
ar
X

iv
:0

80
4.

48
24

v3
  [

m
at

h-
ph

] 
 2

7 
Ju

l 2
00

9

MOTIVIC RENORMALIZATION AND SINGULARITIES

MATILDE MARCOLLI

Cos̀ı tra questa

infinità s’annega il pensier mio:

e ’l naufragar m’è dolce in questo mare.

(Giacomo Leopardi, L’infinito, from the second handwritten version)

To Alain Connes, on his 60th birthday and many other occasions

Abstract. We consider parametric Feynman integrals and their dimensional regu-
larization from the point of view of differential forms on hypersurface complements
and the approach to mixed Hodge structures via oscillatory integrals. We consider
restrictions to linear subspaces that slice the singular locus, to handle the presence
of non-isolated singularities. In order to account for all possible choices of slicing, we
encode this extra datum as an enrichment of the Hopf algebra of Feynman graphs.
We introduce a new regularization method for parametric Feynman integrals, which is
based on Leray coboundaries and, like dimensional regularization, replaces a divergent
integral with a Laurent series in a complex parameter. The Connes–Kreimer formu-
lation of renormalization can be applied to this regularization method. We relate the
dimensional regularization of the Feynman integral to the Mellin transforms of cer-
tain Gelfand–Leray forms and we show that, upon varying the external momenta, the
Feynman integrals for a given graph span a family of subspaces in the cohomological
Milnor fibration. We show how to pass from regular singular Picard–Fuchs equations
to irregular singular flat equisingular connections. In the last section, which is more
speculative in nature, we propose a geometric model for dimensional regularization in
terms of logarithmic motives and motivic sheaves.

Contents

1. Introduction 2
2. Parametric Feynman integrals 4
2.1. Feynman parameters and algebraic varieties 4
2.2. Dimensional Regularization 10
2.3. Mass scale dependence 11
2.4. Integrals on projective spaces 12
3. Singularities, slicing, and Milnor fiber 16
3.1. Non-isolated singularities 16
3.2. Projective Radon transform 16
3.3. The polar filtration 19
3.4. Milnor fiber 20
3.5. The Feynman integral: slicing 21
4. Oscillatory integrals: Leray and Dimensional Regularizations 22
4.1. Oscillatory integrals and the Gelfand–Leray forms 22
4.2. Leray coboundary regularization and subtraction 24
4.3. Birkhoff factorization and renormalization 27
4.4. Mellin transform and the DimReg integral 28

1

http://arxiv.org/abs/0804.4824v3


2 MATILDE MARCOLLI

4.5. Dimensional regularization and mixed Hodge structures 30
5. Regular and irregular singular connections 32
5.1. Picard–Fuchs equation and Gauss–Manin connection 33
5.2. Flat equisingular connections 33
5.3. From regular to irregular singularities 34
6. Logarithmic motives, Dimensional Regularization, and motivic sheaves 37
6.1. Mixed Tate motives and the logarithmic extensions 38
6.2. Motivic sheaves and graph hypersurfaces 40
6.3. Logarithmic Feynman motives 42
6.4. Dimensional Regularization and motives 42
6.5. Motivic zeta function and the DimReg integral 43
References 44

1. Introduction

We consider here perturbative quantum field theories governed by a Lagrangian, which
in a Lorentzian metric of signature (+1,−1, . . . ,−1) on the flat D-dimensional spacetime
RD, is given in the form

(1.1) L(φ) =
1

2
(∂φ)2 −

m2

2
φ2 − Lint(φ),

where the interaction term Lint(φ) is polynomial in φ of degree at least three. The
corresponding action functional S(φ) =

∫
L(φ)dDx involves a single scalar field φ. This

is the simplest case, considered in the work of Connes–Kreimer. Generalizations of the
Connes–Kreimer formalism for other theories have been developed more recently (see for
instance [41] for the case of gauge theories), but for the purposes of the present paper we
restrict our attention to scalar theories.

The purpose of this paper is to relate the approach to renormalization of Connes–
Kreimer [21], via Birkhoff factorization of loops in the Lie groups of characters of the
Hopf algebra of Feynman graphs, and its successive reformulation of Connes–Marcolli [22]
in terms of Galois theory of a category of flat equisingular connections with irregular
singularities, to the approach via parametric Feynman integrals, periods of complements
of graph hypersurfaces, and motives, developed by Bloch–Esnault–Kreimer in [14], [13].

The main approach we follow in this paper, in order to bridge between these two different
approaches is a formulation of the dimensionally regularized Feynman integrals in terms
of Mellin transforms of certain Gelfand–Leray forms, as in the approach of Varchenko
[43], [44] to the theory of singularities and asymptotic mixed Hodge structures on the
cohomological Milnor fibration, in terms of asymptotic properties of oscillatory integrals.

We deal with the fact that the graph hypersurfaces tend to have non-isolated singu-
larities by slicing the Feynman integral along generic linear spaces of dimension at most
equal to the codimension of the singular locus, using the same kind of techniques used
in the integral geometry of Radon transforms in projective spaces developed by Gelfand–
Gindikin–Graev [29]. Since typically the singular locus is rather large in dimension, the
slices obtained in this way will often be singular curves in P2 or singular surfaces in P3.
Instead of considering a single choice of a slicing, which would mean losing too much infor-
mation on the graph hypersurface, one considers all possible choices and implements the
data of the cutting linear space as part of the Hopf algebra of graphs, much like what one
does with the choice of the external momenta, so that all possible choices are considered
as part of the structure.
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The formulation one obtains in this way, in terms of Gelfand–Leray forms, suggests a
new method of regularization of parametric Feynman integrals, which, as in the case of
dimensional regularization, replaces a divergent integral with a Laurent series in a complex
variable ǫ, but which is defined using Leray coboundaries to avoid the singular locus, by
integrating around it along the fibers of a circle bundle. We check that the formulation of
renormalization in terms of Hopf algebras and Birkhoff factorization developed in Connes–
Kreimer [21] applies without changes if one uses this new regularization method instead
of the customary dimensional regularization.

The interpretation of the dimensionally regularized Feynman integrals as Mellin trans-
forms of Gelfand–Leray forms provides a direct link between Feynman integrals and the
cohomological Milnor fibration. In particular, we prove that, upon varying the external
momenta and the spacetime dimension D ∈ N in which the scalar theory is considered,
the corresponding Feynman integrals determine a family of subspaces of the cohomological
Milnor fibration, which inherit a Hodge and a weight filtration from the asymptotic mixed
Hodge structure of Varchenko. It remains to be seen when this subspace recovers the full
Milnor fiber cohomology and/or when these induced filtrations still define a mixed Hodge
structure.

Another important question, in trying to compare the approaches of [22] and [14] is
the use of irregular, as opposed to regular singular, connections. In fact, from the point
of view of motives or mixed Hodge structures, what one expects to find is regular sin-
gular connections. These appear naturally in the form of Picard–Fuchs equations and
Gauss–Manin connections. However, the Galois theory approach to the classification of
divergences in perturbative quantum field theory developed in [22] relies on the use of ir-
regular singular connections and a form of the Riemann–Hilbert correspondence based on
Ramis’ wild fundamental group. We reconcile these two approaches by showing that, upon
passing to Mellin transforms of solutions of a regular singular Picard–Fuchs equation, one
obtains solutions of differential equations with irregular singularities. More precisely, we
first recall the construction and properties of the irregular singular connections considered
in [22] and the equisingularity condition that characterizes them. We then prove that
solutions of the regular singular Picard–Fuchs equations at the singular points of a graph
hypersurface (sliced with a linear space of a suitable dimension so that singularities are
isolated) can be assembled to give rise to a solution of a differential system of the type
considered in [22], with irregular singularities and with coefficients in the Lie algebra of
the affine group scheme of the Hopf algebra of Feynman graphs of the theory, suitably
enriched to account for the choice of the slicing of the Feynman integrals by linear spaces
of the appropriate dimension.

Finally, we propose a motivic interpretation for dimensional regularization, in terms of
the logarithmic extensions of Tate motives (the Kummer motives), and their pullbacks via
the polynomial function defining the graph hypersurface. This amounts to associating to
the Feynman graphs of a given scalar theory a subcategory of the Arapura category of
motivic sheaves of [3]. We expect that this may provide a way of interpreting the relation
between dimensionally regularized Feynman integrals and cohomological Milnor fibrations
in terms of a motivic version of the Milnor fiber. We hope to relate, in this way, a motivic
zeta function associated to the resulting mixed motive with the dimensionally regularized
Feynman integral.

An in depth study of parametric Feynman integrals in perturbative renormalization
and their relation to mixed Hodge structures was carried out in very recent work of Bloch
and Kreimer [15].
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2. Parametric Feynman integrals

In this section we recall the Feynman parametric formulation of the momentum integrals
associated to the Feynman graphs in the perturbative expansion of a scalar field theory.
We also recall the Dimensional Regularization method and the form of the regularized
integrals. These are all well known techniques, but we review them briefly for completeness.
We also recall the explicit form of the graph polynomials ΨΓ(t) and PΓ(t, p) and their
properties, as well as the explicit mass scale dependence of the dimensionally regularized
Feynman integrals. Moreover, in §2.4 we give a reformulation of the Feynman integrals in
terms of differential forms on hypersurface complements in projective spaces.

2.1. Feynman parameters and algebraic varieties. We recall briefly the method for
the computation of Feynman integrals based on the parametric representation. This is
well known material in the physics literature, see e.g. §6-2-3 of [32], §18 of [11], and §6 of
[38]. However, since it is not part of the standard mathematician’s toolbox, we prefer to
spend a few words here recalling the basic ideas.

The terms in the formal asymptotic expansion of functional integrals
∫
O(φ)e

i
~

S(φ)D[φ],

obtained by treating the interaction terms Sint(φ) =
∫
Lint(φ)dDx as a perturbation, are

labeled by Feynman graphs of the theory. The topology of these graphs is constrained
by the requirement that the valence of each vertex is equal to the degree of one of the
monomials in the Lagrangian. The edges of the graph are divided into internal lines, each
connecting two vertices, and external lines, which are half-lines with one end attached
to a vertex of the graph and one open end. The order in the expansion is given by the
loop number of the graph, or by the number of internal lines. Each external line carries a
datum of an external momentum p ∈ RD with a conservation law

(2.1)
∑

e∈Eext(Γ)

pe = 0,

where Eext(Γ) is the set of external edges of Γ.
We assume that all our graphs are one-particle-irreducible (1PI), i.e. that they cannot

be disconnected by cutting a single internal edge.
The Feynman rules assign to a Feynman graph a function U(Γ) = U(Γ, p1 . . . , pN ) of

the external momenta obtained by integrating, over momentum variables ke assigned to
each internal edge of Γ, an expression involving propagators for each internal line and
momentum conservations at each vertex, in the form

(2.2) U(Γ) =
∏

v∈V (Γ)

(2π)Dλv

∫
δ(
∑n

i=1 ǫv,iki +
∑N

j=1 ǫv,jpj)

q1 · · · qn
dDk1 · · · d

Dkn,

where n = #Eint(Γ), the number of internal edges in the graph, N = #Eext(Γ), while λv

are the coupling constants (the coefficients of the term in the Lagrangian of degree equal
to the valence of the vertex v ∈ V (Γ)), and ǫv,e is the incidence matrix

(2.3) ǫv,e =






+1 t(e) = v
−1 s(e) = v

0 otherwise,
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with s(e) and t(v) the source and target vertices of the oriented edge e. In the following we
drop the multiplicative constants (2π)Dλv and we concentrate on the remaining integral,
which we still denote by U(Γ).

The basic formula (2.2) is dictated by the Feynman rules of the given quantum field
theory, which prescribe that the contribution of a Feynman graph to the perturbative
expansion of the effective action is obtained as a product of an inverse propagator q−1

e

for each edge e, in a corresponding momentum variable, with linear relations among the
momentum variables given by imposing conservation laws at each vertex that ensure mo-
mentum conservation, and with each vertex contributing a multiplicative factor depending
on coupling constants and powers of (2π). These Feynman rules are modeled on similar
series expansions of finite dimensional Gaussian integrals.

The qi, for i = 1, . . . , n are the quadratic forms defining the free field propagator
associated to the corresponding line in the graph, namely

(2.4) qi(k) = k2
i −m2 + iǫ or qi(k) = k2

i + m2,

respectively in the Lorentzian and in the Eucidean signature case. In the following, we
work preferably in the Euclidean setting.

We refer to U(Γ) as the unrenormalized Feynman integral. The parametric form of
U(Γ) is obtained by first introducing the Schwinger parameters, using the identity

1

q
=

∫ ∞

0

e−sqds.

This gives the expression

(2.5)
1

q1 · · · qn
=

∫ ∞

0

· · ·

∫ ∞

0

e−(s1q1+···+snqn) ds1 · · · dsn,

which is a special case of the more general identity
(2.6)

1

qk1
1 · · · q

kn
n

=
1

Γ(k1) · · ·Γ(kn)

∫ ∞

0

· · ·

∫ ∞

0

e−(s1q1+···+snqn) sk1−1
1 · · · skn−1

n ds1 · · · dsn.

The Feynman parametric form is obtained from this expression by a change of variables
that replaces the Schwinger parameters si ∈ R+ with new variable ti ∈ [0, 1], by setting
si = Sti with S = s1 + · · ·+ sn. This gives

(2.7)
1

qk1
1 · · · q

kn
n

=
Γ(k1 + · · ·+ kn)

Γ(k1) · · ·Γ(kn)

∫ 1

0

· · ·

∫ 1

0

tk1−1
1 · · · tkn−1

n δ(1−
∑n

i=1 ti)

(t1q1 + · · ·+ tnqn)k1+···+kn
dt1 · · · dtn,

hence in particular one obtains

(2.8)
1

q1 · · · qn
= (n− 1)!

∫
δ(1−

∑n
i=1 ti)

(t1q1 + · · ·+ tnqn)n
dt1 · · · dtn,

as an integration in the Feynman parameters t = (ti) over the simplex

(2.9) Σ = {t = (ti) ∈ Rn
+ |
∑

i

ti = 1}.

Next one introduces a further change of variables involving another matrix naturally
associated to the graph, the circuit matrix ηik, defined in terms of an orientation of the
edges ei ∈ E(Γ) and a choice of a basis for the first homology group, lk ∈ H1(Γ, Z), with
k = 1, . . . , ℓ = b1(Γ), by setting

(2.10) ηik =






+1 edge ei ∈ loop lk, same orientation

−1 edge ei ∈ loop lk, reverse orientation

0 otherwise.



6 MATILDE MARCOLLI

We also define MΓ(t) to be the matrix

(2.11) (MΓ)kr(t) =

n∑

i=0

tiηikηir.

Notice that, while the matrix MΓ(t) depends on the choice of the orientation of the edges
and of the choice of a basis for the first homology of Γ, the determinant det(MΓ(t)) is
independent of both choices.

One then makes a change of variables in the quadratic forms qi of (2.4), by setting

(2.12) ki = ui +
ℓ∑

k=1

ηikxk,

with the constraint

(2.13)

n∑

i=0

tiuiηik = 0,

for all k = 1, . . . , ℓ. The momentum conservation relations

n∑

i=1

ǫv,iki +
N∑

j=1

ǫv,jpj = 0

of (2.2) shows that the ui in (2.12) also satisfy

(2.14)
n∑

i=1

ǫv,iui +
N∑

j=1

ǫv,jpj = 0.

This uses the fact that the incidence matrix ǫ = (ǫv,e) and the circuit matrix η = (ηe,k)
satisfy ǫη =

∑
e∈E(Γ) ǫv,eηe,k = 0, cf. [38], §3. The two equations (2.13) and (2.14) are the

analog for momenta in Feynman graphs of the Kirchhoff laws of circuits, respectively giving
the conservation laws for the sum of voltage drops along a loop in a circuit and of incoming
currents at a vertex, with momenta replacing currents and the Feynman parameters in
the role of resistances ([11], §18).

The ui are determined by (2.13) and (2.14), and one can write the term
∑

i ti(u
2
i +m2)

in the form of a function of the Feynman parameters t and the external momenta p of the
form

(2.15) VΓ(t, p) := pτRΓ(t)p + m2,

where we use the fact that
∑

i ti = 1. The N × N -matrix R(t), with N = #Eext(Γ) is
constructed out of another matrix associated to the graph. This is obtained as follows (cf.
[32], §6-2-3). Let DΓ(t) denote the matrix

(2.16) (DΓ(t))v,v′ =

n∑

i=1

ǫv,i ǫv′,i t−1
i ,

with n = #Eint(Γ) and with ǫv,i the incidence matrix as in (2.3). Then the quadratic
form pτR(t)p of (2.15) has the form

(2.17) pτRΓp =
∑

v,v′

Pv(DΓ(t)−1)v,v′Pv′ ,

where

(2.18) Pv =
∑

e∈Eext(Γ),t(e)=v

pe

is the sum of the incoming external momenta at the vertex v.
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Summarizing the previous discussion, the result of the change of variables (2.12) is that
we can rewrite the original Feynman integral (2.2) in the following form.

Lemma 2.1. For n − Dℓ/2 > 0, the Feynman integral (2.2) can be written, after the

change of variables (2.12), in the form

(2.19)

∫

Σ

δ(1 −
∑

i ti)

det(MΓ(t))D/2VΓ(t, p)n−Dℓ/2
dt1 · · ·dtn,

up to a multiplicative constant.

Proof. This follows [11], §18 and [32] p.376. First recall the well known identity for the
Gaussian integral

(2.20)

∫
e−

1
2xτ AxdDx1 · · ·d

Dxℓ =
(2π)Dℓ/2

det(A)D/2
,

for A an ℓ× ℓ real symmetric matrix. We then have

1

(4π)Dℓ/2

∫
e−xτ AxdDx1 · · · d

Dxℓ = det(A)−D/2.

With the change of variable (2.12) and the conditions (2.13) and (2.14), one can rewrite
the integral U(Γ) of (2.2) in the form

(2.21) U(Γ) =

∫

Rn
+

e−VΓ(t,p)

(∫
e−xτMΓ(t)xdDxi · · · d

Dxℓ

)
dt1 · · · dtn,

with ℓ = b1(Γ) is the number of loops in the graph. After performing the Gaussian
integration and rewriting the expression in the external momenta as described above in
the form (2.15) and (2.17), this becomes of the form

(2.22) U(Γ) = (4π)−ℓD/2

∫

Rn
+

e−VΓ(t,p)

ΨΓ(t)D/2
dt1 · · · dtn,

with

(2.23) ΨΓ(t) = detMΓ(t).

Then using the identity 1 =
∫∞

0 dλ δ(λ−
∑n

i=1 ti) and scaling ti 7→ tiλ, one rewrites (2.22)
in the form

(2.24) U(Γ) = (4π)−ℓD/2

∫ ∞

0

(∫

[0,1]n
δ(1−

∑

i

ti)
e−λVΓ(t,p)

ΨΓ(t)D/2
dt1 · · ·dtn

)
λn−Dℓ/2 dλ

λ
.

Using again the special form

(2.25) V
−n+Dℓ/2
Γ =

1

Γ(n−Dℓ/2)

∫ ∞

0

e−λVΓλn−Dℓ/2−1 dλ

of the general identity (2.6), one then obtains the parametric form

(2.26) U(Γ) =
Γ(n−Dℓ/2)

(4π)ℓD/2

∫

[0,1]n

δ(1 −
∑

i ti)

ΨΓ(t)D/2VΓ(t, p)n−Dℓ/2
dt1 · · · dtn.

The condition n−Dℓ/2 = ℓ(1−D/2) + #V (Γ)− 1 > 0 ensures the convergence at λ = 0
of the integral (2.25). �

A graph is said to be log divergent if n = Dℓ/2, in which case the Feynman integral
reduces to the simpler form

(2.27)

∫

Σ

ω

det(MΓ(t))D/2
,



8 MATILDE MARCOLLI

with ω = δ(1−
∑

i ti)dt1 · · · dtn the volume form on the simplex Σ defined by the integration
(2.26).

Remark 2.2. For the purpose of establishing relations between values of Feynman in-
tegrals and periods of motives, it is important to check that the multiplicative constant
one is neglecting in passing from (2.2) to the parametric form (2.19) in fact belongs to
Q(π), cf. [14]. In (2.26) one sees in fact that the multiplicative constant is of the form
Γ(n −Dℓ/2)(4π)−ℓD/2. This either gives a divergent factor, at the poles of the Gamma
function, in which case one considers the residue, or else, when convergent, it gives a
multiplicative factor in Q(π).

The function ΨΓ(t) = det(MΓ(t)) has an equivalent expression in terms of the connec-
tivity of the graph Γ as the polynomial (see [32], §6-2-3 and [38] §1.3-2)

(2.28) ΨΓ(t) =
∑

S

∏

e∈S

te,

where S ranges over all the sets S ⊂ Eint(Γ) of ℓ = b1(Γ) internal edges of Γ, such that
the removal of all the edges in S leaves a connected graph. This can be equivalently
formulated in terms of spanning trees of the graph Γ ([38] §1.3), i.e. ΨΓ(t) is given by the
Kirchhoff polynomial

(2.29) ΨΓ(t) =
∑

T

∏

e/∈T

te,

with the sum over spanning trees T of the graph. Each spanning tree, in fact, has #V − 1
edges and is the complement of a cut-set S.

Lemma 2.3. The graph polynomial ΨΓ is a homogeneous polynomial of degree

(2.30) deg ΨΓ = b1(Γ).

In the massless case with m = 0, the function VΓ(t, p), for fixed p, is homogeneous of

degree one and given by the ratio of a homogeneous polynomial PΓ(t, p) by ΨΓ(t).

Proof. We have deg ΨΓ = #E(Γ) − #E(T ), where #E(T ) = #V (Γ) − 1 is the nuber of
edges in a (hence any) spanning tree, hence from the Euler characteristic formula #V (Γ)−
#E(Γ) = 1−b1(Γ) we get (2.30). We write the polynomial VΓ(t, p) = pτRΓ(t)p+

∑
i tim

2.
In the massless case, using the reformulation given in (6-87) and (6-88) of [32], p.297, we
rewrite the function VΓ(t, p) in the form of the ratio

(2.31) VΓ(t, p) =
PΓ(t, p)

ΨΓ(t)

of a homogeneous polynomial PΓ of degree ℓ + 1 = b1(Γ) + 1, divided by the polynomial
ΨΓ, which is homogeneous of degree b1(Γ). In fact, we have ([32], §6-2-3)

(2.32) PΓ(p, t) =
∑

C⊂Γ

sC

∏

e∈C

te,

where the sum is over the cut-sets C ⊂ Γ, i.e. the collections of b1(Γ)+1 edges that divide
the graph Γ in exactly two connected components Γ1∪Γ2. The coefficient sC is a function
of the external momenta attached to the vertices in either one of the two components

(2.33) sC =




∑

v∈V (Γ1)

Pv




2

=




∑

v∈V (Γ2)

Pv




2

,

where the Pv are defined as in (2.18), as the sum of the incoming external momenta (see
[32], (6-87) and (6-88)). �
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In the following, we work under the following assumption on the graph Γ.

Definition 2.4. A 1PI graph Γ satisfies the generic condition on the external momenta

if, for p in a dense open set in the space of external momenta, the polynomials PΓ(t, p)
and ΨΓ(t) have no common factor.

To understand better the nature of this condition, it is useful to reformulate the poly-
nomial PΓ(t, p) of (2.32) in terms of spanning trees of the graph. One has, in the case
where m = 0,

(2.34) PΓ(p, t) =
∑

T

∑

e′∈T

sT,e′ te′

∏

e∈T c

te,

where sT,e′ = sC for the cut-set C = T c ∪ {e′}.
The parameterizing space of the external momenta is the hyperplane in the affine space

AD·#Eext(Γ) obtained by imposing the conservation law

(2.35)
∑

e∈Eext(Γ)

pe = 0.

Thus, the simplest possible configuration of external momenta is the one where one
puts all the external momenta to zero, except for a pair pe1 = p = −pe2 associated to a
choice of a pair of external edges {e1, e2} ⊂ Eext(Γ). Let vi be the unique vertex attached
to the external edge ei of the chosen pair. We then have, in this case, Pv1 = p = −Pv2 .
Upon writing the polynomial PΓ(t, p) in the form (2.34), we obtain in this case

(2.36) PΓ(p, t) = p2
∑

T

(
∑

e′∈Tv1,v2

te′)
∏

e/∈T

te,

where Tv1,v2 ⊂ T is the unique path in T without backtrackings connecting the vertices
v1 and v2. We use (2.33) to get sC = p2 for all the nonzero terms in this (2.36). These
are all the terms that corresponds to cut sets C such that the vertices v1 and v2 belong
to different components. These cut-sets consist of the complement of a spanning tree T
and an edge of Tv1,v2 .

In the following we will make use of the notation

(2.37) LT (t) = p2
∑

e∈Tv1,v2

te

for the linear functions in (2.36).
If the polynomial ΨΓ(t) of (2.29) divides (2.36), one has

PΓ(p, t) = ΨΓ(t) · L(t),

for a degree one polynomial L(t), which gives
∑

T

(LT (t)− L(t))
∏

e/∈T

te ≡ 0,

for all t. One then sees, for example, that the 1PI condition on the graph Γ is necessary
in order to have the condition of Definition 2.4. In fact, for a graph that is not 1PI, one
may be able to find vertices and momenta as above such that the degree one polynomials
LT (t) are all equal to the same L(t). Generally, the validity of the condition of Definition
2.4 can be checked algorithmically for a given graph.

One does not need to assume the condition of Definition 2.4. However, several of our
formulae become more complicated if we allow the case where the polynomials ΨΓ and
PΓ(t, p) have common factors. Thus, for our purposes we assume to work under the
hypothesis that the “generic condition on the external momenta” holds.
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Definition 2.5. The affine graph hypersurface X̂Γ is the zero locus of the Kirchhoff poly-

nomial

(2.38) X̂Γ = {t ∈ An : ΨΓ(t) = 0},

with n = #Eint(Γ). The locus of zeros of the polynomial PΓ(t, p), for fixed external

momenta p, also defines a hypersurface

(2.39) ŶΓ = ŶΓ(p) := {t ∈ An |PΓ(t, p) = 0}.

Since both ΨΓ(t) and PΓ(t, p) are homogeneous polynomials in t, we can consider corre-

sponding projective hypersurfaces

(2.40) XΓ = {t = (t1 : · · · : tn) ∈ Pn−1 : ΨΓ(t) = 0}

of degree b1(Γ) and

(2.41) YΓ = YΓ(p) := {t = (t1 : · · · : tn) ∈ Pn−1 |PΓ(t, p) = 0}.

of degree b1(Γ) + 1.

In the case of log divergent graphs, or of arbitrary graphs in the range with sufficiently
large spacetime dimension D (i.e. for D satisfying −n + Dℓ/2 ≥ 0, with n = #Eint(Γ)
and ℓ = b1(Γ)), the possible divergences of the Feynman integral U(Γ) depend on the

intersection of the domain of integration Σ with the graph hypersurface X̂Γ in Pn−1.
Notice that the intersections Σ ∩ X̂Γ can only happen on the boundary ∂Σ, as in the
interior of Σ the polynomial ΨΓ takes strictly positive real values. See [14] and [13] for
a detailed analysis of this case and for its motivic interpretation. More generally, for
non-log-divergent integrals of the form (2.19), outside of the range −n + Dℓ/2 ≥ 0, the

singularities of the integral also involve the intersections of the hypersurfaces ŶΓ(t, p) with
the domain of integration Σ. This case requires in general a more detailed analysis, as
in this case some of the intersections may also appear away from the boundary of Σ,
depending on the values of the external momenta p, see e.g. [11], §18.

2.2. Dimensional Regularization. One of the main problems that emerged in the his-
toric development of perturbative quantum field theory is how to “cure” the divergences
that occur systematically in the Feynman integrals (2.2), i.e. the problem of renormal-
ization. Usually this is treated by choosing a regularization method, combined with a
renormalization procedure. Regularization replaces a divergent integral (2.2) with a func-
tion of additional parameters that happens to have a pole or singularity at the special
value of the parameter that corresponds to the original integral, but which is otherwise
well defined and finite at nearby values of the parameter. Renormalization, on the other
hand, gives a method for extracting finite values from the regularized expressions in a
way that is consistent with the combinatorics of nested subdivergences, i.e. subgraphs of
graphs with divergent Feynman integrals, which themselves contribute divergences.

The Connes–Kreimer theory [21] uses the regularization method known as dimensional

regularization and minimal subtraction, combined with the renormalization procedure of
Bogoliubov–Parasiuk–Hepp–Zimmermann (BPHZ). It was later shown (see e.g. [28]) that
the main results of Connes–Kreimer may be applied to other regularization procedures,
as long as the “subtraction of infinities” can be formulated in terms of a Rota–Baxter
operator. The projection of a Laurent series onto its polar part is an example of such
an operator, which corresponds to the “minimal subtraction” case. Using this more gen-
eral formulation, it possible to extend the Connes–Kreimer theory to other regularization
methods, which makes it possible, for instance, to extend it to the case of curved back-
grounds as in [1]. We concentrate here on the Dimensional Regularization and Minimal
Subtraction procedure. In fact, our purpose is to compare the approach to motives and
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renormalization of [22] with the one of [14], and we prefer to remain close to the formulation
given in [22] using DimReg.

Dimensional Regularization consists of formally extending the usual Gaussian integra-
tion (2.20) from the case of integer dimension D ∈ N to the case of a “complexified
dimension” z ∈ C, in a small neighborhood of z = 0, by setting

(2.42)

∫
e−

1
2xτ AxdD+zx1 · · ·d

D+zxℓ :=
(2π)(D+z)ℓ/2

det(A)(D+z)/2
,

This results is the analytic continuation of the parametric Feynman integral formulae
(2.22), (2.24), (2.26) to complex values of the dimension D.

Lemma 2.6. Upon replacing the integer dimension D by a complexified dimension D 7→
D + z, with z ∈ ∆∗ a small punctured disk around z = 0, the integral (2.21) becomes of

the form

(2.43) U(Γ)(z) =
Γ(n− (D+z)ℓ

2 )

(4π)
ℓ(D+z)

2

∫

[0,1]n

δ(1−
∑

i ti)

ΨΓ(t)(D+z)/2VΓ(t, p)n−(D+z)ℓ/2
dt1 · · · dtn.

Proof. One uses the same argument of Lemma 2.1, but using (2.42) instead of (2.20) in
(2.21). This gives

(2.44) U(Γ) = (4π)−ℓ(D+z)/2

∫

Rn
+

e−VΓ(t,p)

ΨΓ(t)(D+z)/2
dt1 · · · dtn,

We then use the same argument as in Lemma 2.1 to write this in the form
(2.45)

U(Γ) = (4π)−ℓ(D+z)/2

∫ ∞

0

(∫

[0,1]n
δ(1 −

∑

i

ti)
e−λVΓ(t,p)

ΨΓ(t)(D+z)/2
dt1 · · · dtn

)
λn−(D+z)ℓ/2 dλ

λ

and we use

(2.46) V
−n+(D+z)ℓ/2
Γ =

1

Γ(n− (D + z)ℓ/2)

∫ ∞

0

e−λVΓλn−(D+z)ℓ/2−1 dλ

to obtain (2.43). One recovers the parametric form (2.19) from (2.42). �

2.3. Mass scale dependence. It is well known that, when one regularizes the integrals
U(Γ) using dimensional regularization, as recalled above, one introduces an explicit depen-
dence on the mass scale, which plays a very important role in the renormalization process
and is the source of the nontrivial action of the renormalization group (see [20], [21], [22],
[23]).

The source of the mass scale dependence is the fact that, in order to maintain the
physical units, the integral (2.42) should in fact be written in the form

(2.47)

∫
e−

1
2xτ Axµ−zdD+zx1 · · ·µ

−zdD+zxℓ := µ−zℓ (2π)(D+z)ℓ/2

det(A)(D+z)/2
,

where µ has the physical units of a mass (energy), so that the µ−zdD+zxi still have the
same physical units as the original dDxi (see [20]).

Lemma 2.7. The dimensional regularization U(Γ)(z) of (2.43) depends on the mass scale

µ in the form

(2.48) Uµ(Γ)(z) = µ−zℓ Γ(n− (D+z)ℓ
2 )

(4π)
ℓ(D+z)

2

∫

[0,1]n

δ(1−
∑

i ti)dt1 · · · dtn

ΨΓ(t)
(D+z)

2 VΓ(t, p)n−
(D+z)ℓ

2

.
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Proof. In the derivation of the parametric form of the Feynman integral with dimensional
regularization, we see that we have in (2.44) a mass scale dependence

(2.49) Uµ(Γ)(z) = (4π)−ℓ(D+z)/2µ−zℓ

∫

Rn
+

e−VΓ(t,p)

ΨΓ(t)(D+z)/2
dt1 · · · dtn.

The rest of the argument of Lemma 2.6 is unchanged. In particular, no further µ depen-
dence is introduced by the term in VΓ(t, p), so that we obtain (2.48). �

2.4. Integrals on projective spaces. As remarked above, due to the homogeneity of
the polynomials ΨΓ and PΓ, it is natural to regard the graph hypersurfaces as projective
hypersurfaces XΓ and YΓ in Pn−1, with n the number of internal lines of the graph Γ. Thus,
we want to think of the parametric Feynman integrals as being computed in projective
space.

In order to reformulate in projective space Pn−1 integrals originally defined in affine
space An, one needs to work with the projective analog (cf. [29], §II) of the volume form

ωn = dt1 ∧ · · · ∧ dtn.

This is given by the form

(2.50) Ω =
n∑

i=1

(−1)i+1ti dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtn.

The relation between the volume form dt1 ∧ · · · ∧ dtn and the homogeneous form Ω of
degree n of (2.50) is given by (cf. [26], p.180)

(2.51) Ω = ∆(ωn),

where ∆ : Ωk → Ωk−1 is the operator of contraction with the Euler vector field

(2.52) E =
∑

i

ti
∂

∂ti
,

(2.53) ∆(ω)(v1, · · · , vk−1) = ω(E, v1, · · · , vk−1).

In the parametric Feynman integrals, we consider as region of definition of the integrand
(in the log divergent case, or in the case of integrals in the range −n + Dℓ/2 ≥ 0) the
hypersurface complement

(2.54) D(ΨΓ) = {t ∈ An |ΨΓ(t) 6= 0} = An r X̂Γ,

while in the formulation (2.26) outside of the range −n + Dℓ/2 ≥ 0, we also need to

avoid the second hypersurface ŶΓ defined by the vanishing of PΓ (for assigned external
momenta), as in (2.39). In this case the domain of definition of the integrand is

(2.55)
D(ΨΓ, PΓ) = {t ∈ An |ΨΓ(t) 6= 0 and PΓ(t, p) 6= 0}

= D(ΨΓ) ∩D(PΓ) = An r (X̂Γ ∪ ŶΓ).

Let U(ΨΓ) and U(ΨΓ, PΓ) denote the corresponding hypersurface complements in pro-
jective space, namely

(2.56)

U(ΨΓ) = {t ∈ Pn−1 |ΨΓ(t) 6= 0} = Pn−1 r XΓ

U(ΨΓ, PΓ) = {t ∈ Pn−1 |ΨΓ(t) 6= 0 and PΓ(t, p) 6= 0}

= U(ΨΓ) ∩ U(PΓ) = Pn−1 r (XΓ ∪ YΓ).
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As we see in more detail in (2.70) and Proposition 2.9 below, in both the affine and
the projective case, we can describe D(ΨΓ, PΓ) and U(ΨΓ, PΓ) as hypersurface comple-
ments, by identifying XΓ ∪ YΓ with the hypersurface defined by the vanishing of a homo-
geneous polynomial given by a product Ψn1

Γ · P
n2

Γ , a homogeneous polynomial of degree
n1b1(Γ) + n2(b1(Γ) + 1), where the component hypersurfaces XΓ and YΓ are counted
with multiplicities n1 and n2. These multiplicities depend on the number of edges and
loops of the graph and on the spacetime dimension, and are defined more precisely in
(2.70) below. Thus, in the following, wherever needed, we write D(ΨΓ, PΓ) = D(f) and
U(ΨΓ, PΓ) = U(f), with f = Ψn1

Γ · P
n2

Γ , as in the various cases of (2.70) below.

We introduce here some notation that will be useful in the following (cf. [26], p.177).
Let R = C[t1, . . . , tn] be the ring of polynomials of An. Let Rm denotes the subset of
homogeneous polynomials of degree m. Similarly, let Ωk denote the R-module of k-forms
on An and let Ωk

m denote the subset of k-forms that are homogeneous of degree m.

We recall the following general fact (cf. [26], p.178) about hypersurface complements.
Let π : An r {0} → Pn−1 be the standard projection t = (t1, . . . , tn) 7→ t = (t1 : · · · : tn).
Suppose given a homogeneous polynomial function f on An of degree deg(f). Let D(f) ⊂
An and U(f) ⊂ Pn−1 be the hypersurface complements, i.e. the complements, in An and
Pn−1 respectively, of the locus of zeros Xf = {t | f(t) = 0}. With the notation introduced
here above, we can always write a form ω ∈ Ωk(D(f)) as

(2.57) ω =
η

fm
, with η ∈ Ωk

m deg(f).

We then have the following characterization of the pullback along π : D(f) → U(f)
of forms on U(f) (see [26], p.180 and [27]). Given ω ∈ Ωk(U(f)), the pullback π∗(ω) ∈
Ωk(D(f)) is characterized by the properties of being invariant under the Gm action on
An r{0} and of satisfying ∆(π∗(ω)) = 0, where ∆ is the contraction (2.53) with the Euler
vector field E of (2.52). Thus, since the sequence

0→ Ωn ∆
→ Ωn−1 ∆

→ · · ·Ω1 ∆
→ Ω0 → 0

is exact at all but the last term, one can write

(2.58) π∗(ω) =
∆(η)

fm
, with η ∈ Ωk

m deg(f).

Thus, in particular, any (n− 1)-form on U(f) ⊂ Pn−1 can be written as

(2.59)
hΩ

fm
, with h ∈ Rm deg(f)−n

and with Ω = ∆(dt1 ∧ · · · ∧ dtn) the (n− 1)-form (2.50), homogeneous of degree n.

Proposition 2.8. Let ω ∈ Ωk
m deg(f) be a closed k-form, which is homogeneous of degree

m deg(f), and consider the form ω/fm on An. Let Σ ⊂ An r {0} be a k-dimensional

domain with boundary ∂Σ 6= ∅. Then the integration of ω/fm on Σ satisfies

(2.60) m deg(f)

∫

Σ

ω

fm
=

∫

∂Σ

∆(ω)

fm
+

∫

Σ

df ∧
∆(ω)

fm+1
.

Proof. Recall that we have ([26], [27])

(2.61) d

(
∆(ω)

fm

)
= −

∆(dfω)

fm+1
,

where, for a form ω that is homogeneous of degree m deg(f),

(2.62) dfω = f dω −m df ∧ ω.
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Thus, we have

(2.63) d

(
∆(ω)

fm

)
= −

∆(dω)

fm
+ m

∆(df ∧ ω)

fm+1
.

Since the form ω is closed, dω = 0, and we have

(2.64) ∆(df ∧ ω) = deg(f) f ω − df ∧∆(ω),

we obtain from the above

(2.65) d

(
∆(ω)

fm

)
= m deg(f)

ω

fm
−

df ∧∆(ω)

fm+1
.

By Stokes’ theorem we have
∫

∂Σ

∆(ω)

fm
=

∫

Σ

d

(
∆(ω)

fm

)
.

Using (2.65) this gives

(2.66)

∫

∂Σ

∆(ω)

fm
= m deg(f)

∫

Σ

ω

fm
−

∫

Σ

df ∧∆(ω)

fm+1
.

�

We can use this result to reformulate the parametric Feynman integrals in terms of
integrals of forms that are pullbacks to An r{0} of forms on a hypersurface complement in
Pn−1. For simplicity, we remove here the divergent Γ-factor from the parametric Feynman
integral and we concentrate on the residue given by the integration on the simplex Σ as
in (2.67) below.

Proposition 2.9. Under the generic condition on the external momenta, the parametric

Feynman integral

(2.67) U(Γ) =

∫

Σ

ωn

Ψ
D/2
Γ V

n−Dℓ/2
Γ

can be computed as

(2.68) U(Γ) =
1

C(n, D, ℓ)

(∫

∂Σ

π∗(η) +

∫

Σ

df ∧
π∗(η)

f

)
,

where π : An r {0} → Pn−1 is the projection and η is the form on the hypersurface

complement U(f) in Pn−1 with

(2.69) π∗(η) =
∆(ω)

fm
,

on An, where

(2.70) f =






PΓ n− D(ℓ+1)
2 ≥ 0

P
2n−Dℓ

2m

Γ Ψ
D
2m

Γ n− D(ℓ+1)
2 < 0 < n− Dℓ

2
m = gcd{n−Dℓ/2, D/2}

ΨΓ n− Dℓ
2 ≤ 0,

with

(2.71) m =






n−Dℓ/2 n− D(ℓ+1)
2 ≥ 0

gcd{n−Dℓ/2, D/2} n− D(ℓ+1)
2 < 0 < n− Dℓ

2

−n + D(ℓ + 1)/2 n− Dℓ
2 ≤ 0,
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and with

(2.72) ω =






Ψ
n−D(ℓ+1)/2
Γ ωn n− D(ℓ+1)

2 ≥ 0

Ψ
n−Dℓ/2
Γ ωn n− D(ℓ+1)

2 < 0 < n− Dℓ
2

P
−n+Dℓ/2
Γ ωn n− Dℓ

2 ≤ 0,

where ωn = dt1 ∧ · · · ∧dtn on An, with Ω = ∆(ωn) as in (2.50). The coefficient C(n, D, ℓ)
in (2.68) is given by

(2.73) C(n, D, ℓ) =






(n−Dℓ/2)(ℓ + 1) n− D(ℓ+1)
2 ≥ 0

(n−Dℓ/2)ℓ + n n− D(ℓ+1)
2 < 0 < n− Dℓ

2

−(n−D(ℓ + 1)/2)ℓ n− Dℓ
2 ≤ 0.

Proof. Consider on An the form given by ∆(ω)/fm, with f , m, and ω, respectively as
in (2.70), (2.71) and (2.72). We assume the condition of Definition 2.4, i.e. for a generic
choice of the external momenta the polynomials PΓ and ΨΓ have no common factor. First
notice that, since the polynomial ΨΓ is homogeneous of degree ℓ and PΓ is homogeneous
of degree ℓ + 1, the form ∆(ω)/fm is Gm invariant on An r {0}. Moreover, since it is
of the form α = ∆(ω)/fm, it also satisfies ∆(α) = 0, hence it is the pullback of a form
η on U(f) ⊂ Pn−1. Also notice that the domain of integration Σ ⊂ An given by the
simplex Σ = {

∑
i ti = 1, ti ≥ 0}, is contained in a fundamental domain of the action of

the multiplicative group C∗ on Cn r {0}.
Applying the result of Proposition 2.8 above, we obtain

∫

Σ

dt1 ∧ · · · ∧ dtn

Ψ
D/2
Γ V

n−Dℓ/2
Γ

=

∫

Σ

ω

fm

=
1

m deg(f)
(

∫

∂Σ

∆(ω)

fm
+

∫

Σ

df ∧
∆(ω)

fm+1
)

= C(n, D, ℓ)−1

(∫

∂Σ

∆(ωn)

Ψ
D/2
Γ V

n−Dℓ/2
Γ

+

∫

Σ

df ∧
∆(ωn)

Ψa
ΓP b

Γ

)
,

where f is as in (2.70) and

(2.74) a =






D(ℓ + 1)/2− n n− D(ℓ+1)
2 ≥ 0

D
2 (1 + 1

m ) n− D(ℓ+1)
2 < 0 < n− Dℓ

2

−n + D(ℓ+1)
2 + 1 n− Dℓ

2 ≤ 0,

(2.75) b =






n− Dℓ
2 + 1 n− D(ℓ+1)

2 ≥ 0

(n− Dℓ
2 )(1 + 1

m ) n− D(ℓ+1)
2 < 0 < n− Dℓ

2

n− Dℓ
2 n− Dℓ

2 ≤ 0.

In fact, the cases of n − D(ℓ+1)
2 ≥ 0 and n − Dℓ

2 ≤ 0 are clear, while in the range with

n− D(ℓ+1)
2 < 0 and n− Dℓ

2 > 0 we have

fm+1 = P
(n−Dℓ/2)(1+ 1

m
)

Γ Ψ
D
2 (1+ 1

m
)

Γ .

The coefficient C(n, D, ℓ) is given by C(n, D, ℓ) = m deg(f), with m and f as in (2.71)
and (2.70). Thus, it is given by (2.73), where in the second case we use

m((ℓ + 1)(n−Dℓ/2)/m + Dℓ/2m) = (n−Dℓ/2)ℓ + n,
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for m = gcd{n−Dℓ/2, D/2}. �

3. Singularities, slicing, and Milnor fiber

3.1. Non-isolated singularities. One problem in trying to use in our setting the tech-
niques developed in singularity theory (cf. [5]) to study mixed Hodge structures in terms
of oscillatory integrals is that the graph hypersurfaces XΓ ⊂ Pn−1 defined by the vanishing
of the polynomial ΨΓ(t) = det(MΓ(t)) usually have non-isolated singularities. This can
be seen easily by the following observation.

Lemma 3.1. Let Γ be a graph with deg ΨΓ > 2. The singular locus of XΓ is given by

the intersection of cones over the hypersurfaces XΓe
, for e ∈ E(Γ), where Γe is the graph

obtained by removing the edge e of Γ. The cones C(XΓe
) do not intersect transversely.

Proof. First observe that, since XΓ is defined by a homogeneous equation ΨΓ(t) = 0,
with ΨΓ a polynomial of degree m, the Euler formula mΨΓ(t) =

∑
e te

∂
∂te

ΨΓ(t) implies

that ∩eZ(∂eΨΓ) ⊂ XΓ, where Z(∂eΨΓ) is the zero locus of the te-derivative. Thus, the
singular locus of XΓ is just given by the equations ∂eΨΓ = 0. The variables te appear in
the polynomial ΨΓ(t) only with degree zero or one, hence the polynomial ∂eΨΓ consists
of only those monomials of ΨΓ that contain the variable te, where one sets te = 1. The
resulting polynomial is therefore of the form ΨΓe

, where Γe is the graph obtained from
Γ by removing the edge e. In fact, one can see in terms of spanning trees that, if T is a
spanning tree containing the edge e then T r e is no longer a spanning tree of Γe, so the
corresponding terms disappear in passing from ΨΓ to ΨΓe

, while if T is a spanning tree
of Γ which does not contain e, then T is still a spanning tree of Γe and the corresponding
monomial mT of ΨΓe

is the same as the monomial mT in ΨΓ without the variable te. Thus,
the zero locus Z(ΨΓe

) ⊂ Pn−1 is a cone C(XΓe
) over the graph hypersurface XΓe

⊂ Pn−2

with vertex at the coordinate point ve = (0, . . . , 0, 1, 0, . . .0) with te = 1. To see that these
cones do not intersect transversely, notice that, in the case where deg ΨΓ > 2, given any
two C(XΓe

) and C(XΓe′
) the vertex of one cone is contained in the graph hypersurface

spanning the other cone. �

The work of Bergbauer–Rej [10] gives a more detailed analysis of the singular locus of
the graph hypersurfaces, using a formula for the Kirchhoff polynomials under insertion of
subgraphs at vertices.

3.2. Projective Radon transform. Among various techniques introduced for the study
of non-isolated singularities, a common procedure consists of cutting the ambient space
with linear spaces of dimension complementary to that of the singular locus of the hyper-
surface (cf. e.g. [42]). In this case, the restriction of the function defining the hypersurface
to these linear spaces defines hypersurfaces with isolated singularities, to which the usual
invariants and constructions for isolated singularities can be applied.

One finds that, in typical cases, the graph hypersurfaces have singular locus of codimen-
sion one, which means that the slicing is given by planes P2 intersecting the hypersurface
into a curve with isolated singular points. When the singular locus is of codimension two
in the hypersurface, the slicing is given by 3-dimensional spaces cutting the hypersurface
into a family of surfaces in P3 with isolated singularities.

In our setting, we are interested in computing integrals of the form (2.67). From this
point of view, the procedure of restricting the function defining the hypersurface to linear
spaces of a fixed dimension correspond to an integral transform analogous to a Radon
transform in projective space (cf. [29]).

We recall the basic setting for integral transforms on projective spaces (cf. §II of [29]).
On any k-dimensional subspace Ak ⊂ An there is a unique (up to a multiplicative constant)
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(k − 1)-form that is invariant under the action of SLk. It is given as in (2.50) by the
expression

(3.1) Ωk =

k∑

i=1

(−1)i+1ti dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtk.

The form (3.1) is homogeneous of degree k. Suppose given a function f on An which
satisfies the homogeneity condition

(3.2) f(λt) = λ−kf(t), ∀t ∈ An, λ ∈ Gm.

Then the integrand fΩk is well defined on the corresponding projective space Pk−1 ⊂ Pn−1

and one defines the integral as integrating on a fundamental domain in Ak r {0}, i.e. on
a surface that intersect each line from the origin once.

Suppose given dual vectors ξi ∈ (An)′, for i = 1, . . . , n−k. These define a k-dimensional
linear subspace Π = Πξ ⊂ An by the vanishing

(3.3) Πξ = {t ∈ An | 〈ξi, t〉 = 0, i = 1, . . . , n− k}.

Given a choice of a subspace Πξ, there exists a (k − 1)-form Ωξ on An satisfying

(3.4) 〈ξ1, dt〉 ∧ · · · ∧ 〈ξn−k, dt〉 ∧ Ωξ = Ωn,

with Ωn the (n− 1)-form of (2.50), cf. (3.1). The form Ωξ is not uniquely defined on An,
but its restriction to Πξ is uniquely defined by (3.4). Then, given a function f on An with
the homogeneity condition (3.2), one can consider the integrand fΩξ and define its integral
on the projective space π(Πξ) ⊂ Pn−1 as above. This defines the integral transform, that
is, the (k − 1)-dimensional projective Radon transform (§II of [29]) as

(3.5) Fk(f)(ξ) =

∫

π(Πξ)

f(t)Ωξ(t) =

∫

Pn−1

f(t)

n−k∏

i=1

δ(〈ξi, t〉)Ωξ(t).

For our purposes, it is convenient to consider also the following variant of the Radon
transform (3.5).

Definition 3.2. Let Σ ⊂ An be a compact region that is contained in a fundamental

domain of the action of Gm on An r {0}. The partial (k − 1)-dimensional projective

Radon transform is given by the expression

(3.6) FΣ,k(f)(ξ) =

∫

Σ∩π(Πξ)

f(t)Ωξ(t) =

∫

Σ∩π(Πξ)

f(t)
n−k∏

i=1

δ(〈ξi, t〉)Ωξ(t),

where one identifies Σ with its image π(Σ) ⊂ Pn−1.

Let us now return to the parametric Feynman integrals we are considering.

Proposition 3.3. The Feynman integral (2.22) can be reformulated as

(3.7) U(Γ) =
Γ(k − Dℓ

2 )

(4π)ℓD/2

∫
FΣ,k(fΓ)(ξ) 〈ξ, dt〉,

where ξ is an (n−k)-frame in An and FΣ,k(f) is the Radon transform, with Σ the simplex∑
i ti = 1, ti ≥ 0, and with

(3.8) fΓ(t) =
VΓ(t, p)−k+Dℓ/2

ΨΓ(t)D/2
.
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Proof. Consider first the form (2.22) of the Feynman integral, which we write equivalently
as

(3.9) U(Γ) = (4π)−ℓD/2

∫

An

χ+(t)
e−VΓ(t,p)

ΨΓ(t)D/2
dt1 · · · dtn,

where χ+(t) is the characteristic function of the domain Rn
+.

Given a choice of an (n − k)-frame ξ, we can then write the Feynman integrals in the
form

(3.10) U(Γ) = (4π)−ℓD/2

∫ (∫

Πξ

χ+(t)
e−VΓ(t,p)

ΨΓ(t)D/2
ωξ

)
〈ξ, dt〉,

where 〈ξ, dt〉 is a shorthand notation for

〈ξ, dt〉 = 〈ξ1, dt〉 ∧ · · · ∧ 〈ξn−k, dt〉

and ωξ satisfies

(3.11) 〈ξ, dt〉 ∧ ωξ = ωn = dt1 ∧ · · · ∧ dtn.

We then apply the same procedure as in (2.24) and (2.25) to the integral on Πξ and
write it in the form

(3.12)

∫

Πξ

χ+(t)
e−VΓ(t,p)

ΨΓ(t)D/2
ωξ(t) = Γ(k −

Dℓ

2
)

∫

Πξ

δ(1−
∑

i

ti)
ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−Dℓ/2
.

The function fΓ(t) of (3.8) satisfies the scaling property (3.2) and the integrand

ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−Dℓ/2

is therefore Gm-invariant, since the form ωξ is homogeneous of degree k. Moreover, the
domain Σ of integration is contained in a fundamental domain for the action of Gm. Thus,
we can reformulate the integral (3.12) in projective space, in terms of Radon transform as

(3.13) Γ(k −
Dℓ

2
) (4π)−ℓD/2

∫
FΣ,k(fΓ)(ξ) 〈ξ, dt〉,

where FΣ,k(fΓ) is the Radon transform over the simplex Σ, as in Definition 3.2. �

In the following, we will then consider integrals of the form

(3.14) U(Γ)ξ = FΣ,k(fΓ)(ξ) =

∫

Πξ

δ(1−
∑

i

ti)
ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−Dℓ/2

=

∫

Σξ

ωξ(t)

ΨΓ(t)D/2VΓ(t, p)k−Dℓ/2

as well as their dimensional regularizations

(3.15) U(Γ)ξ(z) =

∫

Σξ

ωξ(t)

ΨΓ(t)(D+z)/2VΓ(t, p)k−(D+z)ℓ/2
,

where Πξ is a generic linear subspace of dimension equal to the codimension of the singular
locus of the hypersurface XΓ ∪ YΓ.
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3.3. The polar filtration. As we recalled already in §2.4 above (cf. [26]) algebraic dif-
ferential forms ω ∈ Ωk(D(f)) on a hypersurface complement can always be written in the
form ω = η/fm as in (2.57), for some m ∈ N and some η ∈ Ωk

m deg(f). The minimal m

such that ω can be written in the form ω = η/fm is called the order of pole of ω along the
hypersurface X and is denoted by ordX(ω). The order of pole induces a filtration, called
the polar filtration, on the de Rham complex of differential forms on the hypersurface com-
plement. One denotes by P rΩk

Pn ⊂ Ωk
Pn the subspace of forms of order ordX(ω) ≤ k−r+1,

if k − r + 1 ≥ 0, or P rΩk = 0 for k − r + 1 < 0. The polar filtration P • is related to the
Hodge filtration F • by P rΩm ⊃ F rΩm, by a result of [25].

Proposition 3.4. Under the generic condition on the external momenta, the forms

(3.16)
Ωξ

Ψ
D/2
Γ V

k−Dℓ/2
Γ

span subspaces P r,k
ξ of the polar filtration P rΩk−1

Pn−1 of a hypersurface complement U(f) ⊂

Pn−1, where

(3.17) f =






PΓ k −D(ℓ + 1)/2 ≥ 0

P
(k−Dℓ/2)/m
Γ Ψ

D/(2m)
Γ k −D(ℓ + 1)/2 < 0 < k −Dℓ/2,

m = gcd{k −Dℓ/2, D/2}

ΨΓ k −Dℓ/2 ≤ 0,

and for the index r of the filtration in the range

(3.18)






r ≤ Dℓ/2 k −D(ℓ + 1)/2 ≥ 0

r ≤ k − gcd{k −Dℓ/2, D/2} k −D(ℓ + 1)/2 < 0 < k −Dℓ/2

r ≤ 2k −D(ℓ + 1)/2 k −Dℓ/2 ≤ 0.

Proof. We are assuming that PΓ and ΨΓ have no common factor, for generic external
momenta. Consider first the case where k − Dℓ/2 ≥ 0. This is further divided into two
cases: the case where also k −D(ℓ + 1)/2 ≥ 0 and the case where k −D(ℓ + 1)/2 < 0. In
the first case, the form (3.16) can be written, using (2.31), as

(3.19)
∆(α)

fm
=

Ψ
k−D(ℓ+1)/2
Γ Ωξ

P
k−Dℓ/2
Γ

,

where

(3.20) α = Ψ
k−D(ℓ+1)/2
Γ ωξ and f = PΓ, with m = k −Dℓ/2.

Thus, in this case we considered the polar filtration for differential forms on the comple-
ment of the projective hypersurface YΓ of degree ℓ+1 defined by PΓ = 0. The forms (3.19),
for a generic choice of the (n − k)-frame ξ, and for varying external momenta p, span a

subspace P r,k
ξ of the polar filtration P rΩk−1

Pn−1, for all r ≤ Dℓ/2. Notice that r ≤ Dℓ/2 also
implies r ≤ k so that one remains within the nontrivial range k − r ≥ 0 of the filtration.

In the case where we still have k −Dℓ/2 ≥ 0 but k −D(ℓ + 1)/2 < 0, we let

m = gcd{k −Dℓ/2, D/2},

so that k −Dℓ/2 = n1m and D/2 = n2m. We then write (3.16) in the form

(3.21)
∆(α)

fm
=

Ψ
k−Dℓ/2
Γ Ωξ

P
k−Dℓ/2
Γ Ψ

D/2
Γ

,



20 MATILDE MARCOLLI

with

(3.22) α = Ψ
k−Dℓ/2
Γ ωξ, and f = Pn1

Γ Ψn2

Γ and m = gcd{k −Dℓ/2, D/2}.

In this case, we consider the polar filtration associated to the complement of the projective
hypersurface defined by the equation Pn1

Γ Ψn2

Γ = 0. For a generic choice of the (n − k)-

frame ξ, and for varying external momenta p, we obtain in this case a subspace P r,k
ξ of

the polar filtration P rΩk−1
Pn−1 , for all r ≤ k − gcd{k −Dℓ/2, D/2}.

The remaining case is when k−Dℓ/2 < 0, so that also k−D(ℓ+1)/2 < 0. In this case,
we write (3.16) in the form

(3.23)
∆(α)

fm
=

P
−k+Dℓ/2
Γ Ωξ

Ψ
−k+D(ℓ+1)/2
Γ

,

where

(3.24) α = P
−k+Dℓ/2
Γ ωξ, and f = ΨΓ and m = −k + D(ℓ + 1)/2.

We are considering here the polar filtration on forms on the complement of the hypersurface

XΓ defined by ΨΓ = 0. We then obtain, for generic ξ and varying p, a subspace of P r,k
ξ of

the filtration P rΩk−1
Pn−1, for all r ≤ 2k −D(ℓ + 1)/2. �

3.4. Milnor fiber. Suppose then that k = codimSing(X), where Sing(X) is the singular
locus of the hypersurface X = {f = 0}, with f as in Proposition 3.4 above. In this case,
for generic ξ, the linear space Πξ cuts the singular locus Sing(X) transversely and the
restriction Xξ = X ∩Πξ has isolated singularities.

Recall that, in the case of isolated singularities, there is an isomorphism between the
cohomology of the Milnor fiber Fξ of Xξ and the total cohomology of the Koszul–deRham
complex of forms (2.57) with the total differential dfω = f dω −m df ∧ ω as above. The
explict isomorphism is given by the Poincaré residue map and can be written in the form

(3.25) [ω] 7→ [j∗∆(ωξ)],

where j : Fξ →֒ Πξ is the inclusion of the Milnor fiber in the ambient space (see [26], §6).
Let M(f) be the Milnor algebra of f , i.e. the quotient of the polynomial ring in the

coordinates of the ambient projective space by the ideal of the derivatives of f . When f
has isolated singularities, the Milnor algebra is finite dimensional. One denotes by M(f)m

the homogeneous component of degree m of M(f).
It then follows from the identification (3.25) above ([26],§6.2) that, in the case of isolated

singularities, a basis for the cohomology Hr(Fξ) of the Milnor fiber, with r = dimΠξ − 1
is given by elements of the form

(3.26) ωα =
tα∆(ωξ)

fm
, with tα ∈M(f)m deg(f)−k,

where f is the restriction to Πξ of the function of (3.17). We then have the following
consequence of Proposition 3.4.

Corollary 3.5. For a generic (n − k)-frame ξ with n − k = dimSing(X), with X the

hypersurface of Proposition 3.4, and for a fixed generic choice of the external momenta p
under the assumption of Definition 2.4, the Feynman integrand (3.16) of (3.14) defines

a cohomology class in Hr(Fξ), with r = dimΠξ − 1 and Fξ ⊂ Πξ the Milnor fiber of the

hypersurface with isolated singularities Xξ = X ∩Πξ ⊂ Πξ.
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Proof. By Proposition 3.4, the form (3.16) can be written as

(3.27)
h∆(ωξ)

fm
,

where f is as in (3.17), and h is a polynomial of the form

(3.28) h =






Ψ
k−D(ℓ+1)/2
Γ k −D(ℓ + 1)/2 ≥ 0

Ψ
k−Dℓ/2
Γ k −D(ℓ + 1)/2 < 0 < k −Dℓ/2

P
−k+Dℓ/2
Γ k −Dℓ/2 ≤ 0.

Let Iξ denote the ideal of derivatives of the restriction f |Πξ
of f to Πξ. Then let

(3.29) hξ = h mod Iξ.

For a fixed generic choice of the external momenta, this defines an element in the Milnor
algebra M(f |Πξ

), which lies in the homogeneous component M(f |Πξ
)m deg(f)−k, for

(3.30) m =






k −Dℓ/2 k −D(ℓ + 1)/2 ≥ 0

gcd{k −Dℓ/2, D/2} k −D(ℓ + 1)/2 < 0 < k −Dℓ/2

−k + D(ℓ + 1)/2 k −Dℓ/2 ≤ 0.

Thus, the form (3.27) defines a class in the cohomology Hr(Fξ) with r = dimΠξ − 1. �

3.5. The Feynman integral: slicing. As in Proposition 2.9, we can reformulate the
integral (3.14) in terms of integrals of pullbacks of forms on a hypersurface complement
in projective space, using the explicit description of Proposition 3.4 above.

Proposition 3.6. The integral (3.14) can be computed in the form

(3.31) U(Γ)ξ =
1

C(k, D, ℓ)

(∫

∂Σ∩Πξ

π∗(ηξ) +

∫

Σ∩Πξ

df |Πξ
∧

π∗(ηξ)

f |Πξ

)
,

where π : An r {0} → Pn−1 is the projection and ηξ satisfies

(3.32) π∗(ηξ) =
h|Πξ

Ωξ

(f |Πξ
)m

on An, where Ωξ is given by (3.4) and f , m and h are as in Proposition 3.4 and Corollary

3.5. The coefficient C(k, D, ℓ) is given as in (2.73).

Proof. As in the case of Proposition 2.9, the result follows by applying Proposition 2.8 and
Proposition 3.4, together with the fact that Ωξ = ∆(ωξ), which can be seen by writing

Ωξ =

n−k∏

i=1

δ(〈ξi, t〉)Ωn.

The coefficient C(k, D, ℓ) is given by C(k, D, ℓ) = m deg(f), with m and f as in (3.30)
and (3.17). �
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4. Oscillatory integrals: Leray and Dimensional Regularizations

A well known method for studying integrals of holomorphic forms on vanishing cycles
of a singularity and to relate these to mixed Hodge structures is via oscillatory integrals
and their asymptotic expansion (see [4] and Vol.II of [5]). Our main result in this section
will be to show that the dimensionally regularized parametric Feynman integrals can be
related to the Mellin transform of a Gelfand–Leray form, whose Fourier transform is the
oscillatory integral usually considered in the context of singularity theory.

4.1. Oscillatory integrals and the Gelfand–Leray forms. We recall briefly some
results on oscillatory integrals and their asymptotic expansion. We refer the reader to §2,
Vol.II of [5] for more details. In general, an oscillatory integral is an expression of the form

(4.1) I(α) =

∫

Rn

eiαf(x)φ(x) dx1 · · · dxn,

where f : Rn → R and φ : Rn → R are smooth functions and α ∈ R∗
+ is a real parameter.

It is well known that, if the phase f(x) is an analytic function in a neighborhood of a
critical point x0, then (4.1) has an asymptotic development for α→∞ given by a series

(4.2) I(α) ∼ eiαf(x0)
∑

u

n−1∑

k=0

ak,u(φ)αu(log α)k,

where u runs over a finite set of arithmetic progressions of negative rational numbers
depending only on the phase f(x), and the ak,u are distributions supported on the critical
points of the phase, cf. §2.6.1, Vol.II of [5].

It is also well known that the integral (4.1) can be reformulated in terms of one-
dimensional integrals using the Gelfand–Leray form

(4.3) I(α) =

∫

R

eiαt

(∫

Xt(R)

φ(x)ωf (x, t)

)
dt

where Xt(R) ⊂ Rn is the level set Xt(R) = {x ∈ Rn : f(x) = t} and ωf (x, t) is the
Gelfand–Leray form, that is, the unique (n − 1)-form on the level hypersurface Xt with
the property that

(4.4) df ∧ ωf (x, t) = dx1 ∧ · · · ∧ dxn.

Notice that, as in the case of the forms (3.4), there is some choice of an (n − 1)-form
satisfying (4.4), but the restriction to Xt is unique so that the Gelfand–Leray form on
Xt is well defined. Notice also that, up to throwing away a set of measure zero, we can
assume here that the integration is over the values t ∈ R such that the level set Xt is a
smooth hypersurface.

The Gelfand–Leray form ωf (x, t) is often written in the notation

(4.5) ωf(x, t) =
dx1 ∧ · · · ∧ dxn

df
.

It is given by the Poincaré residue

(4.6)
ω

df
= Resǫ=0

ω

f − ǫ
.

The Gelfand–Leray function is the associated function

(4.7) J(t) :=

∫

Lt

φ(x)ωf (x, t).

For more details, see §2.6 and §2.7, Vol.II [5].
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We recall here a property of the Gelfand–Leray forms that will be useful in the follow-
ing, where we consider complex hypersurfaces X ⊂ An = Cn, with defining polynomial
equation f = 0 and the hypersurface complement D(f) ⊂ An, such that the restriction of
f to the interior of the domain of integration Σ ⊂ An takes values in R∗

+.
Recall that the Leray coboundary of a k-chain σ in X is a (k+1)-chain in D(f) obtained

by considering a tubular neighborhood of X in An, in the following way. Since X is a
hypersurface, the boundary of its tubular neighborhood is a circle bundle over X . One
considers the preimage of σ under the projection map as a chain in D(f). We denote the
resulting chain by L(σ). It is called the Leray coboundary of σ (see [5] p.282). The Leray
coboundary L(σ) is a cycle if σ is a cycle, and if one changes σ by a boundary then L(σ)
also changes by a boundary.

Lemma 4.1. Let σǫ be a k-chain in Xǫ = {t ∈ An|f(t) = ǫ} and let L(σǫ) be its Leray

coboundary in D(f − ǫ). Then, for a form α ∈ Ωk that admits a Gelfand–Leray form, one

has

(4.8)
1

2πi

∫

L(σ(ǫ))

df ∧
α

f − ǫ
=

∫

σ(ǫ)

α,

where

(4.9)
d

dǫ

∫

σ(ǫ)

α =

∫

σ(ǫ)

dα

df
−

∫

∂σ(ǫ)

α

df
.

Proof. First let us show that if α has a Gelfand–Leray form then dα also does. We have
a form α/df such that

df ∧
α

df
= α.

Its differential gives

dα = d

(
df ∧

α

df

)
= −df ∧ d

(
α

df

)
.

Thus, the form
dα

df
= −d

(
α

df

)

is a Gelfand–Leray form for dα.
Then we proceed to prove the first statement. One can write

1

2πi

∫

L(σ(ǫ))

df ∧
α

f − ǫ
=

1

2πi

∫

γ

(∫

σ(s)

α

)
ds

s− ǫ
,

where γ ∼= S1 is the boundary of a small disk centered at ǫ ∈ C. This can then be written
as

=
1

2πi

∫

γ

∫

σ(ǫ)

α
ds

s− ǫ
+

(
1

2πi

∫

γ

∫

σ(s)

α
ds

s− ǫ
−

1

2πi

∫

γ

∫

σ(ǫ)

α
ds

s− ǫ

)
.

The last term can be made arbitrarily small, so one gets (4.8). To obtain (4.9) notice that

1

2πi

d

dǫ

∫

L(σ(ǫ))

df ∧
α

f − ǫ
=

1

2πi

∫

L(σ(ǫ))

df ∧
α

(f − ǫ)2
.

One then uses

d

(
α

f − ǫ

)
=

dα

f − ǫ
−

α

(f − ǫ)2

to rewrite the above as

1

2πi

(∫

L(σ(ǫ))

dα

f − ǫ
−

∫

L(σ(ǫ))

d

(
α

f − ǫ

))



24 MATILDE MARCOLLI

=
1

2πi

∫

L(σ(ǫ))

df ∧ dα
df

f − ǫ
−

1

2πi

∫

L(∂σ(ǫ))

α

f − ǫ

=
1

2πi

∫

L(σ(ǫ))

df ∧ dα
df

f − ǫ
−

1

2πi

∫

L(∂σ(ǫ))

df ∧ α
df

f − ǫ
,

where dα/df is a Gelfand–Leray form such that

df ∧
dα

df
= dα,

and α/df is a Gelfand–Leray form with the property that

df ∧
α

df
= α.

This then gives by (4.8)

d

dǫ

∫

σ(ǫ)

α =

∫

σ(ǫ)

dα

df
−

∫

∂σ(ǫ)

α

df
.

This completes the proof. �

4.2. Leray coboundary regularization and subtraction. The formulation (2.68) of
the parametric Feynman integrals, in the form of Proposition 2.9, suggests a regularization
procedure different from Dimensional Regularization, but with the similar effect of replac-
ing a divergent integral with a meromorphic function to which the “minimal subtraction”
procedure can be applied to remove the polar part and extract a finite value.

Since the singularities arise where the domain of integration Σ meets the hypersurface
X = {f = 0}, with f as in (2.70), we can concentrate on only the part of the integral that
is supported near this intersection.

Let Dǫ(X) denote a neighborhood of the hypersurface X in Pn−1, given by level sets

(4.10) Dǫ(X) = ∪s∈∆∗

ǫ
Xs,

where Xs = {t|f(t) = s} and ∆∗
ǫ ⊂ C∗ is a small punctured disk of radius ǫ > 0. The

boundary ∂Dǫ(X) is given by

(4.11) ∂Dǫ(X) = ∪s∈∂∆∗

ǫ
Xs.

It is a circle bundle over the generic fiber Xǫ, with projection πǫ : ∂Dǫ(X)→ Xǫ. Given a
domain of integration Σ, we consider the intersection Σ ∩Dǫ(X). This is the region that
contains the locus Σ∩X where the divergence in the Feynman integral can occur. We let
Lǫ(Σ) denote the set

(4.12) Lǫ(Σ) = π−1
ǫ (Σ ∩Xǫ).

This enjoys the same properties of the Leray coboundary discussed above. In particular,
notice that Lǫ(∂Σ) = ∂Lǫ(Σ).

We consider forms π∗(η) as in (2.69). To keep track explicitly of the order of pole of
such forms along the hypersurface X , we modify the notation and write

(4.13) π∗(ηm) =
∆(ω)

fm
,

with ω and f as in (2.69).

We then make the following proposal for a regularization method for the Feynman
integrals (2.68). We call it Leray regularization, because it is based on the use of Leray
coboundaries. (Notice that this procedure of regularization and subtraction happens after
having already removed the divergent Γ-factor from the parametric Feyman integrals and
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passing to residues. It is meant in fact to take care of the remaining singularities that
arise from the intersections of the hypersurface with the domain of integration.)

Definition 4.2. The Leray regularized Feynman integral is obtained from (2.68) by re-

placing the part

(4.14)

∫

∂Σ∩Dǫ(X)

π∗(ηm) +

∫

Σ∩Dǫ(X)

df ∧
π∗(ηm)

f

of (2.68) with the integral

(4.15)

∫

Lǫ(∂Σ)

π∗(ηm−1)

f − ǫ
+

∫

Lǫ(Σ)

df ∧
π∗(ηm)

f − ǫ
.

Thus, the Leray regularization introduced here consists of replacing the integral over
Σ ∩ Dǫ(X) with an integral over Lǫ(Σ) ≃ (Σ ∩ Xǫ) × S1, which avoids the locus Σ ∩ X
where the divergence can occur by going around it along a circle of small radius ǫ > 0.

Using the result of Lemma 4.1, we can formulate (4.15) equivalently in the following
form.

Lemma 4.3. The Leray regularization of the Feynman integral (2.68) can be equivalently

written in the form

(4.16)

U(Γ)ǫ =
1

C(n, D, ℓ)

(∫

∂Σ∩Dǫ(X)c

π∗(ηm) +

∫

Σ∩Dǫ(X)c

df ∧
π∗(ηm)

f

)

+
2πi

C(n, D, ℓ)

(∫

∂Σ∩Xǫ

π∗(ηm−1)

df
+

∫

Σ∩Xǫ

π∗(ηm),

)

with π∗(ηm) = ∆(ω)/fm as in (4.13) and Proposition 2.9.

Proof. The result follows directly from Proposition 2.9 and Lemma 4.1 applied to (4.15).
�

In (4.16) we use the notation Dǫ(X)c to denote the complement of Dǫ(X). Notice how
only the part of the integral (2.68) that is computed inside Dǫ(X) is replaced by (4.15) in
the Leray regularization, while the part of the integral (2.68) computed outside of Dǫ(X)
remains unchanged.

We now study the dependence on the parameter ǫ > 0 of the Leray regularized Feynman
integral (4.15), that is, of the integral

(4.17) Iǫ :=

∫

∂Σ∩Xǫ

π∗(ηm−1)

df
+

∫

Σ∩Xǫ

π∗(ηm).

Theorem 4.4. The function Iǫ of (4.17) is infinitely differentiable in ǫ. Moreover, it

extends to a holomorphic function for ǫ ∈ ∆∗ ⊂ C, a small punctured disk, with a pole of

order at most m at ǫ = 0, with m as in (2.71).

Proof. To prove the differentiability of Iǫ, let us write

(4.18) Aǫ(η) =

∫

Σ∩Xǫ

π∗(η),

with π∗(η) as in (2.69). By Lemma 4.1 above, and the fact that dπ∗(η) = 0, we obtain

(4.19)
d

dǫ
Aǫ(η) = −

∫

∂Σ∩Xǫ

π∗(η)

df
,
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where f is as in (2.70) and π∗(η)/df is the Gelfand–Leray form of π∗(η). Thus, we can
write

Iǫ = Aǫ(ηm)−
d

dǫ
Aǫ(ηm−1).

Thus, to check the differentiability in the variable ǫ to all orders of Iǫ is equivalent to
checking that of Aǫ. We define then Υ : Ωn → Ωn by setting

(4.20) Υ(α) = d

(
α

df

)
,

where α/df is a Gelfand–Leray form for α. In turn, the n-form Υ(α) also has a Gelfand–
Leray form, which we denote by

(4.21) δ(α) =
Υ(α)

df
=

d
(

α
df

)

df
.

We then prove that, for k ≥ 2,

(4.22)
dk

dǫk
Aǫ = −

∫

∂Σ∩Xǫ

δk−1

(
π∗(η)

df

)
.

This follows by induction. In fact, we first see that

d2

dǫ2
Aǫ = −

d

dǫ

∫

∂Σ∩Xǫ

π∗(η)

df

which, applying Lemma 4.1 gives

= −

∫

∂Σ∩Xǫ

d
(

π∗(η)
df

)

df
.

Assuming then that
dk

dǫk
Aǫ = −

∫

∂Σ∩Xǫ

δk−1

(
π∗(η)

df

)

we obtain again by a direct application of Lemma 4.1

dk+1

dǫk+1
Aǫ = −

∫

∂Σ∩Xǫ

d

(
δk−1

“

π∗(η)
df

”

df

)

df

= −

∫

∂Σ∩Xǫ

δk

(
π∗(η)

df

)
.

This proves differentiability to all orders.
Notice then that, while the expression (4.15) used in Definition 4.2 is, a priori, only

defined for ǫ > 0, the equivalent expression given in the second line of (4.16) and in (4.17)
is clearly defined for any complex ǫ ∈ ∆∗ in a punctured disk around ǫ = 0 of sufficiently
small radius. It can then be seen that the expression (4.17) depends holomorphically on
the parameter ǫ by the general argument on holomorphic dependence on parameters given
in Part III, §10.2 of Vol.II of [5].

Finally, to see that Iǫ has a pole of order at most m at ǫ = 0, notice that the form
π∗(ηm) of (4.13) is given by ∆(ω)/fm and has a pole of order at most m at X . This

is evident in the two cases with n − D(ℓ+1)
2 ≥ 0 or n − Dℓ

2 ≤ 0. It also holds in the

intermediate case with n− D(ℓ+1)
2 < 0 < n− Dℓ

2 , since we are taking the convention that,
in the case a hypersurface X defined by a polynomial f = fn1

1 fn2
2 , a form ∆(ω)/fm has

pole order m along X , even thought on the individual components it has order mn1 and
mn2, respectively. �
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In particular, the result of Proposition 4.4 shows that we can use the Leray regular-
ization as an alternative to dimensional regularization to replace a divergent Feynman
integral by a meromorphic function of a complex variable ǫ with a pole at ǫ = 0. It is
then possible to proceed as in dimensional regularization and apply “minimal subtrac-
tion”, namely subtract the polar part of the resulting Laurent series in ǫ and evaluate the
remaining part at ǫ = 0.

It is clear that this regularization method is subject to the same problems as dimen-
sional regularization when it comes to considering Feynman integrals associated to graphs
that contain subdivergences. One can organize the hierarchy of subdivergences using the
Bogolyubov-Parashuk preparation, as in the case of dimensional regularization.

4.3. Birkhoff factorization and renormalization. Connes and Kreimer [21] showed
that the BPHZ renormalization procedure, in the DimReg+MS regularization scheme,
can be understood conceptually as the Birkhoff factorization of loops in the Lie group
of complex points of the affine group scheme G dual to a commutative Hopf algebra H
generated by the Feynman diagrams of the given physical theory. The Hopf algebra H, at
the discrete combinatorial level, is the commutative algebra generated by the one-particle-
irreducible (1PI) graphs of the theory, with the coproduct

(4.23) ∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ ⊗ Γ/γ,

where the sum is over proper subgraphs γ ⊂ Γ satisfying a set of properties such as being
Feynman diagrams of the same theory (see for instance [23] for a detailed discussion of
the assumptions on the family of subgraphs involved in the coproduct). The quotient Γ/γ
denotes the graph obtained by contracting each component of γ to a single vertex. It is
sometimes denoted in the literature with the notation Γ//γ. The Hopf algebra is graded
by the number of internal lines of graphs.

After identifying loops γ : ∆∗ → G(C), defined on an infinitesimal punctured disk ∆∗

around z = 0, with elements φ ∈ G(K) = Hom(H, K), where K is the field of germs of
meromorphic functions at z = 0, Connes and Kreimer showed that the BPHZ formula for
renormalization is the recursive formula

(4.24)
φ−(x) = −T (φ(x) +

∑
φ−(x′)φ(x′′))

φ+(x) = φ(x) + φ−(x) +
∑

φ−(x′)φ(x′′),

with ∆(x) = x ⊗ 1 + 1 ⊗ x +
∑

x′ ⊗ x′′, and x′, x′′ of lower degree, and with T the
projection of a Laurent series onto its polar part. The original BPHZ formula is obtained
by applying (4.24) to the element φ ∈ Hom(H, K) that assigns to a generator Γ of H
its unrenormalized Feynman integral U(Γ). As shown in [21], the formula (4.24) is the
recursive formula that gives the Birkhoff factorization

(4.25) γ(z) = γ−(z)−1γ+(z)

of the loop γ into a part γ+ that is holomorphic on ∆ and a part γ− that is holomorphic at
∞ ∈ P1(C), where one identifies γ+ with φ+ ∈ Hom(H,O), with O the algebra of germs
of holomorphic functions at z = 0 and γ− with φ− ∈ Hom(H,Q) wth Q = C[z−1] so that

(4.26) φ = (φ− ◦ S) ∗ φ+,

with S the antipode of H and ∗ the product in the affine group scheme G, dual to the
coproduct of H.

The formulation in terms of Birkhoff factorization of loops with values in the Lie group
of complex points of the affine group scheme of diffeographisms is applied in [21] to the
Dimensional Regularization of Feynman integrals. Namely, the dimensionally regularized
Feynman integrals U(Γ)(z) of (2.43) define an element φ ∈ Hom(H, K), with H the
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Connes–Kreimer Hopf algebra of Feynman graphs of the theory and K the field of germs
of meromorphic functions at z = 0, given by assigning as values on the generators of the
Hopf algebra

(4.27) φ(Γ) = U(Γ) ∈ K.

In the case of dimensional regularization of Feynman integrals, the fact that the U(Γ)(z)
define meromorphic functions is very delicate, see the discussion in §1.4 of [23], especially
Lemma 1.7, Lemma 1.8, and Theorem 1.9. On the contrary, we have seen that, using the
Leray coboundary regularization introduced above, one easily obtains meromorphic func-
tions of the parameter ǫ. We return to discuss the analytic continuation to meromorphic
functions of the dimensionally regularized integrals via a different approach in §4.4 below.

By the results of §4.2 above, we can apply the same BPHZ renormalization procedure
to the Leray coboundary regularization introduced in Definition 4.3. We thus consider the
element φ ∈ Hom(H, K) defined by assigning on generators

(4.28) φ(Γ)(ǫ) = U(Γ)ǫ

defined as in (4.16). By Proposition 4.4, we know that U(Γ)ǫ defines a germ of a meromor-
phic function for ǫ ∈ ∆∗, an infinitesimal punctured disk around ǫ = 0, hence it defines
an element in K. We can then apply the Birkhoff factorization of φ, as in (4.26). This
provides the counterterms, in the form

(4.29) C(Γ)ǫ = φ−(Γ)(ǫ),

which, as a function of ǫ, is an element in Q, and the renormalized value of the Feynman
integral, given by the finite value at zero

(4.30) R(Γ) = φ+(Γ)(0),

where φ+(Γ)(ǫ) defines an element in the ring of convergent power series O ⊂ K.

4.4. Mellin transform and the DimReg integral. We now return to consider the
method of Dimensional Regularization and reinterpret it in terms of oscillatory integrals
and mixed Hodge structures. As we recalled briefly in §4.1 above, the oscillatory integrals
used in the theory of singularities and mixed Hodge structures can be seen as Fourier
transforms (4.3) of a Gelfand–Leray function (4.7). One can also consider, instead of a
Fourier transform, a Mellin transform of the same Gelfand–Leray function. Since Mellin
and Fourier transform determine each other by well known formulae, the information
obtained in this way is equivalent. In the context of singularity theory, the Mellin trans-
forms of Gelfand–Leray functions and its relation to the oscillatory integral is discussed,
for instance, in Part II, §7.2.1, of [5], Vol.II.

It was already proved by Belkale and Brosnan in [9] that, in the case of log-divergent
graphs, the dimensionally regularized parametric Feynman integral can be written as a
local Igusa L-function. This was later generalized to the non-log-divergent case in the
work of Bogner and Weinzierl [16], [17], [18]. Our approach here is closely related to these
results, though we do not discuss in detail the explicit relation. Moreover, we simplify
the form of the integrals with respect to the case considered by Bogner and Weinzierl,
so that we do not have to perform the cutting into sectors and blowups. We rely, in
fact, on the formulation in terms of the exponential of the rational function VΓ(t, p) and
its expansion, and we analyze the resulting terms individually. A more detailed analysis
using the formulation of Bogner–Weinzierl and Belkale–Brosnan is possible, but we do not
consider it here.

In order to relate the dimensionally regularized parametric Feynman integral to the
oscillatory integrals and the Mellin transforms of Gelfand–Leray functions, consider again
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the integrals of the form (2.43), or better, the similar integrals computed after slicing with
a k-plane Πξ as in §3.5, so that the intersection XΓ ∩Πξ has isolated singularities.

As shown in Lemma 2.6, we can equivalently compute the dimensionally regularized
Feynman integral (2.43) using the form (2.44). Thus, we first consider an integral of the
form

(4.31)

∫

Π+
ξ

e−VΓ(t,p)

ΨΓ(t)(D+z)/2
ωξ

where Π+
ξ = Πξ ∩ Rn

+ and ωξ is as in (3.11). After expanding the exponential term and

using (2.31), we are reduced to considering integrals of the form

(4.32)

∫

Π+
ξ

PΓ(t, p)ℓ

ΨΓ(t)ℓ+(D+z)/2
ωξ.

Thus, we concentrate here on integrals of the form

(4.33) FΓ,ξ(z) =

∫
Ψz

Γ χξ P ℓ
ΓΩξ,

with Ωξ is as in (3.4), and for some integer ℓ ≥ 0. We have made here a simple change of
coordinates on the complex variable z, whose meaning will become apparent in a moment.

The function χξ in (4.33) is the characteristic function of the domain of integration. In
order to show that one can extract from these dimensionally regularized Feynman integrals
information on the singularities of the graph hypersurface XΓ (through its slices XΓ∩Πξ),
it suffices to concentrate on the part of the domain of integration that is close to the
hypersurface XΓ. Thus, we can include in the function χξ an additional cutoff of the
integral that is supported in a neighborhood of the intersection Σξ ∩ XΓ of the original
domain of integration in Πξ with the graph hypersurface.

In the following, for simplicity of notation, we just write (4.33) as

(4.34) FΓ,ξ(z) =

∫
Ψz

Γ αξ,

where

(4.35) αξ = χξ P ℓ
Γ Ωξ.

Lemma 4.5. The function (4.34) is the Mellin transform of the Gelfand-Leray function

(4.36) JΓ,ξ(ǫ) =

∫

Xǫ

αξ

df
,

with f = ΨΓ|Πξ
.

Proof. First observe that both functions ΨΓ(t) and PΓ(t, p) are real when restricted to the
domain Σ ⊂ Rn

+, with ΨΓ(t) > 0 on the interior of this domain. Thus, we can write the
function FΓ,ξ(z) of (4.34) in the form

(4.37) FΓ,ξ(z) =

∫ ∞

0

sz

(∫

Xs

αξ

df

)
ds.

One can recognize then that (4.37) is in fact the Mellin transform

(4.38) FΓ,ξ(z) =

∫ ∞

0

szJΓ,ξ(s) ds,

for JΓ,ξ as in (4.36), the corresponding Gelfand–Leray function. �
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The identification of FΓ,ξ(z) with the Mellin transform (4.38) also provides an answer to
the problem of the analytic continuation to meromorphic functions in the complex plane
for functions of the form (4.33). This analytic continuation is needed in order to justify our
change of variables in z in passing from (4.32) to (4.33), as well as the use of integrals of
the form (4.33) to derive conclusions about the original dimensionally regularized integrals
(4.32). In fact, the existence of an analytic continuation to meromorphic functions for the
functions FΓ,ξ(z) follows from the existence of an asymptotic expansion for Gelfand–Leray
functions of the form

(4.39) J(s) =

∫

Xs

α

df
, α = hχωn,

with h a polynomial term and χ a compactly supported smooth function, supported near
an isolated singularity of the hypersurface f = 0. The asymptotic expansion is given by

(4.40) J(s) ∼
∑

λ∈Ξ

n−1∑

r=0

ar,λ sλ log(s)r , s→ 0+

with Ξ a discrete subset of R. The points λ ∈ Ξ depend on the set of multiplicities of an
embedded resolution of the singularity, see Part II, §7 of [5] and [43]. This implies the
following result (cf. [5]), for generic choice of the slicing Πξ and of the external momenta.

Corollary 4.6. Suppose that the cutoff function χξ in (4.35) is supported in a small

neighborhood of an isolated singularity of XΓ ∩Πξ. Then the function FΓ,ξ(z), defined as

in (4.34) for ℜ(z) > 0 sufficiently large, admits an analytic continuation to a meromorphic

function over the whole complex plane, with poles at the discrete set of points z = −(λ+1),
with λ ∈ Ξ as in (4.40), with the coefficient of (z + λ + 1)−(r+1) in the Laurent series

expansion given by (−1)rr!ar,λ, with ar,λ as in (4.40).

4.5. Dimensional regularization and mixed Hodge structures. We use the results
of the previous section relating the dimensional regularization of the Feynman integrals to
the Mellin transform of Gelfand–Leray functions, and the results of §3.4 on the interpre-
tation in terms of cohomology of the Milnor fiber, to relate the dimensionally regularized
Feynman integrals to limiting mixed Hodge structures.

We assume here to be in the case of isolated singularities, possibly after replacing the
original Feynman integrals with their slices along planes Πξ of dimension complementary
to that of the singular locus of the hypersurface, as discussed in §§3.2 and 3.5 above.

The cohomological Milnor fibration has fiber over ǫ given by the complex vector space
Hk−1(Fǫ, C), where the Milnor fiber Fǫ of Xξ is homotopically a bouquet of µ spheres
Sk−1, with k = dimΠξ − 1 and with µ the Milnor number of the isolated singularity.
A holomorphic k form α = hωξ/fm determines a section of the cohomological Milnor
fibration by taking the classes

(4.41)

[
α

df
|Fǫ

]
∈ Hk−1(Fǫ, C).

We then have the following results ([5], Vol.II §13). The asymptotic formula (4.40) for
the Gelfand–Leray functions implies that the function of ǫ obtained by pairing the section
(4.41) with a locally constant section of the homological Milnor fibration has an asymptotic
expansion

(4.42)

〈[
α

df

]
, δ

〉
∼
∑

λ,r

ar,λ

r!
ǫλ log(ǫ)r,
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for ǫ→ 0, where δ(ǫ) ∈ Hk−1(Fǫ, Z). Moreover, there exist classes

(4.43) ηα
r,λ(ǫ) ∈ Hk−1(Fǫ, C)

such that the coefficients ar,λ of (4.42) are given by

(4.44) 〈ηα
r,λ(ǫ), δ(ǫ)〉 = ar,λ.

Thus, one defines the “geometric section” associated to the holomorphic k-form α as

(4.45) σ(α) :=
∑

r,λ

ηα
r,λ(ǫ)

ǫλ log(ǫ)r

r!
.

The order of the geometric section σ(α) is defined as being the smallest λ in the discrete
set Ξ ⊂ R such that ηα

0,λ 6= 0. One denotes it with λα. The principal part of σ(α) is then
defined as

(4.46) σmax(α)(ǫ) := ǫλα

(
ηα
0,λα

+ · · ·+
log(ǫ)k−1

(k − 1)!
ηα

k−1,λα

)
,

where one knows that

(4.47) ηα
r,λ = N rηα

0,λ,

where N is the nilpotent operator given by the logarithm of the unipotent monodromy,
given by

N = −
1

2πi
log T

with log T =
∑

r≥1(−1)r+1(T − id)r/r.
The asymptotic mixed Hodge structure on the fibers of the cohomological Milnor fi-

bration constructed by Varchenko ([44], [45]) has as the Hodge filtration the subspaces
F r ⊂ Hk−1(Fǫ, C) defined by

(4.48) F r = {[α/df ] |λα ≤ k − r − 1}

and as weight filtration Wℓ ⊂ Hk−1(Fǫ, C) the filtration associated to the nilpotent mon-
odromy operator N . This mixed Hodge structure has the same weight filtration as the
limiting mixed Hodge structure constructed by Steenbrink ([39], [40]), but the Hodge fil-
tration is different, though the two agree on the graded pieces of the weight filtration.

We now use a refined version of the results of §3.4, and in particular Corollary 3.5 for
Feynman integrands as in (3.16). We show that, upon varying the choice of the external
momenta p and of the spacetime dimension D, the corresponding Feynman integrands,
in a neighborhood of an isolated singular point of XΓ ∩ Πξ, determine a subspace of the
cohomology Hk−1(Fξ, C) of the Milnor fiber of XΓ ∩ Πξ. This inherits a Hodge and a
weight filtrations from the Milnor fiber cohomology with its asymptotic mixed Hodge
structure. We concentrate on the case where k −Dℓ/2 ≤ 0, so that we can consider, for
fixed k, arbitrarily large values of D ∈ N.

Proposition 4.7. Consider Feynman integrals, sliced along a linear space Πξ as in (3.14).
We write the integrand in the form

(4.49) αξ =
hΩξ

fm
,

with

(4.50)






h = P
−k+Dℓ/2
Γ

f = ΨΓ

m = −k + D(ℓ + 1)/2,
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as in (3.24), with k − Dℓ/2 ≤ 0. Upon varying the external momenta p in PΓ(p, t) and

the spacetime dimension D ∈ N, with k −Dℓ/2 ≤ 0, the forms αξ as above determine a

subspace

Hk−1
Feynman(Fǫ, C) ⊂ Hk−1(Fǫ, C),

of the fibers of the cohomological Milnor fibration, spanned by elements of the form (4.49),
where the polynomials h = hT,v,w,p are of the form

(4.51) h(t) =

−k+Dℓ/2∏

i=1

LTi
(t)
∏

e/∈Ti

te,

where the Ti are spanning trees and the LTi
(t) are the linear functions of (2.37).

Proof. Consider the explicit expression (2.32) of the polynomial PΓ(t, p) as a function of
the external momenta, through the coefficients sC of (2.33). One can see that, by varying
arbitrarily the external momenta, subject to the global conservation law (2.35), one can
reduce to the simplest possible case, where all external momenta are zero except for a pair
of opposite momenta Pv1 = p = −Pv2 associated to a pair of external edges attached to a
pair of vertices v1, v2. In such a case, the polynomial PΓ(t, p) becomes of the form (2.36).
Thus, when considering powers PΓ(t, p)−k+Dℓ/2 for varying D, we obtain all polynomials
of the form (4.51). �

We denote by Hk−1
Feynman(Fǫ, C) the subspace of the cohomology Hk−1(Fǫ, C) of the

Milnor fiber spanned by the classes [αξ/df ] with αξ of the form (4.49), with h of the form
(4.51), considered modulo the ideal generated by the derivatives of f = ΨΓ and localized
at an isolated singular point, i.e. viewed as elements in the Milnor algebra M(f). The

subspace Hk−1
Feynman(Fǫ, C) inherits a Hodge and a weight filtration F •∩Hk−1

Feynman and W•∩

Hk−1
Feynman from the asymptotic mixed Hodge structure of Varchenko on Hk−1(Fǫ, C). It is

an interesting problem to see whether the subspace Hk−1
Feynman recovers the full Hk−1(Fǫ, C)

and if (F •∩Hk−1
Feynman, W•∩Hk−1

Feynman) still give a mixed Hodge structure, at least for some
classes of graphs Γ.

5. Regular and irregular singular connections

An important and still mysterious aspect of the motivic approach to Feynman integrals
and renormalization is the problem of reconciling the Riemann–Hilbert correspondence
of perturbative renormalization formulated by Connes–Marcolli in [22] (see also [23]),
which is based on equivalence classes of certain irregular singular connections, with the
setting of motives (especially mixed Tate motives) and mixed Hodge structures, which
are naturally related to regular singular connections. The irregular singular connections
of [22] have values in the Lie algebra of the Connes–Kreimer group of diffeographisms
and are defined on a fibration over a punctured disk with fiber the multiplicative group,
respectively representing the complex variable z of dimensional regularization and the
energy scale µ (or rather µz) upon which the dimensionally regularized Feynman integrals
depend. On the other hand, in the case of hypersurfaces in projective spaces, the natural
associated regular singular connection is the Gauss–Manin connection on the cohomology
of the Milnor fiber and the Picard–Fuchs equation for the vanishing cycles. We sketch
here a relation between this regular singular connection and the irregular equisingular
connections of [22]. (To avoid any possible confusion, the reader should keep in mind that
the use of the term “equisingular” in [22] is not the same as the well established use in
singularity theory, as in [42] for instance.)
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5.1. Picard–Fuchs equation and Gauss–Manin connection. In the following we let

(5.1)

[
ωi

df

]
i = 1, . . . , µ

be a basis for the vanishing cohomology bundle, written with the same notation we used
above for the Gelfand–Leray form. Then the Gauss–Manin connection on the vanish-
ing cohomology bundle, which is defined by the integer cohomology lattice in each real
cohomology fiber, acts on the basis (5.1) by

(5.2) ∇GM
s

[
ωi

df

]

s

=
∑

j

pij(s)

[
ωj

df

]

s

,

where the pij(s) are holomorphic away from s = 0 and have a pole at s = 0. The Gauss–
Manin connection is regular singular and its monodromy agrees with the monodromy of
the singularity (see [4], §2.3). Given a covariantly constant section δ(s) of the vanishing
homology bundle, the function

(5.3) I(s) =

(∫

δ(s)

ω1

df
, . . . ,

∫

δ(s)

ωµ

df

)

is a solution of the regular-singular Picard–Fuchs equation

(5.4)
d

ds
I(s) = P (s)I(s), with P (s)ij = pij(s).

Similarly, suppose given a holomorphic n-form ω and let ω/df be the corresponding
Gelfand–Leray form, defining a section [ω/df ] of the vanishing cohomology bundle. Let
δ1, . . . , δµ be a basis of the vanishing homology, δi(s) ∈ Hn−1(Fs, Z). Then the function

(5.5) I(s) =

(∫

δ1(s)

ω

df
, . . . ,

∫

δµ(s)

ω

df

)

satisfies a regular singular order ℓ differential equation

(5.6) I(ℓ)(s) + p1(s)I
(ℓ−1)(s) + · · ·+ pℓ(s)I(s) = 0,

where the order is bounded above by the multiplicity of the critical point (see [5], §12.2.1).
One refers to (5.6), or to the equivalent system of regular singular homogeneous first order
equations

(5.7)
d

ds
I(s) = P(s)I(s),

with

(5.8) Ir(s) = sr−1I(r−1)(s),

as the Picard–Fuchs equation of ω. For the relation between Picard–Fuchs equations and
mixed Hodge structures see §12 of [5] and [33].

5.2. Flat equisingular connections. We first recall some properties of the flat equi-
singular connections introduced in [22] (see also §1 of [23]). We denote by G the affine
group scheme dual to the commutative Hopf algebra of Feynman diagrams, graded by
loop number. We let g denote the Lie algebra g = Lie(G). Let K denote the field of germs
of meromorphic functions at z = 0. We also let B denote a fibration over an infinitesimal
disk ∆∗ with fiber the multiplicative group Gm and we denote by P the principal G-bundle
P = B ×G. We consider Lie(G)-valued flat connections ω that are equisingular, i.e. they
satisfy
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• The connections satisfies ω(z, λu) = λY ω(z, u), for λ ∈ Gm, with Y the grading
operator.
• Solutions of Dγ = ω, have the property that their pullbacks σ∗(γ) ∈ G(K) along

any section σ : ∆→ B with fixed value σ(0) have the same negative piece of the
Birkhoff factorization σ∗(γ)−.

The first condition and the flatness condition imply that the connection ω(z, u) can be
written in the form

(5.9) ω(z, u) = uY (a(z)) dz + uY (b(z))
du

u
,

where a(z) and b(z) are elements of g(K) satisfying the flatness condition

(5.10)
db

dz
− Y (a) + [a, b] = 0.

Recall that the Lie bracket in the Lie algebra Lie(G) is obtained by assigning

(5.11) [Γ, Γ′] =
∑

v∈V (Γ)

Γ ◦v Γ′ −
∑

v′∈V (Γ′)

Γ′ ◦v′ Γ,

where Γ ◦v Γ′ denotes the graph obtained by inserting Γ′ into Γ at the vertex v ∈ V (Γ)
and the sum is over all vertices where an insertion is possible.

The equisingularity condition, which determines the behavior of pullbacks of solutions
along sections of the fibration Gm → B → ∆, can be checked by writing the equation
Df = ω in the more explicit form

(5.12) γ−1 dγ

dz
= a(z), and γ−1Y (γ) = b(z).

When one interprets elements γ ∈ G(K) as algebra homomorphisms φ ∈ Hom(H, K), one
can write the above equivalently in the form

(5.13) (φ ◦ S) ∗
dφ

dz
= a, and (φ ◦ S) ∗ Y (φ) = b,

where S is the antipode in H and ∗ is the product dual to the coproduct in the Hopf
algebra. This means, on generators Γ of H,

(5.14) 〈(φ ◦ S)⊗
dφ

dz
, ∆(Γ)〉 = aΓ, and 〈(φ ◦ S)⊗ Y (φ), ∆(Γ)〉 = bΓ,

where

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ

γ ⊗ Γ/γ

as in (4.23), with the sum over subdivergences, and the antipode is given inductively by

(5.15) S(X) = −X −
∑

S(X ′)X ′′,

for ∆(X) = X ⊗ 1 + 1⊗X +
∑

X ′ ⊗X ′′, with X ′ and X ′′ of lower degree.

5.3. From regular to irregular singularities. We now show how to produce a flat
connection of the desired form (5.9), with irregular singularities, starting from the graph
hypersuraces XΓ, a consistent choice of slicing Πξ, and the regular singular Picard–Fuchs
equation associated to the resulting isolated singularities of XΓ ∩Πξ.

We begin by introducing a small modification of the Hopf algebra and coproduct, which
accounts for the fact of having to choose a slicing Πξ. This is similar to what happens
when one enriches the discrete Hopf algebra by adding the data of the external momenta.
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Let SΓ denote the manifold of planes Πξ in A#E(Γ) with dimΠξ ≤ codimSing(XΓ). We
can write SΓ as a disjoint union

(5.16) SΓ =

codimSing(XΓ)⋃

m=1

SΓ,m,

where SΓ,m is the manifold of m-dimensional planes in A#E(Γ). We denote by C∞(SΓ) the
space of test functions on SΓ and by C−∞

c (SΓ) its dual space of distributions.

Lemma 5.1. Suppose given a subgraph γ ⊂ Γ. Then the choice of a distribution σ ∈
C−∞

c (SΓ) induces distributions σγ ∈ C−∞
c (Sγ) and σΓ/γ ∈ C

−∞
c (SΓ/γ).

Proof. Given γ ⊂ Γ, neglecting external edges, we can realize the affine Xγ as a hypersur-

face inside a linear subspace A#E(γ) ⊂ A#E(Γ) and similarly for the affine XΓ/γ , seen as

a hypersurface inside a linear subspace A#E(Γ/γ) ⊂ A#E(Γ), where we simply identify the
edges of γ or Γ/γ with a subset of the edges of the original graph Γ.

One then has a restriction map Tγ : SΓ,γ → Sγ , where SΓ,γ ⊂ SΓ is the union of the
components SΓ,m of SΓ with m ≤ codimSing(Xγ),

(5.17) SΓ,γ =

codimSing(Xγ )⋃

m=1

SΓ,m,

which is given by

(5.18) Tγ(Πξ) = Πξ ∩ A#E(γ).

This induces a map Tγ : C∞(Sγ)→ C∞(SΓ) given by

(5.19) Tγ(f)(Πξ) =

{
f(Tγ(Πξ)) Πξ ∈ SΓ,γ

0 otherwise.

In turn, this defines a map Tγ : C−∞
c (SΓ)→ C−∞

c (Sγ), at the level of distributions, by

(5.20) Tγ(σ)(f) = σ(Tγ(f)).

The argument for Γ/γ is analogous. One sets σγ = Tγ(σΓ) and σΓ/γ = TΓ/γ(σΓ). �

We then enrich the original Hopf algebra H by adding the datum of the slicing Πξ. We
consider the commutative algebra

(5.21) H̃ = Sym(C−∞
c (S)),

where S = ∪ΓSΓ, endowed with the coproduct

(5.22) ∆(Γ, σ) = (Γ, σ)⊗ 1 + 1⊗ (Γ, σ) +
∑

γ

(γ, σγ)⊗ (Γ/γ, σΓ/γ).

Lemma 5.2. The coproduct (5.22) is coassociative and H̃ is a Hopf algebra.

Proof. The proof is analogous to the one given in [23], Theorem 1.27. �

We then proceed as follows. We pass to the projective instead of affine formulation and
we fix a small neighborhood of an isolated singular point of XΓ ∩Πξ, for Πξ a linear space
of dimension at most equal to the codimension of Sing(XΓ). Suppose given a holomorphic
k-form αξ on Πξ. Then there exists an associated regular singular Picard–Fuchs equation

(5.23) J
(ℓ)
Γ,ξ(s) + p1(s)J

(ℓ−1)
Γ,ξ (s) + · · ·+ pℓ(s)JΓ,ξ(s) = 0,
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with the property that any solution JΓ,ξ(s) is a linear combination of the functions

(5.24) JΓ,ξ,i(s) =

∫

δi(s)

αξ

df
,

where δ1, . . . , δµ be a basis of locally constant sections of the homological Milnor fibration,
δi(s) ∈ Hk−1(Fs, Z), and αξ/df is the Gelfand–Leray form associated to the holomorphic
k-form αξ.

This depends on the choice of a singular point and can be localized in a small neigh-
borhood of the singular point in XΓ∩Πξ. In fact, introducing a cutoff χξ as in (4.33) that
is supported near the singularities of XΓ ∩ Πξ amounts to adding the expressions (5.24)
for the different singular points. Thus, to simplify notations, we can just assume to have
a single expression JΓ,ξ(s) at a unique isolated critical point.

We then have the following result, which constructs irregular singular connections as in
§5.2 from solutions of the regular singular Picard–Fuchs equation.

Theorem 5.3. Any solution JΓ,ξ of the regular singular Picard–Fuchs equation (5.23)
determines a flat g(K)-valued connection ω(z, u) of the form (5.9). Moreover, if the k-

form αξ is given by P ℓ
ΓΩξ as in (4.35), then the connection is equisingular.

Proof. We consider the Mellin transform, as in (4.38)

(5.25) FΓ,ξ(z) =

∫ ∞

0

sz JΓ,ξ(s) ds.

As in Corollary 4.6 (see §7 of [5]), the function FΓ,ξ(z) admits an analytic continuation to
meromorphic functions with poles at points z = −(λ + 1) with λ ∈ ΞΓ,ξ a discrete set in
R of points related to the multiplicities of an embedded resolution of the singular point
of XΓ ∩ Πξ. We look at the function FΓ,ξ(z) in a small neighborhood of a chosen point
z = −D. It has an expansion as a Laurent series, with a pole at z = −D if −D ∈ ΞΓ,ξ.

After a change of variables on the complex coordinate z, so that we have z ∈ ∆∗ a
small neighborhood of z = 0, we define

(5.26) φµ(Γ, σ)(z) := µ−z b1(Γ)σ

(
FΓ,ξ(−

D + z

2
)

)
,

where we consider FΓ,ξ as a function of ξ to which we apply the distribution σ. More
precisely, after identifying FΓ,ξ with its Laurent series expansion, we apply σ to the coef-

ficients seen as functions of ξ. This defines an algebra homomorphism φµ ∈ Hom(H̃, K),
by assigning the values (5.26) on generators. Here µ is the mass scale as in §2.3 above.

The homomorphism φ defined by (5.26) can be equivalently described as a family of G̃(C)-

valued loops γµ : ∆∗ → G̃(C), depending on the mass scale µ. Here G̃ denotes the affine

group scheme dual to the commutative Hopf algebra H̃. The dependence on µ of (5.26)
implies that γµ satisfies the scaling property

(5.27) γetµ(z) = θtz(γµ(z)),

where θt is the one-parameter family of automorphisms of H̃ generated by the grading,
d
dtθt|t=0 = Y . Then one sets

(5.28) aµ(z) := (φµ ◦ S) ∗
d

dz
φµ, and bµ(z) := (φµ ◦ S) ∗ Y (φµ),

where S and ∗ are the antipode of H̃ and the product dual to the coproduct ∆ of (5.22).
These define elements aµ, bµ Ω1(g(K)), which one can use to define a connection ω(z, u)
of the form (5.9). More precisely, for µ = et, one has

γ−1
µ

d

dz
γµ = θt(γ

−1 d

dz
γ) = uY (a(z)),
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where we set uY = etY and then extend the resulting expression to u ∈ Gm(C) = C∗.
Similarly, we get γ−1

µ Y (γµ) = uY (b(z)). Thus, the connection ω(z, u) defined in this
way satisfies by construction the first condition of the equisingularity property, namely
ω(z, λu) = λY ω(z, u), for all λ ∈ Gm. One can see that the connection is flat since we
have

d

dz
bµ(z)− Y (aµ(z)) =

dγ−1
µ (z)

dz
Y (γµ(z)) + γ−1

µ (z)
d

dz
(Y (γµ(z)))

−Y (γ−1
µ (z))

d

dz
γµ(z)− γ−1

µ (z)
d

dz
(Y (γµ(z)))

= −γ−1
µ (z)

d

dz
(γµ(z))γ−1

µ (z)Y (γµ(z))− γ−1
µ (z)Y (γµ(z))γ−1

µ (z) = −[a(z), b(z)].

The second condition of equisingularity is the property that, in the Birkhoff factorization

γµ(z) = γµ,−(z)−1γµ,+(z),

the negative part satisfies
d

dµ
γµ,−(z) = 0.

By dimensional analysis on the counterterms, in the case of Dimensional Regularization
and Minimal Subtraction, it is possible to show (see [20] §5.8.1) that the counterterms
obtained by the BPHZ procedure applied to the Feynman integral Uµ(Γ)(z) of (2.49) and
(2.48) do not depend on the mass parameter µ. This means, as shown in [21] (see also
Proposition 1.44 of [23]), that the Feynman integrals Uµ(Γ)(z) define a G(C)-valued loop
γµ(z) with the property that ∂µγµ,−(z) = 0. The integrals (5.25) considered here, in the
case where αξ is of the form (4.35), correspond to slices along a linear space Πξ of the
Feynman integrals (2.49), localized by a cutoff χξ near the singular points. The explicit
dependence on µ in the integrals (3.31) is as in (5.26), which is unchanged with respect to
that of the original dimensionally regularized Feynman integrals (2.49). Thus, the same
argument of [20] §5.8.1 and Proposition 1.44 of [23] applies to this case to show that
∂µγµ,−(z) = 0. �

6. Logarithmic motives, Dimensional Regularization, and motivic sheaves

In this section we propose a candidate for a motivic formulation of dimensional regu-
larization. As we discussed already in §2.2 above, in physics dimensional regularization is
intended as a purely formal recipe that assigns a meaning to Gaussian integrals in “com-
plexified dimension” z ∈ C by continuation to non-integer values of the usual formula for
integer dimensions

(6.1)

∫
e−λt2dzt := πz/2λ−z/2.

Usually, in so doing, one does not attempt to give a geometric meaning to the space of
integration as a “space in complexified dimension z ∈ C”. The question of whether one
can actually make sense of a geometry in complexified dimension was considered in [23],
from the point of view of noncommutative geometry, where the usual notion of dimension
of a space is replaced by the dimension spectrum, which is a set of complex numbers. A
geometric model for a space whose dimension spectrum consists of a single point z ∈ C∗

is given in §I.19.2 of [23], and it is shown that the formula (6.1) can be recovered from the
properties of the Dirac operator on this space.

Here we also consider the question of giving geometric meaning to the complexified
dimension, but we try to construct a geometric model underlying the operation of dimen-
sional regularization using motives. We propose a candidate for a motive describing the
dimensional regularization of a given Feynman graph. This is defined as an extension
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(in fact as a pro-motive) in the category of mixed motives, which is obtained from the
logarithmic extension of Tate motives and the motive of the graph hypersurface. We work
in the geometric setting of motivic sheaves. One can choose to work in a similar way at
the level of Hodge structures, using Hodge sheaves. For a formulation of some aspects of
dimensional regularization in a setting that is closer to that of mixed Hodge modules, we
refer the reader to §7 of [37] and the unpublished [24].

Just as in the case of noncommutative geometry, where the operation of dimensional
regularization is understood as a product of the ordinary space in integer dimension by
the “space of dimension z”, here we also find that the dimensionally regularized Feynman
integral is recovered by taking the product, in a category of motivic sheaves, of the mo-
tive associated to the graph hypersurface of a given Feynman graph by this pro-motive
representing the “space of dimension z”. It would be interesting to find a more explicit
relation between this motivic description of dimensional regularization and the one based
on noncommutative geometry, described in [23] and [24].

6.1. Mixed Tate motives and the logarithmic extensions. We recall briefly the
definition of the logarithmic motives, as given in [6]. Let DM(Gm) be the Voevodsky
category of mixed motives (motivic sheaves) over the multiplicative group Gm. We will
assume that the base field K is a number field (in fact, we can work over Q) so that the
extensions considered here take place in an abelian category of mixed Tate motives (cf.
[2], [35]). Recall that the extensions Ext1DM(K)(Q(0), Q(1)) of Tate motives are given by

the Kummer motives M = [Z
u
→ Gm] with u(1) = q ∈ K∗. This extension has period

matrix of the form

(6.2)

(
1 0

log q 2πi

)
.

When, instead of working with motives over the base field K, one works with the relative
setting of motivic sheaves over a base scheme S, instead of the Tate motives Q(n) one
considers the Tate sheaves QS(n). These correspond to the constant sheaf with the motive
Q(n) over each point s ∈ S. In the case where S = Gm, there is a natural way to assemble
the Kummer motives into a unique extension in Ext1DM(Gm)(QGm

(0), QGm
(1)). This is the

Kummer extension

(6.3) QGm
(1)→ K → QGm

(0)→ QGm
(1)[1],

where over the point s ∈ Gm one is taking the Kummer extension Ms = [Z
u
→ Gm] with

u(1) = s. Because of the logarithm function log(s) that appears in the period matrix for
this extension, the Kummer extension (6.3) is also referred to as the logarithmic motive.
We use the notation K = Log as in [6] to refer to this extension, cf. [7].

When working with Q-coefficients, so that one can include denominators in the defini-
tion of projectors, one can then consider the logarithmic motives Logn, defined as in [6]
by setting

(6.4) Logn = Symn(K),

where the symmetric powers of an object in DMQ(Gm) are defined as

(6.5) Symn(X) =
1

#Σn

∑

σ∈Σn

σ(Xn).

Recall that the polylogarithms appear naturally as period matrices for extensions in-
volving the symmetric powers Logn = Symn(K), in the form [12]

(6.6) 0→ Logn−1(1)→ Ln → Q(0)→ 0,
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where M(1) = M ⊗Q(1) and L1 = Log. The mixed motive Ln has period matrix

(6.7)

(
1 0

M
(n)
Li MLogn−1(1)

)

with

(6.8) M
(n)
Li = (−Li1(s),−Li2(s), · · · ,−Lin(s))τ ,

where τ means transpose and where

Li1(s) = − log(1− s), and Lin(s) =

∫ s

0

Lin−1(u)
du

u
,

equivalently defined (on the principal branch) using the power series

Lin(s) =
∑

k

sk

kn
,

and with

(6.9) MLogn(1) =




2πi 0 0 · · · 0
2πi log(s) (2πi)2 0 · · · 0

2πi log2(s)
2! (2πi)2 log(s) (2πi)3 · · · 0

...
...

... · · ·
...

2πi logn(s)
n! (2πi)2 logn−1(s)

(n−1)! (2πi)3 logn−2(s)
(n−2)! · · · (2πi)n




.

The period matrices for the motives Logn correspond to the description of Logn as
extension of Q(0) by Logn−1(1), i.e. to the distinguished triangles in DM(Gm)

of the form

(6.10) Logn−1(1)→ Logn → Q(0)→ Logn−1(1)[1].

The motives Logn form a projective system under the canonical maps

βn : Logn+1 → Logn

given by the composition of the morphisms Symn+m(K) → Symn(K) ⊗ Symm(K), as
in [6], Lemma 4.35, given by the fact that Symn+m(K) is canonically a direct factor of
Symn(K) ⊗ Symm(K), and the map Symm(K) → Q(0) of (6.10), in the particular case
m = 1. Let Log∞ denote the pro-motive obtained as the projective limit

(6.11) Log∞ = lim
←−
n

Logn.

The analog of the period matrix (6.9) becomes then the infinite matrix
(6.12)

MLog∞(1) =




2πi 0 0 · · · 0 · · ·
2πi log(s) (2πi)2 0 · · · 0 · · ·

2πi log2(s)
2! (2πi)2 log(s) (2πi)3 · · · 0 · · ·

...
...

... · · ·
... · · ·

2πi logn(s)
n! (2πi)2 logn−1(s)

(n−1)! (2πi)3 logn−2(s)
(n−2)! · · · (2πi)n · · ·

...
...

... · · ·
... · · ·




.

In other words, the mixed Hodge structure associated to the motives Logn is the one
that has as the weight filtrations W−2k the range of multiplication by the matrix MLogn

defined as in (6.9) on vectors in Qn with the first k − 1 entries equal to zero, while the
Hodge filtration F−k is given by the range of multiplication of MLogn on vectors of Cn

with the entries from k + 1 to n equal to zero [12].
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Thus, in this Hodge realization, the H0 piece corresponds to the first column of the
matrix MLogn , where the k-th entry corresponds to the k-th graded piece of the weight
filtration. Let us consider the corresponding grading operator, that multiplies the k-th
entry by T k. One can then associate to the h0-piece of the Log∞ motive the following
formal expression that corresponds in the period matrix (6.12) to the H0 part in the MHS
realization:

(6.13) Q ·
∑

k

logk(s)

k!
T k =: Q · sT .

The formal expression (6.13) has in fact an interpretation in terms of periods. This
follows from a well known result (cf. e.g. [31], Lemma 2.10) expressing the powers of the
logarithm in terms of iterated integrals. For iterated integrals we use the notation as in
[31]

(6.14)

∫ b

a

ds

s
◦

ds

s
◦ · · ·

ds

s
=

∫

a≤s1≤···≤sn≤b

ds1

s1
∧ · · · ∧

dsn

sn
.

We also denote by Λa,b(n) the domain

(6.15) Λa,b(n) = {(s1, . . . , sn) | a ≤ s1 ≤ · · · ≤ sn ≤ b}.

Lemma 6.1. The expression (6.13) is obtained as rational multiples of the pairing

(6.16) sT =

∫

Λ1,s(∞)

η(T ),

with Λ1,s(∞) = ∪nΛ1,s(n) and the form

(6.17) η(T ) :=
∑

n

ds1

s1
∧ · · · ∧

dsn

sn
T n.

Proof. The result follows from the basic identity (cf. [31], Lemma 2.10)

(6.18)

∫

Λa,b(n)

ds1

s1
∧ · · · ∧

dsn

sn
=

log
(

b
a

)n

n!
.

�

6.2. Motivic sheaves and graph hypersurfaces. Arapura constructed in [3] a category
of motivic sheaves over a base scheme S, modeled on Nori’s approach to the construction
of categories of mixed motives. We discuss briefly how a similar formalism may be applied
to the Feynman motives associated to the graph hypersurfaces with the corresponding
periods of the form (2.19).

The category of motivic sheaves constructed in [3] is based on Nori’s construction of
categories of motives via representations of graphs made of objects and morphisms (cf.
[19]). In Arapura’s case, one constructs a category of motivic sheaves over a scheme S, by
taking as vertices of the corresponding graph objects of the form

(6.19) (f : X → S, Y, i, w) ,

where f : X → S is a quasi-projective morphism, Y ⊂ X is a closed subvariety, i ∈ N, and
w ∈ Z. One thinks of such an object as determining a motivic version hi

S(X, Y )(w) of the
local system given by the (Tate twisted) fiberwise cohomology of the pair Hi

S(X, Y ; Q) =
Rif∗j!QXrY , where j = jXrY : X r Y →֒ X is the open inclusion, i.e. the sheaf defined
by

U 7→ Hi(f−1(U), f−1(U) ∩ Y ; Q).
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The edges are given by the geometric morphisms, i.e. morphisms of varieties over S,

(6.20) (f1 : X1 → S, Y1, i, w)→ (f ′ : X2 → S, Y2 = F (Y ), i, w), with f2 ◦ F = f1;

the connecting morphisms

(6.21) (f : X → S, Y, i + 1, w)→ (f |Y : Y → S, Z, i, w), for Z ⊂ Y ⊂ X ;

and the twisted projection morphisms

(6.22) (f : X × P1 → S, Y × P1 ∪X × {0}, i + 2, w + 1)→ (f : X → S, Y, i, w).

The product in the category of motivic sheaves of [3] is given by the fibered product

(6.23)
(X → S, Y, i, w)× (X ′ → S, Y ′, i′, w′) =

(X ×S X ′ → S, Y ×S X ′ ∪X ×S Y ′, i + i′, w + w′).

This has the following effect on period computations.

Lemma 6.2. Suppose then given Σ ⊂ X and Σ′ ⊂ X ′, defining relative homology cycles

for (X, Y ) and (X ′, Y ′), respectively. One then has, for the fibered product (6.23), the

period pairing

(6.24)

∫

Σ×SΣ′

π∗
X(ω) ∧ π∗

X′(η) =

∫

Σ

ω ∧ f∗f ′
∗(η),

where f : Σ→ S and f ′ : Σ′ → S are the restrictions of the maps X → S and X ′ → S.

Proof. First recall that, when integrating a differential form on a fibered product, one has
the formula

(6.25)

∫

X×SX′

π∗
X(ω) ∧ π∗

X′(η) =

∫

X

ω ∧ (πX)∗π
∗
X′(η) =

∫

X

ω ∧ f∗f ′
∗(η),

which corresponds to the diagram

X ×S X ′

πX

zzvvvvvvvvv

πX′

$$IIIIIIIII

X
f

$$IIIIIIIIII X ′

f ′

zztttttttttt

S

(6.26)

Suppose then given Σ ⊂ X such that ∂Σ ⊂ Y and Σ′ ⊂ X ′ with ∂Σ′ ⊂ Y ′. One has

∂(Σ×S Σ′) = ∂Σ×S Σ′ ∪ Σ×S ∂Σ′ ⊂ Y ×S X ′ ∪X ×S Y ′,

so that Σ×S Σ′ defines a relative homology class in (X×S X ′, Y ×S X ′∪X×S Y ′). Given
elements [ω] ∈ H ·

S(X, Y ) and [η] ∈ H ·
S(X ′, Y ′), we then apply the formula (6.25) to the

integration on Σ×S Σ′ and obtain (6.24). �
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6.3. Logarithmic Feynman motives. Consider then the graph polynomial ΨΓ(s) =
det(MΓ(s)). By removing the set of zeros of ΨΓ, i.e. the graph hypersurface XΓ, we can
consider ΨΓ as a morphism

(6.27) ΨΓ : A#EΓ r X̂Γ → Gm.

We can then consider the pullback of the logarithmic motive Log ∈ DM(Gm) by this
morphism, as in the construction of the logarithmic specialization system given in [6].
This gives a motive

(6.28) LogΓ := Ψ∗
Γ(Log) ∈ DM(UΓ),

where UΓ = A#EΓ r X̂Γ.

In fact, a more sophisticated approach would involve considering here the “log complex”
as in §9.2 of [36], cf. also §9.4 of [36], see also [30].

In the context of the category of motivic sheaves of Arapura recalled above, we can
define the Feynman motives as follows.

Definition 6.3. The category of Feynman motivic sheaves, for a fixed scalar quantum field

theory, is the subcategory of the Arapura category of motivic sheaves over Gm spanned by

the objects of the form

(6.29) (ΨΓ : A#E(Γ) r X̂Γ → Gm, Λ r (Λ ∩ X̂Γ), #E(Γ) − 1, #E(Γ)− 1),

where Γ ranges over the Feynman graphs of the given scalar field theory, and where

(6.30) Λ = {t ∈ A#E(Γ) |
∏

i

ti = 0}

is the union of the coordinate hyperplanes.

The above correspond to the local systems

(6.31) Hn−1
Gm

(An r X̂Γ, Λ r (Λ ∩ X̂Γ), Q(n− 1)),

with n = #Eint(Γ).

One can also include as part of the data the slicing by all possible k-dimensional linear
spaces Πξ ⊂ A#E(Γ), with k ≤ codimSing(XΓ), as we did in our previous discussions, and
consider instead of the (6.29) objects of the form

(6.32) (ΨΓ|Πξ
: Πξ r (X̂Γ ∩Πξ)→ Gm, (Λ ∩Πξ) r (Λ ∩ X̂Γ ∩Πξ), k − 1, w).

Remark 6.4. The reason for taking the cohomology (6.31) relative to the algebraic sim-

plex Λ, that is, the union of the coordinate hyperplanes defined by (6.30) is that, in this
way, we can regard the topological simplex Σ = {t ∈ Rn

+ |
∑n

i=1 ti = 1} as defining a
homology cycle, since ∂Σ ⊂ Λ.

6.4. Dimensional Regularization and motives. In these terms, the procedure of di-
mensional regularization can then be described as follows. Consider again the logarithmic
(pro)motive, viewed itself as a motivic sheaf XLog∞ → Gm over Gm. One can then take
the product of a Feynman motive

(ΨΓ : An r X̂Γ → Gm, Λ r (Λ ∩ X̂Γ), k − 1, k − 1),

or more generally one of the form (6.32), by the (pro)motive

(6.33) (X∞
Log → Gm, Λ∞, 0, 0),
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where Λ∞ is such that the domain of integration Λ1,t(∞) of the period computation of
Lemma 6.1 defines a cycle. The product is given by a fibered product as in (6.23), namely

Ψ∗
Γ(Log∞) = (An r X̂Γ) ⋊Gm

XLog∞
//

��

XLog∞

��

An r X̂Γ

ΨΓ
// Gm

(6.34)

We then have the following interpretation of the dimensionally regularized Feynman
integrals.

Proposition 6.5. The dimensionally regularized Feynman integral FΓ,ξ(z) of (4.34) are

periods on the product, in the category of motivic sheaves enlarges to include projective

limits, of the Feynman motive (6.32) by the logarithmic pro-motive Log∞ seen as the

motivic sheaf (6.33).

Proof. Consider the product (6.34), with the two projections

πX : (Πξ r (X̂Γ ∩Πξ))×Gm
XLog∞ → Πξ r (X̂Γ ∩Πξ)

πL : (Πξ r (X̂Γ ∩Πξ))×Gm
XLog∞ → XLog∞ .

and the form π∗
X(αξ)∧π∗

L(η(T )), where αξ is as in (4.35), and η(T ) is the form on XLog∞

that gives the period (6.16). The period computation of Lemma 6.1 gives

(6.35) Ψ∗
Γ

(∫

Λ1,s(∞)

η(T )

)
=

∫

Λ1,ΨΓ(t)(∞)

η(T ) =
∑

n

log(ΨΓ(t))n

n!
T n = ΨΓ(t)T .

We then have, by (6.24),
∫

(Σ∩Πξ)×GmΛ1,ΨΓ(t)(∞)

π∗
X(αξ) ∧ π∗

L(η(T )) =

∫

Σ∩Πξ

αξ ∧ (πX)∗π
∗
L(η(T )) =

∫

Σ∩Πξ

ΨT
Γαξ.

This is the integral (4.34), up to replacing the formal variable T of (6.13) with the complex
DimReg variable z. �

The interpretation that emerges from this calculation is that performing the dimen-
sional regularization of a Feynman integral can be thought of as taking the product in the
category of motivic sheaves of the motive (motivic sheaf) of the graph hypersurface by
the projective limit of the logarithmic motives. The variable z ∈ Gm that gives the com-
plexified dimension of dimensional regularization corresponds to the 1-parameter group
generated by the grading operator associated to the weight filtration of the logarithmic
motives. The dimensionally regularized integral is then a period of this product motive.

6.5. Motivic zeta function and the DimReg integral. Kapranov introduced a notion
of motivic zeta function by defining

(6.36) ZX(T ) :=
∑

n≥0

Symn(X)T n,

where the Symn(X) can be regarded as objects in an abelian category of motives, or as
classes [Symn(X)] in the corresponding Grothendieck ring. Kapranov proved that, when
X is the motive of a curve, then the zeta function is a rational function, in the sense that,
given a motivic measure µ : K0(M)→ A, the zeta function ZX,µ(T ) ∈ A[[T ]] is a rational
function of T . Later, Larsen and Lunts showed that in general this is not true in the case
of algebraic surfaces [34].
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Here we consider the motivic zeta function of the pullback of the logarithmic motive
along the function ΨΓ as in (6.27). Namely, we consider the motivic zeta function

(6.37) ZLog,Γ(T ) :=
∑

n≥0

Symn(LogΓ)T n.

An interesting question, which we do not address in the present paper, is whether
one can define a motivic lift of the Dimensional Regularization of the Feynman integral
associated to a Feynman graph Γ using the motivic zeta function (6.37). In other words,
whether one can obtain the zeta function

(6.38) ZΓ(T ) :=
∑

n≥0

logn ΨΓ

n!
T n = ΨT

Γ

and the associated integrals

(6.39)
∑

n≥0

(∫

Σ∩Πξ

logn ΨΓ

n!
αξ

)
T n =

∫

Σ∩Πξ

ΨT
Γαξ

in a natural way from the motivic zeta function (6.37) of Ψ∗
Γ(Log). We hope to return to

this and related questions in following work.
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