariety of
the product of Grassmannians of subspaces

∏

i∈Q0
Grei

(Cdi). Here, dimM = d.
Set

Gre(Ed) = {(M,M1) |M ∈ Ed,M1 ∈ Gre(M)}.

Proposition 1.3. Let d and e be two dimension vectors. Then the function
f : Ed → Q sending M to χ(Gre(M)) is an Gd-invariant constructible function.

Proof. Consider the natural projection φ : Gre(Ed) → Ed. It is clear that φ is
surjective. By Theorem 1.2, we know that φ∗(1Gre(Ed)) = f is constructible. �

For fixed d, we can make finitely many choices of e such that Gre(Ed) is
nonempty. For M ∈ Ed, we define [11, Section 1.2]

〈M〉 := {M ′ ∈ Ed | χ(Gre(M
′)) = χ(Gre(M)) for any e}

Proposition 1.3 has the following corollary.

Corollary 1.4. There exists a finite finite subset S(d) of Ed such that

Ed =
⊔

M∈S(d)

〈M〉.

1.2. The cluster category. Given an acyclic quiver Q and i ∈ Q0, we denote by
Si the simple CQ-module associated to i, by Pi its projective cover and by Ii its
injective hull. Given a CQ-module M , we denote by dimM its dimension vector.
For any i ∈ Q0, we will always denote by si the i-th vector of the canonical basis
of ZQ0 . In particular for any i ∈ Q0, we have dimSi = si. We denote by 〈−,−〉
the Euler form on CQ-mod given by

〈M,N〉 := 〈dimM,dimN〉 = dimCHomCQ(M,N) − dimCExt 1
CQ(M,N)

for any CQ-modules M and N . In the following, for any additive category F , we
denote by ind(F) the subcategory of F formed by a system of representatives of
the isomorphism classes of indecomposable objects in F .

Let Db(Q) be the bounded derived category of modCQ with the shift functor
[1] and the AR-translation τ . The cluster category associated to Q is the orbit
category C = C(Q) := Db(Q)/F with F = [1]τ−1. It is proved in [16] that C is a
triangulated category with the canonical triangle functor Db(Q) → C. As in [1] and
[3], the category C is 2-Calabi-Yau, i.e., there is an almost canonical non degenerate
bifunctorial pairing

φ : Ext 1
C(M,N) × Ext 1

C(N,M) → C.

Here, the property of 2-Calabi-Yau is induced by Auslander-Reiten formula

Ext 1
CQ(X,Y ) ∼= DHomCQ(Y, τX)

for X,Y ∈ modCQ. We can identify CQ-modules with their images in C(Q) by
considering the embedding of modCQ into C(Q). Each object M in C(Q) can be
uniquely decomposed into the form: M = M0 ⊕ PM [1] = M0 ⊕ τPM , where M0 ∈
mod CQ and PM is projective in mod CQ.
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The Caldero-Chapton map of an acyclic quiver Q is the map

XQ
? : obj(C(Q)) → Q(x1, · · · , xn)

defined in [2] by the following rules:

(1) if M is an indecomposable CQ-module, then

XQ
M =

∑

e

χ(Gre(M))
∏

i∈Q0

x
−〈e,si〉−〈si,dimM−e〉
i ;

(2) if M = Pi[1] is the shift of the projective module associated to i ∈ Q0, then

XQ
M = xi;

(3) for any two objects M,N of CQ, we have

XQ
M⊕N = XQ

MXQ
N .

Here, for v = (v1, · · · , vn) ∈ Zn, we set

xv = xv1
1 · · ·xvn

n .

Without risk of confusion, we can write X? instead of XQ
? . Let R = (rij) be a

matrix of size |Q0| × |Q0| satisfying

rij = dim CExt1(Si, Sj)

for any i, j ∈ Q0. We need the following lemma [13, Lemma 1] to reformulate the
Caldero-Chapoton map.

Lemma 1.5. For any CQ-module M without projective summands, we have

(dimM)R+ (dimτM)Rtr = dimM + dimτM

For a projective CQ-module P and an injective module I, we have

(dimP )R = dimradP, (dimI)Rtr = dimsocI

Following this lemma, we reformulate the above map by the following rules:

(1)

XτP = XP [1] = xdimP/radP , Xτ−1I = XI[−1] = xdimsocI

for any projective CQ-module P and any injective CQ-module I;
(2)

XM =
∑

e

χ(Gre(M))xeR+(dimM−e)Rtr−dimM

where M is a CQ-module and Rtr is the transpose of the matrix R.

The following proposition shows that the above reformulation induces the third
rule in the definition of the Caldero-Chapoton map. It is actually the degeneration
form of Green’s formula in [8].

Proposition 1.6. For any M,N ∈ modCQ, we have XM⊕N = XMXN .

Proof. It is enough to prove

χ(Gre(M ⊕N)) =
∑

e1+e2=e

χ(Gre1
(M)) · χ(Gre2

(N)).

We define a morphism of varieties:

Gre(M ⊕N) →
⊔

e1+e2=e

Gre1(M) × Gre2(N).
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Any submodule L of M ⊕ N induces uniquely the submodules M1 and N1 of M
and N , respectively. It is a surjective morphism. The fibre for any (M1, N1) ∈
Gre1

(M) × Gre2
(N) is isomorphic to an affine space by [13, Lemma 7]. Then,

Proposition 1.1 induces the identity of the proposition. �

For any M ∈ mod CQ, we say that P0 is the maximal projective direct summand
of M if M ≃M ′⊕P0 as the CQ-modules and M ′ does not contain projective direct
summands.

Let Ã(Q) be the subalgebra of Q(x1, · · · , xn) generated by

{XM , XτP |M,P ∈ ind (modCQ) and P is projective }

and A(Q) the subalgebra of Ã(Q) generated by

{XM , XτP |M,P ∈ ind (modCQ), P is projective and Ext 1(M,M) = 0 }.

The algebra A(Q) is called the cluster algebra associated to Q. If Q is of finite

type, then Ã(Q) is just the cluster algebra A(Q) as shown in [4]. We note that

the relation between Ã(Q) and A(Q) is different from the relation between the
Ringel-Hall algebra and the composition algebra for Q (see Section 4.2).

2. Morphisms of varieties induced by kernel, cokernel and

AR-translation

The cluster multiplication theorem for arbitrary type in Section 4 will be ex-
pressed under the context of CQ-modules. In the sequel, we will only consider the
restriction of AR-translation τ to modCQ, rather than the cluster category. We
use the same notation without risk of confusion. Hence, τP = τ−1I = 0 for any
projective module P and injective module I. In this section, we define morphisms
induced by kernel, cokernel and AR-translation τ . These morphisms guarantee that
we can use Proposition 1.1.

2.1. Morphisms induced by kernel and cokernel. Let (Cd, x) and (Cd
′

, x′)

be two CQ-modules. In this subsection, for any f ∈ HomCQ((Cd, x), (Cd
′

, x′)), we
will describe kerf , Imf and cokerf under geometric context. The main barrier is
that the underlying spaces for kerf , Imf and cokerf are not of the form Ce for
some dimension vector e. First, we deal with the case of vector spaces.

Let Cd and Cd′

be two vector spaces of dimension d and d′, respectively. Let
Md′×d be the set of all matrices of size d′ × d. Then Md′×d = Hom(Cd,Cd′

) and
Md′×d =

⊔

r Md′×d(r) where Md′×d(r) consists of all matrices of rank r. For
any A = (aij) ∈ Md′×d(r), let us denote the r × r submatrix of A formed by
the rows 1 ≤ i1 < · · · < ir ≤ d′ and the columns 1 ≤ j1 < · · · < jr ≤ d by
△(i1,··· ,ir ;j1,··· ,jr)(A). For every pair of multi-indices I = {i1, · · · , ir} ⊆ {1, · · · , d′}
and J = {j1, · · · , jr} ⊆ {1, · · · , d}, we define Md′×d(r, I, J) to be the subset of
Md′×d(r) consisting of the matrices A which satisfy A /∈ Md′×d(I

′, J ′) for any
I ′ < I or I ′ = I, J ′ < J and det △(i1,··· ,ir;j1,··· ,jr) (A) 6= 0. Here I ′ < I is the
common lexical order. We have a finite stratification of Md′×d(r), i.e.,

Md′×d(r) =
⊔

(I,J)

Md′×d(r, I, J).

In particular, if d < d′ and r = d, this gives a finite stratification of the Grass-
mannian Grd(C

d′

) consisting of all d-dimensional subspaces of Cd′

. Indeed, for any
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I = {i1, · · · , id} ⊂ {1, · · · , d′} and J = {1, · · · , d}, let Mg
d′×d(I) be the subset of

Md′×d(d, I, J) consisting of the matrices A satisfying that △(I;J)(A) are identity
matrices. Then there is a finite stratification

Grd(C
d′

) =
⊔

I

Mg
d′×d(I).

For any A ∈ Md′×d(d, I, J), we substitute the identity matrix for the submatrix
△(I;J)(A) and then A corresponds to a unqiue matrix A′ ∈Mg

d′×d(I).
For every pair of multi-indices I = {i1, · · · , ir} and J = {j1, · · · , jr}, we will

define the following morphism of varieties:

Υ1
(r,I,J) : Md′×d(r, I, J) →Md×(d−r)(d− r),

Υ2
(r,I,J) : Md′×d(r, I, J) → Grd−r(C

d),

Ω1
(r,I,J) : Md′×d(r, I, J) →M(d′−r)×d′(d′ − r),

and

Ω2
(r,I,J) : Md′×d(r, I, J) → Grr(C

d′

).

Let Pij(k) be the elementary matrix of size k× k transposing the i-th row and the
j-th row. Set PI(d

′) = Pr,ir
(d′) · · ·P1,i1(d

′) and PJ (d) = Pr,jr
(d) · · ·P1,j1(d). Then

we have

PI(d
′)APJ (d) ∈Md′×d(r, (1, · · · , r)(1, · · · , r))

for any matrixA ∈Md′×d(r, I, J). The matrix PI(d
′)APJ (d) has the form

(

A1 A2

A3 A4

)

with an invertible r × r matrix A1 and A4 = A3A
−1
1 A2 = A2A

−1
1 A3. The matrix

PJ(d)

(

−A−1
1 A2

Id−r

)

determines the solution space {x ∈ Cd | Ax = 0}. The matrix

(−A3A
−1
1 , Id′−r)PI(d

′) determines the solution space {x ∈ Cd | xA = 0}. We define

Υ1
(r,I,J)(A) = PJ (d)

(

−A−1
1 A2

Id−r

)

,

Ω1
(r,I,J)(A) = (−A3A

−1
1 , Id′−r)PI(d

′).

Assume that PJ (d)

(

−A−1
1 A2

Id−r

)

∈Md×(d−r)(d−r, I
′, J ′) for some I ′ ⊂ {1, · · · , d}

and J ′ = (1, · · · , d − r). Then we define Υ2
(r,I,J)(A) to be the unique matrix

in Mg
d×(d−r)(I

′) which the matrix PJ(d)

(

−A−1
1 A2

Id−r

)

corresponds to. Similarly,

we define Ω2
(r,I,J)(A) to be the unique matrix in Mg

d′×r(I) which the submatrix

△(1,··· ,d′;j1,··· ,jr
)(A) of A corresponds to. Hence, for any A ∈ Md′×d(r, I, J), we

have a long exact sequence of C-spaces

0 // Cd−r
Υ1

(r,I,J)(A)
// Cd

A //
Cd′

Ω1
(r,I,J)(A)

//
Cd′−r // 0 .

Now, we consider the CQ-module. Let (Cd, x) and (Cd
′

, x′) be two CQ-modules
with dimension vectors d and d′, respectively. For any morphism of CQ-modules
f : (Cd, x) → (Cd

′

, x′), we have f = (fi)i∈Q0 with fi ∈ Md′

i
×di

and ft(α)xα =
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x′αfs(α) for any i ∈ Q0 and α ∈ Q1. There is a finite stratification of Md′

i
×di

for
any i ∈ Q0 as follows:

Md′

i
×di

=
⊔

ri,Ii,Ji

Md′

i
×di

(ri, Ii, Ji).

Then HomCQ((Cd, x), (Cd
′

, x′)) is a closed subset of
∏

i∈Q0

Md′

i
×di

=
⊔

((ri,Ii,Ji))i∈Q0

∏

i∈Q0

Md′

i
×di

(ri, Ii, Ji).

This induces a finite stratification of HomCQ((Cd, x), (Cd
′

, x′)).
For any i ∈ Q0, we fix a pair of multi-indices Ii = (ki1, · · · , kiri

) and Ji =
(li1, · · · , liri

). We have the following morphism of varieties:

Υ1
((ri,Ii,Ji))i∈Q0

:=
∏

i∈Q0

Υ1
(ri,Ii,Ji)

:
∏

i∈Q0

Md′

i
×di

(ri, Ii, Ji) →
∏

i∈Q0

Mdi×(di−ri)(di−ri),

Υ2
((ri,Ii,Ji))i∈Q0

:=
∏

i∈Q0

Υ2
(ri,Ii,Ji)

:
∏

i∈Q0

Md′

i
×di

(ri, Ii, Ji) →
∏

i∈Q0

Grdi−ri
(Cdi),

Ω1
((ri,Ii,Ji))i∈Q0

:=
∏

i∈Q0

Ω1
(ri,Ii,Ji)

:
∏

i∈Q0

Md′

i
×di

(ri, Ii, Ji) →
∏

i∈Q0

M(d′

i
−ri)×d′

i
(d′i−ri),

and

Ω2
((ri,Ii,Ji))i∈Q0

:=
∏

i∈Q0

Ω2
(ri,Ii,Ji)

:
∏

i∈Q0

Md′

i
×di

(ri, Ii, Ji) →
∏

i∈Q0

Grri
(Cd′

i).

Without loss of generality, we can assume the above CQ-module homomorphism
f ∈

∏

i∈Q0
Md′

i
×di

(ri, Ii, Ji). Then we have Υ2
((ri,Ii,Ji))i∈Q0

(f) ∈ Grd−r((C
d, x))

with r = (ri)i∈Q0 . Indeed, since

ft(α)xα(Υ2
(rs(α),Is(α),Js(α))

(fs(α))) = x′αfs(α)(Υ
2
(rs(α),Is(α),Js(α))

(fs(α))) = 0,

then xα(Υ2
(rs(α),Is(α),Js(α))

(fs(α))) ∈ Υ2
(rt(α),It(α),Jt(α))

(ft(α)). In fact,

Υ2
((ri,Ii,Ji))i∈Q0

(f) = kerf.

As discussed in the case of matrix, for any i ∈ Q0, we assume PIi
(d′i)fiPJi

(di)

has the form

(

A1(fi) A2(fi)
A3(fi) A4(fi)

)

with an invertible ri × ri matrix A1(fi) and

A4(fi) = A3(fi)(A1(fi))
−1A2(fi) = A2(fi)(A1(fi))

−1A3(fi). Then we have a CQ-
module (Cd−r, y) isomorphic to kerf such that

yα =
(

0 Idt(α)−rt(α)

)

PJt(α)
(dt(α))xαPJs(α)

(ds(α))

(

−(A1(fs(α)))
−1A2(fs(α))

Ids(α)−rs(α)

)

.

Now we can write down the following left exact sequence of CQ-modules

0 // (Cd−r, y)
Υ1

((ri,Ii,Ji))i∈Q0
(f)

// (Cd, x)
f // (Cd

′

, x′) .

By similar discussion, we obtain

Ω2
((ri,Ii,Ji))i∈Q0

(f) = Imf.
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and a CQ-module (Cd
′−r, y′) isomorphic to cokerf satisfying the following right

exact sequence

(Cd, x)
f // (Cd

′

, x′)
Ω1

((ri,Ii,Ji))i∈Q0
(f)

// (Cd
′−r, y′) // 0 .

Therefore, we have the following proposition.

Proposition 2.1. For any CQ-modules (Cd, x) and (Cd
′

, x′), there are the follow-
ing maps whose restriction to stratifications are morphisms of varieties

Υ1 : HomCQ((Cd, x), (Cd
′

, x′)) →
∏

e

Inj(Ee(Q), (Cd, x)),

Υ2 : HomCQ((Cd, x), (Cd
′

, x′)) →
∏

e

Gre((C
d, x)),

Ω1 : HomCQ((Cd, x), (Cd
′

, x′)) →
∏

f

Surj((Cd
′

, x′),Ef(Q)),

Ω2 : HomCQ((Cd, x), (Cd
′

, x′)) →
∏

e′

Gre′((Cd
′

, x′)),

where Inj(Ee(Q), (Cd, x)) is the set

{((Ce, y), g) | g : (Ce, y) → (Cd, x) is an injective CQ-homomorphism }

and Surj((Cd
′

, x′),Ef(Q)) is the set

{((Cf, y′), g′) | g′ : (Cd
′

, x′) → (Cf, y′) is an surjective CQ-homomorphism }

satisfying that for any f ∈ HomCQ((Cd, x), (Cd
′

, x′)), there exists a long exact
sequence of CQ-modules

0 // (Ce, y)
Υ1(f) // (Cd, x)

f // (Cd
′

, x′)
Ω1(f) // (Cf, y′) // 0 .

By the proof of Proposition 2.1, we also have the following corollary.

Corollary 2.2. For any CQ-modules (Cd, x) and dimension vector e, there are the
following maps whose restriction to stratifications are morphisms of varieties

Υ0 : Gre((C
d, x)) → Ee(Q) and Ω0 : Gre((C

d, x)) → Ed−e(Q)

such that for any M ∈ Gre((C
d, x)), as the CQ-modules, Υ0(M) ∼= M and

Ω0(M) ∼= (Cd, x)/M .

2.2. Morphisms induced by AR-translation τ . In this subsection, we will
describe the Auslander-Reiten translation τ under geometric context. Let Φ+,Φ−

be the Coxeter functors introduced by Bernsetein, Gelfand and Ponomarev. We
denote by T the endofunctor of modCQ sending (Cd, x) to (Cd,−x). Then the
functor TΦ+ on modCQ is just the AR-translation τ on modCQ.

Given any CQ-module (Cd, x) ∈ Ed, the representation

Φ+(Cd, x) := (Ce, y)

can be constructed inductively as described in [25]. Let us recall it. Since Q is
acyclic, one can define a partial order on Q0 such that for any arrow β, s(β) > t(β).
Assume that the dimension ej with j < i, the linear maps hβ : Cet(β) → Cds(β) for
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all β ∈ Q1 with s(β) ≤ i and the maps yα : Ces(α) → Cet(α) for all α ∈ Q1 with
s(α) < i are defined. Then we have the sequence

(2.1) 0 // Cei

Υ1((xα,hβ)α,β)//
⊕

t(α)=i Cds(α) ⊕
⊕

s(β)=i Cet(β)
(xα,hβ)α,β // Cdi

where ei is the dimension of the kernel of the map (xα, hβ)α,β and Υ1 was defined
as in Section 2.1. Now we define the map yβ : Ces(β) → Cet(β) for any β with
s(β) = i to be the composition

Cei

Υ1((xα,hβ)α,β)//
⊕

t(α)=i Cds(α) ⊕
⊕

s(β)=i Cet(β) // Cet(β)

where the second map is the projection. Inductively we obtain the representation
τ(Cd, x) = TΦ+(Cd, x) = (Ce,−y). We write τ(d) = e. The geometric construc-

tion of Φ− (also τ−) is similar. For any CQ-module (Cd, x) ∈ Ed, let (Cd
+

, x+) and
P0(d, x) be its maximal non-projective summand and the maximal projective sum-

mand, respectively, i.e., (Cd, x) = (Cd
+

, x+) ⊕ P0(d, x) satisfying that (Cd
+

, x+)
contains no projective summands and P0 is projective. In fact, we have the isomor-
phism of CQ-modules

τ−1τ(Cd, x) ∼= (Cd
+

, x+).

We can explicitly write down the submodule (V, x) := τ−1τ(Cd, x) of (Cd, x).
The space Vi is just the image of (xα, hβ)α,β for any i ∈ Q0 in the sequence (2.1).

Indeed, Dually, we denote by (Cd
−

, x−) and I0(d, x) the maximal non-injective
summand and the maximal injective summand of (Cd, x), respectively. Then

ττ−1(Cd, x) ∼= (Cd
−

, x−).

The above construction and its duality induces the following two propositions.

Proposition 2.3. For any dimension vector d, there exists a morphism of varieties

φ+ : Ed →
∏

τ(d+)

Eτ(d+)

such that φ+((Cd, x)) = τ(Cd, x).

Dually, we have

Proposition 2.4. For any dimension vector d, there exists a morphism of varieties

φ− : Ed →
∏

τ−1(d−)

Eτ−1(d−)

such that φ−((Cd, x)) = τ−1(Cd, x).

Let f = (fi)i∈Q0 : (Cd, x) → (Cd
′

, x′) be any morphism of CQ-modules. Let

Φ+((Cd, x)) = (Ce, y) and Φ+((Cd
′

, x′)) = (Ce
′

, y′). Then we can inductively con-

struct the maps g = (gi)i∈Q0 : (Ce, y) → (Ce
′

, y′) by the following commutative
diagram:

0 // Cei

gi

��

(hα,yβ)α,β //
⊕

t(α)=i Cds(α) ⊕
⊕

s(β)=i Cet(β)

⊕fs(α)⊕gt(β)

��

(xα,hβ)α,β // Cdi

fi

��
0 //

Ce′

i

(h′

α,y′

β)α,β // ⊕
t(α)=i Cd′

s(α) ⊕
⊕

s(β)=i Ce′

t(β)
(xα,hβ)α,β //

Cd′

i
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The commutativity of the diagram guarantees that g = (gi) is the morphism of
CQ-modules. Hence, by using Proposition 2.1, Corollary 2.2, Proposition 2.3 and
2.4, we have the following result.

Proposition 2.5. For any dimension vectors d, there exists a morphism of varieties

Gre((C
d, x))

gτ // Grτ(e)((C
τ(d), τx))

3. High order associativity

In [29], Toën associated an associative algebra (called the derived Hall algebra)
to a dg category over a finite field k. In particular, we can define the derived
Hall algebra DH(Q) for the derived category Db(modkQ). Let uX denotes the
isomorphism class ofX ∈ Db(modkQ). The algebra DH(Q) is an associative algebra
generated by uX for any X ∈ Db(modkQ). The associative multiplication contains
a non-trivial case as follows. For any L1, L2 ∈ mod kQ, we have

uL2 ∗ uL1[1] =
∑

[θ],θ:L1→L2

g
K[1]⊕C
L1[1]L2

uK[1]⊕C

where g
K[1]⊕C
L1[1]L2

∈ Q is called the derived Hall number and K = kerθ, C = cokerθ

and [θ] is the equivalence class of θ. Here θ1 is equivalent to θ2 if there exist auto-
morphisms aL1 and aL2 such that θ1aL1 = aL2θ2. The above equation implies the
following exact sequence

0 // K // L1
θ // L2

// C // 0 .

By the associativity of the multiplication of DH(Q), we have

uL2 ∗ (uK1[1] ∗ uL1[1]) = (uK1[1] ∗ uL2) ∗ uL1[1] = uK1[1] ∗ (uL2 ∗ uL1[1])

for any kQ-modules K1, L1, L2 and

(uL2 ∗ uL1[1]) ∗ uC2 = uL2 ∗ (uL1[1] ∗ uC2)

for any kQ-modules C2, L1, L2. These two equations can be illustrated by the
following commutative diagrams.

K1

��

K1

��
0 // K

��

// L

��

// L2
// C // 0

0 // K2
// L1

// L2
// C // 0

and

0 // K // L1
// L2

��

// C1

��

// 0

0 // K // L1
// L //

��

C //

��

0

C2 C2
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We note that the long exact sequences in the above diagrams can be decomposed
into short exact sequences so that the above two equations can be induced by using
the associativity of the multiplication of the Ringel-Hall algebra for two times. In
this section, we will prove an identity analogous to the above associativity of the
multiplication of the derived Hall algebra in the context of Euler characteristic.
The identity is called the high order associativity .

3.1. The description of Ext 1
CQ(M,N). Let M ∈ Ed1

, N ∈ Ed2
and m(M,N)

be the vector space over C of all tuples m = (m(α))α∈Q1 such that linear maps
m(α) ∈ HomC(Ms(α), Nt(α)) for all α ∈ Q1. We define a linear map π : m(M,N) →

Ext1(M,N) by mapping m ∈ m(M,N) to a short exact sequence

ε : 0 // N

0

@

1
0

1

A

// L(m)

“

0 1
”

// M // 0

where as a vector space, L(m) is the direct sum of Y and X . For any α ∈ Q1,

L(m)α =

(

Nα m(α)
0 Mα

)

.

Let us fix a vector space decomposition m(X,Y ) = kerπ ⊕ E(M,N), then we can
identify Ext1(M,N) with E(M,N). There is a natural C∗-action on E(M,N)
by defining t.m = (tm(α)) for any t ∈ C∗. This action induces the action of C∗

on Ext1(M,N). Considering the isomorphism of CQ-modules between L(m) and
L(t.m), we know that t.ε is the following short exact sequence:

0 // N

0

@

t
0

1

A

// L(m)

“

0 1
”

// M // 0

for any t ∈ C∗. Let Ext1(M,N)L be the subset of Ext1(M,N) with the middle
term isomorphic to L, then Ext1(M,N)L can be viewed as a constructible subset
of Ext1(M,N) by identifying Ext1(M,N) and E(M,N). Define

Ext1(M,N)O = {[0 → N → L→M → 0] ∈ Ext1(M,N) \ {0} | L ∈ O}

where the set O is a Gd1+d2-invariant constructible subset of Ed1+d2 (see [32] or
[11]). It can be identified with

E(M,N)O = {m ∈ E(M,N) | L(m) ∈ O}

which is constructible and C∗-invariant, see [11]. Hence, Ext1(M,N)O can be
viewed as a C∗-invariant constructible subset of Ext1(M,N) \ {0}. Let e1, e2 be
two dimension vectors.

3.2. High order associativity. Let M,N ∈ modCQ and τ be the Auslander-
Reiten translation on modCQ. We assume that M contains no projective sum-
mands. Note that for any X ∈ modCQ, there is a decomposition of CQ-modules

X ∼= τ(τ−1X) ⊕X/τ(τ−1X)

with X/τ(τ−1X) isomorphic to an injective CQ-module. For dimension vectors
d1,d2 and e1, e2, we consider the sets

DEFd1,d2
e1,e2

(N, τM) = {(g, Y1, X1) | g ∈ HomCQ(N, τM),dimkerg = d1,
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dimτ−1(cokerg) = d2, V1 ∈ Gre1
(Υ0Υ

2(g)), U1 ∈ Gre2
(φ−Ω0Ω

2(g))}

and DFEe1,e2(N, τM) =

{(N1,M1, g
′) | N1 ∈ Gre1(N),M1 ∈ Gre2(M), g′ ∈ HomCQ(N/N1, τM1)}.

Here, Υ0,Υ
2,Ω0,Ω

2 and φ− were defined as in Section 2. By definition, Υ0Υ
2(g) ∈

Ed1
, φ−Ω0Ω

2(g) ∈ Ed2
and Υ0Υ

2(g) ∼= kerg, φ−Ω0Ω
2(g) ∼= τ−1(cokerg). We set

U = φ−Ω0Ω
2(g) and V = Υ0Υ

2(g).

Remark 3.1. Let’s explain the notations for these sets. The letter “D” means
“derived”. The letters “E” and “F” stand for extension and flag, respectively. Let
M and N be two indecomposable CQ-modules. Then (for example, see [1] or [13])

Ext 1
C(Q)(N,M) ∼= Ext 1

CQ(N,M) ⊕ HomCQ(N, τM)

and if Ext 1
CQ(N,M) = 0, then any g ∈ HomCQ(N, τM) induces an extension of M

by N in the cluster category C(Q) as follows

M → kerg ⊕ cokerg[−1] → N
g
−→ τM.

Recall that each principal C∗-bundle is locally trivial in the Zariski topology.
Let π : P → Q be such a bundle. Then (π,Q) is a geometric quotient for the free
action of C∗ on P (see [28] and [11]). In the following, we will write Px for the
C∗-orbit of x if x belongs to a principal C∗-bundle.

Let Hom(N, τM)(d1,d2) be the subset of Hom(N, τM) consisting of the mor-
phism g with dimkerg = d1,dimτ−1(cokerg) = d2. By Corollary 1.4, we have
finite subsets S(d1) and S(d2) of Ed1

and Ed2
, respectively such that

Ed1 =
⊔

V ∈S(d1)

〈V 〉, Ed2 =
⊔

U∈S(d2)

〈U〉.

It induces a finite partition

Hom(N, τM)(d1,d2) =
⊔

V ∈S(d1),U∈S(d2),I

Hom(N, τM)〈V 〉⊕〈U〉⊕I[−1],

where Hom(N, τM)〈V 〉⊕〈U〉⊕I[−1] is

{g ∈ Hom(N, τM)(d1,d2) | Υ0Υ
2(g) ∈ 〈V 〉,Ω0Ω

2(g) = τU ′ ⊕ I,

for some U ′ ∈ 〈U〉, I is an injective CQ-module}.

Note that Ω0Ω
2(g) ∼= cokerg.

There is a natural C∗-action on Hom(N, τM)(d1,d2)
∗ := Hom(N, τM)(d1,d2)\

{0} with a principal C∗-bundle:

Hom(N, τM)(d1,d2)
∗ → PHom(N, τM)(d1,d2).

Thus by considering the trivial action of C∗ on Gre1,e2(d1,d2) := Gre1
(Ed1

) ×
Gre2

(Ed2
), we obtain a new principal C∗-bundle (similar to [11, Section 5.4]):

π : Hom(N, τM)(d1,d2)
∗×Gre1,e2(d1,d2) → Hom(N, τM)(d1,d2)

∗×C∗

Gre1,e2(d1,d2).

We note that the action of C∗ on Hom(N, τM)(d1,d2)
∗ × Gre1,e2(d1,d2) is free.

The set DEFd1,d2
e1,e2

(N, τM) is its C∗-stable constructible subset. This implies that

PDEFd1,d2
e1,e2

(N, τM) := π(DEFe1,e2(N, τM))
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is again a principal C∗-bundle and (π,PDEFe1,e2(N, τM)) is a geometric quotient
for the action of C∗ on DEFe1,e2(N, τM) (similar to [11, Section 5.4]). We have a
natural projection:

p : PDEFd1,d2
e1,e2

(N, τM) → PHom(N, τM)(d1,d2).

There is a finite partition

PHom(N, τM)(d1,d2) =
⊔

V ∈S(d1),U∈S(d2),I

PHom(N, τM)〈V 〉⊕〈U〉⊕I[−1]

where PHom(N, τM)〈V 〉⊕〈U〉⊕I[−1] is the set

{Pg ∈ PHom(N, τM)(d1,d2) | Υ0Υ
2(g) ∈ 〈V 〉,Ω0Ω

2(g) = τU ′ ⊕ I,

for some U ′ ∈ 〈U〉, I is an injective CQ-module}.

For any Pg ∈ PHom(N, τM)(d1,d2)〈V 〉⊕〈U〉⊕I[−1], the Euler characteristic of the

fibre p−1(Pg ∈ PHom(N, τM)(d1,d2)) is χ(Gre1(V )) ·χ(Gre2(U)). By Proposition
1.1 we obtain the following lemma.

Lemma 3.2. For fixed dimension vector d, we have
∑

e1+e2+dimM−d2=d

χ(PDEFd1,d2
e1,e2

(N, τM))

=
∑

d1,d2,e1,e2,U,V,I;
e1+e2+dimM−d2=d,
U∈S(d2),V ∈S(d1)

χ(PHom(N, τM)〈V 〉⊕〈U〉⊕I[−1])χ(Gre1
(V )χ(Gre2

(U))

There is also a free action of C∗ on DFEe1,e2(N, τM) defined by

t.(N1,M1, g) = (N1,M1, t.g)

for any t ∈ C∗ and (N1,M1, g) ∈ DFEe1,e2(N, τM). The orbit space is denoted by
PDFEe1,e2(N, τM).

Consider a natural projection

q : PDFEe1,e2(N, τM) → Gre1
(N) × Gre2

(M).

Define 〈(N1,M1)〉 to be

{(N ′
1,M

′
1) ∈ Gre1

(N)×Gre2
(M) | χ(PHom(N/N ′

1,M
′
1)) = χ(PHom(N/N1, τM1))}.

We note that the notation is different from the Euler form 〈N1,M1〉 of N1 and M1.
Since q∗(1PDFEe1,e2 (N,τM)) is a constructible function on Gre1

(N) × Gre2
(τM) by

Theorem 1.2, 〈(N1,M1)〉 is a constructible subset and there exists a finite subset
R(e1, e2) of Gre1

(N) ×Gre2
(M) such that

Gre1
(N) × Gre2

(M) =
⊔

(N1,M1)∈R(e1,e2)

〈(N1,M1)〉.

Hence, by Proposition 1.1, we have the following lemma.

Lemma 3.3. For fixed dimension vector d, we have
∑

e1,e2;e1+e2=d

χ(PDFEe1,e2(N, τM)) =

∑

e1,e2;e1+e2=d

∑

(N1,M1)∈R(e1,e2)

χ(〈(N1,M1)〉)χ(PHom(N/N1, τM1)).
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Now, we can compare DEFd1,d2
e1,e2

(N, τM)) with DFEe1,e2(N, τM)). Let (g, V1, U1) ∈

DEFd1,d2
e1,e2

(N, τM). Then we have a long exact sequence

0 → V → N
g
−→ τM → τU ⊕ I → 0

where V = Υ0Υ
2(g) and U = φ−Ω0Ω

2(g). It is clear that V1 ∈ Gre1
(N). By

Proposition 2.1 and Corollary 2.2, we have a morphism of varieties Gre1(N) →
EdimN−e1 sending any submodule N1 to a CQ-module isomorphic to the quotient
module N/N1. Let U∗ be the pullback of the following diagram

0 // Ω2(g) // U∗ //

��

U1

��

// 0

0 // Ω2(g) // M // U // 0

Note that Ω2(g) = Img. Then U∗ ∈ GrdimM−dimU+dimU1(M) and we have the
commutative diagram

0 // V //

��

N
g //

��

τM // τU ⊕ I // 0

0 // V/V1
// N/Y1

g′

// τU∗ //

OO

τU1 ⊕ I //

OO

0

Hence, for fixed dimension vector d, by Proposition 2.1, Corollary 2.2 and 2.5, we
have a morphism:

Γ :
⊔

d1,d2,e1,e2;
e1+e2+dimM−d2=d,

DEFd1,d2
e1,e2

(N, τM) →
⊔

e′

1,e′

2;e
′

1+e2=d

DFEe′

1,e′

2
(N, τM)

mapping (g, V1, U1) to (V1, U
∗, g′). Conversely, we have an inverse morphism:

Γ′ :
⊔

e′

1,e′

2

DFEe′

1,e′

2
(N, τM) →

⊔

d1,d2,e1,e2;
e1+e2+dimM−d2=d,

DEFd1,d2
e1,e2

(N, τM).

The action of C∗ induces the homeomorphism

PΓ :
⊔

d1,d2,e1,e2;
e1+e2+dimM−d2=d,

PDEFd1,d2
e1,e2

(N, τM) →
⊔

e′

1,e′

2;e
′

1+e2=d

PDFEe′

1,e′

2
(N, τM).

By Lemma 3.2 and 3.3, The above homeomorphism induces the following proposi-
tion referred to as the high order associativity.

Proposition 3.4. With the above notations, for fixed dimension vector d, we have
∑

d1,d2,e1,e2,U,V,I;
e1+e2+dimM−d2=d,
U∈S(d2),V ∈S(d1)

χ(PHom(N, τM)〈V 〉⊕〈U〉⊕I[−1])χ(Gre1
(V ))χ(Gre2

(U))

=
∑

e′

1,e′

2;e
′

1+e′

2=d

∑

(N1,M1)∈R(e′

1,e′

2)

χ(〈(N1,M1)〉)χ(PHom(N/N1, τM1)).
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4. main theorem and proof

4.1. The main theorem. We introduce some notations. For any CQ-module M
and projective CQ-module P , let I = DHomCQ(P,CQ). By Corollary 1.4, we have
the following finite partitions:

Hom(M, I) =
⊔

I′,V ∈S(d1(I′))

Hom(M, I)〈V 〉⊕I′[−1],

Hom(P,M) =
⊔

P ′,U∈S(d2(P ′))

Hom(P,M)P ′ [1]⊕〈U〉,

where d1(I
′) = dimI+dimI ′−dimM , d2(P

′) = dimP +dimP ′−dimM , Ed1
=

⊔

V ∈S(d1)
〈V 〉, Ed2

=
⊔

U∈S(d2)
〈U〉, Hom(M, I)〈V 〉⊕I′[−1] = {f ∈ Hom(P,M) |

Υ0Υ
2(f) = V ′,Ω0Ω

2(f) = I ′ for some V ′ ∈ 〈V 〉}, and Hom(P,M)P ′[1]⊕〈U〉 =

{g ∈ Hom(P,M) | Υ0Υ
2(g) = P ′,Ω0Ω

2(g) = U ′ for some U ′ ∈ 〈U〉}. Note that
Υ0Υ

2(f) ∼= kerf and Ω0Ω
2(f) ∼= cokerf.

The following theorem generalizes the cluster multiplication theorem for finite
type in [3] and affine type in [13] and is referred to as the cluster multiplication
theorem for arbitrary type.

Theorem 4.1. Let Q be an acyclic quiver. Then
(1) for any CQ-modules M,N such that M contains no projective summand, we
have

dimCExt1CQ(M,N)XMXN =
∑

L∈S(e)

χ(PExt1CQ(M,N)〈L〉)XL

+
∑

I,d1,d2

∑

V ∈S(d1),U∈S(d2)

χ(PHomCQ(N, τM)〈V 〉⊕〈U〉⊕I[−1])XUXV x
dimsocI

where e = dimM + dimN .
(2) for any CQ-module M and projective CQ-module P , we have

dimCHomCQ(P,M)XMxdimtop(P ) =
∑

I′,V ∈S(d1(I′))

χ(PHomCQ(M, I)〈V 〉⊕I′[−1])XV x
dimsocI′

+
∑

P ′,U∈S(d2(P ′))

χ(PHomCQ(P,M)P ′[1]⊕〈U〉)XUx
dimtop(P ′)

where top(P ) = P/radP , I = DHomCQ(P,CQ), I ′ is injective, and P ′ is projective.

Proof. We set

Σ2 :=
∑

I,d1,d2,

∑

V ∈S(d1),U∈S(d2)

χ(PHomCQ(N, τM)〈V 〉⊕〈U〉⊕I[−1])XUXV x
dimsocI

By definition of XM , the sum is
∑

I,d1,d2,e1,e2,V ∈S(d1),U∈S(d2)

χ(PHomCQ(N, τM)〈V 〉⊕〈U〉⊕I[−1])·

χ(Gre1
(V ))χ(Gre2

(U)x(e1+e2)R+(dimV −e1+dimU−e2)Rtr−(dimV +dimU)+dimsocI .

By Lemma 1.5, we have

(dimV + dimU)Rtr − (dimV + dimU) + dimsocI

= (dimV + dimU)Rtr − (dimV + dimU) + dimI(1 −Rtr)

= (dimτU + dimI − dimV ) − (dimτU + dimI − dimV )Rtr + dimU(Rtr −R)
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= (dimτM − dimN) − (dimτM − dimN)Rtr + dimU(Rtr −R)

= dimτM(1 −Rtr) − dimN + dimNRtr + dimU(Rtr −R)

= (dimM − dimU)R+ (dimN + dimU)Rtr − (dimM + dimN)

Then, the exponent of x is

(e1 + e2 +dimM −dimU)R+ (dimN +dimU − e1 − e2)R
tr − (dimM +dimN).

Hence, we have

Σ2 =
∑

d

∑

I,d1,d2,e1,e2;
e1+e2+dimM−d2=d

∑

V ∈S(d1),U∈S(d2)

χ(PHomCQ(N, τM)〈V 〉⊕〈U〉⊕I[−1])·

χ(Gre1
(V ))χ(Gre2

(U)xdR+(e−d)Rtr−e

where e = dimM + dimN. Using Proposition 3.4, we obtain that Σ2 is equal to
∑

d

∑

e′

1,e′

2;e′

1+e′

2=d

∑

(N1,M1)∈R(e′

1,e′

2)

χ(〈(N1,M1)〉)χ(PHomCQ(N/N1, τM1))x
dR+(e−d)Rtr−e.

Now we set

Σ1 :=
∑

L∈S(e)

χ(PExt1CQ(M,N)〈L〉)XL

We consider

EFd(M,N) = {(ε, L1) | ε ∈ Ext 1
CQ(M,N)L \ {0}, L1 ∈ Grd(L)}.

As a vector space, L = M ⊕N. Define

t.(m,n) = (m, t.n)

for any (m,n) ∈ M ⊕ N and t ∈ C∗. This induces the action of C∗ on L1. So
we have an C∗-action on EFd(M,N) ([11]). As the discussion in Section 2.5, the
C∗-action induces the geometric quotient PEFd(M,N). The projection

PEFd(M,N) → PExt 1
CQ(M,N)

has the fibre {(Pε, L1) | L1 ∈ Grd(L)} for any Pε ∈ PExt 1
CQ(M,N)L. By Theorem

1.1 and Corollary 1.4, this implies

χ(PEFd(M,N)) =
∑

L∈S(e)

χ(PExt1CQ(M,N)〈L〉)χ(Grd(L))

and

Σ1 =
∑

d

χ(PEFd(M,N))xdR+(e−d)Rtr−e.

On the other hand, we have a natural morphism

Ψ : EFd(M,N) →
⊔

e′

1,e′

2;e
′

1+e′

2=d

Gre′

1
(M) × Gre′

2
(N)

mapping (ε = [(f, g)], L1) to (g(L1), f
−1(L1)). Here ε is the equivalence class of the

exact sequence

0 → N
f
−→ L

g
−→M → 0

The morphism Ψ induces a morphism

PΨ : PEF(M,N) :=
⊔

d

PEFd(M,N) →
⊔

e′

1,e′

2

Gre′

1
(M) × Gre′

2
(N).
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Let’s compute the fibre for any (M1, N1) ∈ Gre′

1
(M)×Gre′

2
(N). Consider the map

β′ : Ext 1(M,N) ⊕ Ext 1
CQ(M1, N1) → Ext 1

CQ(M1, N)

sending (ε, ε′) to εM1 − ε′N where εM1 and ε′N are induced by including M1 ⊆ M
and N1 ⊆ N, respectively as follows:

εM1 : 0 // N // L1
//

��

M1
//

��

0

ε : 0 // N // L
π // M // 0

where L1 is the pullback, and

ε′ : 0 // N1
//

��

L′ //

��

M1
// 0

ε′N : 0 // N // L′
1

// M1
// 0

where L′
1 is the pushout. It is clear that ε, ε′ and M1, N1 induce the inclusions

L1 ⊆ L and L′ ⊆ L′
1. Considering the map

p0 : Ext 1
CQ(M,N) ⊕ Ext 1

CQ(M1, N1) → Ext 1
CQ(M,N),

we have ([11, Lemma 2.4.2])

(PΨ)−1(M1, N1) = {(Pε, L′) | Pε ∈ P(p0(kerβ′)), L′ ∈ F (ε,M1, N1)}

where F (ε,M1, N1) = {L′ ⊆ L | π(L′) = M1, L
′ ∩ N = N1} is isomorphic to the

affine space Hom(M1, N/N1) or an empty set ([13, Lemma 7], see also [11, Lemma
3.3.1] for a similar discussion). By the 2-Calabi-Yau property (Auslander-Reiten
formula) Ext 1(M,N) ≃ DHom(N, τM), we can consider the dual of β′ which is

β : Hom(N, τM1) → Hom(N, τM) ⊕ Hom(N1, τM1).

By using the knowledge of bilinear form and orthogonality, we know that as a vector
space,

(p0(kerβ′))⊥ = Imβ
⋂

Hom(N, τM) ≃ Hom(N/N1, τM1).

Note that if F (ε,M1, N1) is an empty set, then P(p0(kerβ′)) is an empty set. In
this case, dimCExt1(M,N) = χ(PHom(N/N1, τM1)). Hence, we obtain

(4.1) χ((PΨ)−1(M1, N1)) = dimCExt1(M,N) − χ(PHom(N/N1, τM1)).

Now, using the partitions as in Proposition 3.4, we know

Gre′

1
(M) × Gre′

2
(N) =

⊔

(N1,M1)∈R(e′

1,e′

2)

〈(N1,M1)〉.

Hence, according the Euler characteristic of the fibres in (4.1) and Theorem 1.1, we
obtain Σ1 is equal to
∑

d

∑

e′

1,e′

2;e′

1+e′

2=d

∑

(N1,M1)∈R(e′

1,e′

2)

χ(〈(N1,M1)〉)(dimCExt1(M,N)−χ(PHomCQ(N/N1, τM1)))·

xdR+(e−d)Rtr−e

Hence,

Σ1 + Σ2 = dimCExt1(M,N)XMXN .
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We complete the proof of the first assertion of the theorem. As for the second part,
we set

T1 =
∑

I′,e1,V ;V ∈S(d1(I′))

χ(PHomCQ(M, I)〈V 〉⊕I′[−1])χ(Gre1
(V ))·

xe1R+(d1(I′)−e1)Rtr−d1(I
′)+dimsocI′

and
T2 =

∑

P ′,e2,U ;U∈S(d2(P ′))

χ(PHomCQ(P,M)P ′[1]⊕〈U〉)χ(Gre2
(V ))·

xe2R+(d2(P
′)−e2)Rtr−d2(P ′)+dimtop(P ′)

By the similar argument as in Corollary 1.4, there is a finite subset R(e1) of
Gre1(M) such that partition

Gre1
(M) =

⊔

M1∈R(e1)

{M1}

where {M1} = {W ∈ Gre1(M) | χ(PHom(M/W, I)) = χ(PHom(M/M1, I))} is a
constructible subset of Gre1

(M). Note that

{M1} = {W ∈ Gre1
(M) | χ(PHom(P,W )) = χ(PHom(P,M1))}.

By using Proposition 1.1, we obtain that T1 is equal to
∑

e1

∑

M1∈R(e1)

χ({M1}) · χ(PHom(M/M1, I))x
e1R+(dimM−e1)Rtr−d

M
+dimsoc(I)

and T2 is equal to
∑

e1

∑

M1∈R(e1)

χ({M1}) · χ(PHom(P,M1))x
e1R+(dimM−e1)R

tr−dimM+dimtop(P ).

Since dimsoc(I) = dimtop(P ) and

χ(PHom(P,M1)) + χ(PHom(M/M1, I)) = χ(PHom(P,M)),

we have

T1 + T2 = dimCHom(P,M)
∑

e

χ(Gre(M))xeR+(dimM−e)Rtr−dimM+dimtop(P )

= dimCHomCQ(P,M)XMxdimtop(P ).

�

Remark 4.2. The proof of Theorem 4.1 only involves Auslander-Reiten formula and
the high order associativity. It inspires us to look for an analog of the present cluster
theorem for hereditary categories with Serre duality. The simplest case is as follows:
if Q is a Kronecker quiver, then we know Db(Q) is derived equivalent to Db(cohP1).
We hope that the present approach can help us to found the cluster multiplication
for cohP1. One of the difficulties is to substitute the stacks for module varieties to
rewrite the results in this paper as done in [15] and [27]. It will be interesting to
compare these cluster multiplication theorems.

Remark 4.3. In Theorem 4.1, the condition that M contains no projective sum-
mands is not essential. Let M ′ = M ⊕P with the maximal projective summand P .
Then we multiply two sides of the first equation in Theorem 4.1 by XP to obtain
the equation involving XM ′XN .
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Now we consider a particular case that M is a non-projective indecomposable
CQ-module and N = τM. By the Auslander-Reiten formula, there is an isomor-
phism of EndCQ(M)op-modules: Ext 1

CQ(M, τM) ∼= DEndCQ(τM). It induces the
isomorphisms:

(4.2) socExt1CQ(M, τM) ∼= D(EndCQ(τM)/radEndCQ(τM)),

where socExt1CQ(M, τM) is the socle of Ext 1
CQ(M, τM) as a EndCQ(M)op-module,

and

(4.3) Ext1CQ(M, τM)/socExt1CQ(M, τM) ∼= D(radEndCQ(τM)).

The equations (4.2) and (4.3) can be viewed as variants of 2-Calabi-Yau property
(Auslander-Reiten formula). An extension ε ∈ Ext 1

CQ(M, τM) is an Auslander-

Reiten sequence if and only if ε ∈ socExt1CQ(M, τM). We denote by L0 the mid-

dle term of ε. In the proof of Theorem 4.1, we substitute socExt1CQ(M, τM) or

Ext1CQ(M, τM)/socExt1CQ(M, τM) for Ext1CQ(M, τM) and the above variants (4.2)
or (4.3) for Auslander-Reiten formula. Then we obtain the following result (see [2]
or Lemma 7 in [13] for different proofs).

Proposition 4.4. Let Q be an acyclic quiver and M be a non-projective indecom-
posable CQ-module. Then

dimCExt1CQ(M, τM)/socExt1CQ(M, τM)XMXτM =
∑

L≇L0∈S(e)

χ(PExt1CQ(M, τM)〈L〉)XL

+
∑

I,d1,d2

∑

V ∈S(d1),U∈S(d2)

χ(PradEndCQ(τM)〈V 〉⊕〈U〉⊕I[−1])XUXV x
dimsocI

and

XMXτM = 1 +XL0

where e = dimM+dimτM and PradEndCQ(τM) is the quotient of radEndCQ(τM)
under the free action of C∗ and L0 is the middle term of the Auslander-Reiten
sequence ending in M .

Proof. We only need to prove the second equation. It is equivalent to prove that
dimCsocExt1CQ(M, τM)XMXτM is equal to

(4.4) χ(PExt1CQ(M, τM)L0)XL0 + χ(P(EndCQ(τM)/radEndCQ(τM))).

We use the notation in the proof of Theorem 4.1, and set

Σ1 := χ(PExt1CQ(M, τM)L0)XL0

and

EFd(M, τM) = {(ε, L1) | ε ∈ Ext 1
CQ(M,N)L0 , L1 ∈ Grd(L0)}.

The C∗-action induces the geometric quotient PEFd(M, τM). We have

Σ1 =
∑

d

χ(PEFd(M, τM))xdR+(e−d)Rtr−e

and a morphism

PΨ : PEF(M, τM) :=
⊔

d

PEFd(M, τM) →
⊔

e′

1,e′

2

Gre′

1
(M) × Gre′

2
(τM).
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For any (M1, N1) ∈ Gre′

1
(M) × Gre′

2
(τM), we consider the map

β′ : socExt 1(M, τM) ⊕ Ext 1
CQ(M1, N1) → Ext 1

CQ(M1, τM)

and the map

p0 : socExt 1
CQ(M, τM) ⊕ Ext 1

CQ(M1, N1) → socExt 1
CQ(M, τM),

Then as in the proof of Theorem 4.1, we have

(PΨ)−1(M1, N1) = {(Pε, L1) | Pε ∈ P(p0(kerβ′)), L1 ∈ F (ε,M1, N1)}

where F (ε,M1, N1) = {L1 ⊆ L | π(L1) = M1, L1 ∩ N = N1} is isomorphic
to the affine space Hom(M1, N/N1) or a empty set. By using the variant (4.2)
of Auslander-Reiten formula socExt 1(M,N) ≃ D(End(τM)/radEnd(M)), we can
consider the dual of β′

β : Hom(τM, τM1) → End(τM)/radEnd(M) ⊕ Hom(N1, τM1)

Then

(p0(kerβ′))⊥ = Imβ
⋂

End(τM)/radEnd(M).

which vanishes unless N1 = 0 and M1 = M . Hence, we obtain

χ((PΨ)−1(M1, N1)) =

{

dimCsocExt1(M,N), if N1 6= 0 or M1 6= M,
0, otherwise.

This implies the equation (4.4). �

4.2. An example. Let us illustrate Theorem 4.1 and Proposition 4.4 by the fol-
lowing example. Let Q be the Kronecker quiver 1

// // 2 . Let S1 and S2 be the
simple modules associated to vertices 1 and 2, respectively. Hence,

R =

(

0 2
0 0

)

and R′ =

(

0 0
2 0

)

and

x0 := XS2 = xdimS2R′−dimS2 + xdimS2R−dimS2 = x−1
2 (1 + x2

1),

x3 := XS1 = xdimS1R′−dimS1 + xdimS1R−dimS1 = x−1
1 (1 + x2

2).

For λ ∈ P1(C), let uλ be the regular representation C
1 //
λ

// C . By definition,

Xuλ
= x(1,1)R′−(1,1)+x(1,1)R−(1,1)+x(0,1)R+(1,0)R′−(1,1) = x1x

−1
2 +x−1

1 x2+x−1
1 x−1

2 .

Similarly, let uλ(n) (n ≥ 1) be the unique indecomposable regular CQ-module with

socle uλ and length n. In particular, uλ(1) = uλ. Then dimCExt 1(uλ, uλ(n)) = 1
and for any f 6= 0 ∈ Hom(uλ(n), τuλ), we have an short exact sequence

0 → uλ(n−1) → uλ(n)
f
−→ τuλ → 0.

By using Theorem 4.1, we have

dimCExt 1(uλ, uλ(n))Xuλ
Xuλ(n)

= Xuλ(n+1)
−Xuλ(n−1)

.

It is clear that Xuλ(n)
is irrelevant to the choice of λ ∈ P1(C). We denote it by

rn. Set r0 = 1. Hence, we have

(4.5) r1 = x0x3 − x1x2 and rn+1 = r1rn − rn−1
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which has been shown as the elements of the dual semicanonical canonical basis
in [5] and [33]. For n = 2, it is known that dimCExt1CQ(uλ(2), uλ(2)) = 2. The
corresponding two linear independent extensions are as follows:

0 → uλ(2) → uλ(4) → uλ(2) → 0

and

0 → uλ(2) → uλ(1) ⊕ uλ(3) → uλ(2) → 0.

The latter is the Auslander-Reiten sequence. By using Theorem 4.1, we have

dimCExt 1(uλ(2), uλ(2))Xuλ(2)
Xuλ(2)

= Xuλ(4)
+Xuλ(1)

Xuλ(3)
+X2

uλ(1)
+ 1.

Hence, we have

2r22 = r4 + r1r3 + r21 + 1.

However, The equations (4.5) tell us that r21 = r2 +1 and r4 +r2 = r1r3. Therefore,
we have r22 = r1r3 + 1. It agrees with Proposition 4.4.

Acknowledgements. I am grateful to Dr. Xueqing Cheng and Prof. Bin Zhu for
helpful discussions.
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