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Abstract. We investigate cosmological predictions on the early uni-
verse based on the noncommutative geometry models of gravity coupled
to matter. Using the renormalization group analysis for the Standard
Model with right handed neutrinos and Majorana mass terms, which
is the particle physics content of the most recent noncommutative ge-
ometry models, we analyze the behavior of the coefficients of the grav-
itational and cosmological terms in the Lagrangian derived from the
asymptotic expansion of the spectral action functional of noncommuta-
tive geometry. We find emergent Hoyle-Narlikar and conformal grav-
ity at the see-saw scales and a running effective gravitational constant,
which affects the propagation of gravitational waves and the evapora-
tion law of primordial black holes and provides Linde models of negative
gravity in the early universe. The same renormalization group analysis
also governs the running of the effective cosmological constant of the
model. The model also provides a Higgs based slow-roll inflationary
mechanism, for which one can explicitly compute the slow-roll parame-
ters. The particle physics content allows for dark matter models based
on sterile neutrinos with Majorana mass terms.
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1. Introduction

The idea of using noncommutative geometry to give a conceptual math-
ematical formulation of the standard model of elementary particle physics
dates back to the work of Connes [19]. It was shown more recently in [17]
(see also [20], [4], and Chapter 1 of [22]) that the noncommutative geometry
model of particle physics can be made compatible with right handed neutri-
nos and neutrino masses and that the full Lagrangian of the standard model
with Majorana mass terms for the right handed neutrinos can be derived by
a computation from a very simple input of an almost commutative space,
the product of an ordinary spacetime manifold and a finite noncommutative
space. The resulting physical Lagrangian in this noncommutative geometry
model is obtained from the asymptotic expansion in the energy scale Λ of
a natural action functionals defined on noncommutative spaces, the spectral
action, [14]. Among the most interesting features of these models of particle
physics based on noncommutative geometry is the fact that the physical
Lagrangian of the model is completely computed from a simple geometric
input (the choice of a finite dimensional algebra), so that the physics is very
tightly constrained by the underlying geometry. For reasons of space, we
cannot include here any introductory material about Noncommutative Ge-
ometry, but we suggest the interested readers to look at the survey paper
[23] for a user-friendly introduction based on examples, as well as the books
[21] and [22] for a more complete treatment.

We focus here on the noncommutative geometry model obtained in [17].
The corresponding physical Lagrangian computed from the asymptotic ex-
pansion of the spectral action contains the full Standard Model Lagrangian
with additional Majorana mass terms for right handed neutrinos, as well as
gravitational and cosmological terms coupled to matter. The presence of
these terms and their relation to the particle physics content of the model
make this approach of interest to theoretical cosmology. The gravitational
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terms include the Einstein–Hilbert action with a cosmological term, a topo-
logical term related to the Euler characteristic of the spacetime manifold,
and, additionally, a conformal gravity term with the Weyl curvature tensor
and a conformal coupling of the Higgs field to gravity. Without these last
two contributions essentially one would be dealing with the usual minimal
coupling of the standard model to gravity, but the presence of an additional
non-minimal conformal coupling has relevance to various cosmological mod-
els that have been the object of recent investigation, especially in the context
of modified theories of gravity. Another important way in which this model
differs from the minimal coupling of gravity and matter is the dependence
of the coefficients of the gravitational terms upon the Yukawa parameters of
the particle physics content of the model. This feature, which is our main fo-
cus of investigation in the present paper, is unique to these noncommutative
geometry models and does not have an analog in other particle physics and
cosmology models obtained from geometric settings such as string theories,
extra dimensions, or brane worlds. Some conceptual similarities with these
other approaches exist though, in the sense that in noncommutative geom-
etry models one typically modifies ordinary spacetime by taking a product
with a noncommutative space and this may be thought of as another possible
way to enrich it with extra dimensions.

The fact that, as shown in [17], the model lives naturally at unification
scale, means that in cosmological terms it provides us with early universe
models, hence it is interesting in terms of possible inflationary mechanisms.
Extrapolations to lower energies are possible using renormalization group
analysis, though extensions to cosmological models of the more recent uni-
verse only become possible when non-perturbative effects in the spectral
action are also taken into account. The main motivation for considering
these noncommutative geometry models in a cosmological context is that
the nontrivial dependence of the cosmological and gravitational parameters
on the particle physics content is, as we mentioned above, significantly differ-
ent from other physical models, hence likely to provide inflationary scenarios
in the early universe that differ significantly from other models.

This paper is the first of a planned series dedicated to an investigation
of the cosmological implication of the noncommutative geometry models in
particle physics. In the present paper, we concentrate on a renormalization
group analysis of the coefficients of the gravitational terms in the action. In
fact, the asymptotic formula for the spectral action used in [17] shows that
these coefficients are functions of certain parameters, which in turn depend
on the data of the Yukawa parameters of the standard model with Majorana
mass terms for right handed neutrinos. They also depend on three additional
parameters of the model, one of which is fixed by a grand unification type
condition on the coupling constants.

The Yukawa parameters run with the renormalization group equations
of the particle physics model. In particular, since the noncommutative ge-
ometry model lives naturally at unification scale, one can input boundary
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conditions at that energy scale and follow the renormalization group equa-
tions towards lower energies and investigate the effect of this running on the
gravitational part of the model. One expects that, when running towards
lower energies, nonperturbative effects in the spectral action will progres-
sively become non-negligible. This can limit the range of validity of this type
of argument based on the asymptotic expansion alone, and on renormaliza-
tion group analysis to cosmological models for the very early universe, that
is, for sufficiently high energies where the asymptotic expansion holds. Any
extrapolation to the modern universe would then have to take into account
the full spectral action and not only its asymptotic form.

In the present paper we focus on early universe models and on the as-
ymptotic form of the spectral action. For the renormalization analysis, we
rely on a detailed study of the renormalization group equations (RGE) for
the extension of the standard model with right handed neutrinos and Ma-
jorana mass terms carried out in [1], even though their choice of boundary
conditions at unification is different from some of the boundary conditions
assumed in [17]. The boundary conditions proposed in [1] are dictated by
particle physics considerations, while some of the constraints considered in
[17] came from analyzing particular geometries, such as the flat space case.
For example, for simplicity the Majorana masses were assumed in [17] to be
degenerate, all of them close to unification scale, while here we are mostly
interested in the non-degenerate case, with three different see-saw scales
between the electroweak and unification scales, which leads to a more inter-
esting behavior of the gravitational terms in the model. We plan to return
to a more general analysis of the RGE flow of [1] with a wider range of
possible boundary conditions in followup work.

The RGE flow of [1] runs between a unification energy, taken there to be
of the order of 2× 1016 GeV, down to the electroweak scale of 100 GeV. In
terms of cosmological timeline, we are looking at the behavior of the model
between the unification and the electroweak era. This means that, in terms
of matter content, only the Higgs field and its coupling to gravity is relevant,
so we mostly concentrate on the part of the Lagrangian of [17] that consists
of these terms. Since this era of the early universe is believed to include
the inflationary epoch, we look especially at different possible inflationary
scenarios provided by this noncommutative geometry model.

Our main results in this first paper are to show that, using the information
on the particle physics content, it is possible to obtain cosmological models
of the early universe with variable gravitational and cosmological constant,
hence providing a range of different mechanisms for inflation, realized by
the running of the effective gravitational constant and by its coupling to
the Higgs field, or by the running of the effective cosmological constant of
the model, or by a combination of these. We also show phenomena where,
near particular energy scales and for special geometries, the usual Einstein–
Hilbert action ceases to be the dominant contribution and the model comes
to be dominated, at certain scales, by conformal gravity and an emergent
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Hoyle–Narlikar cosmology. We discuss how the running of the gravitational
parameters of the model influences the behavior of the evaporation of pri-
mordial black holes by Hawking radiation. While the type of effects that we
see in this model, which depend on the presence of variable effective grav-
itational and cosmological constants, are qualitatively similar to scenarios
of negative gravity in the early universe previously analyzed in theoretical
cosmology ([5], [6], [11], [24], [25], [26], [35], [36], [37], [39], [40], [41], [43],
[48]), the mechanism that produces these effects in the noncommutative ge-
ometry model is substantially different from those described in these earlier
references, which makes the quantitative behavior also different and distin-
guishable from other models. In fact, most of the effects we investigate in
this paper depend directly on the expression of the coefficients of the gravita-
tional and bosonic terms in the asymptotic expansion of the spectral action
in terms of the Yukawa parameters of the underlying particle physics model.
This is a purely geometric property of this model and it comes directly from
the presence of the “small extra dimensions” in the form of the zero dimen-
sional (but K-theoretically six dimensional) finite noncommutative space in
addition to the extended spacetime dimensions.

While the energy range where the renormalization group analysis applies
limits the results based only on the perturbative expansion of the spectral
action to early universe models, if some of the results obtained in this paper
persist when non-perturbative effects in the spectral action become signif-
icant, they may provide possible dark energy and dark matter predictions.
For instance, the behavior of the variable effective cosmological constant
may lead to dark energy scenarios in the more recent universe. Moreover,
we show that the particle physics content of the model is consistent with
dark matter models based on right handed neutrinos with Majorana mass
terms in [33], [44], [45]. In fact, the particle content is the same as in the
νMSM model with three active and three sterile neutrinos. What is needed
in order to relate the model of [17] to these dark matter models is a choice of
boundary conditions that makes it possible for at least one of the Majorana
masses to descent to somewhere near the electroweak scale, hence providing
sterile neutrinos with the characteristics required to give acceptable dark
matter candidates (see the analysis in [33]). We will return to a closer anal-
ysis of dark energy and dark matter implications of the noncommutative
geometry models in a planned continuation of this work.

In a related but different direction, recent work on some cosmological
aspects of the model of [17] was also done in [38].

Acknowledgment. Part of this work was carried out during visits of
the first author at the Mathematical Sciences Research Institute in Berkeley
and at the Max Planck Institute for Mathematics in Bonn. The hospitality
and support of both institutions is gratefully acknowledged.
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2. The asymptotic formula for the spectral action and the
gravitational parameters

We recall here briefly the main aspects of the noncommutative geometry
model of particle physics derived in [17] that we need to use in the rest of
the paper. We refer the reader to [17] and to Chapter 1 of [22] for a detailed
treatment. The reader who wishes to skip this preliminary part can start
directly with the asymptotic expansion of the spectral action recalled in
§2.5, which is what we concentrate on in the rest of the paper, but we prefer
to add a few words on the derivation of the model via noncommutative
geometry for the sake of completeness.

2.1. Spectral triples and the spectral action functional. The particle
physics models based on noncommutative geometry, both the original one
of [19] and the new one of [17] that incorporates right handed neutrinos and
neutrino mixing with Majorana mass terms, are based on the formalism of
spectral triples. These were introduced by Connes [18] as an extension of
the notion of Riemannian manifold to noncommutative geometry. The data
(A,H, D) defining a (real) spectral triple are summarized as follows.

• A is an involutive algebra with unit. Requiring the algebra to be
unital corresponds to working with compact manifolds. (Extensions
of the notion of spectral triple to non-unital cases have also been
developed.)
• H is a separable Hilbert space endowed with a representation π :
A → L(H) of the algebra A by bounded linear operators.
• D = D† is a linear self-adjoint operator acting on H. Except for

finite dimensional cases, D is in general not a bounded operator,
hence it is only defined on a dense domain.
• D has compact resolvent: (1 +D2)−1/2 is a compact operator.
• The commutators [π(a), D] are bounded operators for all a ∈ A.
• The spectral triple is even if there is on H a Z/2-grading γ satisfying

[γ, π(a)] = 0 and Dγ = −γD.
• The spectral triple has a real structure if there is an antilinear iso-

morphism J : H → H with J2 = ε, JD = ε′DJ , and Jγ = ε′′γJ ,
where the signs ε, ε′, and ε′′ determine the KO-dimension modulo 8
of the spectral triple, according to by the table

n 0 1 2 3 4 5 6 7
ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

• The Hilbert spaceH has anA-bimodule structure with respect to the
action of A defined by b0 = Jb∗J−1 and satisfying the commutation
condition [a, b0] = 0 for all a and b in A.
• The operator D satisfies the order one condition [[D, a], b0] = 0, for

all a, b ∈ A.
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Commutative geometries, which in this context means ordinary Riemann-
ian manifolds, can be described as spectral triples: for a compact spin Rie-
mannian manifold X the associated spectral triple (C∞(X), L2(X,S), DX)
is given by the algebra of smooth functions, the Hilbert space of square inte-
grable spinors, and the Dirac operator. The metric tensor can be recovered
from these data. For an even dimensional manifold γX = γ5 is the grading
H = H+⊕H− on the spinor bundle given by the usual chirality operator γ5

and the real structure JX is the charge conjugation operator. Examples of
spectral triples associated to objects that are not manifolds include a wide
range of geometries such as quantum groups, fractals, or noncommutative
tori. As we recall in §2.2 below, the spectral triples involved in the parti-
cle physics models are of a very special form which is almost commutative,
namely a product of an ordinary manifold with a small noncommutative
space.

It was shown by Chamseddine and Connes [14] that there is a natural
action functional on a spectral triple. This spectral action functional is
defined as Tr(f(D/Λ)), where f > 0 is a cutoff function and Λ is the energy
scale. There is an asymptotic formula for the spectral action, for large energy
Λ, of the form

(2.1) Tr(f(D/Λ)) ∼
∑

k∈DimSp

fkΛk
∫
−|D|−k + f(0)ζD(0) + o(1),

where fk =
∫∞

0 f(v)vk−1dv are the momenta of the function f and the
noncommutative integration is defined in terms of residues of zeta functions

(2.2) ζa,D(s) = Tr(a |D|−s).

The sum in (2.1) is over points in the dimension spectrum of the spectral
triple, which is a refined notion of dimension for noncommutative spaces,
consisting of the set of poles of the zeta functions (2.2).

2.2. The noncommutative space of the model. The main result of
[17] is a complete derivation of the full standard model Lagrangian with
additional right handed neutrino, lepton mixing matrix and Majorana mass
terms, by a calculation starting from a very simple geometric input. The
initial ansatz used in [17] is the choice of a finite dimensional algebra, the
left-right symmetric algebra

(2.3) ALR = C⊕HL ⊕HR ⊕M3(C),

where HL and HR are two copies of the real algebra of quaternions.
The representation is then naturally determined by taking the sumM of

all the inequivalent irreducible odd spin representations of ALR, so that the
only further input that one needs to specify is the number N of generations.
The (finite dimensional) Hilbert space is then given by N copies of M,

HF = ⊕NM.
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The Hilbert space with the ALR action splits as a sum HF = Hf ⊕ Hf̄ of
matter and antimatter sectors, and an orthogonal basis of Hf gives all the
fermions of the particle physics model

(2.4)

νL = | ↑〉L ⊗ 10 νR = | ↑〉R ⊗ 10

eL = | ↓〉L ⊗ 10 eR = | ↓〉R ⊗ 10

uL = | ↑〉L ⊗ 30 uR = | ↑〉R ⊗ 30

dL = | ↓〉L ⊗ 30 dR = | ↓〉R ⊗ 30,

respectively giving the neutrinos, the charged leptons, the u/c/t quarks, and
the d/s/b quarks in terms of the representation of ALR. Here | ↑〉 and | ↓〉
are the basis of the 2 representation of H where the action of λ ∈ C ⊂ H
is, respectively, by λ or λ̄, and 10 and 30 are the actions of C and M3(C),
respectively, through the representation a0 = Ja∗J−1.

The Z/2-grading γF exchanges the left and right chirality of fermions
and the real structure operator JF exchanges the matter and antimatter
sectors and performs a complex conjugation. These properties of γF and JF
suffice to determine the KO-dimension modulo 8 of the resulting spectral
triple and an interesting aspect is that, unlike in the earlier particle physics
models based on noncommutative geometry, in this case the KO-dimension
is 6 modulo 8, although the metric dimension is zero.

The order one condition on the Dirac operator is seen in [17] as a coupled
equation for a subalgebra AF ⊂ ALR and a Dirac operator and it is shown
that there is a unique subalgebra of maximal dimension that allows for the
order one condition to be satisfied. The algebra AF is of the form

(2.5) AF = C⊕H⊕M3(C),

where the first summand embeds diagonally into C⊕H inALR, thus breaking
the left-right symmetry. It is expected, though presently not known, that
this symmetry breaking should be dynamical. This geometric argument
identifying the maximal algebra on which the order one condition can be
satisfied was later extended in [15] to more general ansatz algebras than
ALR, but with the same resulting AF .

2.3. Dirac operators: Yukawa parameters and Majorana masses.
The selection of the subalgebra AF for the order one condition for the Dirac
operator is what produces geometrically in this model the Majorana mass
terms for right handed neutrinos. In fact, one has in [17] a complete classifi-
cation of the possible Dirac operators on the noncommutative space (AF ,H)
compatible with γF and JF (see also [10] for a more general discussion of
moduli spaces of Dirac operators for finite spectral triples). These are all of
the form

D(Y ) =
(

S T†
T S̄

)
,
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with S = S1 ⊕ (S3 ⊗ 13) and T = YR : |νR〉 → JF |νR〉, and with S1 and S3

respectively of the form

S1 =


0 0 Y †(↑1) 0

0 0 0 Y †(↓1)

Y(↑1) 0 0 0
0 Y(↓1) 0 0



S3 =


0 0 Y †(↑3) 0

0 0 0 Y †(↓3)

Y(↑3) 0 0 0
0 Y(↓3) 0 0

 .

Here the N × N -matrices involved in the expression of S1 and S3 are the
Yukawa matrices that give Dirac masses and mixing angles. These are ma-
trices in GL3(C) in the case of N = 3 generations: Ye = Y(↓1) is the Yukawa
matrix for the charged leptons, Yν = Y(↑1) for the neutrinos, Yd = Y(↓3)

for the d/s/b quarks, and Yu = Y(↑3) for the u/c/t quarks. Moreover, the
remaining term M = Y T

R , with T denoting transposition, gives the matrix T
in D(Y ) and is the symmetric matrix of the Majorana mass terms for right
handed neutrinos.

Thus, the model of [17] has three active and three sterile neutrinos as in
the νMSM model, see [33], [44], [45], though in [17], unlike in the νMSM
model, it is assumed that the three sterile neutrinos all have masses well
above the electroweak scale. The see-saw relation Y T

ν M
−1Yν for neutrino

masses is obtained in [17] geometrically from the fact that the restriction of
the Dirac operator D(Y ) to the subspace of HF spanned by νR, νL, ν̄R, ν̄L
is of the form

(2.6)


0 M †ν M̄ †R 0
Mν 0 0 0
M̄R 0 0 M̄ †ν
0 0 M̄ν 0

 ,

where Mν is the neutrino mass matrix, see Lemma 1.225 of [22]. We return
to discuss the relation of the model of [17] to the νMSM model of [44], [45]
and to other sterile neutrinos scenarios of [33] in the context of dark matter
models in cosmology, see §5 below.

The spectral triple that determines the physical Lagrangian of the model
through the asymptotic expansion of the spectral action is then the product
geometry X × F , of a 4-dimensional spacetime X, identified with the spec-
tral triple (C∞(X), L2(X,S), DX), and the finite noncommutative space F
defined by the spectral triple (AF ,HF , DF ) with DF of the form D(Y ) as
above. The product is given by the cup product spectral triple (A,H, D)
with sign γ and real structure J

• A = C∞(X)⊗AF = C∞(X,AF )
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• H = L2(X,S)⊗HF = L2(X,S ⊗HF )
• D = DX ⊗ 1 + γ5 ⊗DF

• J = JX ⊗ JF and γ = γ5 ⊗ γF .

The action functional considered in [17] to obtain the physical Lagrangian
has a bosonic and a fermionic part, where the bosonic part is given by the
spectral action functional with inner fluctuations of the Dirac operator and
the fermionic part by the pairing of the Dirac operator with fermions,

(2.7) Tr(f(DA/Λ)) +
1
2
〈Jξ̃,DAξ̃〉.

Here DA = D+A+ ε′ J AJ−1 is the Dirac operator with inner fluctuations
given by the gauge potentials of the form A = A† =

∑
k ak[D, bk], for ele-

ments ak, bk ∈ A. The fermionic term 〈Jξ̃,DAξ̃〉 should be seen as a pairing
of classical fields ξ̃ ∈ H+ = {ξ ∈ H | γξ = ξ}, viewed as Grassman variables.
This is a common way of treating Majorana spinors via Pfaffians, see §16.2
of [22].

While this fermionic part is very important for the particle physics content
of the model, as it delivers all the fermionic terms in the Lagrangian of the
Standard Model, for our purposes related to cosmological models of the early
universe, it will suffice of concentrate only on the bosonic part of the action,
given by the spectral action term Tr(f(DA/Λ)), since during a good part of
the cosmological period between the unification and the electroweak epoch
the Higgs field is the matter content that will be mostly of relevance, [30].

2.4. Parameters of the model. As we have recalled above, the geomet-
ric parameters describing the possible choices of Dirac operators on the
finite noncommutative space F correspond to the Yukawa parameters of the
particle physics model and the Majorana mass terms for the right handed
neutrinos. We recall here some expressions of these parameters that appear
in the asymptotic expansion of the spectral action and that we are going to
analyze more in detail later in the paper. We define functions a, b, c, d, e of
the matrices Yu, Yd, Yν , Ye and of the Majorana masses M in the following
way:

(2.8)

a = Tr(Y †ν Yν + Y †e Ye + 3(Y †uYu + Y †d Yd))

b = Tr((Y †ν Yν)2 + (Y †e Ye)2 + 3(Y †uYu)2 + 3(Y †d Yd)
2)

c = Tr(MM †)

d = Tr((MM †)2)

e = Tr(MM †Y †ν Yν).

In addition to these parameters, whose role we describe in §2.5, we see clearly
from (2.1) that the asymptotic formula for the spectral action depends on
parameters fk given by the momenta of the cutoff function f in the spectral
action. Since the noncommutative space here is of the simple form X × F ,
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the only contributions to the dimension spectrum, hence to the asymptotic
formula for the spectral action come from three parameters f0, f2, f4, where
f0 = f(0) and for k > 0

fk =
∫ ∞

0
f(v)vk−1dv.

2.5. The asymptotic expansion of the spectral action. It was proved
in [17] that the asymptotic formula (2.1) applied to the action functional
Tr(f(DA/Λ)) of the product geometry X × F gives a Lagrangian of the
form

(2.9)

S =
1
π2

(48 f4 Λ4 − f2 Λ2 c +
f0

4
d)
∫
√
g d4x

+
96 f2 Λ2 − f0 c

24π2

∫
R
√
g d4x

+
f0

10π2

∫
(
11
6
R∗R∗ − 3Cµνρσ Cµνρσ)

√
g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫
|ϕ|2√g d4x

+
f0a

2π2

∫
|Dµϕ|2

√
g d4x

− f0a

12π2

∫
R |ϕ|2√g d4x

+
f0b

2π2

∫
|ϕ|4√g d4x

+
f0

2π2

∫
(g2

3 G
i
µν G

µνi + g2
2 F

α
µν F

µνα +
5
3
g2

1 Bµν B
µν)
√
g d4x,

We see from this expansion how the coefficients of all the terms in this
resulting action functional depend on the Yukawa and Majorana parameters
through their combinations of the form a, b, c, d, e defined as in (2.8), and
from the three additional parameters f0, f2, f4.

The term of (2.9) with the Yang–Mills action for the gauge bosons,

f0

2π2

∫
(g2

3 G
i
µν G

µνi + g2
2 F

α
µν F

µνα +
5
3
g2

1 Bµν B
µν)
√
g d4x,

contains the coupling constants g1, g2, g3 of the three forces. As shown in
[17], the standard normalization of these Yang–Mills terms gives the GUT
relation between the three coupling constants and fixes the fact that this
model lives naturally at a preferred energy scale given by the unification
scale Λ = Λunif . The normalization of the Yang–Mills terms fixes the value
of the parameter f0 to depend on the common value g at unification of the
coupling constants: as shown in §4.5 and §5.1 of [17] one obtains

(2.10)
g2f0

2π2
=

1
4
.
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One also normalizes the kinetic term for the Higgs as in [17] by the change
of variables H =

√
af0

π ϕ to get 1
2

∫
|DH|2√gd4x.

The normalization of the Yang–Mills terms and of the kinetic term of the
Higgs then gives, at unification scale, an action functional of the form

(2.11)

S =
1

2κ2
0

∫
R
√
g d4x+ γ0

∫
√
g d4x

+ α0

∫
Cµνρσ C

µνρσ√g d4x+ τ0

∫
R∗R∗

√
g d4x

+
1
2

∫
|DH|2√g d4x− µ2

0

∫
|H|2√g d4x

− ξ0

∫
R |H|2√g d4x+ λ0

∫
|H|4√g d4x

+
1
4

∫
(Giµν G

µνi + Fαµν F
µνα + Bµν B

µν)
√
g d4x,

where the coefficients are now

(2.12)

1
2κ2

0
=

96f2Λ2 − f0c

24π2

γ0 =
1
π2

(48f4Λ4 − f2Λ2c +
f0

4
d)

α0 = − 3f0

10π2

τ0 =
11f0

60π2

µ2
0 = 2

f2Λ2

f0
− e

a

ξ0 = 1
12

λ0 =
π2b

2f0a2
,

again as a function of the Yukawa and Majorana parameters through the
coefficients a, b, c, d, e of (2.8), and of the two remaining free parameters of
the model, f2 and f4, after the value of f0 has been fixed by the unification
condition.

3. Renormalization group and running parameters

All the Yukawa parameters Yu, Yd, Yν , Ye, as well as the Majorana mass
terms M are subject to running with the renormalization group equations
(RGE) dictated by the particle physics content of the model, in this case
the Standard Model with additional right handed neutrinos with Majorana
mass terms. Consequently, also the parameters a, b, c, d, and e of (2.8) run
with the renormalization group flow as functions of Λ, with assigned initial
conditions at Λ = Λunif , which is the preferential energy scale of the model.
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Some estimates based on renormalization group analysis were obtained
already in [17], for the Higgs and the top quark masses, but those were
based, in first approximation, on just the renormalization group equations
at 1-loop for the minimal Standard Model.

In this section we analyze the running of the parameters of the model
with the renormalization group flow, using the full RGE of the extension of
the Standard Model by right handed neutrinos and Majorana masses. There
is an extensive literature available in particle physics on the relevant RGE
analysis, see for instance [2], [3], [12]. We use here a more detailed analysis
of the renormalization group flow, again to one-loop order, for the Standard
Model with additional Majorana mass terms for right handed neutrinos,
as given in [1] and implemented by the authors of [1] in the Mathematica
package http://www.ph.tum.de/~ rge/REAP/.

The full renormalization group equations for this particle physics model
have beta functions given by

(3.1) 16π2 βgi = bi g
3
i with (bSU(3), bSU(2), bU(1)) = (−7,−19

6
,
41
10

),

where [1] is using here a different normalization from [17] and the factor 5/3
has been now included in g2

1. Thus, as for the minimal Standard Model, at
1-loop order the RGE for the coupling constants uncouple from those of the
other parameters. We then have for the Yukawa matrices

(3.2) 16π2 βYu = Yu(
3
2
Y †uYu −

3
2
Y †d Yd + a− 17

20
g2

1 −
9
4
g2

2 − 8g2
3)

(3.3) 16π2 βYd = Yd(
3
2
Y †d Yd −

3
2
Y †uYu + a− 1

4
g2

1 −
9
4
g2

2 − 8g2
3)

(3.4) 16π2 βYν = Yν(
3
2
Y †ν Yν −

3
2
Y †e Ye + a− 9

20
g2

1 −
9
4
g2

2)

(3.5) 16π2 βYe = Ye(
3
2
Y †e Ye −

3
2
Y †ν Yν + a− 9

4
g2

1 −
9
4
g2

2).

The RGE for the Majorana mass terms has beta function

(3.6) 16π2 βM = YνY
†
νM +M(YνY †ν )T

and the one for the Higgs self coupling λ is given by

(3.7) 16π2 βλ = 6λ2 − 3λ(3g2
2 +

3
5
g2

1) + 3g4
2 +

3
2

(
3
5
g2

1 + g2
2)2 + 4λa− 8b

In the treatment of the renormalization group analysis given in the refer-
ences mentioned above, one assumes that the Majorana mass terms are non-
degenerate, which means that there are different see-saw scales at decreasing
energies in between unification and the electroweak scale. In between these
see-saw scales, one considers different effective field theories, where the heav-
iest right handed neutrinos are integrated out when one passes below the
corresponding see-saw scale. In practice the procedure for computing the
RGE for this type of particle physics models can be summarized as follows.

http://www.ph.tum.de/\char 126
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• Run the renormalization group flow down from unification energy
Λunif to first see-saw scale determined by the largest eigenvalue of
M , using assigned boundary conditions at unification.
• Introduce an effective field theory where Y (3)

ν is obtained by remov-
ing the last row of Yν in the basis where M is diagonal and M (3) is
obtained by removing the last row and column.
• Restart the induced renormalization group flow given by the equa-

tions (3.2)–(3.7) with Yν replaced by Y (3)
ν and M replaced by M (3)

and with matching boundary conditions at the first see-saw scale.
Run this renormalization group flow down to second see-saw scale.
• Introduce a new effective field theory with Y

(2)
ν and M (2) obtained

by repeating the above procedure starting from Y
(3)
ν and M (3).

• Run the induced renormalization group flow for these fields with
matching boundary conditions at the second see-saw scale, down
until the first and lowest see-saw scale.
• Introduce again a new effective field theory with Y (1)

ν and M (1) and
matching boundary conditions at the first see saw scale.
• Run the induced RGE down to the electroweak energy Λ = Λew.

The procedure illustrated here assumes that the three see-saw scales are all
located between the unification and the electroweak scale, that is, that all
the sterile neutrinos are heavy.

Notice that there is a difference between the boundary conditions assumed
in [1] for M at unification energy and the assumption made in [17] on the
Majorana mass terms. In fact, in §5.5 of [17] under the assumptions of
flat space and with Higgs term |H|2 sufficiently small, it is shown that one
can estimate from the equations of motion of the spectral action that the
largest Majorana mass can be as high as the unification energy, while in [1]
the unification scale is taken at around 1016 GeV but the top see-saw scale
is around 1014 GeV. For the purpose of the present paper we only work
with the boundary conditions of [1], while a more extensive study of the
same RGE with a broader range of boundary conditions will be considered
elsewhere. We report the explicit boundary conditions of [1] at Λ = Λunif
in the appendix.

3.1. Running parameters and see-saw scales. In the following, we as-
sume as in [17] that the value of the parameter f0 is fixed by the relation
(2.10). In terms of the boundary conditions at unification used in [1], this
gives as value for f0 either one of the following

(3.8) f0 =
π2

2g2
1

= 8.52603, f0 =
π2

2g2
2

= 9.46314, f0 =
π2

2g2
3

= 9.36566.

These three different choices come from the fact that, as it is well known,
the values for the three coupling constants do not exactly meet in the min-
imal Standard Model, nor in its variant with right handed neutrinos and
Majorana mass terms. Notice that here we are already including the factor
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Figure 1. Coefficients a and b as functions of the energy
scale Λ near the top see-saw scale.
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Figure 2. The coefficient c as a function of the energy scale
Λ near the three see-saw scales.

of 5/3 in g2
1, unlike in [17], where we have g2

3 = g2
2 = 5

3g
2
1 at unification.

We shall perform most of our explicit calculations in the following using the
first value for f0 and it is easy to check that replacing it with either one of
the others will not affect significantly any of the results. The parameters f2

and f4 remain free parameters in the model and we discuss in §4 how they
can be varied so as to obtain different possible cosmological models.

We concentrate here instead on the coefficients a, b, c, d, and e of (2.8) and
on their dependence on the energy scale Λ through their dependence on the
Yukawa parameters and the Majorana mass terms and the renormalization
group equations (3.2)–(3.7). The renormalization group flow runs between
the electroweak scale Λew = 102 GeV and the unification scale, chosen as in
[1] at 2× 1016 GeV.

By solving numerically the equations and plotting the running of the
coefficients (2.8) one finds that the coefficients a and b show clearly the
effect of the first (highest) see-saw scale, while the effect of the two lower
see-saw scales is suppressed.

The running of the coefficients c and d exhibits the effect of all three see-
saw scales, while the running of the remaining coefficient e is the only one
that exhibits a large jump at the highest see-saw scale.
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Figure 3. The coefficient d as a function of the energy scale
Λ near the three see-saw scales.
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Figure 4. The coefficient e as a function of the energy scale
Λ near the three see-saw scales.

Notice that the lack of differentiability at all the see-saw scales is in-
evitable, due to the procedure used in [1] and recalled here above for the
construction of the effective field theories in between the different see-saw
scales.

4. Cosmological implications of the model

We now use the information on the running of the coefficients (2.8) with
the renormalization group to study the effect on the coefficients of the gravi-
tational and Higgs terms in the asymptotic expansion of the spectral action.
We derive some information about cosmological models of the early universe
that arise naturally in this noncommutative geometry setting. In particular,
we focus on the following aspects.
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• Spontaneously arising Hoyle–Narlikar cosmologies in Einstein–Hilbert
backgrounds.
• Linde’s hypothesis of antigravity in the early universe, via running

of the gravitational constant and conformal coupling to the Higgs.
• Gravity balls from conformal coupling to the Higgs field.
• Detectable effects on gravitational waves of the running gravitational

constant, as in modified gravity theories.
• Primordial black holes with or without gravitational memory.
• Higgs based slow-roll inflation.
• Varying effective cosmological constant and vacuum-decay.
• Cold dark matter from Majorana masses of right handed neutrinos.

The main features of the noncommutative geometry model that will be
discussed in the following and that lead to the effects listed above are sum-
marized as follows.

• Variable effective gravitational constant.
• Variable effective cosmological constant.
• Conformal gravity.
• Conformal coupling of the Higgs field to gravity.

4.1. Einsten gravity and conformal gravity. The usual Einstein–Hilbert
action (with cosmological term)

1
16πG

∫
R
√
gd4x+ γ0

∫
√
gd4x

minimally coupled to matter gives the Einstein field equations

Rµν − 1
2
gµνR+ γ0g

µν = −8πGTµν ,

where the energy momentum tensor Tµν is obtained from the matter part
of the Lagrangian, see §9.7 of [22] and §7.1.13 of [47]. (Here we use the no-
tation γ0 for the (variable) cosmological constant, which is more frequently
denoted by Λ or λ in the cosmology and general relativity literature, but un-
fortunately both of these letters are already assigned other meanings here.)
In addition to these terms, where both G and γ0 will be running with the
energy scale Λ and depending on the free parameters f2 and f4, the asymp-
totic expansion for the spectral action also delivers conformal gravity terms.
Conformal gravity is considered an alternative to the usual form of general
relativity, where the Einstein–Hilbert action is replaced by an action based
on the Weyl curvature tensor

Cλµνκ = Rλµνκ −
1
2

(gλνRµκ − gµνRλκ + gµκRλν) +
1
6

(gλνgµκ − gλκgµν).

This has the property of being conformally invariant, namely under a trans-
formation of the form gµν(x) 7→ f(x)2 gµν(x) the Weyl tensor remains un-
changed, Cλµνκ 7→ Cλµνκ. The action functional of conformal gravity is of
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the form

(4.1) α0

∫
CλµνκC

λµνκ√gd4x,

upon rewriting the above in terms of the Riemann curvature tensor

α0

∫
(RλµνκRλµνκ − 2RµνRµν +

1
3
R2)
√
gd4x

and using the fact that RλµνκRλµνκ − 4RµνRµν + R2 is a total divergence
(see [37]) one can rewrite the conformal action functional as

2α0

∫
(RµνRµν −

1
3
R2)
√
gd4x

which gives field equations

Wµν = − 1
4α0

Tµν ,

where
Wµν = 2Cµλνκ;ν;κ − CµλνκRλκ =

1
6
gµν∇2R+

1
3
∇µ∇νR−

1
3
R(2Rµν −

1
2
gµνR) +Rβρ(

1
2
gµνRβρ − 2Rβµρν).

In addition to the Weyl curvature tensor itself being conformally invariant,
one can add to the conformal gravity action a coupling to a field ϕ. Under
a conformal transformation gµν(x) 7→ f(x)2 gµν(x), a field transforming like
ϕ 7→ f−1ϕ gives

(∂µϕ)2 7→ f−4((∂µϕ)2 + ϕ(ϕ∇µ log f − 2∇µϕ)∇µ log f),

while the scalar curvature transforms like

R 7→ f−2(R− (d− 1)((d− 2)∇µ log f∇µ log f + 2∇µ∇µ log f)

so a non-minimal coupling of the field ϕ to gravity of the form

2ξ0

∫
Rϕ2√gd4x

is conformally invariant in dimension d = 4 if 2ξ0 = 1/6. In addition to
these terms a quartic potential

λ0

∫
ϕ4√gd4x

also preserves conformal invariance. Thus, adding to the conformal action
(4.1) terms of the form

(4.2)
1
2

∫
(∂µϕ)2√gd4x− 1

12

∫
Rϕ2√gd4x+ λ0

∫
ϕ4√gd4x

maintains the conformal invariance. The conformal gravity action (4.1)
with an additional non-minimal conformal coupling to another field ϕ in
the form (4.2) is the basis of the Hoyle–Narlikar cosmologies, which were
proposed as possible models for steady state cosmologies in [31], with the
field ϕ related to the Mach principle. In fact, the presence of the field
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ϕ allows for a modification of the energy momentum tensor of the form
Tµν 7→ Tµν − ξ0ϕ

2(Rµν − 1
2g
µνR) − gµνλ0ϕ

4, which was used as “creation
field” in steady state models. While the steady state cosmologies fail to
account for major cosmological phenomena such as the background radia-
tion, hence Hoyle–Narlikar cosmologies cannot be extrapolated towards the
early universe, conformal gravity remains a valuable model (see [37] for a
recent discussion). Within the noncommutative geometry model we will
see below that one typically has a dominant Einstein–Hilbert action, and
only at certain scales where the behavior of the running effective gravita-
tional constant presents phase transitions one finds that the subdominant
terms of conformal gravity become dominant. This gives rise to emergent
Hoyle–Narlikar cosmologies, for which the problem of extrapolating towards
earlier times does not arise, as they become suppressed by the dominant
Einstein–Hilbert term away from the energy scale of the phase transition.
In the noncommutative geometry model the role of the field non-minimally
conformally coupled to gravity is played by the Higgs field. Variants of the
model of [17], discussed for instance in [13], allow for the presence of a fur-
ther scalar field σ also conformally non-minimally coupled to R. Most of
those arguments we describe in the following sections that are based on the
coupling of the Higgs to gravity can be formulated also in terms of this other
field σ, though we will not explicitly mention it.

4.2. Variable effective gravitational constant. According to the ex-
pressions for the coefficients (2.12) of the terms in the asymptotic expansion
of the spectral action, we see that this model has an Einstein–Hilbert term,
where the usual coefficient 1

16πG

∫
R
√
gd4x, with G the Newton constant

G ∼ (1019GeV)−2, with 1/
√
G = 1.22086 × 1019 GeV the Planck mass, is

replaced by an effective gravitational constant of the form

(4.3) Geff =
κ2

0

8π
=

3π
192f2Λ2 − 2f0c(Λ)

In this expresstion, the parameter f0 is fixed by the unification condition
(3.8) (we will use the first value for simplicity), the parameter f2 is uncon-
strained in R∗+ and the function c(Λ) is determined by the renormalization
group equations.

Thus, one can best represent the effective gravitational constant of the
model as a surface Geff(Λ, f2), which is a function of the energy scale in
the range Λew ≤ Λ ≤ Λunif between the electroweak and the unification
scales. It is in fact often preferable to consider the surface G−1

eff (Λ, f2) that
describes the inverse effective gravitational constant, since it is in this form
that it appears in the coefficients of the action functional, and it does not
have singularities.

As an example of the form of the surface G−1
eff (Λ, f2), one sees in Figure 5

that, for sufficiently small f2, the surface exhibits a kink at the top see-saw
scale.
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Figure 5. The region of the surface Geff(Λ, f0)−1 in the
range 1014 ≤ Λ ≤ 1015 GeV and for 10−16 ≤ f2 ≤ 10−4.

As another example, if one requires in this model that the value of the
effective gravitational constant at the lower end of the energy spectrum
we are considering, that is, at the electroweak scale, already agrees with
the usual Newton constant, this requires a very large fine tuning of the
parameter f2, which is fixed to have the value f2 = 7.31647 × 1032. Notice
that this is just an example. There is no physical reason to assume in this
model that at the time of the electroweak epoch of the early universe the
effective gravitational constant would have to be already equal to that of
the modern universe. In this example one then sees that the running of
G−1

eff becomes dominated entirely by the term 192f2Λ2/(3π), with the term
2f0c(Λ)/(3π) remaining all the while several orders of magnitude smaller.
This is in contrast with the running of Figure 5 where f2 is small, and the
running of 2f0c(Λ)/(3π) comes to play a significant role, as one sees from
the effect of the see-saw scales.

4.3. Emergent Hoyle–Narlikar cosmologies. We look more closely at
cases with large f2. For simplicity we illustrate what happens in this range
by focusing on the example we mentioned above where f2 is fixed so that
Geff(Λew) = G, though qualitatively the results described in this section
hold for a wider range of choices of f2 sufficiently large. We show that, in
the case of spaces with R ∼ 1, a phase transition happens at the top see-
saw scale, where the dominant Einstein–Hilbert action is suppressed and the
action of the system is dominated by a spontaneously arising Hoyle–Narlikar
type cosmology.

We first identify the dominant terms in the action, under the hypothesis
of large f2. Then we identify the conditions under which these terms are
suppressed and the remaining terms become dominant.
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Proposition 4.1. For sufficiently large values of the parameter f2 (for in-
stance when Geff(Λew) = G), and in the range of energies where the effective
cosmological term is kept small by the choice of the parameter f4, the dom-
inant terms in the expansion of the spectral action (2.11) are

(4.4) Λ2

(
1

2κ̃2
0

∫
R
√
gd4x− µ̃2

0

∫
|H|2√gd4x

)
,

for κ̃0 = Λκ0 and µ̃0 = µ0/Λ.

Proof. In this case, as we have seen already, the running of the effective grav-
itational constant is dominated by the term G−1

eff ∼ 192f2Λ2/(3π). Similarly,
in the quadratic term of the Higgs µ2

0, the term 2f2Λ2/f0 is dominant when
f2 is sufficiently large. In particular, in the example where Geff(Λew) = G,
the term 2f2Λ2/f0 satisfies

2f2Λ2
ew

f0
= 1.71627× 1036,

while the second term is several orders of magnitude smaller,

− e(Λew)
a(Λew)

= −1.51201× 1027,

even though the coefficient e varies more significantly than the other coeffi-
cients of (2.8).

We then proceed to estimate the remaining terms of (2.11) and show that
they are all suppressed with respect to the dominant terms above, for this
choice of f2. The parameters α0, τ0, ξ0 are not running with Λ, and we can
estimate them to be

α0 ∼ −0.25916, τ0 ∼ 0.158376,

while ξ0 = 1/12 remains fixed at the conformal coupling value.
To estimate the running of the coefficient λ0, we propose an ansatz on

how it is related to the running of λ in the RGE (3.7) and to that of the co-
efficients a and b. We also know that the boundary conditions at unification
of (2.12) satisfy

λ0|Λ=Λunif = λ(Λunif )
π2b(Λunif )
f0a2(Λunif )

,

where in (3.7) one uses the boundary condition λ(Λunif ) = 1/2 as in [1].
Thus, we investigate here the possibility that the coefficient λ0 runs with
the RGE according to the relation

(4.5) λ0(Λ) = λ(Λ)
π2b(Λ)
f0a2(Λ)

.

With this ansatz for the running of λ0 one finds that the value of λ0 varies
between λ0(Λew) = 0.229493 and λ0(Λunif ) = 0.184711, along the curve
shown in Figure 6, with a maximum at λ0(Λew) and a local maximum at
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Figure 6. The running of λ0 near the top see-saw scale and
near the electroweak scale.

the top see-saw scale with value 0.202167, and with a minimum near 2×107

GeV of value 0.155271. We discuss this ansatz more in details in §4.5 below.
Finally, for a given energy scale Λ it is always possible to eliminate the

cosmological term at that energy scale by adjusting the coefficient f4 (see
§4.12). The vanishing condition for the effective cosmological constant at
energy Λ is realized by the choice of

(4.6) f4 =
(4f2Λ2c− f0d)

192Λ4
.

Thus, if at a given energy scale the coefficient f4 is chosen so that the
effective cosmological constant vanishes, then the only terms that remain as
dominant terms in the action are those of (4.4). �

In this scenario then a new feature arises. Namely, the fact that one has
comparable terms

1
2κ2

0

∼ 96f2Λ2

24π2
∼ 2.96525× 1032Λ2

and

µ2
0 ∼

2f2Λ2

f0
∼ 1.71627× 1032Λ2

can lead to cancellations under suitable geometric hypotheses.

Proposition 4.2. Consider a space with R ∼ 1. Then, for values |H| ∼√
af0/π, the term (4.4), which is the dominant term for f2 sufficiently large,

vanishes and is replaced by the sub-dominant

(4.7)
e

a
|H|2 − f0c

24π2
R ∼ f0

π2
(e− c

24
)

as the leading term in the formula (2.11) for the spectral action. Near the
top see-saw scale, the term (4.7) has a discontinuity, where the dynamics
becomes dominated by a Hoyle–Narlikar cosmology given by the remaining
terms of (2.11).
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Proof. As in [22], Corollary 1.219, we expand the Higgs field around |H| ∼√
af0/π. Then, one can compare the two terms

(4.8)
1

2κ̃2
0

R− µ̃2
0|H|2.

This identifies a value for the constant curvature

R ∼ 2κ̃2
0µ̃

2
0af0

π2

at which the dominant term
96f2Λ2

24π2
R− 2f2Λ2

f0

af0

π2

of (4.8) vanishes, leaving the smaller terms to dominate the dynamics. One
can estimate that this gives a value for the scalar curvature very close to
one, R = 0.979907 ∼ 1, if we use the value of a at unification energy and
the first possible value of f0 in (3.8).

The next smaller term in (4.8) is then of the form

e

a
|H|2 − f0c

24π2
R ∼ e

a

af0

π2
− f0c

24π2

which gives (4.7). Near the top see-saw scale, at around 5.76405×1014 GeV
the term e − c/24 has a jump and a sign change due to the large jump of
the coefficient e near the top see-saw scale (see Figure 4). At this phase
transition what is left of the dynamics of (2.11) are the remaining terms.
One therefore sees an emergent behavior where near the phase transition of
the top see-saw scale, of the following form.

The coefficient f4 can be chosen so that the cosmological term vanishes at
this same top see-saw scale energy (see §4.12). The dynamics of the model
is then dominated by the remaining terms, which recover a well known
treatment of gauge and Higgs field in conformal gravity, as discussed for
instance in §2.2 of [26]. According to these models, the conformally invariant
action for the gauge and Higgs bosons is given by the terms

(4.9)

Sc = α0

∫
Cµνρσ C

µνρσ√g d4x+
1
2

∫
|DH|2√g d4x

−ξ0

∫
R |H|2√g d4x+ λ0

∫
|H|4√g d4x

+
1
4

∫
(Giµν G

µνi + Fαµν F
µνα + Bµν B

µν)
√
g d4x.

The additional topological term τ0

∫
R∗R∗

√
g d4x is non-dynamical and only

contributes the Euler characteristic of the manifold. The action (4.9) is that
of a Hoyle–Narlikar cosmology. �

In this model, the scalar curvature R, which is constant or near con-
stant, provides an effective quadratic term for the Higgs and a correspond-
ing symmetry breaking phenomenon, as observed in [26]. This produces
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in turn a breaking of conformal symmetry, via the Higgs mechanism giv-
ing mass to some of the gauge field, thus breaking conformal invariance.
In this range, with a constant curvature R and in the absence of the qua-
dratic term in µ0, the Higgs field is governed by a potential of the form
VR=1(H) = −ξ0|H|2 + λ0|H|4, which has a minimum at |H|2 = ξ0/(2λ0).

We discuss in §4.7 below another instance of emergent Hoyle–Narlikar
cosmology based on conformal gravity at a phase transition where the ef-
fective gravitational constant undergoes a sign change and an antigravity
regime arises.

4.4. Effects on gravitational waves. The fact that we have a variable
gravitational constant in the model has detectable effects on phenomena like
gravitational waves whose propagation depends on the value of the gravita-
tional constant.

Under the assumptions that the remaining terms in the asymptotic ex-
pansion of the spectral action are negligible with respect to the dominant
(4.4), and further that |H| ∼ 0, so that only the Einstein–Hilbert term dom-
inates, one can show as in [38] that the equations of motion for (2.11) reduce
to just

Rµν − 1
2
gµνR = κ2

0T
µν .

In [38] the authors conclude from this that, in the isotropic case, the non-
commutative geometry model has no effect on the gravitational waves that
distinguish it from the usual Einstein–Hilbert cosmology. However, in fact,
even in this case one can find detectable effects on the gravitational waves
that distinguish the noncommutative geometry model from the ordinary
case of general relativity, because of the running of the effective gravita-
tional constant.

We consider here two different scenario for the time-energy relation, one
which will be relevant close to the electroweak scale ([30]), where Λ ∼ t−1/2,
and the other that refers to the inflationary period, with Λ ∼ e−αt. We
show that in both cases the behavior of the gravitational waves differs from
the behavior, with the same time-energy conversion, of the solutions in the
classical case, thus detecting the presence of noncommutative geometry.

Proposition 4.3. In between the unification and the electroweak scale the
gravitational waves propagate according to the Λ-dependent equation

(4.10) − 3
(
ȧ

a

)2

+
1
2

(
4
(
ȧ

a

)
ḣ+ 2ḧ

)
=

12π2

96f2Λ2 − f0c(Λ)
T00.

Upon rewriting the energy variable Λ as a function of time through Λ =
1/a(t), one obtains

(4.11) ḧ+ t−1ḣ− 3
4
t−2 =

12π2T00

96f2t−1 − f0c(t−1/2)
.
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in the radiation dominated era where Λ ∼ t−1/2, and

(4.12) ḧ+ 2αḣ− 3α2 =
12π2T00

96f2e−2αt − f0c(e−αt)
.

in the inflationary epoch where Λ ∼ e−αt.

Proof. For a metric of the form

(4.13) gµν = a(t)2

(
−1 0
0 δij + hij(x)

)
one separates the perturbation hij into a trace and traceless part, and the
gravitational waves are then governed by the Friedmann equation, which
gives

(4.14) − 3
(
ȧ

a

)2

+
1
2

(
4
(
ȧ

a

)
ḣ+ 2ḧ

)
= κ2

0 T00.

This equation is formally the same as the usual equation for the gravita-
tional waves, up to replacing κ2

0 for 8πG, as remarked in [38]. However, the
dependence of κ2

0 on the energy scale Λ leads to the result (4.10).
The change of variable between energy and time, for a cosmology of the

form (4.13) is given by Λ = 1/a(t). Thus, we can write the equation (4.14)
by expressing the right hand side also as a function of time in the form

(4.15) −3
(
ȧ(t)
a(t)

)2

+
1
2

(
4
(
ȧ(t)
a(t)

)
ḣ(t) + 2ḧ(t)

)
=

12π2T00

96f2
1

(a(t))2 − f0c( 1
a(t))

.

In the radiation dominated era, where the function a(t) behaves like a(t) =
t1/2 we find

ȧ

a
=

1
2
t−1,

which gives

−3
(
ȧ

a

)2

+
1
2

(
4
(
ȧ

a

)
ḣ+ 2ḧ

)
= ḧ+ t−1ḣ− 3

4
t−2.

This gives (4.11). In the inflationary era, where the function a(t) behaves
exponentially a(t) = eαt, one obtains instead ȧ/a = α and

−3
(
ȧ

a

)2

+
1
2

(
4
(
ȧ

a

)
ḣ+ 2ḧ

)
= ḧ+ 2αh− 3α2,

which gives (4.12). �

For a choice of the parameter f2 sufficiently large (such as the one that
gives Geff(Λew) = G) for which κ2

0(Λ) ∼ κ̃2
0/Λ

2 we then obtain the following
explicit solutions to the equation (4.10).
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Proposition 4.4. We consider the case with the parameter f2 sufficiently
large (for instance in the example where Geff(Λew) = G). In the radiation
dominated era, where the metric (4.13) has a(t) ∼ t1/2, and the energy-time
relation is given by Λ = 1/a(t) the equation (4.11) has solutions of the form

(4.16) h(t) =
4π2T00

288f2
t3 +B +A log(t) +

3
8

log(t)2

In the inflationary epoch, for a metric of the form (4.13) with a(t) ∼ eαt,
for some α > 0, the equation (4.12) has solutions of the form

(4.17) h(x) =
3π2T00

192f2α2
e2αt +

3α
2
t+

A

2α
e−2αt +B.

Proof. We assume that the parameter f2 is sufficiently large. For example,
we take the case where f2 is fine tuned so as to have an agreement between
the value at the electroweak scale of the effective gravitational constant and
the usual Newton constant, κ2

0(Λew) = 8πG. One then finds at high energies
a different effective Newton constant, which behaves like

κ2
0 ∼

12π2

96f2
Λ−2,

which then gives a modified gravitational waves equation

(4.18) − 3
(
ȧ

a

)2

+
1
2

(
4
(
ȧ

a

)
ḣ+ 2ḧ

)
=
κ̃2

0

Λ2
T00,

with κ̃2
0 = 12π2

96f2
.

We look first at the radiation dominated case where a(t) = t1/2. In the
interval of energies that we are considering, this has relevance close to the
electroweak scale, see [30]. We then have equation (4.11) in the form

(4.19) ḧ+ t−1ḣ− 3
4
t−2 = t

12π2T00

96f2
.

Assuming T00 constant, the general solution of

t−1ḧ+ t−2ḣ− 3
4
t−3 = C

is of the form

h(t) =
C

9
t3 +B +A log(t) +

3
8

log(t)2,

for arbitrary integration constants A and B. With C = (12π2T00)/(96f2),
this gives (4.16).

In the inflationary epoch where one has a(t) = eαt, for some α > 0, one
can write the equation (4.12) in the form

ḧ+ 2αḣ− 3α2 = e2αt 12π2T00

96f2
.
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Again assuming T00 constant, the general solution of

ḧ+ 2αḣ− 3α2 = Ce2αt

with a constant C is of the form

h(t) =
3α
2
t+

C

8α2
e2αt − A

2α
e−2αt +B,

for arbitrary integration constants A and B. With C = (12π2T00)/(96f2) as
above, this gives (4.17). �

The behavior of the solutions (4.16) and (4.17) should be compared with
the analogous equations in the ordinary case where of the equation (4.14)
with κ2

0 = 8πGT00 independent of the energy scale Λ and equal to the ordi-
nary Newton constant. In this case, one obtains, in the radiation dominated
case with a(t) = t1/2 the equation

ḧ+ t−1ḣ− 3
4
t−2 = 8πGT00,

which has general solution

h(t) = 2πGT00 t
2 +B +A log(t) +

3
8

log(t)2,

which differs from (4.16) for the presence of a quadratic instead of cubic
term. Similarly, in the case of the inflationary epoch, where one has a(t) =
eαt, in the ordinary case one has the equation

ḧ+ 2αḣ− 3α2 = 8πGT00,

which has general solution

(
4πGT00

α
+

3α
2

) t +
A

2α
e−2αt +B,

which differs from what we have in (4.17) by the presence of an additional
linear term instead of an exponential term.

Similar examples with different forms of the factor a(t) in the metric
(4.13) can easily be derived in the same way. Choices of the parameter
f2 for which the term c(Λ) cannot be neglected will give rise to varying
behaviors of the equations both in the radiation dominated era and during
inflation. However, in those cases the equations cannot be integrated exactly
so we cannot exhibit explicit solutions.

4.5. The λ0-ansatz and the Higgs. We mention here briefly another con-
sequence of the ansatz (4.5) on the running of the coefficient λ0(Λ) between
the electroweak and the unification scales. This running is different from
the one used in [17] to derive the Higgs mass estimate. In fact, the RGE
equations themselves are different, since in [17] one only considers the RGE
for the minimal standard model and the boundary conditions at unifications
are also significantly different from the ones used in [1] that we use here (see
the second appendix for a more detailed discussion of the boundary condi-
tions in [17] and [1]). Also in [17] the coefficient λ0 is assumed to run as
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the λ in the minimal standard model, with only the boundary condition at
unification relating it to the values of a and b (which are in turn different
from the values at unification according to the RGEs of [1]). Thus, one can
check how adopting the ansatz (4.5) for λ0(Λ) together with the boundary
conditions of [1] for λ, a and b affects the estimate for the Higgs mass. In
[17] one obtains a heavy Higgs at around 170 GeV, by the value

√
2λ

2M
g
∼ 170 GeV,

where λ is the low energy limit of the RGE flow in the minimal Standard
Model for the coefficient λ0 and where 2M/g ' 246 GeV is the Higgs vac-
uum. If we replace the running used in [17] with the running of λ0(Λ) of
(4.5) with the boundary condition of [1], the same estimate would deliver a
much lower value√

2λ0(Λew)
2M
g

=

√
2λ(Λew)π2b(Λew)

f0a2(Λew)
2M
g
∼ 158 GeV.

This looks potentially interesting in view of the fact that the projected
window of exclusion for the Higgs mass in [46] starts at 158 GeV (see also
[32]). This gives only a first possible indication that a more detailed analysis
of the RGEs for the standard model with Majorana mass terms, as in [1],
and a careful discussion of the boundary conditions at unification and of
the running of the coefficients in the asymptotic expansion of the spectral
action may yield a wider spectrum of possible behaviors for the Higgs field
within these noncommutative geometry models. This topic deserves more
careful consideration that is beyond the main focus of the present paper.

4.6. Antigravity in the early universe. Cosmological model exhibiting
a sign change in the effective Newton constant in the early universe, due to
the interactions of gravity and matter, were studied for instance in [35], [41]
or [48]. Those models of antigravity are based on the presence of a non-
minimal conformal coupling of gravity to another field, with a Lagrangian
of the form

L =
∫
−1

16πG
R
√
g +

1
12

∫
Rϕ2√g + L(ϕ,A, ψ),

where the last term contains the kinetic and potential terms for the field ϕ
and its interactions with other fields A, ψ. The conformal coupling of R and
ϕ gives rise to an effective gravitational constant of the form

G−1
eff = G−1 − 4

3
πϕ2.

where ϕ is treated as a constant, which is estimated in [35] in terms of the ex-
cess of neutrino over antineutrino density, the quartic interaction coefficient
λ of ϕ and the Weinberg angle. A decrease in Geff produces a correspond-
ing increase in the Planck density (see, however, the criticism to this model
discussed in [41]). Antigravity sectors with negative effective gravitational
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Figure 7. An example of transition to negative gravity in
the running of G−1

eff (Λ) with Geff(Λunif , f2) = G.

constant as in [35] were recently considered within various approaches based
on extra dimensions and brane world models, see for instance [29], [28], or
from the point of view of moduli in heterotic superstring theory, as in [42].

Within the noncommutative geometry model it is also possible to find sce-
narios where one has antigravity in the early universe. The same mechanism
proposed in [35] can be reproduced within the NCG model, due to the pres-
ence of the conformal coupling of the Higgs field to gravity. However, there
is another, independent mechanism that can also produce a sign change of
the Newton constant between the unification and electroweak cosmological
phase transitions and which is only due to the running of the effective New-
ton constant with the RGE equations of the particle physics content of the
model. In fact, there are choices of the parameter f2 of the model for which
the effective gravitational constant undergoes a sign change.

An example of this behavior is obtained if one chooses the value of the
effective gravitational constant Geff to be equal to the Newton constant
at unification scale, Geff(Λunif , f2) = G, and then runs it down with the
RGE equations. Notice that the assumption Geff(Λunif , f2) = G is the same
that was proposed in [17], but due to the different RGE analysis considered
here, the behavior we describe now is different from the one projected in [17].
With the estimate used in Lemma 5.2 of [17] for the Majorana mass terms at
unification (under the assumptions of flat space and negligible Higgs vacuum
expectation) setting the effective gravitational constant of the model equal
to the Newton constant at unification energy only requires f2 of the order
of at most f2 ' 102, while using the boundary conditions of [1] one find a
larger value of f2. In fact, we see that setting

(4.20) f2 ' 18291.3

gives Geff(Λunif ) = G = (1.22086× 1019)−2.
One sees then, as in Figure 7 that the resulting Geff(Λ, f2), for this choice

of f2 has a sign change at around 1.3×1012 GeV. Thus, with these boundary
conditions one finds an example of a regime of negative gravity in the early
universe. Other possible choices of f2 lead to similar examples.
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4.7. The conformal gravity regime. In this scenario, it is especially in-
teresting to see what happens near the energy scale of 1.3×1012 GeV, where
G−1

eff vanishes, as in Figure 7. This gives another example of an emergent
conformal gravity regime at a phase transition (here the change from positive
to negative gravity) of the system.

Proposition 4.5. Let the parameter f2 be chosen so that the inverse ef-
fective gravitational constant G−1

eff (Λ) has a zero at some Λ = Λ0. Assume
the vanishing of the topological term and suppose that the parameter f4 is
chosen so that the effective cosmological constant also vanishes at Λ0. Then
near Λ0 and for |H|2 sufficiently small the dynamics of (2.11) is dominated
by pure conformal gravity.

Proof. At the singularity Λsing for Geff , assuming the vanishing of the topo-
logical term, the terms that remain in the bosonic part of the action are
the cosmological term, the conformal gravity term with the Weyl curvature
tensor, and the Higgs and gauge bosons terms. If the Higgs field is suffi-
ciently near the H = 0 vacuum, and the parameter f4 is chosen so that the
cosmological term also vanishes at the same scale Λsing, one finds that what
remains of the bosonic action is just the conformal gravity action

(4.21) S(Λsing) = α0

∫
CµνρσC

µνρσ√gd4x

with α0 = −3f0/(10π2) ' −0.25916, and with the additional weakly coupled
term of the gauge bosons. Thus, in this scenario, when running down the
coefficients of the bosonic spectral action from unification scale towards the
electroweak scale, a singularity of Geff occurs at an intermediate scale of
1.3×1012 GeV. At the singularity, if the cosmological term also vanishes and
the Higgs contribution is sufficiently small, the model becomes dominated
by a conformal gravity action (4.21).

In this regime the equations of motion will then be of the form

(4.22) 2Cµλνκ;λ,;κ − C
µλνκRλκ = − 1

4α0
Tµν

as in (188) of [37]. Thus one has in this regime pure conformal gravity with
an effective gravitational constant of see §8.7 of [37]. �

The emergence of a conformal gravity regime was also observed in [38],
though not in terms of renormalization group analysis, but near the special
value of the Higgs field |H| →

√
6/κ0.

4.8. Gravity balls. We now analyze more carefully the second mechanism
that produces negative gravity besides the running of Geff(Λ), namely the
non-minimal conformal coupling to the Higgs field. This will reproduce in
this model a scenario similar to that of [35].

Let us assume for simplicity that the parameter f2 is chosen so that
Geff(Λ, f2) > 0 for all Λew ≤ Λ ≤ Λunif . We show that, even in this case,
it is possible to have regions of negative gravity, due to the coupling to the
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Higgs. These behave like the gravity balls and non-topological solitons of
[36], [43], but with a more elaborate behavior coming from the fact that the
underlying gravitational constant is also changing with Λ according to the
RGE flow.

Proposition 4.6. Let f2 be assigned so that the effective gravitational con-
stant satisfies Geff(Λ, f2) > 0 for all Λew ≤ Λ ≤ Λunif . Then negative gravity
regions, with |H| near |H|2 ∼ µ2

0/(2λ0), arise in the range of energies Λ such
that

(4.23) `H(Λ, f2) > `G(Λ, f2),

for

(4.24) `H(Λ, f2) =
(2f2Λ2a(Λ)− f0e(Λ))a(Λ)

π2λ(Λ)b(Λ)

and

(4.25) `G(Λ, f2) =
192f2Λ2 − 2f0c(Λ)

4π2
.

Proof. The presence of the conformal coupling term

− 1
12

∫
R|H|2√gd4x

in the normalized asymptotic formula for the spectral action (2.11) means
that, in regions with nearly constant |H|2, the effective gravitational con-
stant of the model is further modified to give

(4.26) Geff,H =
Geff

1− 4π
3 Geff |H|2

.

This is the same mechanism used in [35] for negative gravity models. This
means that, assuming that Geff(Λ) > 0 for all Λew ≤ Λ ≤ Λunif , one will
have 

Geff,H < 0 for |H|2 > 3
4πGeff(Λ)

,

Geff,H > 0 for |H|2 < 3
4πGeff(Λ)

.

This means, for instance, that in the presence of an unstable equilibrium at
|H| = 0 and a stable equilibrium at |H|2 = v2 satisfying v2 > 3

4πGeff(Λ) , one
can have gravity balls near zeros of the field |H|2, where gravity behaves in
the usual attractive way, inside a larger scale negative gravity corresponding
to the true equilibrium |H|2 = v2.

In the action (2.11), the Higgs field has a quartic potential given by

−µ2
0

∫
|H|2√gd4x+ λ0

∫
|H|4√gd4x,
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Figure 8. The surface `H(Λ, f2) in the range 1014 ≤ Λ ≤
1015 GeV, around the top see-saw scale, for 10−4 ≤ f2 ≤ 1.

which has a minimum at µ2
0/(2λ0). Thus, to identify the negative gravity

regime we need to compare the running of (4.24),

`H(Λ, f2) :=
µ2

0

2λ0
(Λ) =

2f2Λ2

f0
− e(Λ)

a(Λ)

λ(Λ) π
2b(Λ)

f0a2(Λ)

=
(2f2Λ2a(Λ)− f0e(Λ))a(Λ)

π2λ(Λ)b(Λ)
,

where we again used the ansatz (4.5) on the running of the coefficient λ0(Λ),
and the running of the function (4.25),

`G(Λ, f2) :=
3

4πGeff(Λ)
=

3
4π

192f2Λ2 − 2f0c(Λ)
3π

=
192f2Λ2 − 2f0c(Λ)

4π2
.

Thus, for different possible values of the parameter f2, a negative gravity
regime Geff,H < 0 and gravitational balls are possible in the range where
`H(Λ, f2) > `G(Λ, f2). �

An example of such a transition to a negative gravity region is illustrated
in Figure 9, where the surface `H(Λ, f2) near the top see-saw scale behaves
as in Figure 8.

4.9. Primordial black holes. The possibility of primordial black holes
(PBHs) in the early universe was originally suggested by Zeldovich and
Novikov in the late 1960s (see [39] for a survey). They originate from the
collapse of overdense regions, as well as from other mechanisms such as phase
transitions in the early universe, cosmic loops and strings, or inflationary
reheating. The consequences on primordial black holes of the running of the
gravitational constant in the early universe have been analyzed, for example,
in [11]. In models where the gravitational constant in the early universe
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Figure 9. Transition to a negative gravity regime where
`H(Λ, f2) > `G(Λ, f2) in the region 1012 ≤ Λ ≤ 1015 with
f2 = 1.

may be different from the value it has in the modern universe, PBHs, whose
existence is conjectured but has not been presently confirmed, are seen as
a possible source of information about the changing gravitational constant.
In fact, the mass loss rate due to evaporation via Hawking radiation and
the Hawking temperature of primordial black holes depends on the value of
the Newton constant so that the evolution of such black holes depends on
the change in the Newton constant. The evaporation of primordial black
holes is often proposed as a mechanism underlying γ-ray bursts (see for
instance [6], [9]). An especially interesting question regarging PBHs is that
of gravitational memory, as described in [5]. It is usually assumed that two
possible scenarios for the evolution of primordial black holes can happen:
one where the evolution follows the changing gravitational constant and one
with the possibility of “gravitational memory”, namely where the evolution
of the PBH is determined by an effective gravitational constant different
from the one of surrounding space. This latter phenomenon can arise if the
model has the possibility of having regions, as in the case of the gravity
balls discussed in §4.8 above, where the effective gravitational constant has
a value different from the one of surrounding space.

We discuss here the effect on primordial black holes of the running of
the effective gravitational constant in the noncommutative geometry model.
For primordial black holes that formed at a time in the early universe when
the gravitational constant Geff(t) was different from the one of the modern
universe and whose evolution in time reflects the corresponding evolution of
the gravitational constant, the black hole “adjusts its size” to the changing
Geff(t) according to the equation

(4.27)
dM(t)
dt

∼ −(Geff(t)M(t))−2,
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where M is the mass of the primordial black hole. Correspondingly the
temperature varies with the changing gravitational constant as

(4.28) T = (8πGeff(t)M(t))−1.

In the case with gravitational memory, one can have a black hole that evolves
according to a gravitational constant that is different to the one of the
surrounding space. In our setting, given the scenario described in §4.8, this
second case occurs with the equation (4.27) replaced by

(4.29)
dM(t)
dt

∼ −(Geff,H(t)M(t))−2,

with Geff,H as in (4.26).

Proposition 4.7. In the radiation dominated era, for a cosmology with
metric tensor of the form (4.13), the evaporation of primordial black holes
by Hawking radiation in the NCG model is given by

(4.30) M(Λ, f2) = 3

√
M3(Λin)− 2

3π2

∫ Λin

Λ

(192f2x2 − 2f0c(x))2

x3
dx,

in the case of PBHs without gravitational memory, while PBHs with gravi-
tational memory evaporate according to

(4.31) M(Λ, f2) = 3

√
M3(Λin)− 2

3π2

∫ Λin

Λ

(1− 4π
3 Geff(x)|H|2)2

x3Geff(x)2
dx,

where

G−1
eff,H(Λ) =

(1− 4π
3 Geff(Λ)|H|2)
Geff(Λ)

=

192f2Λ2 − 2f0c(Λ)
3π

− 4
3π

(2f2Λ2a(Λ)− f0e(Λ))a(Λ)
λ(Λ)b(Λ)

,

for |H|2 ∼ µ2
0/(2λ0). Here Λin is the energy scale at which the radiation

dominated phase begins, that is, where one starts to have a(t) = t1/2.

Proof. For a metric of the form (4.13), in the radiation dominated era one
has a(t) ∼ t1/2, hence the energy–time change of variables Λ = 1/a(t) is
of the form Λ = t−1/2. Thus, the equation (4.27) can be rewritten in the
variable Λ in the form

(4.32)
dM(Λ)
dΛ

=
2

Λ3(Geff(Λ)M(Λ))2
,

since dt/dΛ = −2Λ−3. We look at the case of a primordial black hole that
has a given mass M(Λin) at the initial Λin, and we look at the evolution of
M(Λ) between Λin and electroweak scale. The equation (4.32), written in
the form

M(Λ)2 dM(Λ) = 2
dΛ

Λ3G2
eff(Λ)
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gives (4.30). The case with gravitational memory is obtained similarly by
replacing the effective gravitational constant Geff(Λ) with the one locally
modified by the interaction with the Higgs field, Geff,H(Λ). �

The expression for the evaporation by Hawking radiation simplifies in the
cases where f2 is sufficiently large that the term 192f2Λ2 dominates over
2f0c(Λ). This is the case, for example, when Geff(Λew) = G and f2 is chosen
accordingly.

Corollary 4.8. In the case where f2 is sufficiently large that the term
2f0c(Λ) is negligible with respect to 192f2Λ2 for all Λew ≤ Λ ≤ Λin, the
evaporation law for a primordial black hole that forms at Λin gives a bound
on its mass by (Λin64

√
6f2/π)2/3.

Proof. Under the assumption that 192f2Λ2 dominates over 2f0c(Λ), the right
hand side of (4.32) can be approximated by the dominant term of Geff(Λ)
which gives

(4.33) M2 dM = 2
(

64f2

π

)2

Λ dΛ.

Let Λ0 denote the scale at which the PBH evaporates. Then (4.33) gives

1
3
M3(Λ) = 2

(
(64f2)
π

)2

(Λ2 − Λ2
0).

This sets a bound to the mass of a primordial black hole formed at Λ = Λin
from the condition that

Λ2
0 = Λ2

in −
(

π

(64f2

√
6)

)2

M3
unif ,

which gives

Min ≤

(
Λin64f2

√
6

π

)2/3

.

�

We can analyze similarly the equation of the Hawking radiation for PBHs
during the inflationary epoch when one has a(t) = eαt for some α > 0. We
obtain the following result.

Proposition 4.9. In the inflationary epoch, for a cosmology with metric
tensor of the form (4.13), the evaporation of primordial black holes by Hawk-
ing radiation in the NCG model is given by

(4.34) M(Λ, f2) = 3

√
M3(Λin)− 1

3απ2

∫ Λin

Λ

(192f2x2 − 2f0c(x))2

x
dx,
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in the case of PBHs without gravitational memory, while PBHs with gravi-
tational memory evaporate according to

(4.35) M(Λ, f2) = 3

√
M3(Λin)− 1

3απ2

∫ Λin

Λ

(1− 4π
3 Geff(x)|H|2)2

xGeff(x)2
dx.

where Λin is the energy scale at which the inflationary behavior a(t) = eαt

begins.

Proof. The argument is completely analogous to the previous case. Here the
energy-time change of variables Λ = 1/a(t) gives t = −α−1 log Λ. Thus, in
the energy variable the equation (4.27) becomes

M2 dM =
dΛ

αΛ(Geff(Λ))2

for the case without gravitational memory, or the same equation withGeff(Λ)
replaced by Geff,H(Λ) in the case with gravitational memory. This gives
(4.34) and (4.35). �

4.10. Higgs based slow-roll inflation. Recently, a mechanism for infla-
tion within the minimal standard model physics was proposed in [24]. It is
based on the presence of a non-minimal coupling of the Higgs field to gravity
of the form

−ξ0

∫
R |H|2√g d4x

as we have in the asymptotic expansion of the spectral action in the non-
commutative geometry model, but where the value of ξ0 is not set equal to
the conformal coupling ξ0 = 1/12, but is subject to running with the RGE
flow. In [24] the running of ξ0 is governed by the beta function given in [8],
which in our notation we can write approximately as

(4.36) 16π2βξ0(Λ) = (−12ξ0(Λ) + 1)F (Yu, Yd, Yν , Ye,M, g1, g2, g3, λ),

where the function F of the running parameters of the model is computed
explicitly in [8]. In [24] this running is only considered within the minimal
standard model, without the right handed neutrinos and Majorana mass
terms M , but their argument can be adapted to this extension of the stan-
dard model, since the general derivation of the running of ξ0 in [8] applies in
greater generality. In this variable ξ0 scenario, the dimensionless quantity
that governs inflation is ψ =

√
ξ0|H|/mP , where mP is the reduced Planck

mass, which in our notation is m2
P = 1/κ2

0. The inflationary period corre-
sponds in [24] to the large values ψ >> 1, the end of the inflation to the
values ψ ∼ 1 and the low energy regime to ψ << 1.

At present we do not know whether a modification of the noncommutative
geometry model that allows for a variable ξ0(Λ), different from the conformal
coupling ξ0 = 1/12 is possible within the costraints of the model, but we
show here that, even in the case where ξ0 is constant in Λ and equal to the
conformal ξ0 = 1/12, the noncommutative geometry model still allows for
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Figure 10. Plot of VE(H)/VE against ψ.

a similar inflation mechanism to occur, through the running of the effective
gravitational constant.

Proposition 4.10. A Higgs based slow roll inflation scenario arises in the
NCG model with parameter

ψ(Λ)2 = ξ0κ
2
0(Λ)|H|2

and with potential

(4.37) VE(H) =
λ0|H|4

(1 + ξ0κ2
0|H|2)2

.

Proof. In the noncommutative geometry model, the coefficient κ0(Λ) is run-
ning with Λ according to

κ2
0(Λ) =

12π2

96f2Λ2 − f0c(Λ)
.

Then the parameter that controls inflation is given by

ψ(Λ)2 = ξ0(Λ)κ2
0(Λ)|H|2 =

π2

96f2Λ2 − f0c(Λ)
|H|2.

If one then proceeds as in [24], one finds that In the Einstein metric
gEµν = f(H)gµν , for f(H) = 1 + ξ0κ0|H|2 the Higgs potential becomes of
the form (4.37). In the range where ψ >> 1 this approaches the constant
function (constant in H but not in Λ)

VE =
λ0(Λ)

4ξ2
0(Λ)κ4

0(Λ)
=
λ(Λ)b(Λ)(96f2Λ2 − f0c(Λ))2

4f0a2(Λ)
,

where we used again the ansatz (4.5) for the running of the coefficient λ0(Λ),
while at low values ψ << 1 the potential is well approximated by the usual
quartic potential VE(H) ∼ λ0|H|4. �

The asymptotic value VE in turn depends on the energy scale Λ and
different behaviors are possible upon changing the values of the parameter
f2 of the model as the examples in Figure 11 illustrate. One can see the
effect of the top see saw-scale on the running.
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Figure 11. The behavior of the asymptotic value VE of the
potential VE(H), plotted above for f2 = 10−4, f2 = 10−3,
and f2 = 1/10 and for 1014 ≤ Λ ≤ 1015

Notice that a potential of the form as in Figure 10, which is especially
suitable for slow roll inflationary models, also arises naturally in the NCG
setting from non-perturbative effects in the spectral action, as in [16]. We
plan to return in future work to describe how the non-perturbative approach
can be applied to cosmological models beyond the very early universe.

4.11. Spectral index and tensor to scalar ratio. In a slow roll inflation
model, the first and second derivatives of the potential VE together with a
change of variable in the field that brings the action into a canonical form,
determine the first and second slow-roll parameters ε and η, see [34] §3.4
and also the analysis in [24]. We analyze here the form of the slow-roll
parameters in the noncommutative geometry model.

We write the potential VE of (4.37) in the form

(4.38) VE(s) =
λ0s

4

(1 + ξ0κ2
0s

2)2
.

We will consider derivatives of this potential as a function of the variable s.
We also introduce the expression

(4.39) C(s) :=
1

2(1 + ξ0κ2
0s

2)
+

3
2κ2

0

(2ξ0κ
2
0s)

2

(1 + ξ0κ2
0s

2)2
,

which corresponds to the (dσ/dφ)2 of equation (4) of [24] that gives the
change of variable in the field that runs the inflation that puts the action in
a canonical form.
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The two slow-roll parameters are then given by the expressions

(4.40) ε(s) =
1

2κ2
0

(
V ′E(s)
VE(s)

)2

C(s)−1,

(4.41) η(s) =
1
κ2

0

(
V ′′E (s)
VE(s)

C(s)−1 −
V ′E(s)
VE(s)

C(s)−3/2 d

ds
C(s)1/2

)
,

which correspond to the equations (6) and (7) of [24]. We then have the
following result.

Proposition 4.11. The first slow roll coefficient is of the form

(4.42) ε(s) =
16κ2

0

s2 + ξ0κ2
0(1 + (κ2

0)2)s4

while the second slow-roll coefficient is given by

(4.43) η(s) =
8(3 + ξ0κ

2
0s

2(1− 2ξ0κ
2
0(s2 + 12κ2

0(−1 + ξ0κ
2
0s

2))))
κ2

0(s+ ξ0κ2
0(1 + (κ2

0)2)s3)2
.

Proof. The derivatives of the potential are

V ′E(s) = − 4λ0ξ0κ
2
0s

5

(1 + ξ0κ2
0s

2)3
+

4λ0s
3

(1 + ξ0κ2
0s

2)2

V ′′E (s) =
24λ0ξ

2
0(κ2

0)2s6

(1 + ξ0κ2
0s

2)4
− 36λ0ξ0κ

2
0s

4

(1 + ξ0κ2
0s

2)3
+

12λ0s
2

(1 + ξ0κ2
0s

2)2
.

One also has

C(s)−3/2 =
√

8(1 + ξ0κ
2
0s

2)3√
(1 + ξ0κ2

0(1 + 12ξ0κ2
0)s2)3

d

ds
C(s)1/2 = − ξ0κ

2
0s(1 + ξ0κ

2
0(s2 + 12κ2

0(−1 + ξ0κ
2
0s

2)))
(1 + ξ0κ2

0s
2)2
√

2(1 + ξ0κ2
0(1 + 12ξ0(κ2

0)2)s2
.

One then computes ε(s) and η(s) directly from (4.40) and (4.41). �

Notice that both coefficients depend on the energy scale Λ and on the
parameters f2 and f0 through the single parameter

κ2
0(Λ) =

12π
96f2Λ2 − f0c(Λ)

,

while no dependence through λ0(Λ) remains and in our model ξ0 = 1/12.
The slow-roll coefficients provide expressions for the spectral index ns and

the tensor to scalar ratio r, which can be directly compared with cosmologi-
cal data. Thus, a more detailed analysis of the behavior of these as functions
of Λ and of the parameter f2 of the model will give an exclusion curve for
the parameter. We will provide a more detailed analysis elsewhere, but for
the purpose of the present paper we derive the corresponding expression one
has in this model for the spectral index and the tensor to scalar ratio.
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Proposition 4.12. The spectral index is of the form
(4.44)

ns = 1 +
32(216 + κ2

0(6s2 − κ2
0(432 + 12κ2

0(2 + 3(κ2
0)2)s2 + (1 + (κ2

0)2)s4)))
κ2

0(12s+ κ2
0(1 + (κ2

0)2)s3)2
,

while the tensor to scalar ratio if given by

(4.45) r =
256κ2

0

s2 + κ2
0

12 (1 + (κ2
0)2)s4

.

Proof. One knows that the spectral index and the tensor to scalar ratio are
related to the slow-roll coefficients by (see [34] §7.5.2 and §7.6 and [24])

(4.46) ns = 1− 6ε+ 2η, and r = 16ε.

The result then follows directly from Proposition 4.11. �

Once again, these parameters have a dependence on the choice of the free
parameter f2 of the model and a scaling behavior with the energy Λ, which
depends on the running of κ2

0(Λ). Since the spectral index and the tensor to
scalar ratio are heavily constrained by cosmological data from the WMAP
combined with baryon acoustic oscillations and supernovae data, this pro-
vides a way to impose realistic constraints on the parameter f2 of the model
based on direct confrontation with data of cosmological observations. We
will provide a detailed analysis of the constraints imposed on the noncom-
mutative geometry model by the spectral index and tensor to scalar ratio in
a separate paper. Since the parameters ns and r are also providing infor-
mation on the gravitational waves (see [34] §7.7) a more detailed analysis of
their behavior and dependence on the parameters of the model will give us
a better understanding of the effects on gravitational waves of the presence
of noncommutativity and may explain in a different way the amplification
phenomena in the propagation of gravitational waves that we observed in
§4.4.

4.12. Variable effective cosmological constant. The relation between
particle physics and the cosmological constant, through the contribution of
the quantum vacua of fields, is well known since the seminal work of Zel-
dovich [49]. The cosmological constant problem is the question of reconciling
a very large value predicted by particle physics with a near zero value that
conforms to the observations of cosmology. Among the proposed solutions
to this problem are various models, starting with [49], with a varying ef-
fective cosmological constant, which would allow for a large cosmological
constant in the very early universe, whose effect of negative pressure can
overcome the attractive nature of gravity and result in accelerated expan-
sion, and then a decay of the cosmological constant to zero (see also [40] for
a more recent treatment of variable cosmological constant models). Often
the effective cosmological constant is produced via a non-minimal coupling
of gravity to another field, as in [25], similarly to what one does in the case
of an effective gravitational constant.
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In the present model, one can recover the same mechanism of [25] via the
non-minimal coupling to the Higgs field, but additionally one has a running
of the effective cosmological constant γ0(Λ) which already by itself may
produce the desired effect of decaying cosmological constant. We illustrate
in this section an example of how different choices of the parameter f4,
for a fixed choice of f2, generate different possible decay behaviors of the
cosmological constant. These can then be combined with the effect produced
by the non-minimal coupling with the Higgs field, which behaves differently
here than in the case originally analyzed by [25]. This still does not resolve
the fine tuning problem, of course, because we are trading the fine tuning
of the cosmological constant for the tuning of the parameters f2 and f4 of
the model, but the fact that these parameters have a geometric meaning in
terms of the spectral action functional may suggest geometric constraints.

As we have seen in the proof of Proposition 4.1 above, one can impose the
vanishing of the effective cosmological constant γ0 at a given energy scale
Λ by fixing the parameter f4 equal to the value given in (4.6). This means
that, when the effective gravitational constant of the model varies as in the
effective gravitational constant surface Geff(Λ, f2), depending on the value
assigned to the parameter f2, there is an associated surface that determines
the value of the parameter f4 that gives a vanishing effective cosmological
constant. This is defined by the equation

(4.47) π2γ0(Λ, f2, f4) = 48f4Λ4 − f2Λ2c(Λ) +
1
4
f0d(Λ) = 0.

The solutions to this equation determine the surface

(4.48) f4(Λ, f2) =
f2Λ2c(Λ)− 1

4f0d(Λ)
48Λ4

.

To illustrate the different possible behaviors of the system when impos-
ing the vanishing of the effective cosmological constant at different possible
energy scales Λ, we look at the examples where one imposes a vanishing
condition at one of the two ends of the interval of energies considered, that
is, for Λ = Λew or for Λ = Λunif . For simplicity we also give here an explicit
example for a fixed assigned value of f2, which first fixes the underlying
Geff(Λ). we choose, as above, the particular example where f2 is chosen
to satisfy Geff(Λew) = G. Under these conditions we impose the vanishing
of the effective cosmological constant at either Λew or Λunif through the
constraint

(4.49) γ0(Λew, f2, f4) = 0 or γ0(Λunif , f2, f4) = 0

which fixes the value of f4 = f4(Λew, f2). Then the behavior at higher
energies of the effective cosmological constant is given by the surface

(4.50) γ0(Λ, f2, f4(Λew, f2)) or γ0(Λ, f2, f4(Λunif , f2))

as a function of the energy Λ and the parameter f2.
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Figure 12. Running of γ0(Λ) under the assumptions of van-
ishing γ0(Λew) = 0 or γ0(Λunif ) = 0.

We find two very different behaviors in these two examples, which have
different implications in terms of dark energy. Imposing the vanishing of γ0

at Λew produces a very fast growth of γ0(Λ) at larger energies Λew ≤ Λ ≤
Λunif , while imposing the vanishing at Λunif produces a γ0(Λ) that quicky
decreases to a large negative value and then slowly decreases to become
small again near Λew, as illustrated in the two examples of Figure 12. A
negative cosmological constant adds to the attractive nature of gravity hence
it counteracts other possible inflation mechanism that may be present in
the model, while a positive cosmological constant counteracts the attractive
nature of gravity and can determine expansion. Thus, we see in these two
examples that different choices of the free parameter f4 in the model can lead
to very different qualitative behaviors of the effective cosmological constant.

The range of different variable cosmological constants can be further ex-
panded by considering other possible values of the parameter f4 in the sur-
face γ0(Λ, f4, f2) associated to a chosen value of f2.

Again, as we have seen in the case of the effective gravitational constant,
we have here two distinct mechanisms for vacuum-decay: the running γ0(Λ)
as described above, depending on the parameters f2 and f4 and on the
renormalization group equations, and a further modification due to the non-
minimal coupling with the Higgs field, as in [25].

Namely, if one has an unstable and a stable equilibrium for |H|2, one
can encounter for the cosmological constant the same type of phenomenon
described for the effective gravitational constant by the gravity balls, where
the value of γ0,H is equal to γ0 at the unstable equilibrium |H|2 = 0 on some
large region, while outside that region it decays to the stable equilibrium
|H|2 = v2 for which

γ0,H(Λ) =
γ0(Λ)

1− 16πGeff(Λ)ξ0v2
.

This behaves differently in the case of our system from the model of [25]. In
fact, here the non-minimal coupling is always the conformal one ξ0 = 1/12,
while the gravitational constant is itself running, so we obtain the following.
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Figure 13. Running of γ0,H(Λ) with f2 = 1 and with
γ0(Λunif ) = 0.

Proposition 4.13. The non-minimal conformal coupling of the Higgs field
to gravity,

−ξ0

∫
R |H|2√g d4x

changes the running of the effective cosmological constant to

(4.51) γ0,H(Λ) =
γ0(Λ)

1− 16πGeff(Λ)ξ0|H|2
.

This gives

γ0,H(Λ) =
γ0(Λ)

1− 4a(Λ)(2f2Λ2a(Λ)−f0e(Λ))
λ(Λ)b(Λ)(192f2Λ2−2f0c(Λ))

,

for |H|2 ∼ µ2
0/(2λ0).

Proof. Arguing as in [25] we obtain (4.51), which now depends on the run-
ning of both γ0(Λ) and Geff(Λ), as well as on the Higgs field |H|2. Assuming
the latter to be nearly constant with |H|2 ∼ µ2

0/(2λ0), we obtain

(4.52) γ0,H(Λ) = γ0(Λ)
Geff,H(Λ)
Geff(Λ)

=
γ0(Λ)

1− 4π
3 Geff(Λ)

(
2f2Λ2a(Λ)−f0e(Λ)a(Λ)

π2λ(Λ)b(Λ)

) ,
where, as in the treatment of the variable effective gravitational constant,
we have

|H|2 ∼ µ2
0

2λ0
=

2f2Λ2a(Λ)− f0e(Λ)a(Λ)
π2λ(Λ)b(Λ)

using the ansatz (4.5) for λ0(Λ), and G−1
eff,H(Λ) = G−1

eff (Λ)− 4π
3 |H|

2. �

To see how the interaction with the Higgs field can modify the running of
the effective cosmological constant, consider again an example that exhibits
the same behavior as the second graph of Figure 12. This is obtained,
for instance, by choosing f2 = 1 and f4 satisfying the vanishing condition
γ0(Λunif ) = 0. Then the running of γ0,H(Λ) given in (4.52) exhibits an
overall behavior similar to that of γ0(Λ) but with a change of sign and a
singularity, as shown in Figure 13.
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Figure 14. Running of γ0(Λ)/(8πGeff(Λ)) with f2 = 1 and
with γ0(Λunif ) = 0.

4.13. Early time bounds estimate. In models with variable cosmological
(and gravitational) constant, some strong constraints exist from “early time
bounds” on the vacuum-energy density that are needed in order to allow
nucleosynthesis and structure formation, see [7], [27].

In particular, in our model, this means that we can prefer choices of the
parameters f2 and f4 for which the ratio

(4.53)
γ0(Λ)

8πGeff(Λ)

is small at the electroweak end of the energy range we are considering, so
that the resulting early time bound will allow the standard theory of big-
bang nucleosynthesis to take place according to the constraints of [7], [27].

Notice that, since we have γ0,H(Λ)/Geff,H(Λ) = γ0(Λ)/Geff(Λ) the esti-
mate on (4.53) is independent of further effects of interaction with the Higgs
field, and it only depends on the choice of the parameters f2 and f4 of the
model.

This type of estimate can be used to select regions of the space of param-
eters f2 and f4 that are excluded by producing too large a value of (4.53)
at Λ = Λew. For example, consider the two cases of Figure 12, where we
set f2 = 1 and we choose f4 so that it gives vanishing γ0(Λ) at Λew or at
Λunif . The first case gives γ0(Λew)

8πGeff(Λew) = 0, while the second gives a very
large negative value of (4.53) at Λew of −5.93668 × 1086 with a running of
(4.53) as in Figure 14.

5. Dark matter

We have concentrated in this paper on early universe models, with an em-
phasis on various mechanisms for inflation and dark energy that arise within
the NCG model, and their mutual interactions. Another main question
about cosmological implications of the noncommutative geometry models of
particle physics is whether they can accommodate possible models for cold
dark matter. This exists the domain of validity of the asymptotic expan-
sion of the spectral action, as such models apply to a more modern universe
than what is covered by the perturbative analysis of the spectral action
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functional. However, one can at least comment qualitatively on possible
candidates within the NCG model for dark matter particles. In addition to
the minimal Standard Model, one recovers form the computation of the as-
ymptotic formula for the spectral action and from the fermionic part of the
action in [17] additional right handed neutrinos with lepton mixing matrix
and Majorana mass terms. Thus, since this is at present the only additional
particle content beyond the minimal standard model that can be accom-
modated in the NCG setting, it is natural to try to connect this model to
existing dark matter models based on Majorana mass terms for right handed
neutrinos.

Those that seem more closely related to what one can get within the NCG
model are the ones described by Shaposhnikov–Tkachev [45], Shaposhnikov
[44], and Kusenko [33]. In these dark matter models, one has the usual
active neutrinos, with very small masses, and an additional number of sterile
neutrinos with Majorana masses. In the case of the νMSM model of [44],
one has three active and three sterile neutrinos. In these models the sterile
neutrinos provide candidate dark matter particles. However, for them to
give rise to plausible dark matter models, one needs at least one (or more)
of the sterile neutrino Majorana masses to be below the electroweak scale.
In the detailed discussion given in [33] one sees that, for example, one could
have two of the the three Majorana masses that remain very large, well above
the electroweak scale, possibly close to unification scale, while a third one
lowers below the electroweak scale, so that the very large Majorana masses
still account for the see-saw mechanism, while the smaller one provides a
candidate dark matter particle.

It is possible to obtain a scenario of this kind within the NCG model, pro-
vided that one modifies the boundary conditions of [1] in such a way that,
instead of having three see-saw scales within the unification and the elec-
troweak scale, with the smallest one already at at very high energy around
1012 GeV, one sets things so that the lowest Majorana mass descends below
the electroweak scale. A more detailed analysis of such models will be car-
ried out in forthcoming work where we analyze different choices of boundary
conditions for the RGE flow of the model.

6. Conclusions and perspectives

We have shown in this paper how various cosmological models arise nat-
urally from the asymptotic expansion of the spectral action functional in
the noncommutative geometry model of particle physics of [17] and the run-
ning of the coefficients of this asymptotic expansion via the renormalization
group equations of [1].

We have seen in particular the spontaneous emergence of conformal grav-
ity and Hoyle–Narlikar cosmologies at phase transitions caused by the run-
ning of the effective gravitational constant. We described effects of this run-
ning on the gravitational waves and on primordial black holes. We described
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mechanisms by which this running, combined with the conformal coupling
of gravity to the Higgs field, can generate regions of negative gravity in the
early universe. We discussed the running of the effective cosmological con-
stant and slow-roll inflation models induced by the coupling of the Higgs to
gravity. We discussed briefly the connection to dark matter models based
on right handed neutrinos and Majorana mass terms.

A planned continuation of this investigation will cover the following topics:
• Varying boundary conditions for the RGE flow.
• Dark matter models based on Majorana sterile neutrinos.
• Extensions of the NCG model with dilaton field.
• Nonperturbative effects in the spectral action.
• Exclusion curve from spectral index and tensor to scalar ratio.

7. Appendix: boundary conditions for the RGE equations

We recall here the boundary conditions for the RGE flow of [1] and we
discuss the compatibility with the condition assumed in [17]. A more de-
tailed analysis of the RGE flow of [1] with different boundary conditions and
its effect on the gravitational and cosmological terms will be the focus of a
followup investigation.

7.1. The default boundary conditions. The boundary conditions for
the RGE flow equations we used in this paper are the default boundary
conditions assumed in [1]. These are as follows.

λ(Λunif ) =
1
2

Yu(Λunif ) =

 5.40391× 10−6 0 0
0 0.00156368 0
0 0 0.482902


For Yd(Λunif ) = (yij) they have

y11 = 0.0000482105− 3.382× 10−15i
y12 = 0.000104035 + 2.55017× 10−7i
y13 = 0.0000556766 + 6.72508× 10−6i
y21 = 0.000104035− 2.55017× 10−7i
y22 = 0.000509279 + 3.38205× 10−15i
y23 = 0.00066992− 4.91159× 10−8i
y31 = 0.000048644− 5.87562× 10−6i
y32 = 0.000585302 + 4.29122× 10−8i
y33 = 0.0159991− 4.21364× 10−20i

Ye(Λunif ) =

 2.83697× 10−6 0 0
0 0.000598755 0
0 0 0.0101789


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Ynu(Λunif ) =

 1 0 0
0 0.5 0
0 0 0.1Y


M(Λunif ) =

 −6.01345× 1014 3.17771× 1012 −6.35541× 1011

3.17771× 1012 −1.16045× 1014 5.99027× 1012

−6.35541× 1011 5.99027× 1012 −4.6418× 1012


7.2. Constraints from NCG. There are constraints on the boundary con-
ditions at unification in the noncommutative geometry model. Those were
described in [17] and we report them here below.

• A constraint on the value at unification of the parameter λ:

λ(Λunif ) =
π2

2f0

b(Λunif )
a(Λunif )2

• A relation between the parameter a and the Higgs vacuum:
√

af0

π
=

2MW

g

• A constraint on the coefficient c at unification, coming from the see-
saw mechanism for the right handed neutrinos:

2f2Λ2
unif

f0
≤ c(Λunif ) ≤

6f2Λ2
unif

f0

• The mass relation at unification:

(7.1)
∑

generations

(m2
ν +m2

e + 3m2
u + 3m2

d)|Λ=Λunif = 8M2
W |Λ=Λunif ,

where mν , me, mu, and md are the masses of the leptons and quarks,
that is, the eigenvectors of the matrices δ↑1, δ↓1, δ↑3 and δ↓3, respec-
tively, and MW is the W-boson mass.

Clearly, not all of these constraints are compatible with the default boundary
conditions of [1]. So either one relaxes some of these conditions, as we have
been doing in the present paper, or one performs a wider search for more
appropriate and fine tuned boundary conditions for the RGE flow, analyzing
how different choices of boundary values affect the behavior analyzed in this
paper. This is presently under investigation.
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