
ar
X

iv
:m

at
h/

05
04

48
4v

1 
 [

m
at

h.
D

G
] 

 2
3 

A
pr

 2
00

5

Existence and non-existence of skew branes

Serge Tabachnikov∗ and Yulia Tyurina

Department of Mathematics, Penn State
University Park, PA 16802, USA

1 Introduction

In mid-1960s, H. Steinhaus conjectured that every closed smooth curve in
3-dimensional space has parallel tangent lines. Shortly after that, B. Segre
[12, 13] constructed examples of curves without parallel tangent lines but
showed that no such curve can lie on the unit sphere (and therefore, an
ellipsoid). Call a curve without parallel tangents a skew loop. Geometrical
and topological study of skew loops and their multi-dimensional analogs has
become an active research subject.

We briefly survey the available results. The supply of skew loops is abun-
dant: for example, every knot type can be realized by one [18]. The aversion
of skew loops to ellipsoids was extended to convex quadric surfaces in [6] and
to non-convex ones in [16], see also [5, 14]. Ghomi and Solomon [6] prove
a converse statement: if a convex surface is not quadratic then it carries a
skew loop. Another non-existence result [16]: no skew loop lies on a ruled
developable disc.

A multi-dimensional version of a skew loop is called a skew brane.1 A
skew brane f : Mn → Rn+2 is an immersion such that the tangent spaces
df(TxM) and df(TyM) are not parallel for all x 6= y. Pairs of parallel tangent
spaces correspond to self-intersections of the image of the tangent Gauss map
M → Gn(n + 2) in the Grassman manifold of n-dimensional subspaces in

∗Partially supported by NSF
1The terms “skew loop” and “skew brane” were coined by M. Ghomi and B. Solomon;

see [4, 7, 15] for the study of other classes of non-degenerate embeddings of manifolds into
affine and projective spaces
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Rn+2. Since dim Gn(n+2) = 2n, these self-intersections generically occur in
isolated points and cannot be destroyed by small perturbations of f . If M is
oriented, one distinguishes the cases when parallel tangent spaces have the
same or the opposite orientations; we refer to the former as positively and
the latter as negatively parallel tangent spaces.

The aversion of skew loops to quadric surfaces extends to skew branes: no
skew brane can lie on a quadratic hypersurface of any signature [16, 14]; for
spheres, this was proved in [17]. The paper by Lai [10] has been overlooked
in the more recent literature on the subject. Unaware of the work by Segre,
Lai provides an example of a skew loop in R3 and of a torus T 2 ⊂ R4, free
from pairs of negatively parallel tangent spaces. The main result of [10] is
the following theorem on non-existence of skew branes.

Theorem 1 Let M2n ⊂ R2n+2 be a closed oriented embedded submanifold
with non-zero Euler characteristic χ. Then there exists a pair of distinct
points x, y ∈ M such that the tangent spaces TxM and TyM are negatively
parallel. For a generic submanifold M , the number of such (unordered) pairs
(x, y) is not less than χ2/4.

We give a streamlined proof in Section 2. By a generic submanifold
we mean the one whose Gauss map is an immersion with transversal self-
intersections; see Section 2 for a justification.

The papers by Lai [9, 10] continue the work by Blaschke [2] and Chern
and Spanier [3] concerning embedded surfaces in R4. In this case, we add
to Theorem 1 the following result. Let M ⊂ R4 be a closed oriented im-
mersed surface of genus g. Assume that M is generic in the sense that
self-intersection of M are transversal. Then each double point is assigned a
sign; denote by d the algebraic number of double points.

Theorem 2 M has at least |d2−(1−g)2| pairs of negatively parallel tangent
planes.

In Section 3 we construct examples of skew branes. Let R2n be a subspace
in R2n+1 and S2n−1 ⊂ R2n the unit sphere. We consider this sphere as a
codimension 2 submanifold in 2n + 1-dimensional space.

Theorem 3 There exists a small perturbation of S2n−1 in R2n+1, free from
pairs of parallel tangent spaces.
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For n = 1, a much stronger result is proved in [6]: given a non-centrally
symmetric smooth closed curve γ in the horizontal plane, there exists a skew
loop on the cylinder over γ that projects diffeomorphically on γ (“cylinder
lemma”). We believe that an analog of the cylinder lemma holds for odd-
dimensional spheres; see Conjecture 3.1 and a much more general Conjecture
3.2.

We also construct a skew torus in 4-dimensional space (our construction
is different from that in [10]). Let T 2

0 ⊂ R4 be the standard torus which is
the product of two unit circles in the plane.

Theorem 4 There exists a small perturbation of T 2
0 in R4, free from pairs

of parallel tangent planes.

Finally, we construct an immersed 2-dimensional sphere in R4 with one
double point and no pairs of negatively parallel tangent planes; this shows
that Theorem 2 is sharp, at least in the spherical case. Let M0 be an im-
mersed sphere in R4 given by the equation

(α, h) 7→ (1 − h2)(cos α, sin α, h cosα, h sin α)

where (α, h) are the cylindrical coordinates on the unit sphere; the origin is
the double point, the image of both poles given by h = ±1.

Theorem 5 There exists a small perturbation of M0, free from pairs of neg-
atively parallel tangent planes.

Acknowledgments. We are grateful to D. Fuchs, M. Ghomi and B.
Solomon for their interest and help.

2 Topological obstructions to the existence of

skew branes

In this section we prove Theorems 1 and 2. The proof of the former in
[10] is based on a detailed analysis of the Schubert cell decomposition of
Grassmanian manifolds made in [9]; our proofs use characteristic classes of
vector bundles and are more straightforward.

Consider the tangent Gauss map F : M2n → G+
2n(2n + 2) to the Grass-

man manifold of oriented 2n-dimensional subspaces in R2n+2. Let σ be
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the involution of the Grassmanian that inverts the orientation of every 2n-
dimensional subspace. The proofs consist of computing the homology class
F∗[M ] ∈ H2n(G+

2n(2n + 2),Z) where [M ] is the fundamental class of M and
of the homology intersection number F∗[M ] ∩ σ∗F∗[M ]. We suppress the
coefficients from the notation of homology and cohomology.

Let p and q be even, and consider the Grassmanian G+
p (p+q). Denote by

ξp and νq the tautological vector bundles: the former has the oriented p-plane
E, and the latter its orthogonal complement, as the fiber over E, considered
as a point in G+

p (p+q). The bundles are oriented and so is the Grassmanian.
The tangent bundle is expressed as follows: TG+

p (p+q) = Hom(ξ, ν). Denote
the fundamental class by c ∈ Hpq(G

+
p (p+q)) and let x = e(ξ) ∈ Hp(G

+
p (p+q))

and y = e(ν) ∈ Hq(G
+
p (p+q)) be the Euler classes. Denote by dot the pairing

between homology and cohomology classes.

Lemma 2.1 One has: c · xq = 2, c · yp = 2(−1)pq/4, xy = 0.

Proof. The homological Euler class of an oriented vector bundle η over an
oriented manifold M can be found as follows: choose a generic section of η
and let N ⊂ M be the set of zeros of this section. Then N is a submanifold,
oriented as the intersection of this section and the zero section. The Euler
class e(η) is dual to the homology class [N ].

Fix a vector e ∈ Rp+q and project it to each p-plane. This gives a section
of ξ whose zero manifold Ne consists of p-planes orthogonal to e; one has:
N = G+

p (p+q−1). The class [N ]∩ . . .∩ [N ] (q−1 times) is dual to xq−1; it is
represented by the set Q consisting of p-planes that are orthogonal to fixed
q − 1 vectors. Hence Q = G+

p (p + 1) = Sp. One has: c · xq = [Q] · x, which
is the Euler number of the restriction of ξ on Q. The latter is the tangent
bundle of the sphere, and its Euler number is 2.

Consider the map d : G+
p (p+q) → G+

q (p+q) that takes an oriented p-plane
to its orthogonal complement. Denote by ξ′ and ν ′ the tautological bundles
over G+

q (p + q) and x′, y′ their Euler classes. Then d∗(ξ′) = ν, d∗(ν ′) = ξ and
d∗(x′) = y, d∗(y′) = x. Let c′ be the fundamental class of G+

q (p + q).

Claim: d∗(c) = (−1)pq/4c′.

Assuming this claim and interchanging p and q, one has:

2 = c′ · (x′)p = (−1)pq/4d∗(c) · (x′)p = (−1)pq/4c · d∗(x′)p = (−1)pq/4c · yp,

as stated.
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To prove that xy = 0, fix a vector f ∈ Rp+q and, for every p-plane E,
project f to E⊥. This gives a section of ν whose zero manifold Pf consists
of p-planes that contain f . The homology class, dual to xy, is [Ne ∩ Pf ]. If
f is not orthogonal to e then this intersection is empty, and hence xy = 0.

It remains to prove the above claim. One has:

d∗(TG+
q (p + q)) = d∗(Hom(ξ′, ν ′)) = Hom(ν, ξ).

The bundles Hom(ξ, ν) and Hom(ν, ξ) are naturally isomorphic, and we need
to find whether this isomorphism preserves orientations.

The orientation of the former bundle is determined by the identification
of a p × q matrix with the pq-vector formed by its first, second, etc., rows.
Likewise, for the latter bundle, one considers the pq-vector formed by its
first, second, etc., columns. A matrix element (i, j) has positions (i− 1)p+ j
in the first and (j − 1)q + i in the second vector. Thus we need to find the
sign of the permutation of pq elements

τ : (i − 1)p + j 7→ (j − 1)q + i; i = 1, . . . , q, j = 1, . . . , p.

Let us find the number of inversions in τ : this is the number of pairs (i1, j1)
and (i2, j2) satisfying

(i1 − 1)p + j1 > (i2 − 1)p + j2, (j1 − 1)q + i1 < (j2 − 1)q + i2

or, equivalently,

(i1 − i2)p > j2 − j1, (j2 − j1)q > i1 − i2. (1)

It follows from (1) that (i1 − i2)pq > i1 − i2 and hence

i1 > i2, j2 > j1. (2)

Since j ≤ p and i ≤ q, inequalities (2) imply (1). The number of pairs
satisfying (2) equals

(

p

2

)(

q

2

)

≡ pq

4
mod 2.

2

Let us now set p = 2n, q = 2. As before, let x and y be the Euler
classes of the tautological bundles, and denote by u ∈ H2n(G+

2n(2n + 2))
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and v ∈ H4n−2(G
+
2n(2n + 2)) the respective homological Euler classes. Set

w = v ∩ . . . ∩ v ∈ H2n(G+
2n(2n + 2)). It follows from Lemma 2.1 that

u ∩ u = 2, w ∩ w = 2(−1)n, u ∩ w = 0.

As a consequence, u and w are linearly independent.
It is known that H2n(G+

2n(2n + 2)) = Z2, see, e.g., [9]. It follows that one
may take u and w for a basis in H2n(G+

2n(2n + 2);Q).

Lemma 2.2 One has: F∗[M ] = (χ/2)u.

Proof. Note that the induced bundles F ∗(ξ) and F ∗(ν) are the tangent and
the normal bundles of M . One has:

F∗([M ])∩u = F∗([M ]) ·x = [M ] ·F ∗(x) = [M ] ·F ∗(e(ξ)) = [M ] · e(TM) = χ.

It is well known that the Euler class of the normal bundle ν(M) of an em-
bedded manifold M vanishes (see, e.g., [3]). Hence

F∗([M ]) ∩ w = F∗([M ]) · yn = [M ] · F ∗(yn) = [M ] · e(ν(M))n = 0.

One can write: F∗[M ] = au + bw with a, b ∈ Q, and Lemma 2.1 implies that
a = χ/2 and b = 0. 2

It follows that

σ∗F∗[M ] ∩ F∗[M ] = −
(χ

2

)

u ∩
(χ

2

)

u = −χ2

2
. (3)

If χ 6= 0 then F (M) and σF (M) must intersect, therefore M has negatively
parallel tangent spaces. This proves the first statement of Theorem 1.

Let us now prove Theorem 2.

Lemma 2.3 One has: e(ν(M)) = −2d.

Proof. Since R4 is contractible, one has: [M ] ∩ [M ] = 0. On the other
hand, this homological self-intersection can be computed as follows. Choose
a generic section γ of the normal bundle ν(M) and let Mε be the result
of pushing M slightly along this section. Then every double point of M
contributes two points (with the same sign) to M ∩ Mε, and each zero of γ
contributes one point to this intersection. It follows that e(ν(M)) + 2d = 0.
2
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Arguing as in Lemma 2.2, one finds that F∗([M ]) = (1 − g)u + dw, and
therefore

σ∗F∗[M ] ∩ F∗[M ] = 2(d2 − (1 − g)2).

This implies Theorem 2.
Let us return to the general position statement of Theorem 1. If the Gauss

image F (M2n) ⊂ G+
2n(2n + 2) is an immersed submanifold which intersects

σ(F (M2n)) transversally then their homological intersection equals the al-
gebraic number of the intersection points. In particular, there are no fewer
intersection points than the absolute value of the homological intersection
number, see (3).

Thus we need the following lemma in which “generic” is understood as
belonging to an open and dense subset in the space of smooth maps with an
appropriate topology; see, e.g., [8].

Lemma 2.4 For a generic immersion Mn → Rn+2, the tangent Gauss map
G : M → Gn(n + 2) is an immersion with transverse self-intersections.

Proof. Locally, M is represented as the graph of a smooth map Un → R2

where U is a domain in Rn. Thus one has two functions, say, u and v, of
variables x = (x1, . . . , xn). The tangent space to M at the point correspond-
ing to x ∈ U is parallel to the graph of the linear map Rn → R2 with the
n × 2 matrix A(x) = (uxi

, vxi
), i = 1, . . . , n. Hence, in an appropriate local

chart of the Grassmanian, the Gauss map G : U → Gn(n + 2) is given by
x 7→ A(x).

The Gauss map is an immersion if the 2n × n matrix B = (uxixj
, vxixj

),
i, j = 1, . . . , n has full rank n. This matrix is formed by two symmetric n×n
matrices of second partial derivatives. Consider the n(n + 1)-dimensional
space of 2n × n matrices formed by two symmetric n × n matrices, and let
∆ be its algebraic subvariety that consists of matrices of rank n− 1 or less.

Claim: codim ∆ ≥ n + 1.

Assuming this claim, one proceeds as follows. In the space of 2-jets of
smooth maps Un → R2, consider the algebraic subvariety Σ of the maps for
which the matrix B is not of full rank. By the above claim, this subvariety
has codimension n+1. Then the Thom transversality theorem (see, e.g., [8])
implies that the 2-jet extension of a generic map Un → R2 avoids Σ, and
Lemma 2.4 follows.
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It remain to prove the claim. Consider a 2n×n matrix C = (S, T ) where
S and T are symmetric n× n matrices. By choosing an appropriate basis in
Rn, one can diagonalize both matrices. Assume that rank C = n − 1.

Assume that the first k ≤ n − 1 diagonal entries of S are non-zero, and
the remaining n− k are equal to zero. Since the rank of C is n− 1, there are
n − k − 1 non-zero entries among tk+1,k+1, . . . , tn,n; assume that ti,i 6= 0 for
i = k + 2, . . . , n.

Every matrix, close to C, can be written as Cε = (S + εU, T + εV )
where U and V are symmetric. Then uij and vij are local coordinates in a
neighborhood of C. For small ε, the rank of Cε is not less than n−1. Denote
the columns of Cε by η1, . . . , η2n.

If rank Cε = n − 1 then, for every j = k + 1, k + 2, . . . , n + k + 1,
the rank of the n-tuple of n-dimensional vectors η1, . . . , ηk, ηj, ηn+k+2, . . . , η2n

equals n − 1. Hence the k + 1-st components of the vectors ηj vanish for
j = k +1, . . . , n+k+1, that is, uk+1,j = 0 for j = k +1, . . . , n and vk+1,j = 0
for j = 1, . . . , k + 1. This gives n + 1 equations on the variables uij and vij ,
and these equations are independent of each other. This completes the proof.
2

Remark 2.1 In the case n = 1, the Grassmanian is the product of spheres:
G+

2 (4) = S2 × S2. Denote the two factors by S1 and S2. The main result
of [2, 3] is that F∗[M ] = (χ(M)/2)([S1] + [S2]). The relation with classes u
and v is as follows: u = [S1] + [S2], v = [S2] − [S1]. The map d that takes a
plane to its orthogonal complement is the identity on S1 and the antipodal
involution on S2. Under the identification R4 = C2, the the space of complex
lines in C2 identifies with {N, S} × S2 where N and S are the poles of S1.

Remark 2.2 Suppose that an immersed surface M in the statement of The-
orem 2 is totally real, that is, the tangent plane to M is never a complex line.
Then F∗[M ] = a[S2] for some a ∈ Z, and the algebraic number of negatively
parallel tangent planes is zero. Alternatively, the normal bundle of a totally
real immersed surface is isomorphic to the tangent bundle, which implies
that d2 = (1 − g)2.

Likewise, this number is zero for an immersed surface M with non-
vanishing normal curvature, see [11]. Indeed, it is proved in [11] that the
normal Euler class of M is ±2χ(M), that is, d = ±χ(M).
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Remark 2.3 It follows from the above proof that χ is even. That this is
indeed the case is a theorem of Seifert: a closed orientable embedded manifold
M2n ⊂ R2n+2 = Cn+1 has an even Euler characteristic. It is proved in [9]
that χ(M) is twice the algebraic number of positively oriented complex points
of M .

Remark 2.4 The Grassmanian G+
2n(2n+2) = G+

2 (2n+2) is the space of ori-
ented great circles in the unit sphere S2n+1. If the space of oriented geodesics
of a Riemannian manifold is a smooth manifold then it has a canonical sym-
plectic structure, see, e.g., [1]. Thus G+

2n(2n + 2) is a symplectic manifold,
and ω2n 6= 0 where ω is the symplectic form. In the previous notation, the
cohomology class of ω is y.

Remark 2.5 Let Mm ⊂ Rm+2 be a closed immersed manifold and e ∈ Rm+2

an arbitrary non-zero vector. Then the Gauss image F (M) ⊂ G+
m(m + 2)

intersects Ne, and for a generic e, in at least rk H∗(M) points. Indeed, the
tangent space TxM is orthogonal to e if and only if the restriction of the
“height” function f(y) = y · e on M has a critical point at x. In contrast,
the Gauss image F (M) can be disjoint from the set Pf ⊂ G+

m(m + 2): for
example, this is the case when M lies in a hyperplane and the vector f is
orthogonal to this hyperplane.

3 Examples of skew branes

3.1 Odd-dimensional skew sphere

We construct an odd-dimensional skew sphere described in Theorem 3.
Let Mm−1 ⊂ Rm be a smooth strictly convex closed hypersurface con-

taining the origin. Denote by h : Sm−1 → R the support function of M , that
is, h(x) is the distance from the origin to the tangent hyperplane to M for
which the unit vector x ∈ Sm−1 is the outward normal. Extend h to Rm as a
homogeneous function of degree 1. By Euler formula, the latter implies that

xhx = h, xhxx = 0. (4)

Here and elsewhere we use following convention: for vectors x, y, a function
g, one has:

xy =

m
∑

i=1

xiyi, xdy =

m
∑

i=1

xidyi, gx = (gx1
, . . . , gxm

),
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xgxx = (
m

∑

i=1

xigxix1
, . . . ,

m
∑

i=1

xigxixm
),

etc.
Thus the hypersurface M is parameterized by the unit sphere as follows.

Lemma 3.1 Let y(x) ∈ M be the point at which the outward unit normal to
M is x ∈ Sm−1. Then y = hx.

Proof. Consider the hypersurface M ′ given by the formula y(x) = hx. To
prove that the tangent hyperplane to M ′ at y is orthogonal to x, one needs
to check that the 1-form xdy vanishes on M ′. Indeed, xy = h by (4), and
hence

xdy = d(xy) − ydx = dh − hxdx = 0.

Thus h is the support function of M ′ and therefore M ′ = M . 2

It follows from (4) that, at point x ∈ Sm−1, the linear operator hxx

annihilates the normal direction x and preserves the tangent space TxS
m−1.

The convexity of M implies that, on the tangent space, hxx is non-degenerate
(for example, hxx is the identity if h = 1 and hence M is the unit sphere).
Denote the restriction of h−1

xx on TxS
m−1 by A(x) and extend A to the normal

direction, spanned by x, as the zero map.
We will construct a skew brane in Rm+1 as a section of the vertical cylin-

der over M ⊂ Rm ⊂ Rm+1. More specifically, let f : Sm−1 → R be a smooth
function. Define

N = {(hx(x), f(x))| x ∈ Sm−1} ⊂ Rm × R = Rm+1,

and let φ : Sm−1 → N be the parameterization map.
Let us describe when the tangent spaces to N are parallel. Assume that

f is extended to Rm as a homogeneous function of some degree k (whose
value is of no importance).

Lemma 3.2 The tangent spaces to N are parallel at distinct points φ(x1)
and φ(x2) if and only if x2 = −x1 and A(fx)(x2) = A(fx)(x1).

Proof. Let us describe the normal 2-plane to N at point φ(x). This plane
is generated by the vector (x, 0) and a vector (ξ, 1) where ξ ∈ TxS

m−1. We
claim that ξ = −A(fx).

10



Indeed, let v ∈ TxS
m−1 be a test vector, v =

∑

j vj∂xj
. Then

dφ(v) =
∑

j

(vjhxixj
, vjfxj

), i = 1, ..., m.

It follows that dφ(v) is orthogonal to (ξ, 1) if and only if vhxxξ + vfx = 0,
or v(hxxξ + fx) = 0. Since v is an arbitrary tangent vector to Sm−1, the
projection of the vector hxxξ + fx to TxS

m−1 is zero. This implies the claim.
Finally, the span of vectors (ξ(x2), 1) and (x2, 0) coincides with that of

(ξ(x1), 1) and (x1, 0) if and only if x2 = −x1 and ξ(x2) = ξ(x1) + tx1. Since
ξ(x2) and ξ(x1) are orthogonal to x1, one has ξ(x2) = ξ(x1). 2

Thus N is a skew brane if and only if

A(−x)(fx(−x)) 6= A(x)(fx(x)) (5)

for all x ∈ Sm−1. Decompose the functions h and f into the even and odd
components with respect to the antipodal involution of the sphere x 7→ −x:

h = hev + hodd, f = fev + fodd.

Then one has a similar decompositions of the operator A and the gradient
vector field fx. Note that

(fx)ev = (fodd)x, (fx)odd = (fev)x.

Decomposing (5) into even and odd parts yields:

Aev((fev)x) + Aodd((fodd)x) 6= 0 (6)

for all x ∈ Sm−1.
If M is sufficiently close to the sphere then h is close to 1 and A is close

to the identity. Thus we may assume that Aev is invertible and rewrite (6)
as

(fev)x + B((fodd)x) 6= 0 (7)

where B(x) = A−1
ev Aodd is an odd field of linear maps of the tangent spaces

TxS
m−1.
Note that (7) cannot hold for all x if h, and therefore A, is even: then

B = 0 and the function fev must have critical points on the sphere. Note also
that (7) cannot hold if m−1 is even since there exist no non-vanishing vector
fields on even-dimensional spheres. From now on, assume that m = 2n.
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Lemma 3.3 Let U be a contractible domain in Rm and B a smooth field of
linear maps of the cotangent spaces to U satisfying the following property: for
every smooth function f : U → R there exists a smooth function g : U → R

such that B(df) = dg. Then B = c Id for some constant c.

Proof. In local coordinates x1, . . . , xm, the linear map B is given by a matrix
bij(x). The condition is that, for every f , the 1-form

∑

ij bijfxj
dxi is closed.

Choose j ∈ {1, . . . , m} and let f(x) = xj . Then the 1-form
∑

i bij(x)dxi is
closed, and hence there exists a function gj(x) such that bij = gj

xi
. The 1-form

∑

ij gj
xi

fxj
dxi =

∑

j fxj
dgj is closed for every f , therefore so is

∑

j gjd(fxj
).

Again fix j ∈ {1, . . . , m} and let f(x) = x2
j/2. Then the 1-form gjdxj is

closed, hence gj depends only on xj . Finally, fix j, k ∈ {1, . . . , m}, j 6= k,
and let f(x) = xjxk. Then the 1-form gj(xj)dxk + gk(xk)dxj is closed, and
therefore gj

xj
= gk

xk
= c. It follows that bij = cδij , as claimed. 2

One has the following corollary.

Corollary 3.1 If M is not centrally symmetric then there exists a function
fodd on Sm−1 such that B((fodd)x) is not a gradient vector field.

Proof. A parallel translation of the origin changes the support function h
by addition of a linear function and does not affect hxx. The hypersurface M
is centrally symmetric if and only if, after a parallel translation, h is even,
that is, A is even. Since M is not centrally symmetric, Aodd 6= 0 and B 6= 0.

Extend f to Rm as a homogeneous function of degree 0 and identify the
tangent and cotangent spaces by the Euclidean structure. Let U be a small
domain on Sm−1. Then every function f : U → R can be extended to Sm−1

as an odd function. If B(fx) is a gradient for every such f then, by Lemma
3.3, B = c Id in U . This equality then must hold everywhere on the sphere.
But B is odd, hence B = 0, a contradiction. 2

We make the following conjecture.

Conjecture 3.1 For every non-centrally symmetric M2n−1 ⊂ R2n there ex-
ists a skew brane N2n−1 ⊂ R2n+1 = R2n×R which is a section of the vertical
cylinder over M .

Conjecture 3.1 follows from a more general conjecture of independent
interest.
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Conjecture 3.2 Let M be a closed manifold with zero Euler characteristic,
α a non-closed differential 1-form on it. Then there exists a smooth function
f : M → R such that the 1-form df + α has no zeroes on M .

Proof of Conjecture 3.1 from Conjecture 3.2. One may rephrase (7)
as

d(fev) + α 6= 0 (8)

everywhere on S2n−1; here α is the 1-form dual to the vector field B((fodd)x).
By Corollary 3.1, we may choose fodd : S2n−1 → R so that α is not closed.
Consider the quotient space M = RP2n−1. Then α descends as a non-
closed 1-form ᾱ on M . Conjecture 3.2 implies that there exists a function
f̄ : RP2n−1 → R such that df̄ + ᾱ is nowhere vanishing. Then f̄ lifts to an
even function on S2n−1 for which (8) holds. 2

Remark 3.1 In dimension one, Conjecture 3.2 holds. Indeed, α = g(x)dx

with c :=
∫ 1

0
g(x)dx 6= 0; here x is the coordinate on the circle R/Z. Then

g− c is a derivative, g(x)− c = −f ′(x), and df + α = cdx. It follows that, in
dimension one, Conjecture 3.1 holds as well: this the Cylinder Lemma of [6].

At present, we cannot prove Conjecture 3.2. To prove Theorem 3, we will
construct functions h and f on S2n−1 so that (7) holds everywhere on S2n−1.
We set h = 1 + εg where g is an odd function and ε is a small positive real.
Then hxx = Id + εgxx + O(ε2) and A = Id − εgxx + O(ε2). It follows that
B = −εgxx + O(ε2), and (7) can be rewritten as

(fev)x 6= εgxx((fodd)x) + O(ε2). (9)

Our strategy is to construct a function f and an odd function g so that, for
sufficiently small ε and a certain constant c > 0,

|(fev)x − εgxx((fodd)x)| > cε (10)

everywhere on the sphere. This would imply (9).
Let (z1, . . . , zn) be coordinates in Cn, and let fev =

∑

i ai|zi|2 with generic
real ai. Denote by ξ the unit Hopf vector field on S2n−1. Then fev is an
even, ξ-invariant Morse-Bott function on S2n−1 with n critical Hopf circles
C1, . . . , Cn.

Lemma 3.4 There exist odd smooth functions fodd and g on S2n−1 such that
gxx((fodd)x) · ξ = 2 on each critical circle Ci, i = 1, . . . , n.
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Assuming this lemma, denote the vector field gxx((fodd)x) by v. Let c be
a constant such that |v(x)| < c everywhere on the sphere. Given ε > 0, let
Uε be a neighborhood of the critical set C1 ∪ . . .∪Cn such that |(fev)x| > 2εc
outside of Uε. We claim that (10) holds outside of Uε. Indeed, |(fev)x−εv| >
2εc − εc = εc, as claimed.

Next, consider the situation inside Uε. Since v · ξ = 2 on the critical
circles, one has v · ξ > 1 inside Uε for sufficiently small ε. Note that (fev)x

is orthogonal to ξ. Therefore |((fev)x − εv) · ξ| = εv · ξ > ε, and hence
|((fev)x − εv)| > ε inside Uε. In particular, (10) holds.

Thus, Theorem 3 will follow, once we prove Lemma 3.4.

Proof of Lemma 3.4. We construct the desired functions in a neighborhood
of each critical circle and then extend them to the sphere. Let C be one such
Hopf circle. Consider C2 ⊂ Cn such that C is a Hopf circle therein. Choose
coordinates (z1, z2) in C2 so that zi = xi +

√
−1yi, i = 1, 2, and C is given

by x2 = y2 = 0. The Hopf field is given by the formula:

ξ = −y1∂x1 + x1∂y1 − y2∂x2 + x2∂y2.

The functions f = fodd and g will depend only on (x1, y1, x2, y2).
It is straightforward to compute the operator gxx, the gradient fx and the

dot product gxx(fx) · ξ. The answer is as follows. Introduce the differential
operator depending on f :

D = fx1
∂x1 + fy1

∂y1 + fx2
∂x2 + fy2

∂y2.

Then,

gxx(fx) · ξ = x1D(gy1
) − y1D(gx1

) + x2D(gy2
) − y2D(gx2

). (11)

Let us look for f and g in the following form:

f = a(x1, y1)+x2b(x1, y1)+y2d(x1, y1), g = u(x1, y1)+x2v(x1, y1)+y2w(x1, y1)

where a, u are odd and homogeneous of degree 1, b, d, v, w are even and
homogeneous of degree 0. Switch to polar coordinates x1 = r cos α, y1 =
r sin α. On the circle C, one has x2 = y2 = 0, r = 1, and α is a coordinate.
Then (11) becomes

bv′ + dw′ + (u + u′′)a′ (12)
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where prime is d/dα. Set:

a = u = 0, b = −w = cos 2α, d = v = sin 2α,

and the expression (12) gets identically equal to 2. In terms of the Cartesian
coordinates,

f = x2(x
2
1 − y2

1) − 2y2x1y1, g = 2x2x1y1 − y2(x
2
1 − y2

1)

on the unit sphere. This completes the construction. 2

3.2 Skew torus in four-dimensional space

Start with the standard torus T 2
0 given by a parameterization

(α, β) 7→ (cos α, sin α, cosβ, sin β);

this torus is an orbit of a 1-parameter group of isometries of R4. One has an
action of the group Z2

2 on T 2
0 generated by

S1 : (α, β) 7→ (α + π, β), S2 : (α, β) 7→ (α, β + π). (13)

The tangent planes to T 2
0 at points (α1, β1) and (α2, β2) are parallel if and

only if (α1, β1) and (α2, β2) belong to the same Z2
2-orbit. The Gauss map

T 2
0 → G2(4) is an immersion, namely, a four-fold covering of its image.

Consider a new torus T 2, perturbation of T 2
0 , given by the formula

(α, β) 7→ (u cosα, u sinα, v cos β, v sin β)

where u = 1 + εf(α, β), v = 1 + εg(α, β). We will construct functions f and
g such that, for ε small enough, T 2 has no pairs of parallel tangent planes.

For a sufficiently small ε, the Gauss map for T 2 is an immersion. Given
(α, β) ∈ T 2, assume that the tangent plane at point (ᾱ, β̄) is parallel to that
at (α, β). Then (ᾱ, β̄) is close to either of the three points: S1(α, β), S2(α, β)
or S1S2(α, β). Consider the linearization of the equations that express the
fact that T(α,β)T

2 and T(ᾱ,β̄)T
2 are parallel: this linearization is obtained by

ignoring the terms of order 2 and higher in ε.

15



Lemma 3.5 In the linear approximation in ε, if the planes T(α,β)T
2 and

T(ᾱ,β̄)T
2 are parallel then one of the following three systems of two equations

holds for some (α, β):

fβ(α + π, β) + fβ(α, β) = 0, gα(α + π, β) + gα(α, β) = 0; (14)

fβ(α, β + π) + fβ(α, β) = 0, gα(α, β) + gα(α, β + π) = 0; (15)

fβ(α + π, β + π) − fβ(α, β) = 0, gα(α + π, β + π) − gα(α, β) = 0. (16)

Proof. Choose a basis e1, e2, e3, e4 in R4. Given a plane E ⊂ R4, choose a
frame (f1, f2) in E and consider the bivector f1 ∧ f2 ∈ Λ2(R4). This bivector
is uniquely defined, up to a factor, by E. One can write

f1 ∧ f2 =
∑

1≤i<j≤4

pijei ∧ ej;

pij are called the Plucker coordinates of the plane E. The Plucker coordinates
are defined up to a common factor and are not independent: they satisfy the
identity p12p34 − p13p24 + p14p23 = 0. Reversing orientation of the plane
changes the signs of all Plucker coordinates.

It is convenient to change coordinates:

x1 = p12 + p34, x2 = p23 + p14, x3 = −p13 + p24,

y1 = p12 − p34, y2 = p23 − p14, y3 = −p13 − p24.

Then the tangent plane T(α,β)T
2 has the following Plucker coordinates (we

continue ignoring the terms of order ε2 and higher):

x1 = ε(gα(α, β)−fβ(α, β)), x2 = − sin(α+β)+O(ε), x3 = cos(α+β)+O(ε),

y1 = −ε(gα(α, β)+fβ(α, β)), y2 = sin(α−β)+O(ε), y3 = − cos(α−β)+O(ε).

Assume that T(α,β)T
2 and T(ᾱ,β̄)T

2 are parallel. The three systems of the
lemma correspond to the following three cases:

(ᾱ, β̄) = S1(α, β)+O(ε), (ᾱ, β̄) = S2(α, β)+O(ε), (ᾱ, β̄) = S1S2(α, β)+O(ε).

The three cases being similar, consider the first:

ᾱ = α + π + O(ε), β̄ = β + O(ε).
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Denote the Plucker coordinates of the plane T(ᾱ,β̄)T
2 by x̄i and ȳi, i = 1, 2, 3.

Then the vectors (x̄i, ȳi) and (xi, yi) are proportional. Since the zero-order
terms in ε are opposite, one has

x̄i = (−1 + εc)xi + O(ε2), ȳi = (−1 + εc)yi + O(ε2)

for some real c. In particular, for i = 1, this implies:

gα(α + π, β) − fβ(α + π, β) = fβ(α, β) − gα(α, β),

−gα(α + π, β) − fβ(α + π, β) = fβ(α, β) + gα(α, β),

and (14) follows. 2

The number of solutions of the linearized system provides an upper bound
on the number of genuine solutions; in particular, if the linearized system
does not have solutions then neither does the original system. This principle
implies that it suffices to find functions f and g on the torus for which systems
of equations (14), (15) and (16) do not hold for all (α, β).

More specifically, here and in Section 3.3, we use the following lemma.

Lemma 3.6 Let f, g and h be continuous functions on a compact space M
such that for all x ∈ M and all sufficiently small ε ≥ 0 one has: f(x) +
εg(x) > 0. Then f(x) + εg(x) + ε2h(x) > 0 for all x ∈ M and all sufficiently
small ε ≥ 0.

Proof. It suffices to prove that there exists a constant c > 0 such that

f(x) + εg(x) > cε (17)

for all x ∈ M and all sufficiently small ε ≥ 0. Indeed, if (17) holds then

f(x) + εg(x) + ε2h(x) > cε − ε2|h(x)| > 0

for ε < c/b where b = maxx∈M |h(x)|.
Now we prove (17). Let N ⊂ M be the zero locus of f(x). Then N is

compact. By assumption, the restriction of g on N is everywhere positive.
Set: 0 < 2a = minx∈Ng(x) and C = maxx∈M |g(x)|. For a given ε, let Uε be
a neighborhood of N such that f(x) > 2εC for all x outside of Uε. Then,
outside of Uε, one has: f(x) + εg(x) ≥ f(x) − εC > εC.
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Consider the situation inside Uε. If ε is small enough then g(x) > a for
all x ∈ Uε. It follows that f(x) + εg(x) ≥ εg(x) > εa, and we are done. 2

Now we are ready to finish the proof of of Theorem 4. Regarding the Z2
2

action (13), every function f(α, β) can be decomposed f = f 0,0+f 1,0 +f 0,1+
f 1,1 where f 0,0 is even with respect to S1 and S2, f 1,0 is odd with respect to
S1 and even with respect to S2, f 0,1 is even with respect to S1 and odd with
respect to S2, and f 1,1 is odd with respect to S1 and S2. This decomposition
is preserved by partial differentiation with respect to α and β.

Then equations (14), (15) and (16) are equivalent, respectively, to

f 0,0
β + f 0,1

β = 0, g0,0
α + g0,1

α = 0; (18)

f 0,0
β + f 1,0

β = 0, g0,0
α + g1,0

α = 0; (19)

and
f 1,0

β + f 0,1
β = 0, g1,0

α + g0,1
α = 0. (20)

Set f 0,0 = cos(2α + 2β), g0,0 = sin(2α + 2β). Then

(f 0,0
β )2 + (g0,0

α )2 = 4 (21)

for all (α, β). Set f 0,1 = g0,1 = 0 and f 1,0 = cos(α+2β), g1,0 = 2 sin(α+2β).
Then (f 1,0

β )2 + (g1,0
α )2 = 4 identically on the torus, and hence system (20)

does not hold for all (α, β). Finally, multiply f 1,0 and g1,0 by a sufficiently
small constant. By continuity, it follows from (21) that systems (18) and
(19) do not hold for all (α, β). This completes the proof of Theorem 4.

3.3 Immersed sphere in four-dimensional space

Now we prove Theorem 5; similarly to the preceding section, we use Lemma
3.6. Consider the following perturbation of M0, the surface M given by the
equation

(α, h) 7→ (1 − h2)(cos α, sin α, h cosα − εg(α) sinα, h sinα + εg(α) cosα)

where g is a function to be chosen later.
As in the case of a skew torus, we compute the Plucker coordinates of the

tangent planes to M , in the linear approximation in ε. We use the notation
from the proof of Lemma 3.5.
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Lemma 3.7 Up to the terms of order ε2 and higher, the Plucker coordinates
of the oriented plane T(α,h)M are

x1 = h(1 + 3h2) − ε(1 − 3h2)g′(α), x2 = cos(2α)((1 − h2) + 2εhg′(α)),

x3 = sin(2α)((1 − h2) + 2εhg′(α)), y1 = 3h(1 − h2) + ε(1 − 3h2)g′(α),

y2 = (1 − 5h2) − 2εhg′(α), y3 = 4εhg(α).

The proof is a straightforward computation which we omit. In particular,
we find when the tangent planes to the unperturbed sphere M0 are negatively
parallel.

Corollary 3.2 The planes T(α1,h1)M0 and T(α2,h2)M0 are negatively parallel

if and only if h1 = −h2 = 1/
√

5, 2α2 = 2α1 + π.

Proof. The planes are parallel if their Plucker coordinates are proportional.
Let λ be the proportionality factor. One has 6 equations, naturally labeled by
the respective Plucker coordinate. Equation (x1) and (y1) read, respectively:

h2(1 + 3h2
2) = λh1(1 + 3h2

1), h2(1 − h2
2) = λh1(1 − h2

1), (22)

and equations (x2) and (x3) imply:

(1 − h2
2) = |λ|(1 − h2

1). (23)

If the planes are negative parallel then λ < 0. It follows from (22) and (23)
that λ = −1 and h2 = −h1. Equation (y2) implies now that 1 − 5h2

1 =
0. Finally, equations (x2) and (x3) imply that cos(2α2) = − cos(2α1) and
sin(2α2) = − sin(2α1). 2

Now we repeat this computation, taking the terms linear in ε into account.
Write:

h1 =
1√
5

+ εa, h2 = − 1√
5

+ εb, λ = (−1 + εc), 2α2 = 2α1 + π + εd.

Then Lemma 3.7 yields 6 equations in unknowns a, b, c, d and α = α1, again
labeled by the Plucker coordinates. In particular, Eq. (y3) gives:

g(β) = g(α), (24)
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and the linear combination

3 Eq.(x1) − 7 Eq.(y1) − 15 (cos 2α Eq.(x2) + sin 2α Eq.(x3))

yields:
g′(β) = −g′(α); (25)

here β = α2 mod ε, that is, 2β = 2α + π.
Finally, set g(α) = sin 2α + sin 4α. Then equations (24) and (25) imply,

respectively, sin 2α = 0 and cos 4α = 0, that is, are not compatible for all α,
and Theorem 5 follows.
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