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1 Introduction

The main object of integrability theory is the Lax equation

Lt = [L, A]. (1.1)

Here A and L are operators depending on functions u1, ..., un and (1.1) is equivalent to a system

of nonlinear differential equations for ui. For the KP-hierarchy and its different reductions A
is a linear differential operator A =

∑
ri∂

i
x, whose coefficients ri are differential polynomials in

u1, ..., un. The L-operator could be a differential operator or a more complicated object like a
ratio of two differential operators or a formal (non-commutative) Laurent series with respect

to ∂−1
x .

The dispersionless analog of (1.1) has the following form

Lt = {L,A}, (1.2)

where {L,A} = ApLx − AxLp. As usual, the commutator in (1.1) is replaced by the Poisson

bracket and the non-commutative variable ∂x by the commutative ”spectral” parameter p. The
transformation L(x, t, p) → p(x, t, L) reduces (1.2) to the following conservative form

pt = A(p, u1, . . . , un)x, (1.3)

where L plays the role of a parameter. The latter equation can be rewritten as

ψt = A(ψx, u1, . . . , un), (1.4)

where p = ψx.

Equations (1.4) can be chosen as a basis, on which a theory of integrable 3-dimensional
dispersionless PDEs can be built. Most such equations can be written in the form

n∑

j=1

aij(u) uj,t1 +
n∑

j=1

bij(u) uj,t2 +
n∑

j=1

cij(u) uj,t3 = 0, i = 1, ..., l, (1.5)

where u = (u1, . . . , un). All known integrable systems (1.5) admit the so-called pseudopotential

representation
ψt2 = A(ψt1 ,u), ψt3 = B(ψt1 ,u), (1.6)

by means of a pair of equations (1.4) whose the compatibility conditions ψt2t3 = ψt3t2 are
equivalent to (1.5). The functions A, B are called pseudopotentials. Such a pseudopotential

representation is a dispersionless version of the zero curvature representation, which is a basic
notion in the integrability theory of solitonic equations (see [1]) .

One of the interesting and attractive features of the theory of integrable dispersionless equa-
tions is that the dependence of the pseudopotentials A(p, u1, . . . , un) on p can be much more
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complicated then in the solitonic case. For instance, in [2, 3] some important examples of pseu-
dopotentials A were found related to the Whitham averaging procedure for integrable dispersion

PDEs and to the Frobenious manifolds. For these examples the p-dependence is determined
by an algebraic curve of arbitrary genus g. In the paper [4] a certain class of pseudopotentials

with movable singularities was described. Some of the pseudopotentials constructed in [4] are
written in terms of degenerate hypergeometric functions.

In the paper [5] a wide class of pseudopotentials A(p, u1, ..., un) related to rational algebraic
curves was constructed. These pseudopotentials were written in the following parametric form:

A = F1(ξ, u1, ..., un), p = F2(ξ, u1, ..., un),

where the ξ-dependence of the functions Fi is defined by the ODE

Fi,ξ = φi(ξ, u1, ..., un) · ξ
−s1(ξ − 1)−s2(ξ − u1)

−s3...(ξ − un)
−sn+2. (1.7)

Here s1, ..., sn+2 are arbitrary constants and φi are polynomials in ξ of degree n. The dependence
of φi on u1, . . . , un was described in terms of solutions of some overdetermined linear system of

PDEs with rational coefficients.

In this paper we generalize this result and construct new classes of pseudopotentials

An,k(p, u1, ..., un) whose p-dependence is given by (1.7), where φi(ξ) are polynomials in ξ of
degree n− k, k = 0, ..., n− 1. We call the corresponding functions An,k pseudopotentials of de-

fect k. The pseudopotentials of defect 0 are just pseudopotentials from [5] written in a different
form.

We describe the pseudopotentials of defect k in terms of linearly independent solutions of
the following system of linear PDEs with rational coefficients

∂2h

∂ui∂uj

=
si

ui − uj

·
∂h

∂uj

+
sj

uj − ui

·
∂h

∂ui

, i, j = 1, ..., n, i 6= j, (1.8)

and
∂2h

∂ui∂ui

= −
(
1 +

n+2∑

j=1

sj

) si

ui(ui − 1)
h+

si

ui(ui − 1)

n∑

j 6=i

uj(uj − 1)

uj − ui

·
∂h

∂uj

+

( n∑

j 6=i

sj

ui − uj

+
si + sn+1

ui

+
si + sn+2

ui − 1

) ∂h
∂ui

(1.9)

for one unknown function h(u1, . . . , un). If n = 1, then we have no equations (1.8) and the
single equation (1.9) coincides with the standard hypergeometric equation,

u(u− 1) h(u)′′ + [(α + β + 1) u− γ] h(u)′ + αβ h(u) = 0,

where s1 = −α, s2 = α − γ, s3 = γ − β − 1. Notice, that hypergeometric functions already
appeared in connection with dispersionless PDEs (see, for example [6, 4, 7]). For arbitrary
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n the system (1.8), (1.9) can be solved in terms of generalized hypergeometric functions (see
[8, 9]).

Note that the pseudopotential An,k is written in terms of k+2 linearly independent solutions
of the system (1.8), (1.9) and therefore the groupGLk+2 acts on the set of such pseudopotentials.

If k = 0, then this is just the usual action of GL2 on the space of independent variables x, t in
the equation (1.4). In the case k > 0 the action of larger group GLk+2 is still to be explained.

For a particular class of 3-dimensional equations the existence of such a group of symmetries
was pointed out in [10] (see also [11]). It is known [12, 10] that knowledge of the symmetry

group GLn allows us to linearize systems of ODEs and PDEs.

The paper is organized as follows.

In Section 2 we describe some properties of system (1.8), (1.9) and its solutions needed for
our purposes. Most of these properties are well known to experts.

In Section 3 we rewrite formulas of the paper [5] in terms of generalized hypergeometric
functions. In our paper the pseudopotentials constructed in [5] are called pseudopotentials of

defect 0. A couple of such pseudopotentials defines a system of the form (1.5) with l = n. These
systems are rewritten in terms of generalized hypergeometric functions in Section 3. We also

prove that each of these systems admits n+ 1 conservation laws of hydrodynamic type.

In Section 4, for any n and k > 0 we construct pseudopotentials of defect k. A couple of

such pseudopotentials defines a system of the form (1.5) with l = n+k. These systems are also
constructed in Section 4. The particular cases n = 3, k = 1 and n = 5, k = 3 yield integrable

equations of the form
∑

i,j

Pi,j(zt1 , zt2 , zt3) zti,tj = 0, i, j = 1, 2, 3, (1.10)

and

Q(zt1,t1 , zt1,t2 , zt1,t3 , zt2,t2 , zt2,t3 , zt3,t3) = 0. (1.11)

A classification of all integrable equations (1.10) and (1.11) was presented in [11] and in [13],

correspondingly. Our integrable equations give generic solutions of these classification problems.

In Sections 5 we construct and study a certain class of integrable (1+1)-dimensional hydro-

dynamic type systems of the form

ri
t = vi(r1, ..., rN)ri

x, i = 1, 2, ..., N. (1.12)

These systems are defined by an universal overdetermined compatible system of PDEs of the

Gibbons-Tsarev type [14, 15] for some functions w(r1, ..., rN), ξ1(r
1, ..., rN), ..., ξN(r1, ..., rN).

This system has the following form

∂iξj =
ξj(ξj − 1)

ξi − ξj
∂iw, ∂ijw =

2ξiξj − ξi − ξj

(ξi − ξj)2
∂iw∂jw, i, j = 1, ..., N, i 6= j. (1.13)

The only velocities vi(r1, ..., rN) in (1.12) depend on n, k. They are described by k+ 2 linearly

independent solutions of the linear system (1.8), (1.9) (see Section 5, Theorem 3). One has

5



to substitute functions u1 = u1(r
1, ..., rN), ..., un = un(r1, ..., rN) for the arguments of these

solutions. The functions ui are also universal. They are defined by the following system of

PDEs

∂iuj =
uj(uj − 1)∂iw

ξi − uj

, i = 1, ..., N, j = 1, ..., n. (1.14)

It is easy to verify that the system (1.13), (1.14) is consistent. Therefore our (1+1)-dimensional

systems (1.12) admit a local parametrization by 2N functions of one variable.

For some very special values of parameters si in (1.8), (1.9) our systems (1.12) are related

to the Whitham hierarchies [2], to the Frobenious manifolds [3, 16], and to the associativity
equation [3, 16].

In Section 6 we recall the definition of hydrodynamic reductions. According to [17], the
existence of sufficiently many hydrodynamic reductions can be chosen as a definition of the

integrability of the systems (1.5). We also recall the definition of integrable pseudopotentials
(see [7]). We introduce the notion of compatible pseudopotentials and notice that each pair of

them gives a system (1.5) that admits both a pseudopotential representation and sufficiently
many hydrodynamic reductions. We show that the (1+1)-dimensional hydrodynamic type

systems found in Section 5 are hydrodynamic reductions of our pseudopotentials An,k. This
implies that these pseudopotentials and the corresponding 3-dimensional systems are integrable

in the sense of the definitions mentioned above (see Theorem 4).

2 Generalized hypergeometric functions

The following statements can be verified straightforwardly.

Proposition 1. The system of linear equations (1.8), (1.9) is compatible for any constants

s1, . . . , sn+2. The dimension of the linear space H of solutions of the system (1.8), (1.9) is equal
to n+ 1. �

We call elements of H generalized hypergeometric functions.

Proposition 2. The system (1.8), (1.9) is equivalent to the following system

Qi(u1
∂

∂u1
, ..., un

∂

∂un

)u−1
i h = Pi(u1

∂

∂u1
, ..., un

∂

∂un

)h, i = 1, ..., n (2.15)

where
Qi(k1, ..., kn) = (k1 + ...+ kn − s1 − ...− sn+1)(ki + 1),

Pi(k1, ..., kn) = (k1 + ...+ kn − 1 − s1 − ...− sn+2)(ki − si).

�

Recall that a system of the form (2.15) is called a hypergeometric system [9]. It can be
solved in terms of the so-called Horn series [9].
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Example 1. The system (2.15) and hence (1.8), (1.9) has a unique solution holomorphic
at the point 0 = (0, . . . , 0) such that h(0) = 1. The derivatives of this solution at 0 is given by

h(k1,...,kn)(0) =

∏k1+...+kn−1
j=0 (1 − j + sn+2 + r)
∏k1+...+kn−1

j=0 (−j + r)

n∏

j=1

kj−1∏

i=0

(i− sj),

where

r =
n+1∑

i=1

si.

Let us denote the solution described in this example by F (s1, . . . , sn+2, u1, . . . , un). For
brevity, we also will use the notation F (s1, . . . , sn+2).

Proposition 3. The function F (s1, . . . , sn+2) admits the following integral representation

F (s1, . . . , sn+2, u1, . . . , un) = C

∫ 1

0

t−2−r−sn+2(1 − t)sn+2(1 − tu1)
s1 · · · (1 − tun)sn dt,

where

C =
Γ(−r)

Γ(1 + sn+2)Γ(−1 − r − sn+2)
.

�

It is well-known that for the standard hypergeometric equation there exist the Laplace

transformations shifting the parameters by 1. Analogies of such transformations for the system
(1.8), (1.9) are given by

Proposition 4. The following identities hold:

∂F (s1, . . . , si, . . . sn+2)

∂ui

= −
si(1 + r + sn+2)

r
F (s1, . . . , si − 1, . . . sn+2), i ≤ n,

L1

(
F (s1, . . . , sn+1, sn+2)

)
=
sn+1(1 + r + sn+2)

r
F (s1, . . . , sn+1 − 1, sn+2),

L2

(
F (s1, . . . , sn+1, sn+2)

)
= (1 + r + sn+2)F (s1, . . . , sn+1, sn+2 − 1),

where

L1 =

n∑

j=1

(1 − uj)
∂

∂uj

+ (1 + r + sn+2), L2 = −

n∑

j=1

uj

∂

∂uj

+ (1 + r + sn+2),

and

Mi

(
F (s1, . . . , si, . . . sn+2)

)
= (1 + r)F (s1, . . . , si + 1, . . . sn+2), i ≤ n,

Mn+1

(
F (s1, . . . , sn+1, sn+2)

)
= (1 + r)F (s1, . . . , sn+1 + 1, sn+2),
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Mn+2

(
F (s1, . . . , sn+1, sn+2)

)
= −(1 + sn+2)F (s1, . . . , sn+1, sn+2 + 1),

where

Mi =

n∑

j=1

uj(uj − 1)
∂

∂uj

−

n∑

j=1

sjuj − (2 + r + sn+2)ui + (1 + r), i ≤ n,

Mn+1 =

n∑

j=1

uj(uj − 1)
∂

∂uj

−

n∑

j=1

sjuj + (1 + r),

Mn+2 =

n∑

j=1

uj(uj − 1)
∂

∂uj

−

n∑

j=1

sjuj − (1 + sn+2).

Furthermore, let Hs1,...,sn+2
be the space of solutions of the system (1.8), (1.9). We have

∂

∂ui

Hs1,...,sn+2
⊂ Hs1,...,si−1,...,sn+2

, L1Hs1,...,sn+2
⊂ Hs1,...,sn+1−1,sn+2

,

L2Hs1,...,sn+2
⊂ Hs1,...,Sn+2−1, MiHs1,...,sn+2

⊂ Hs1,...,si+1,...,sn+2
.

�

Proposition 5. Let H = Hs1,...,sn+2
and H̃ = Hs1,...,sn,0,sn+1,sn+2

. Then H̃ is spanned by H

and the function

Z(u1, ..., un, un+1) =

∫ un+1

0

(t− u1)
s1 · · · (t− un)sntsn+1(t− 1)sn+2dt. (2.16)

Moreover, the space Hs1,...,sn,0,...,0,sn+1,sn+2
(m zeros) is spanned by H and Z(u1, ..., un, un+1),

Z(u1, ..., un, un+2), ..., Z(u1, ..., un, un+m). �

3 Pseudopotentials of defect 0

Most results of this Section was obtained in a different form in the paper [5].

For any generalized hypergeometric function g ∈ H we put

Sn(g, ξ) =
∑

1≤i≤n

ui(ui − 1)(ξ−u1)...̂i...(ξ−un) gui
+ (1 +

∑

1≤i≤n+2

si)(ξ−u1)...(ξ− un) g. (3.17)

Here gui
=

∂g

∂ui

. It is clear that Sn(g, ξ) is a polynomial of degree n in ξ.

Example 2. In the simplest case n = 1 we have

S1(g, ξ) = u(u− 1)gu + (1 + s1 + s2 + s3)(ξ − u)g
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where u = u1.

We need the following property of the polynomial Sn(g, ξ):

Lemma 1. For any 1 ≤ m ≤ n the following identity is valid

um(um − 1)(um − u1)...m̂...(um − un)
Sn(g, ξ)um

+ (sm+1)Sn(g,ξ)
ξ−um

Sn(g, um)
=

ξ(ξ − 1)(ξ − u1)...m̂...(ξ − un)
( s1

ξ − u1
+ ...+

sm + 1

ξ − um

+ ...+
sn

ξ − un

+
sn+1

ξ
+
sn+2

ξ − 1

)
.

�

Define Pn(g, ξ) by the formula

Pn(g, ξ) =

∫ ξ

0

Sn(g, ξ)(ξ − u1)
−s1−1...(ξ − un)−sn−1ξ−sn+1−1(ξ − 1)−sn+2−1dξ (3.18)

if Re sn+1 < −1 and as the analytic continuation of this expression otherwise.

Proposition 6. The expression
Pn(g, ξ)um

Sn(g, um)
(3.19)

does not depend on g. More precisely,

um(um − 1)(um − u1)...m̂...(um − un)
Pn(g, ξ)um

Sn(g, um)
=

−(ξ − u1)
−s1...(ξ − um)−sm−1...(ξ − un)−snξ−sn+1(ξ − 1)−sn+2.

(3.20)

Proof. The derivative of (3.19) with respect to ξ is equal to

Sn(g, ξ)um
+ (sm+1)Sn(g,ξ)

ξ−um

Sn(g, um)
(ξ − u1)

−s1−1...(ξ − un)
−sn−1ξ−sn+1−1(ξ − 1)−sn+2−1.

Lemma 1 implies that this derivative does not depend on g. Since the value of (3.19) at ξ = 0
is equal to zero, expression (3.19) itself does not depend of g. Identity (3.20) also follows from

Lemma 1. �

Let g1, g0 be linearly independent elements of H. A pseudopotential An(p, u1, ..., un) defined

in a parametric form by
An = Pn(g1, ξ), p = Pn(g0, ξ) (3.21)

is called pseudopotential of defect 0.

Relations (3.21) mean that to find An(p, u1, ..., un), we have to express ξ from the second

equation and substitute the result into the first equation.
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Let g0, g1, ..., gn ∈ H be a basis in H. Define pseudopotentials Bα(p, u1, ..., un) of defect 0,
where α = 1, ..., n, by

Bα = Pn(gα, ξ), p = Pn(g0, ξ), α = 1, ..., n.

Suppose that u1, ..., un are functions of t0 = x, t1, ..., tn.

Theorem 1. The compatibility conditions ψtαtβ = ψtβ tα for the system

ψtα = Bα(ψx, u1, ..., un), α = 1, ..., n. (3.22)

are equivalent to the following system of PDEs for u1, ..., un:

∑

1≤i≤n,i6=j

(gq,uj
gr,ui

− gr,uj
gq,ui

)
uj(uj − 1)ui,ts − ui(ui − 1)uj,ts

uj − ui

+ σ · (gqgr,uj
− grgq,uj

)uj,ts+

∑

1≤i≤n,i6=j

(gr,uj
gs,ui

−gs,uj
gr,ui

)
uj(uj − 1)ui,tq − ui(ui − 1)uj,tq

uj − ui

+σ ·(grgs,uj
−gsgr,uj

)uj,tq + (3.23)

∑

1≤i≤n,i6=j

(gs,uj
gq,ui

− gq,uj
gs,ui

)
uj(uj − 1)ui,tr − ui(ui − 1)uj,tr

uj − ui

+ σ · (gsgq,uj
− gqgs,uj

)uj,tr = 0,

where j = 1, ..., n, σ = 1 + s1 + ... + sn+2. Here q, r, s run from 0 to n and t0 = x.

Proof. If Bα are given in a parametric form

Bα = fα(ξ, u1, ..., un), p = f0(ξ, u1, ..., un),

then the compatibility conditions for (3.22) is equivalent to

n∑

i=1

(
(fq,ξfr,ui

− fr,ξfq,ui
)ui,ts + (fr,ξfs,ui

− fs,ξfr,ui
)ui,tq + (fs,ξfq,ui

− fq,ξfs,ui
)ui,tr

)
= 0. (3.24)

Taking into account (3.18), (3.20), we get

fq,ξfr,ui
− fr,ξfq,ui

=

(
Sn(gq, ξ)Pn(gr, ξ)ui

− Sn(gr, ξ)Pn(gq, ξ)ui

)
(ξ − u1)

−s1−1 · · · (ξ − un)−sn−1ξ−sn+1−1(ξ − 1)−sn+2−1

=
Sn(gq, ξ)Sn(gr, ui) − Sn(gr, ξ)Sn(gq, ui)

(ξ − ui) · ui(ui − 1)(ui − u1)...̂i...(ui − un)
· T =

Sn(gq, ξ)gr,ui
− Sn(gr, ξ)gq,ui

ξ − ui

· T.

Here

T = −(ξ − u1)
−2s1−1...(ξ − un)

−2sn−1ξ−2sn+1−1(ξ − 1)−2sn+2−1

10



does not depend on i. Using the above formula for fq,ξfr,ui
− fr,ξfq,ui

and similar formulas for
fr,ξfs,ui

− fs,ξfr,ui
, fs,ξfq,ui

− fq,ξfs,ui
, we can rewrite (3.24) as follows:

∑

1≤i≤n

(Sn(gq, ξ)gr,ui
− Sn(gr, ξ)gq,ui

ξ − ui

ui,ts +
Sn(gr, ξ)gs,ui

− Sn(gs, ξ)gr,ui

ξ − ui

ui,tq+

Sn(gs, ξ)gq,ui
− Sn(gq, ξ)gs,ui

ξ − ui

ui,tr

)
= 0.

It follows from (3.17) that the left hand side is a polynomial of degree n− 1 in ξ. To conclude

the proof, it remains to evaluate this polynomial at ξ = u1, ..., un. �

Remark 1. Given t1, t2, t3, Theorem 1 yields a 3-dimensional system of the form (1.5) with

l = n equations possessing pseudopotential representation.

Remark 2. A system of PDEs for u1, ..., un, which is equivalent to compatibility conditions

for equations of the form (3.24), was called in [2] a Whitham hierarchy. In the paper [2] I.M.
Krichever constructed some Whitham hierarchies related to algebraic curves of arbitrary genus

g. The hierarchy corresponding to g = 0 is equivalent to one described by Theorem 1 if
s1 = . . . = sn+2 = 0. In this case the vector space H is spanned by 1, u1, u2, . . . , un.

Proposition 7. The system (3.23) possesses n + 1 hydrodynamic type conservation laws.

Proof. Let Ĥ = H−2s1,...,−2sn,−2sn+1−1,−2sn+2−1 be the space of generalized hypergeometric

functions defined by (1.8), (1.9) with ŝi = −2si for i = 1, ..., n and ŝi = −2si − 1 for i =
n + 1, n + 2. Let Z ∈ Ĥ be an arbitrary element in Ĥ. Denote by Xj the left hand side of

(3.23). Define functions Ai, Bi, Ci by

n∑

i=1

(Aiui,tq +Biui,tr + Ciui,ts) =

n∑

j=1

1

sj

Zuj
Xj.

One can check that (Ai)uj
= (Aj)ui

, (Bi)uj
= (Bj)ui

, (Ci)uj
= (Cj)ui

. Therefore Ai = Aui
,

Bi = Bui
, Ci = Cui

for some functions A, B, C and we have

Atq +Btr + Cts = 0.

Since dim Ĥ = n+ 1, we obtain n+ 1 conservation laws of the hydrodynamic type.

4 Pseudopotentials of defect k > 0

In this section we construct a new class of pseudopotentials. We call them pseudopotentials

of defect k. To define pseudopotentials of defect k, we fix k linearly independent generalized
hypergeometric functions h1, ..., hk ∈ H. For any g ∈ H define Sn,k(g, ξ) by the formula

Sn,k(g, ξ) =
1

∆

∑

1≤i≤n−k+1

ui(ui − 1)(ξ − u1)...̂i...(ξ − un−k+1)∆i(g). (4.25)

11



Here

∆ = det




h1 ... hk

h1,un−k+2
... hk,un−k+2

......... ... .........

h1,un
... hk,un


 , ∆i(g) = det




g h1 ... hk

gui
h1,ui

... hk,ui

gun−k+2
h1,un−k+2

... hk,un−k+2

......... ... ... .........

gun
h1,un

... hk,un



.

It is clear that Sn,k(g, ξ) is a polynomial in ξ of degree n − k. Notice that Sn,k(h1, ξ) = ... =

Sn,k(hk, ξ) = 0. It is easy to see that linear transformations hi → ci1h1 + ... + cikhk, g →
g + d1h1 + ...+ dkhk with constant coefficients cij , di do not change Sn,k(g, ξ).

Example 3. In the simplest case n = 2, k = 1 we have

S2,1(g, ξ) = u1(u1 − 1)(ξ − u2)
gh1,u1

− gu1
h1

h1
+ u2(u2 − 1)(ξ − u1)

gh1,u2
− gu2

h1

h1
.

Lemma 2. If 1 ≤ m < n− k + 2, then the following identity is valid:

um(um − 1)(um − u1)...m̂...(um − un)
Sn,k(g, ξ)um

+
(sm+1)Sn,k(g,ξ)

ξ−um

Sn,k(g, um)
=

−(um − un−k+2)...(um − un)
1

∆

∑

1≤i≤n−k+1

ui(ui − 1)(ξ − u1)...̂i...(ξ − un−k+1)∆̃i+

1

∆

∑

n−k+2≤i≤n,1≤j≤n−k+1

(um − un−k+2)...̂i...(um − un)siuj(uj − 1)(ξ − u1)...ĵ...(ξ − un−k+1)∆̃i,j+

(sm + 1)um(um − 1)(um − un−k+2)...(um − un)(ξ − u1)...m̂...(ξ − un−k+1)

ξ − um

+

(um − un−k+2)...(um − un)
∑

1≤i≤n−k+1,i6=m

siui(ui − 1)
∏

1≤j≤n−k+1,j 6=i,m

(ξ − uj)+

(um − un−k+2)...(um − un)(ξ − u1)...m̂...(ξ − un−k+1)(
∑

1≤i≤n−k+1

(um + ui − 1)si + 2um − 1)+

um(um − 1)(ξ − u1)...m̂...(ξ − un−k+1)
∑

n−k+2≤i≤n

(um − un−k+2)...̂i...(um − un)si+

(um − un−k+2)...(um − un)(ξ − u1)...m̂...(ξ − un−k+1)((um − 1)sn+1 + umsn+2).

If n− k + 2 ≤ m, then

um(um − 1)(um − u1)...m̂...(um − un)
Sn,k(g)(ξ)um

+
smSn,k(g,ξ)

ξ−um

Sn,k(g, um)
=

1

∆

∑

n−k+2≤i≤n,1≤j≤n−k+1

(um − un−k+2)...̂i...(um − un)siuj(uj − 1)(ξ − u1)...ĵ...(ξ − un−k+1)∆̃i,j+
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smum(um − 1)(um − un−k+2)...m̂...(um − un)(ξ − u1)...(ξ − un−k+1)

ξ − um

.

Here

∆̃i = det




h1,ui
... hk,ui

h1,un−k+2
... hk,un−k+2

......... ... .........

h1,un
... hk,un




and ∆̃i,j is obtained from ∆ by replacing the row (h1,ui
, ..., hk,ui

) by (h1,uj
, ..., hk,uj

). �

Define functions Pn,k(g, ξ) by
Pn,k(g, ξ) = (4.26)

∫ ξ

0

Sn,k(g, ξ)(ξ−u1)
−s1−1...(ξ−un−k+1)

−sn−k+1−1(ξ−un−k+2)
−sn−k+2 ...(ξ−un)

−snξ−sn+1−1(ξ−1)−sn+2−1dξ

if Re sn+1 < −1, and as the analytic continuation of this expression otherwise.

Proposition 8. The expression
Pn,k(g, ξ)um

Sn,k(g, um)
(4.27)

does not depend on g. Moreover, we have

∑

1≤i≤k+1

umi
(umi

− 1)(umi
− u1)... ̂m1, ..., mk+1...(umi

− un)
Pn,k(g, ξ)umi

Sn,k(g, umi
)

= (4.28)

−
(ξ − u1)

−s1...(ξ − un−k+1)
−sn−k+1(ξ − un−k+2)

−sn−k+2+1...(ξ − un)
−sn+1ξ−sn+1(ξ − 1)−sn+2

(ξ − um1
)...(ξ − umk+1

)
.

Proof. The derivative of expression (4.27) with respect to ξ is equal to

Sn,k(g, ξ)um
+

(sm+1)Sn,k(g,ξ)

ξ−um

Sn,k(g, um)
(ξ − u1)

−s1−1 · · ·

(ξ − un−k+1)
−sn−k+1−1(ξ − un−k+2)

−sn−k+2...(ξ − un)
−snξ−sn+1−1(ξ − 1)−sn+2−1

for 1 ≤ m < n− k + 2 and is equal to

Sn,k(g, ξ)um
+

smSn,k(g,ξ)

ξ−um

Sn,k(g, um)
(ξ − u1)

−s1−1 · · ·

(ξ − un−k+1)
−sn−k+1−1(ξ − un−k+2)

−sn−k+2...(ξ − un)
−snξ−sn+1−1(ξ − 1)−sn+2−1

otherwise. Lemma 2 implies that this derivative does not depend on g. Moreover, the value of

the expression (4.27) at ξ = 0 is equal to zero. Therefore the expression (4.27) itself does not
depend on g. The proof of (4.28) is similar. �
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Let g1, g2 ∈ H. Assume that g1, g2, h1, ..., hk are linearly independent. Define pseudopoten-
tial An,k(p, u1, ..., un) in parametric form by

An,k = Pn,k(g1, ξ), p = Pn,k(g2, ξ). (4.29)

To construct An,k(p, u1, ..., un), we find ξ from the second equation and substitute into the first

one. The pseudopotential An,k(p, u1, ..., un) is called pseudopotential of defect k.

Theorem 2. Let g0, g1, ..., gn−k, h1, ..., hk ∈ H be a basis in H and Bα, α = 1, ..., n− k are

defined by
Bα = Pn,k(gα, ξ), p = Pn,k(g0, ξ), α = 1, ..., n− k.

Then the compatibility conditions for (3.22) are equivalent to the following system of PDEs for
u1, ..., un:

∑

1≤i≤n−k,i6=j

(
∆j(gq)∆i(gr) − ∆j(gr)∆i(gq)

)uj(uj − 1)ui,ts − ui(ui − 1)uj,ts

uj − ui

+

∑

1≤i≤n−k,i6=j

(
∆j(gr)∆i(gs) − ∆j(gs)∆i(gr)

)uj(uj − 1)ui,tq − ui(ui − 1)uj,tq

uj − ui

+ (4.30)

∑

1≤i≤n−k,i6=j

(
∆j(gs)∆i(gq) − ∆j(gq)∆i(gs)

)uj(uj − 1)ui,tr − ui(ui − 1)uj,tr

uj − ui

= 0,

where j = 1, ..., n− k and

n−k+1∑

i=1

∆i(gr)ui,ts =
n−k+1∑

i=1

∆i(gs)ui,tr , (4.31)

n−k+1∑

i=1

∆i(gr)
um(um − 1)ui,ts − ui(ui − 1)um,ts

um − ui

=
n−k+1∑

i=1

∆i(gs)
um(um − 1)ui,tr − ui(ui − 1)um,tr

um − ui

,

(4.32)

where m = n− k + 2, ..., n. Here q, r, s run from 0 to n and t0 = x.

Proof. We have to explicitly calculate the coefficients in (3.24). Using (4.26), (4.27), we

find that

fq,ξfr,ui
− fr,ξfq,ui

=
(
Sn,k(gq, ξ)Pn,k(gr, ξ)ui

− Sn,k(gr, ξ)Pn,k(gq, ξ)ui

)
· T =

(
Sn,k(gq, ξ)Sn,k(gr, ui) − Sn,k(gr, ξ)Sn,k(gq, ui)

)
·
Pn,k(gq, ξ)ui

Sn,k(gq, ui))
· T.

Similar formulas are valid for fr,ξfs,ui
− fs,ξfr,ui

, fs,ξfq,ui
− fq,ξfs,ui

. Here

T = (ξ−u1)
−s1−1...(ξ−un−k+1)

−sn−k+1−1(ξ−un−k+2)
−sn−k+2...(ξ−un)−snξ−sn+1−1(ξ−1)−sn+2−1
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does not depend on i. Using (4.28), we can express
Pn,k(gq, ξ)ui

Sn,k(gq, ui)
, i = 1, ..., n − k in terms of

Pn,k(gq, ξ)um

Sn,k(gq, um)
, m = n−k+1, ..., n, which are linearly independent as functions of ξ. Substituting

these into (3.24), we obtain

n−k∑

i=1

(Sn,k(gq, ξ)Sn,k(gr, ui) − Sn,k(gr, ξ)Sn,k(gq, ui)

(ξ − ui) · ui(ui − 1)(ui − u1)...̂i...(ui − un−k)
ui,ts+

Sn,k(gr, ξ)Sn,k(gs, ui) − Sn,k(gs, ξ)Sn,k(gr, ui)

(ξ − ui) · ui(ui − 1)(ui − u1)...̂i...(ui − un−k)
ui,tq+

Sn,k(gs, ξ)Sn,k(gq, ui) − Sn,k(gq, ξ)Sn,k(gs, ui)

(ξ − ui) · ui(ui − 1)(ui − u1)...̂i...(ui − un−k)
ui,tr

)
= 0, (4.33)

n−k∑

i=1

( Sn,k(gq, ξ)Sn,k(gr, ui) − Sn,k(gr, ξ)Sn,k(gq, ui)

(ui − um) · ui(ui − 1)(ui − u1)...̂i...(ui − un−k)
ui,ts+

Sn,k(gr, ξ)Sn,k(gs, ui) − Sn,k(gs, ξ)Sn,k(gr, ui)

(ui − um) · ui(ui − 1)(ui − u1)...̂i...(ui − un−k)
ui,tq+

Sn,k(gs, ξ)Sn,k(gq, ui) − Sn,k(gq, ξ)Sn,k(gs, ui)

(ui − um) · ui(ui − 1)(ui − u1)...̂i...(ui − un−k)
ui,tr

)
+

Sn,k(gq, ξ)Sn,k(gr, um) − Sn,k(gr, ξ)Sn,k(gq, um)

um(um − 1)(um − u1)...(um − un−k)
um,ts+

Sn,k(gr, ξ)Sn,k(gs, um) − Sn,k(gs, ξ)Sn,k(gr, um)

um(um − 1)(um − u1)...(um − un−k)
um,tq+

Sn,k(gs, ξ)Sn,k(gq, um) − Sn,k(gq, ξ)Sn,k(gs, um)

um(um − 1)(um − u1)...(um − un−k)
um,tr = 0, (4.34)

where m = n− k + 1, ..., n. One can check straightforwardly that (4.34) is equivalent to (4.31)
for m = n − k + 1 and to (4.32) for m = n − k + 2, ..., n. Notice that the left hand side

of equation (4.33) is a polynomial in ξ of degree n − k − 1. Evaluating this polynomial at
ξ = uj, j = 1, ..., n− k we obtain (4.30). �

Remark 3. Given t1, t2, t3, Theorem 2 yields a 3-dimensional system of the form (1.5) with
l = n + k equations possessing pseudopotential representation. Indeed, the formulas (4.31),

(4.32) give 3k linearly independent equations if q, r, s = 1, 2, 3. The formula (4.30) gives n− k

equations. On the other hand, one can construct exactly k linear combinations of equations

(4.31), (4.32) with q, r, s = 1, 2, 3 such that derivatives of ui, i = n − k + 1, ..., n cancel out.
Moreover, these linear combinations belong to the span of equations (4.30). Therefore, there

exist (n− k) + 3k − k = n+ k linearly independent equations.

Remark 4. In (4.30), (4.31), (4.32) we have to assume n ≥ k + 2. Indeed, for n = k + 1

we cannot construct more then one pseudopotential and therefore there is no any system of
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the form (1.5) associated with this case. However the corresponding pseudopotential generates
interesting integrable (1+1)-dimensional systems of hydrodynamic type (see Section 5). Prob-

ably these pseudopotentials for k = 0, 1, ... are also related to some infinite integrable chains of
the Benney type [18, 19].

The system (4.30)-(4.32) possesses many conservation laws of the hydrodynamic type. In
particular, the following statement can be verified by a straightforward calculation.

Proposition 9. For any r 6= s = 0, 1, ..., n there exist k conservation laws for the system
(4.30)-(4.32) of the form:

(
∆(gr, h1, ...̂i...hk)

∆(h1, ..., hk)

)

ts

=

(
∆(gs, h1, ...̂i...hk)

∆(h1, ..., hk)

)

tr

, (4.35)

where i = 1, ..., k. Here

∆(f1, ..., fk) = det




f1 ... fk

h1,un−k+2
... fk,un−k+2

......... ... .........

f1,un
... fk,un


 .

Proposition 9 allows us to define functions z1, ..., zk such that

∆(gr, h1, ...̂i...hk)

∆(h1, ..., hk)
= zi,tr (4.36)

for all i = 1, ..., k and r = 0, 1, ..., n.

Suppose n ≥ 3k; then the system of the form (1.5) obtained from (4.30), (4.31), (4.32) with

q, r, s = 1, 2, 3 consists of 3k equations (4.31), (4.32) (they are equivalent to (4.35)) and n− 2k
equations of the form (4.30). Indeed, only n − 2k equations (4.30) are linearly independent

on (4.31), (4.32). Expressing u1, ..., u3k in terms of zi,t1 , zi,t2 , zi,t3 , i = 1, ..., k from (4.36) and
substituting into n − 2k equations of the form (4.30), we obtain a 3-dimensional system of

n − 2k equations for n − 2k unknowns z1, ..., zk, u3k+1, ...un. This is a quasi-linear system of
the second order with respect to zi and of the first order with respect to uj, whose coefficients

depend on zi,t1 , zi,t2, zi,t3 , i = 1, ..., k and u3k+1, ...un. It is clear that the general solution of the
system can be locally parameterized by n− k functions in two variables.

In the case 2k ≤ n < 3k the functions zi,t1 , zi,t2 , zi,t3 , i = 1, ..., k are functionally dependent.
We have 3k − n equations of the form

Ri(z1,t1 , z1,t2 , z1,t3 , ..., zk,t1, zk,t2, zk,t3) = 0, i = 1, ..., 3k − n

and n − 2k second order quasi-linear equations. Totally we have (3k − n) + (n − 2k) = k

equations for k unknowns z1, ..., zk. It is clear that the general solution of this system can be

locally parameterized by n− k functions in two variables.
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Suppose n < 2k; then we have n + k < 3k, which means that 3k equations of the form
(4.31), (4.32) are linearly dependent. Probably in this case the general solution of the system

can also be locally parameterized by n− k functions in two variables.

One of the most interesting cases is n = 3k, when we have a system of k quasi-linear second

order equations for the functions z1, ..., zk. Consider the simplest case k = 1.

Example 4. In the case n = 3, k = 1 the formulas (4.30), (4.31) can be rewritten as

follows. Let h1, g0, g1, g2 be linearly independent elements of H. Denote by Bij the cofactors of
the matrix 



h1 g0 g1 g2

h1,u1
g0,u1

g1,u1
g1,u1

h1,u2
g0,u2

g1,u2
g1,u1

h1,u3
g0,u3

g1,u3
g1,u3


 .

Define vector fields Vi by

V1 = B22
∂

∂t0
+B23

∂

∂t1
+B24

∂

∂t2
,

V2 = B32
∂

∂t0
+B33

∂

∂t1
+B34

∂

∂t2
,

V3 = B42
∂

∂t0
+B43

∂

∂t1
+B44

∂

∂t2
.

Then (4.31) is equivalent to

V1(u2) = V2(u1), V2(u3) = V3(u2), V3(u1) = V1(u3). (4.37)

Relation (4.30) leads to one more equation

u3(u3 − 1)(u1 − u2)V1(u2) + u1(u1 − 1)(u2 − u3)V2(u3) + u2(u2 − 1)(u3 − u1)V3(u1) = 0. (4.38)

The conservation laws (4.35) have the form

(
gr

h1

)

ts

=

(
gs

h1

)

tr

.

Introducing z such that ztr = gr

h1
, we reduce (4.38) to a quasi-linear equation of the form

∑

i,j

Pi,j(zt0 , zt1 , zt2) zti,tj = 0, i, j = 0, 1, 2. (4.39)

In the paper [11] an inexplicit description of all integrable equations (4.39) was proposed. The
equation constructed above corresponds to the generic case in this classification. Indeed, it

depends on five essential parameters s1, ..., s5 which agrees with the results of [11].

For integer values of parameters si equations (1.8), (1.9) can be solved in elementary func-

tions. This provides simple examples of equations (4.39) having pseudopotentials. In the most
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degenerate case s1 = · · · = s5 = 0 one can choose h1 = 1, g0 = u1, g1 = u2, g2 = u3. The
corresponding equation (4.39) is given by

zt2(zt2 − 1)(zt0 − zt1)zt0t1 + zt0(zt0 − 1)(zt1 − zt2)zt1t2 + zt1(zt1 − 1)(zt2 − zt0)zt2t0 = 0.

More general examples of equations

P1(zt0 , zt1 , zt2) zt0t1 + P2(zt0 , zt1 , zt2) zt1t2 + P3(zt0 , zt1 , zt2) zt2t0 = 0 (4.40)

correspond to s1 = s2 = s3 = 0. In this case one can choose h = 1, g0 = f(u1), g1 = f(u2),
g2 = f(u3), where f ′(x) = xs4(x − 1)s5. In the new variables ūi = f(ui) the system (4.37),

(4.38) is equivalent to a single equation of the form (4.40). One of the results of the paper
[11] is a complete classification of equations (4.40) possessing a pseudopotential representation.

The above example seems to be the generic case in this classification. �

The system (4.30)-(4.32) has conservation laws different from (4.35).

Conjecture. The system (4.30) - (4.32) possesses n + 1 conservation laws of the general
form

Atq +Btr + Cts = 0

additional to (4.35). This family of conservation laws can be parameterized by elements from
Ĥ = H−2s1,...,−2sn,−2sn+1−1,−2sn+2−1 (cf. Proposition 7). This conjecture is supported by some

computer computations for small n and k.

Remark 5. Let us make in (4.26) a change of variables of the form

ξ →
aξ + b

cξ + d
, u1 → φ1, ..., un → φn, (4.41)

where a, b, c, d, φ1, ..., φn are arbitrary functions in u1, ..., un. After that we get under the
integral in (4.26) an expression of the form

S(ξ)(ξ − ρ1)
−s1−1...(ξ − ρn−k+1)

−sn−k+1−1(ξ − ρn−k+2)
−sn−k+2...(ξ − ρn)−sn(ξ − ρn+1)

−sn+1−1

×(ξ − ρn+2)
−sn+2−1(ξ − ρn+3)

s1+...+sn+2+1,

where S(ξ) is a polynomial in ξ of degree n − k and ρ1, ..., ρn+3 are functions of u1, ..., un.

Therefore the numbers

{−s1 − 1, ...,−sn−k+1 − 1,−sn−k+2, ...,−sn,−sn+1 − 1,−sn+2 − 1, s1 + ... + sn+2 + 1} (4.42)

play a symmetric role in the constructed pseudopotentials An,k. Using transformations (4.41),

one can choose any three of the functions ρ1, ..., ρn+3 to be equal to 0, 1, ∞ and the other
n functions to be equal to u1, ..., un (cf. [5], Section 3). It would be interesting to study the

degenerate cases when some of the functions ρi coincide (cf. [7], Section 5).

The most symmetric case is given by

s1 = ... = sn−k+1 = sn+1 = sn+2 = −
k + 1

n + 3
, sn−k+2 = ... = sn =

n− k + 2

n + 3
.
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In this case all numbers (4.42) are equal to −n−k+2
n+3

. Possibly for n = 3, k = 1 these values of
parameters correspond to pseudopotentials for integrable Lagrangians of the form L(ux, uy, uz)

[20, 10] whereas for n = 5, k = 3 they are related to the integrable Hirota type equations [13].

Example 5. Let n = 5, k = 3 and s1 = s2 = s3 = s6 = s7 = −1
2
, s4 = s5 = 1

2
. It turns out

that there exists a basis g1, g2, g3, h1, h2, h3 in H such that

∆(g1, h1, h2) = ∆(g3, h2, h3),

∆(g2, h2, h3) = ∆(g1, h3, h1), (4.43)

∆(g3, h3, h1) = ∆(g2, h1, h2).

Indeed, the system (4.43) is a consequence of equations

g1h1,u4
− h1g1,u4

+ g2h2,u4
− h2g2,u4

+ g3h3,u4
− h3g3,u4

= 0,

g1h1,u5
− h1g1,u5

+ g2h2,u5
− h2g2,u5

+ g3h3,u5
− h3g3,u5

= 0, (4.44)

g1,u4
h1,u5

− h1,u4
g1,u5

+ g2,u4
h2,u5

− h2,u4
g2,u5

+ g3,u4
h3,u5

− h3,u4
g3,u5

= 0.

Consider the system consisting of equations (4.44) and all its first and second derivatives with

respect to u1, ..., u5. Note that differentiating (4.44), we eliminate second derivatives of hi and
gi by (1.8), (1.9). One can check that this system is invariant with respect to the derivations by

u1, ..., u5. At a fixed generic point u0
1, ..., u

0
5 the system can be regaded as an algebraic variety

for the values of gi, hi and their first derivatives. It can be checked that this variety consists of

several components and the maximal dimension of the component equals 24. Since the vector

fields ∂
∂ui

are tangent to this variety, any its point considered as the initial data defines the
solutions gi, hi of (1.8), (1.9) such that the corresponding point belongs to the variety for any

values of u1, ..., u5. It is possible to check that there exists an algebraic component of dimension
21 of the variety such that the Wronskian of gi, hi at u0

1, ..., u
0
5 is non-zero.

Proposition 9 and equations (4.43) allow us to define a function z such that

zt1,t1 =
∆(g1, h2, h3)

∆(h1, h2, h3)
, zt2,t2 =

∆(g2, h3, h1)

∆(h1, h2, h3)
, zt3,t3 =

∆(g3, h1, h2)

∆(h1, h2, h3)
,

zt1,t2 =
∆(g2, h2, h3)

∆(h1, h2, h3)
=

∆(g1, h3, h1)

∆(h1, h2, h3)
, zt2,t3 =

∆(g3, h3, h1)

∆(h1, h2, h3)
=

∆(g2, h1, h2)

∆(h1, h2, h3)
,

zt3,t1 =
∆(g1, h1, h2)

∆(h1, h2, h3)
=

∆(g2, h1, h2)

∆(h1, h2, h3)
.

It terms of this function we can rewrite the system (4.30), (4.31), (4.32) as a single equation

of the form (1.11). Integrable systems of this form were studied in [13]. The pseudopotentials
considered above correspond to the generic integrable system of this form.

Remark 6. It is easy to see that the group SP6 acts on the set of bases in H satisfying
(4.44). This agrees with the result of [13] that this group acts on the set of integrable equations

of the form (1.11).�
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5 Integrable (1+1)-dimensional systems of hydrodynamic

type

In this section we consider integrable (1+1)-dimensional hydrodynamic type systems (1.12)

constructed in terms of generalized hypergeometric functions. These systems appear as the
so-called hydrodynamic reductions of pseudopotentials An,k (see the next Section). By in-

tegrability we mean the existence of infinite number of hydrodynamic commuting flows and
conservation laws. It is known [21] that this is equivalent to the following relations for the

velocities vi(r1, ..., rN):

∂j

∂iv
k

vi − vk
= ∂i

∂jv
k

vj − vk
, i 6= j 6= k, (5.45)

Here ∂α = ∂
∂ri , α = 1, . . . , N . The system (1.12) is called semi-Hamiltonian if conditions (5.45)

hold.

The main geometrical object related to a semi-Hamiltonian system (1.12) is a diagonal

metric gkk, k = 1, . . . , N , where

1

2
∂i log gkk =

∂iv
k

vi − vk
, i 6= k. (5.46)

In view of (5.45), the overdetermined system (5.46) is compatible and the function gkk is
defined up to arbitrary factor ηk(r

k). The metric gkk is called the metric associated to (1.12).

It is known that two hydrodynamic type systems are compatible iff they possess a common
associated metric [21].

A diagonal metric gkk is called a metric of Egorov type if for any i, j

∂igjj = ∂jgii. (5.47)

Note that if a Egorov-type metric associated with a hydrodynamic-type system of the form
(1.12) exists, then it is unique. For any Egorov’s metric there exists a potential G such that gii =

∂iG. Semi-Hamiltonian systems possessing associated metrics of Egorov type play important
role in the theory of WDVV associativity equations and in the theory of Frobenious manifolds

[3, 16, 22].

Let w(r1, ..., rN), ξ1(r
1, ..., rN), ..., ξN(r1, ..., rN) be a solution of (1.13). It can be easily

verified that this system is in involution and therefore its solution admits a local parameteri-
zation by 2N functions of one variable. Let u1(r

1, ..., rN), ..., un(r
1, ..., rN) be a set of solutions

of the system (1.14). It is easy to verify that this system is in involution and therefore has an
one-parameter family of solutions for fixed ξi, w.

Consider the following system

ri
t =

Sn,k(g1, ξi)

Sn,k(g2, ξi)
ri
x, (5.48)
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where g1, g2 are linearly independent solutions of (1.8), (1.9), the polynomials Sn,k, k > 0 are
defined by (4.25), and Sn,0 = Sn (see formula (3.17)).

Theorem 3. The system (5.48) is semi-Hamiltonian. The associated metric is given by

gii = Sn(g2, ξi)
2(ξi − u1)

−2s1−2 · · · (ξi − un)
−2sn−2ξ

−2sn+1−1
i (ξi − 1)−2sn+2−1∂iw

for k = 0, and by

gii = Sn,k(g2, ξi)
2(ξi − u1)

−2s1−2 · · · (ξi − un−k+1)
−2sn−k+1−2×

(ξi − un−k+2)
−2sn−k+2 · · · (ξi − un)

−2snξ
−2sn+1−1
i (ξi − 1)−2sn+2−1∂iw

for k > 0.

Proof. Substituting the expression for the metric into (5.46), where vi are specified by
(5.48), one obtains the identity by virtue of (1.13), (1.14). �

Remark 7. The system (5.48) does not possess the associated metric of the Egorov type in
general. However, for very special values of the parameters si in (1.8), (1.9) there exists g2 ∈ H

such that the metric is of the Egorov type for all solutions of the system (1.13), (1.14). For
instance, if the defect k equals zero, then this happens exactly in the following cases:

si = 0 for all i;

sl = −1 for some l and si = 0 for i 6= l;

sl = −1
2

for some l and si = 0 for i 6= l;

sj = sl = −1
2

for some j 6= l and si = 0 for i 6= j, i 6= l.

Proposition 10. Suppose that a solution ξi, w of (1.13) and solutions u1, ..., un of (1.14)
are fixed. Then the hydrodynamic type systems

ri
t1

=
Sn,k(g1, ξi)

Sn,k(g3, ξi)
ri
x, ri

t2
=
Sn,k(g2, ξi)

Sn,k(g3, ξi)
ri
x (5.49)

are compatible for all g1, g2.

Proof. Indeed, the metric associated with (5.48) does not depend on g2. Therefore the
systems (5.49) has a common metric depending on g3 and on solutions of (1.13), (1.14). �

Remark 8. One can also construct some compatible systems of the form (5.49) using

Proposition 5. Set g2 = Z(u1, ..., un, un+1) in (5.49). Here un+1 is an arbitrary solution of

(1.14) distinct from u1, ..., un. It is clear that the flows (5.49) are compatible for such g2 and
any g1 ∈ H. Moreover, Proposition 5 implies that the flows (5.49) are compatible if we set

g1 = Z(u1, ..., un, un+1), g2 = Z(u1, ..., un, un+2) for two arbitrary solutions un+1, un+2 of (1.14).

All members of the hierarchy constructed in Proposition 10 possess a dispersionless Lax

representation (1.2) with common L(p, r1, ..., rN). Define a function L(ξ, r1, ..., rN) by the
following system

∂iL =
ξ(ξ − 1)∂iwLξ

ξ − ξi
, i = 1, ..., N. (5.50)
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Note that the system (5.50) is in involution and therefore the function L is defined uniquely
up to inessential transformations L → λ(L). To find the function L(p, r1, ..., rN) one has to

express ξ in terms of p by (3.21) for k = 0 or by (4.29) for k > 0.

Proposition 11. Let u1, . . . , un be arbitrary solution of (1.14). Then system (5.48) admits

the dispersionless Lax representation (1.2), where A = An,k is defined by (3.21) for k = 0 and
by (4.29) for k > 0.

Proof. Substituting A = An,k defined by (3.21) for k = 0 and by (4.29) for k > 0 into (1.2)
and calculating Lt by virtue of (5.48) we arrive to the expression

∂iL =
∂iPn,k(g2, ξ) · Sn,k(g1, ξi) − ∂iPn,k(g1, ξ) · Sn,k(g2, ξi)

Pn,k(g2, ξ)ξ · Sn,k(g1, ξi) − Pn,k(g1, ξ)ξ · Sn,k(g2, ξi)
Lξ.

Taking into account the equation Pn,k(gi, ξ)ξ = Sn,k(gi, ξ)(ξ−u1)
−s1−1...(ξ−un−k+1)

−sn−k+1−1(ξ−
un−k+2)

−sn−k+2...(ξ − un)−snξ−sn+1−1(ξ − 1)−sn+2−1 and writing down Pn,k(gi, ξ)um
in terms of

Pn,k(g1, ξ)un−k+1
, ..., Pn,k(g1, ξ)un

by (4.27), (4.28), one can readily check this equation. �

Let the function ξ(L, r1, ..., rN) be inverse to L(ξ, r1, ..., rN). It is easy to check that u =

ξ(L, r1, ..., rN), where L plays a role of arbitrary parameter, satisfies (1.14).

As usual, the Lax representation defines conserved densities, common for the whole hierar-

chy, by formula (1.3). Since our definition of An,k is parametric, we can reformulate this fact
as

Proposition 12. Suppose (5.48) is defined by solutions u1, . . . , un of the system (1.14).
Let U be any solution of (1.14). Then

∂

∂t
Pn,k

(
g2(u1, u1, . . . , un), U

)
=

∂

∂x
Pn,k

(
g1(u1, u1, . . . , un), U

)

is a conservation law for (5.48).

Since the generic solution U depends on a parameter, we have constructed an one-parametric
family of common conservation laws for our hierarchy (5.48) of hydrodynamic type systems.

6 Hydrodynamic reductions and integrability

In this section we show that integrable (1+1)-dimensional systems constructed in Section 5

define hydrodynamic reductions for pseudopotentials and 3-dimensional systems from Sections
3 and 4.

Following [17, 15, 7], we give a definition of integrability for equations (1.2), (1.4) and (1.5)
in terms of hydrodynamic reductions.

Suppose there exists a pair of compatible semi-Hamiltonian hydrodynamic-type systems of
the form

ri
t1

= vi
1(r

1, ..., rN)ri
x, ri

t2
= vi

2(r
1, ..., rN)ri

x (6.51)
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and functions ui = ui(r
1, ..., rN) such that these functions satisfy (1.5) for any solution of (6.51).

Then (6.51) is called a hydrodynamic reduction for (1.5).

Definition 1 [17]. A system of the form (1.5) is called integrable if equation (1.2) possesses
sufficiently many hydrodynamic reductions for each N ∈ N. ”Sufficiently many” means that the

set of hydrodynamic reductions can be locally parameterized by 2N functions of one variable.
Note that due to gauge transformations ri → λi(r

i) we have N essential functional parameters

for hydrodynamic reductions.

Suppose there exists a semi-Hamiltonian hydrodynamic-type system (1.12) and functions

ui = ui(r
1, ..., rN), L = L(p, r1, ..., rN) such that these functions satisfy dispersionless Lax

equation (1.2) for any solution r1(x, t), ..., rN(x, t) of the system (1.12). Then (1.12) is called a

hydrodynamic reduction for (1.2).

Definition 2 [7]. A dispersionless Lax equation (1.2) is called integrable if equation (1.2)

possesses sufficiently many hydrodynamic reductions for each N ∈ N.

We also call the corresponding pseudopotential A(p, u1, ..., un) integrable.

Example 6. Let us show that A = ln(p− u) is integrable. Let w(r1, ..., rN), pi(r
1, ..., rN),

i = 1, ..., N be an arbitrary solution of the following system (the so-called Gibbons-Tsarev

system [14])

∂jξi =
∂jw

ξj − ξi
, ∂ijw =

2∂iw∂jw

(ξi − ξj)2
, i, j = 1, ..., N, i 6= j. (6.52)

It is easy to verify that this system is in involution and therefore its general solution admits a

local parameterizations by 2N functions of one variable. Define a function L(p, r1, ..., rN) by
the following system

∂iL =
∂iwLp

p− ξi
, i = 1, ..., N. (6.53)

This system is in involution and therefore defines the function L uniquely up to inessential
transformations L→ λ(L). Finally, let u(r1, ..., rN) be a solution of the system

∂iu =
∂iw

ξi − u
, i = 1, ..., N. (6.54)

It is easy to check that the system (6.54) is in involution. It follows from (6.52), (6.53), (6.54)

that the system

ri
t =

1

ξi − u
ri
x (6.55)

is a hydrodynamic reduction of equation (1.2) with A = ln(p− u).

Remark 9. The standard form for the Gibbons-Tsarev system [15] related to hydrodynamic

reductions is given by

∂iξj = F (ξi, ξj, u1, . . . , un) ∂iun, ∂i∂jun = H(ξi, ξj, u1, . . . , un) ∂iun∂jun, i 6= j
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∂iul = Gl(ξi, u1, . . . , un) ∂iun, l < n.

Here i, j = 1, ..., N, ul(r
1, . . . , rN) are the functions, which define the reduction, and

ξi(r
1, . . . , rN) are some auxiliary functions. To bring (6.52), (6.54) to this form, one has to

eliminate the additional unknown w. The result is given by

∂jξi =
ξi − u

ξj − ξi
∂ju, ∂i∂ju =

ξi + ξj − 2u

(ξi − ξj)2
∂iu∂ju. (6.56)

In this case n = 1, u1 = u. There is the following generalization of (6.56) to the case of arbitrary

polynomial P (x) = a3x
3 + a2x

2 + a1x+ a0 and arbitrary n:

u1 − ξi

P (u1)
∂iu1 = ... =

un − ξi

P (un)
∂iun, i = 1, ..., N,

∂ijun =
K2(ξi, ξj)u

2
n +K1(ξi, ξj)un +K0(ξi, ξj)

P (un)(ξi − ξj)2
∂iun∂jun,

∂iξj =
P (ξj)(un − ξi)

P (un)(ξi − ξj)
∂iun, i, j = 1, ..., N, i 6= j,

(6.57)

where
K2(ξi, ξj) = 2a3(ξi − ξj)

2,

K1(ξi, ξj) = −a3(ξ
2
i ξj + ξiξ

2
j ) + a2(ξ

2
i + ξ2

j − 4ξiξj) − a1(ξi + ξj) − 2a0,

K0(ξi, ξj) = 2a3ξ
2
i ξ

2
j + a2(ξ

2
i ξj + ξiξ

2
j ) + a1(ξ

2
i + ξ2

j ) + a0(ξi + ξj).

Using transformations of the form ui →
aui + b

cui + d
, ξi →

aξi + b

cξi + d
, one can put the polynomial P

to one of the canonical forms: P (x) = x(x − 1), P (x) = x, or P (x) = 1. If P (x) = 1, then
(6.57) with n = 1 coincides with (6.56). Formulas (1.13), (1.14) are equivalent to (6.57), where

P (x) = x(x− 1).

Definition 3. Two integrable pseudopotentials A1, A2 are called compatible if the system

Lt1 = {L,A1}, Lt2 = {L,A2}

possesses sufficiently many hydrodynamic reductions (6.51) for each N ∈ N.

If A1, A2 are compatible, then A = c1A1 + c2A2 is integrable for any constants c1, c2.
Indeed, the system

ri
t = (c1v

i
1(r) + c2v

i
2(r)) r

i
x

is a hydrodynamic reduction of (1.2).

Example 7. The functions A1 = ln(p−u1) and A2 = ln(p−u2) are compatible. Moreover,

A = c1 ln(p − u1) + ... + cn ln(p − un) is integrable for any constants c1, ..., cn. Indeed, let w,
pi satisfy (6.52) and u1, u2 be two different solutions of (6.54). It is easy to check that the

corresponding flows are compatible by virtue of (6.52), (6.53), (6.54).
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Definition 4. By 3-dimensional system associated with compatible functions A1, A2 we
mean the system of the form (1.5) equivalent to compatibility conditions for the system

ψt2 = A1(ψt1 , u1, ..., un), ψt3 = A2(ψt1 , u1, ..., un). (6.58)

It is clear that any system associated with a pair of compatible functions possesses suffi-

ciently many hydrodynamic reductions and therefore it is integrable in the sense of Definition
1.

Example 8. Let A1 = ln(p− u) and A2 = ln(p− v). The associated 3-dimensional system
has the form

ut3 = vt2 , vt1 − vut3 = ut1 − uvt2 .

The following statement is a reformulation of Proposition 11.

Theorem 4. The system (5.48) is a hydrodynamic reduction of the pseudopotential An,k

defined by (3.21) if k = 0 and by (4.29) if k > 0. Recall that we use the notation Sn ≡
Sn,0, An ≡ An,0, Pn ≡ Pn,0.

Proposition 13. Suppose g1, g2, g3, h1, ..., hk ∈ H are linearly independent. Define pseu-

dopotentials A1, A2 by

A1 = Pn,k(g1, ξ), A2 = Pn,k(g2, ξ), p = Pn,k(g3, ξ).

Then A1 and A2 are compatible.

Proof. Note that the system (1.13), (5.50) does not depend on g1, g2, g3 and therefore we
have a family of functions L, ξi, ui which give hydrodynamic reduction of the form (5.48) for

both A1 and A2. Moreover, according to Proposition 10 the flows

ri
t1

=
Sn,k(g1, ξi)

Sn,k(g3, ξi)
ri
x, ri

t2
=
Sn,k(g2, ξi)

Sn,k(g3, ξi)
ri
x

are compatible. �

Remark 10. This result implies that 3-dimensional hydrodynamic type systems con-
structed in Sections 4, 5 possess sufficiently many hydrodynamic reductions.

Remark 11. Using proposition 5, one can construct compatible pseudopotentials depend-
ing on different number of ui. Indeed, let g1, g3, h1, ..., hk ∈ H and g2 = Z(u1, ..., un, un+1).

Then A2 depends on u1, ..., un, un+1 and A1 depends on u1, ..., un only.

7 Conclusion

All known integrable pseudopotentials A(p, u1, ..., un) satisfy the property

P

(
Appp

A2
pp

, Ap

)
= 0,

25



where P (x, y) is a polynomial in x, y with coefficients depending on u1, ..., un. In this sense
any pseudopotential A is associated with the algebraic curve E = {(x, y) ∈ C2; P (x, y) = 0}.

Moreover, compatible pseudopotentials are associated to isomorphic curves. If a 3-dimensional
dispersionless system is constructed by two compatible pseudopotentials, then this curve is

isomorphic to the so-called spectral curve (see [17]) of the system. In this paper we have
constructed a wide class of integrable pseudopotentials associated with rational curves. We

believe that all pseudopotentials associated with rational curves can be obtained as a limit
from our pseudopotentials. We are going to describe all such limits in a separate paper.

It is known [2] that pseudopotentials associated with curves of higher genus also exist. It is
likely that one can describe all pseudopotentials associated with the elliptic curve in a similar

manner to the way we have done the rational case in this paper. We are going to consider this
problem in the next paper.
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